aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Support/APInt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Support/APInt.cpp')
-rw-r--r--contrib/llvm/lib/Support/APInt.cpp2890
1 files changed, 2890 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Support/APInt.cpp b/contrib/llvm/lib/Support/APInt.cpp
new file mode 100644
index 000000000000..89f96bd57740
--- /dev/null
+++ b/contrib/llvm/lib/Support/APInt.cpp
@@ -0,0 +1,2890 @@
+//===-- APInt.cpp - Implement APInt class ---------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a class to represent arbitrary precision integer
+// constant values and provide a variety of arithmetic operations on them.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "apint"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cmath>
+#include <cstdlib>
+#include <cstring>
+#include <limits>
+using namespace llvm;
+
+/// A utility function for allocating memory, checking for allocation failures,
+/// and ensuring the contents are zeroed.
+inline static uint64_t* getClearedMemory(unsigned numWords) {
+ uint64_t * result = new uint64_t[numWords];
+ assert(result && "APInt memory allocation fails!");
+ memset(result, 0, numWords * sizeof(uint64_t));
+ return result;
+}
+
+/// A utility function for allocating memory and checking for allocation
+/// failure. The content is not zeroed.
+inline static uint64_t* getMemory(unsigned numWords) {
+ uint64_t * result = new uint64_t[numWords];
+ assert(result && "APInt memory allocation fails!");
+ return result;
+}
+
+/// A utility function that converts a character to a digit.
+inline static unsigned getDigit(char cdigit, uint8_t radix) {
+ unsigned r;
+
+ if (radix == 16 || radix == 36) {
+ r = cdigit - '0';
+ if (r <= 9)
+ return r;
+
+ r = cdigit - 'A';
+ if (r <= radix - 11U)
+ return r + 10;
+
+ r = cdigit - 'a';
+ if (r <= radix - 11U)
+ return r + 10;
+
+ radix = 10;
+ }
+
+ r = cdigit - '0';
+ if (r < radix)
+ return r;
+
+ return -1U;
+}
+
+
+void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
+ pVal = getClearedMemory(getNumWords());
+ pVal[0] = val;
+ if (isSigned && int64_t(val) < 0)
+ for (unsigned i = 1; i < getNumWords(); ++i)
+ pVal[i] = -1ULL;
+}
+
+void APInt::initSlowCase(const APInt& that) {
+ pVal = getMemory(getNumWords());
+ memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
+}
+
+void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
+ assert(BitWidth && "Bitwidth too small");
+ assert(bigVal.data() && "Null pointer detected!");
+ if (isSingleWord())
+ VAL = bigVal[0];
+ else {
+ // Get memory, cleared to 0
+ pVal = getClearedMemory(getNumWords());
+ // Calculate the number of words to copy
+ unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
+ // Copy the words from bigVal to pVal
+ memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
+ }
+ // Make sure unused high bits are cleared
+ clearUnusedBits();
+}
+
+APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
+ : BitWidth(numBits), VAL(0) {
+ initFromArray(bigVal);
+}
+
+APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
+ : BitWidth(numBits), VAL(0) {
+ initFromArray(makeArrayRef(bigVal, numWords));
+}
+
+APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
+ : BitWidth(numbits), VAL(0) {
+ assert(BitWidth && "Bitwidth too small");
+ fromString(numbits, Str, radix);
+}
+
+APInt& APInt::AssignSlowCase(const APInt& RHS) {
+ // Don't do anything for X = X
+ if (this == &RHS)
+ return *this;
+
+ if (BitWidth == RHS.getBitWidth()) {
+ // assume same bit-width single-word case is already handled
+ assert(!isSingleWord());
+ memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
+ return *this;
+ }
+
+ if (isSingleWord()) {
+ // assume case where both are single words is already handled
+ assert(!RHS.isSingleWord());
+ VAL = 0;
+ pVal = getMemory(RHS.getNumWords());
+ memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+ } else if (getNumWords() == RHS.getNumWords())
+ memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+ else if (RHS.isSingleWord()) {
+ delete [] pVal;
+ VAL = RHS.VAL;
+ } else {
+ delete [] pVal;
+ pVal = getMemory(RHS.getNumWords());
+ memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+ }
+ BitWidth = RHS.BitWidth;
+ return clearUnusedBits();
+}
+
+APInt& APInt::operator=(uint64_t RHS) {
+ if (isSingleWord())
+ VAL = RHS;
+ else {
+ pVal[0] = RHS;
+ memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
+ }
+ return clearUnusedBits();
+}
+
+/// Profile - This method 'profiles' an APInt for use with FoldingSet.
+void APInt::Profile(FoldingSetNodeID& ID) const {
+ ID.AddInteger(BitWidth);
+
+ if (isSingleWord()) {
+ ID.AddInteger(VAL);
+ return;
+ }
+
+ unsigned NumWords = getNumWords();
+ for (unsigned i = 0; i < NumWords; ++i)
+ ID.AddInteger(pVal[i]);
+}
+
+/// add_1 - This function adds a single "digit" integer, y, to the multiple
+/// "digit" integer array, x[]. x[] is modified to reflect the addition and
+/// 1 is returned if there is a carry out, otherwise 0 is returned.
+/// @returns the carry of the addition.
+static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
+ for (unsigned i = 0; i < len; ++i) {
+ dest[i] = y + x[i];
+ if (dest[i] < y)
+ y = 1; // Carry one to next digit.
+ else {
+ y = 0; // No need to carry so exit early
+ break;
+ }
+ }
+ return y;
+}
+
+/// @brief Prefix increment operator. Increments the APInt by one.
+APInt& APInt::operator++() {
+ if (isSingleWord())
+ ++VAL;
+ else
+ add_1(pVal, pVal, getNumWords(), 1);
+ return clearUnusedBits();
+}
+
+/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
+/// the multi-digit integer array, x[], propagating the borrowed 1 value until
+/// no further borrowing is neeeded or it runs out of "digits" in x. The result
+/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
+/// In other words, if y > x then this function returns 1, otherwise 0.
+/// @returns the borrow out of the subtraction
+static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
+ for (unsigned i = 0; i < len; ++i) {
+ uint64_t X = x[i];
+ x[i] -= y;
+ if (y > X)
+ y = 1; // We have to "borrow 1" from next "digit"
+ else {
+ y = 0; // No need to borrow
+ break; // Remaining digits are unchanged so exit early
+ }
+ }
+ return bool(y);
+}
+
+/// @brief Prefix decrement operator. Decrements the APInt by one.
+APInt& APInt::operator--() {
+ if (isSingleWord())
+ --VAL;
+ else
+ sub_1(pVal, getNumWords(), 1);
+ return clearUnusedBits();
+}
+
+/// add - This function adds the integer array x to the integer array Y and
+/// places the result in dest.
+/// @returns the carry out from the addition
+/// @brief General addition of 64-bit integer arrays
+static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+ unsigned len) {
+ bool carry = false;
+ for (unsigned i = 0; i< len; ++i) {
+ uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
+ dest[i] = x[i] + y[i] + carry;
+ carry = dest[i] < limit || (carry && dest[i] == limit);
+ }
+ return carry;
+}
+
+/// Adds the RHS APint to this APInt.
+/// @returns this, after addition of RHS.
+/// @brief Addition assignment operator.
+APInt& APInt::operator+=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ VAL += RHS.VAL;
+ else {
+ add(pVal, pVal, RHS.pVal, getNumWords());
+ }
+ return clearUnusedBits();
+}
+
+/// Subtracts the integer array y from the integer array x
+/// @returns returns the borrow out.
+/// @brief Generalized subtraction of 64-bit integer arrays.
+static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+ unsigned len) {
+ bool borrow = false;
+ for (unsigned i = 0; i < len; ++i) {
+ uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
+ borrow = y[i] > x_tmp || (borrow && x[i] == 0);
+ dest[i] = x_tmp - y[i];
+ }
+ return borrow;
+}
+
+/// Subtracts the RHS APInt from this APInt
+/// @returns this, after subtraction
+/// @brief Subtraction assignment operator.
+APInt& APInt::operator-=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ VAL -= RHS.VAL;
+ else
+ sub(pVal, pVal, RHS.pVal, getNumWords());
+ return clearUnusedBits();
+}
+
+/// Multiplies an integer array, x, by a uint64_t integer and places the result
+/// into dest.
+/// @returns the carry out of the multiplication.
+/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
+static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
+ // Split y into high 32-bit part (hy) and low 32-bit part (ly)
+ uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
+ uint64_t carry = 0;
+
+ // For each digit of x.
+ for (unsigned i = 0; i < len; ++i) {
+ // Split x into high and low words
+ uint64_t lx = x[i] & 0xffffffffULL;
+ uint64_t hx = x[i] >> 32;
+ // hasCarry - A flag to indicate if there is a carry to the next digit.
+ // hasCarry == 0, no carry
+ // hasCarry == 1, has carry
+ // hasCarry == 2, no carry and the calculation result == 0.
+ uint8_t hasCarry = 0;
+ dest[i] = carry + lx * ly;
+ // Determine if the add above introduces carry.
+ hasCarry = (dest[i] < carry) ? 1 : 0;
+ carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
+ // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
+ // (2^32 - 1) + 2^32 = 2^64.
+ hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
+
+ carry += (lx * hy) & 0xffffffffULL;
+ dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
+ carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
+ (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
+ }
+ return carry;
+}
+
+/// Multiplies integer array x by integer array y and stores the result into
+/// the integer array dest. Note that dest's size must be >= xlen + ylen.
+/// @brief Generalized multiplicate of integer arrays.
+static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
+ unsigned ylen) {
+ dest[xlen] = mul_1(dest, x, xlen, y[0]);
+ for (unsigned i = 1; i < ylen; ++i) {
+ uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
+ uint64_t carry = 0, lx = 0, hx = 0;
+ for (unsigned j = 0; j < xlen; ++j) {
+ lx = x[j] & 0xffffffffULL;
+ hx = x[j] >> 32;
+ // hasCarry - A flag to indicate if has carry.
+ // hasCarry == 0, no carry
+ // hasCarry == 1, has carry
+ // hasCarry == 2, no carry and the calculation result == 0.
+ uint8_t hasCarry = 0;
+ uint64_t resul = carry + lx * ly;
+ hasCarry = (resul < carry) ? 1 : 0;
+ carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
+ hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
+
+ carry += (lx * hy) & 0xffffffffULL;
+ resul = (carry << 32) | (resul & 0xffffffffULL);
+ dest[i+j] += resul;
+ carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
+ (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
+ ((lx * hy) >> 32) + hx * hy;
+ }
+ dest[i+xlen] = carry;
+ }
+}
+
+APInt& APInt::operator*=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL *= RHS.VAL;
+ clearUnusedBits();
+ return *this;
+ }
+
+ // Get some bit facts about LHS and check for zero
+ unsigned lhsBits = getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
+ if (!lhsWords)
+ // 0 * X ===> 0
+ return *this;
+
+ // Get some bit facts about RHS and check for zero
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
+ if (!rhsWords) {
+ // X * 0 ===> 0
+ clearAllBits();
+ return *this;
+ }
+
+ // Allocate space for the result
+ unsigned destWords = rhsWords + lhsWords;
+ uint64_t *dest = getMemory(destWords);
+
+ // Perform the long multiply
+ mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
+
+ // Copy result back into *this
+ clearAllBits();
+ unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
+ memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
+ clearUnusedBits();
+
+ // delete dest array and return
+ delete[] dest;
+ return *this;
+}
+
+APInt& APInt::operator&=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL &= RHS.VAL;
+ return *this;
+ }
+ unsigned numWords = getNumWords();
+ for (unsigned i = 0; i < numWords; ++i)
+ pVal[i] &= RHS.pVal[i];
+ return *this;
+}
+
+APInt& APInt::operator|=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL |= RHS.VAL;
+ return *this;
+ }
+ unsigned numWords = getNumWords();
+ for (unsigned i = 0; i < numWords; ++i)
+ pVal[i] |= RHS.pVal[i];
+ return *this;
+}
+
+APInt& APInt::operator^=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL ^= RHS.VAL;
+ this->clearUnusedBits();
+ return *this;
+ }
+ unsigned numWords = getNumWords();
+ for (unsigned i = 0; i < numWords; ++i)
+ pVal[i] ^= RHS.pVal[i];
+ return clearUnusedBits();
+}
+
+APInt APInt::AndSlowCase(const APInt& RHS) const {
+ unsigned numWords = getNumWords();
+ uint64_t* val = getMemory(numWords);
+ for (unsigned i = 0; i < numWords; ++i)
+ val[i] = pVal[i] & RHS.pVal[i];
+ return APInt(val, getBitWidth());
+}
+
+APInt APInt::OrSlowCase(const APInt& RHS) const {
+ unsigned numWords = getNumWords();
+ uint64_t *val = getMemory(numWords);
+ for (unsigned i = 0; i < numWords; ++i)
+ val[i] = pVal[i] | RHS.pVal[i];
+ return APInt(val, getBitWidth());
+}
+
+APInt APInt::XorSlowCase(const APInt& RHS) const {
+ unsigned numWords = getNumWords();
+ uint64_t *val = getMemory(numWords);
+ for (unsigned i = 0; i < numWords; ++i)
+ val[i] = pVal[i] ^ RHS.pVal[i];
+
+ // 0^0==1 so clear the high bits in case they got set.
+ return APInt(val, getBitWidth()).clearUnusedBits();
+}
+
+APInt APInt::operator*(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL * RHS.VAL);
+ APInt Result(*this);
+ Result *= RHS;
+ return Result;
+}
+
+APInt APInt::operator+(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL + RHS.VAL);
+ APInt Result(BitWidth, 0);
+ add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
+ return Result.clearUnusedBits();
+}
+
+APInt APInt::operator-(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL - RHS.VAL);
+ APInt Result(BitWidth, 0);
+ sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
+ return Result.clearUnusedBits();
+}
+
+bool APInt::EqualSlowCase(const APInt& RHS) const {
+ // Get some facts about the number of bits used in the two operands.
+ unsigned n1 = getActiveBits();
+ unsigned n2 = RHS.getActiveBits();
+
+ // If the number of bits isn't the same, they aren't equal
+ if (n1 != n2)
+ return false;
+
+ // If the number of bits fits in a word, we only need to compare the low word.
+ if (n1 <= APINT_BITS_PER_WORD)
+ return pVal[0] == RHS.pVal[0];
+
+ // Otherwise, compare everything
+ for (int i = whichWord(n1 - 1); i >= 0; --i)
+ if (pVal[i] != RHS.pVal[i])
+ return false;
+ return true;
+}
+
+bool APInt::EqualSlowCase(uint64_t Val) const {
+ unsigned n = getActiveBits();
+ if (n <= APINT_BITS_PER_WORD)
+ return pVal[0] == Val;
+ else
+ return false;
+}
+
+bool APInt::ult(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
+ if (isSingleWord())
+ return VAL < RHS.VAL;
+
+ // Get active bit length of both operands
+ unsigned n1 = getActiveBits();
+ unsigned n2 = RHS.getActiveBits();
+
+ // If magnitude of LHS is less than RHS, return true.
+ if (n1 < n2)
+ return true;
+
+ // If magnitude of RHS is greather than LHS, return false.
+ if (n2 < n1)
+ return false;
+
+ // If they bot fit in a word, just compare the low order word
+ if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
+ return pVal[0] < RHS.pVal[0];
+
+ // Otherwise, compare all words
+ unsigned topWord = whichWord(std::max(n1,n2)-1);
+ for (int i = topWord; i >= 0; --i) {
+ if (pVal[i] > RHS.pVal[i])
+ return false;
+ if (pVal[i] < RHS.pVal[i])
+ return true;
+ }
+ return false;
+}
+
+bool APInt::slt(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
+ if (isSingleWord()) {
+ int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
+ int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
+ return lhsSext < rhsSext;
+ }
+
+ APInt lhs(*this);
+ APInt rhs(RHS);
+ bool lhsNeg = isNegative();
+ bool rhsNeg = rhs.isNegative();
+ if (lhsNeg) {
+ // Sign bit is set so perform two's complement to make it positive
+ lhs.flipAllBits();
+ ++lhs;
+ }
+ if (rhsNeg) {
+ // Sign bit is set so perform two's complement to make it positive
+ rhs.flipAllBits();
+ ++rhs;
+ }
+
+ // Now we have unsigned values to compare so do the comparison if necessary
+ // based on the negativeness of the values.
+ if (lhsNeg)
+ if (rhsNeg)
+ return lhs.ugt(rhs);
+ else
+ return true;
+ else if (rhsNeg)
+ return false;
+ else
+ return lhs.ult(rhs);
+}
+
+void APInt::setBit(unsigned bitPosition) {
+ if (isSingleWord())
+ VAL |= maskBit(bitPosition);
+ else
+ pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
+}
+
+/// Set the given bit to 0 whose position is given as "bitPosition".
+/// @brief Set a given bit to 0.
+void APInt::clearBit(unsigned bitPosition) {
+ if (isSingleWord())
+ VAL &= ~maskBit(bitPosition);
+ else
+ pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
+}
+
+/// @brief Toggle every bit to its opposite value.
+
+/// Toggle a given bit to its opposite value whose position is given
+/// as "bitPosition".
+/// @brief Toggles a given bit to its opposite value.
+void APInt::flipBit(unsigned bitPosition) {
+ assert(bitPosition < BitWidth && "Out of the bit-width range!");
+ if ((*this)[bitPosition]) clearBit(bitPosition);
+ else setBit(bitPosition);
+}
+
+unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
+ assert(!str.empty() && "Invalid string length");
+ assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
+ radix == 36) &&
+ "Radix should be 2, 8, 10, 16, or 36!");
+
+ size_t slen = str.size();
+
+ // Each computation below needs to know if it's negative.
+ StringRef::iterator p = str.begin();
+ unsigned isNegative = *p == '-';
+ if (*p == '-' || *p == '+') {
+ p++;
+ slen--;
+ assert(slen && "String is only a sign, needs a value.");
+ }
+
+ // For radixes of power-of-two values, the bits required is accurately and
+ // easily computed
+ if (radix == 2)
+ return slen + isNegative;
+ if (radix == 8)
+ return slen * 3 + isNegative;
+ if (radix == 16)
+ return slen * 4 + isNegative;
+
+ // FIXME: base 36
+
+ // This is grossly inefficient but accurate. We could probably do something
+ // with a computation of roughly slen*64/20 and then adjust by the value of
+ // the first few digits. But, I'm not sure how accurate that could be.
+
+ // Compute a sufficient number of bits that is always large enough but might
+ // be too large. This avoids the assertion in the constructor. This
+ // calculation doesn't work appropriately for the numbers 0-9, so just use 4
+ // bits in that case.
+ unsigned sufficient
+ = radix == 10? (slen == 1 ? 4 : slen * 64/18)
+ : (slen == 1 ? 7 : slen * 16/3);
+
+ // Convert to the actual binary value.
+ APInt tmp(sufficient, StringRef(p, slen), radix);
+
+ // Compute how many bits are required. If the log is infinite, assume we need
+ // just bit.
+ unsigned log = tmp.logBase2();
+ if (log == (unsigned)-1) {
+ return isNegative + 1;
+ } else {
+ return isNegative + log + 1;
+ }
+}
+
+hash_code llvm::hash_value(const APInt &Arg) {
+ if (Arg.isSingleWord())
+ return hash_combine(Arg.VAL);
+
+ return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords());
+}
+
+/// HiBits - This function returns the high "numBits" bits of this APInt.
+APInt APInt::getHiBits(unsigned numBits) const {
+ return APIntOps::lshr(*this, BitWidth - numBits);
+}
+
+/// LoBits - This function returns the low "numBits" bits of this APInt.
+APInt APInt::getLoBits(unsigned numBits) const {
+ return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
+ BitWidth - numBits);
+}
+
+unsigned APInt::countLeadingZerosSlowCase() const {
+ // Treat the most significand word differently because it might have
+ // meaningless bits set beyond the precision.
+ unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
+ integerPart MSWMask;
+ if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
+ else {
+ MSWMask = ~integerPart(0);
+ BitsInMSW = APINT_BITS_PER_WORD;
+ }
+
+ unsigned i = getNumWords();
+ integerPart MSW = pVal[i-1] & MSWMask;
+ if (MSW)
+ return llvm::countLeadingZeros(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
+
+ unsigned Count = BitsInMSW;
+ for (--i; i > 0u; --i) {
+ if (pVal[i-1] == 0)
+ Count += APINT_BITS_PER_WORD;
+ else {
+ Count += llvm::countLeadingZeros(pVal[i-1]);
+ break;
+ }
+ }
+ return Count;
+}
+
+unsigned APInt::countLeadingOnes() const {
+ if (isSingleWord())
+ return CountLeadingOnes_64(VAL << (APINT_BITS_PER_WORD - BitWidth));
+
+ unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
+ unsigned shift;
+ if (!highWordBits) {
+ highWordBits = APINT_BITS_PER_WORD;
+ shift = 0;
+ } else {
+ shift = APINT_BITS_PER_WORD - highWordBits;
+ }
+ int i = getNumWords() - 1;
+ unsigned Count = CountLeadingOnes_64(pVal[i] << shift);
+ if (Count == highWordBits) {
+ for (i--; i >= 0; --i) {
+ if (pVal[i] == -1ULL)
+ Count += APINT_BITS_PER_WORD;
+ else {
+ Count += CountLeadingOnes_64(pVal[i]);
+ break;
+ }
+ }
+ }
+ return Count;
+}
+
+unsigned APInt::countTrailingZeros() const {
+ if (isSingleWord())
+ return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth);
+ unsigned Count = 0;
+ unsigned i = 0;
+ for (; i < getNumWords() && pVal[i] == 0; ++i)
+ Count += APINT_BITS_PER_WORD;
+ if (i < getNumWords())
+ Count += llvm::countTrailingZeros(pVal[i]);
+ return std::min(Count, BitWidth);
+}
+
+unsigned APInt::countTrailingOnesSlowCase() const {
+ unsigned Count = 0;
+ unsigned i = 0;
+ for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
+ Count += APINT_BITS_PER_WORD;
+ if (i < getNumWords())
+ Count += CountTrailingOnes_64(pVal[i]);
+ return std::min(Count, BitWidth);
+}
+
+unsigned APInt::countPopulationSlowCase() const {
+ unsigned Count = 0;
+ for (unsigned i = 0; i < getNumWords(); ++i)
+ Count += CountPopulation_64(pVal[i]);
+ return Count;
+}
+
+/// Perform a logical right-shift from Src to Dst, which must be equal or
+/// non-overlapping, of Words words, by Shift, which must be less than 64.
+static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
+ unsigned Shift) {
+ uint64_t Carry = 0;
+ for (int I = Words - 1; I >= 0; --I) {
+ uint64_t Tmp = Src[I];
+ Dst[I] = (Tmp >> Shift) | Carry;
+ Carry = Tmp << (64 - Shift);
+ }
+}
+
+APInt APInt::byteSwap() const {
+ assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
+ if (BitWidth == 16)
+ return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
+ if (BitWidth == 32)
+ return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
+ if (BitWidth == 48) {
+ unsigned Tmp1 = unsigned(VAL >> 16);
+ Tmp1 = ByteSwap_32(Tmp1);
+ uint16_t Tmp2 = uint16_t(VAL);
+ Tmp2 = ByteSwap_16(Tmp2);
+ return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
+ }
+ if (BitWidth == 64)
+ return APInt(BitWidth, ByteSwap_64(VAL));
+
+ APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
+ for (unsigned I = 0, N = getNumWords(); I != N; ++I)
+ Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
+ if (Result.BitWidth != BitWidth) {
+ lshrNear(Result.pVal, Result.pVal, getNumWords(),
+ Result.BitWidth - BitWidth);
+ Result.BitWidth = BitWidth;
+ }
+ return Result;
+}
+
+APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
+ const APInt& API2) {
+ APInt A = API1, B = API2;
+ while (!!B) {
+ APInt T = B;
+ B = APIntOps::urem(A, B);
+ A = T;
+ }
+ return A;
+}
+
+APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
+ union {
+ double D;
+ uint64_t I;
+ } T;
+ T.D = Double;
+
+ // Get the sign bit from the highest order bit
+ bool isNeg = T.I >> 63;
+
+ // Get the 11-bit exponent and adjust for the 1023 bit bias
+ int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
+
+ // If the exponent is negative, the value is < 0 so just return 0.
+ if (exp < 0)
+ return APInt(width, 0u);
+
+ // Extract the mantissa by clearing the top 12 bits (sign + exponent).
+ uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
+
+ // If the exponent doesn't shift all bits out of the mantissa
+ if (exp < 52)
+ return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
+ APInt(width, mantissa >> (52 - exp));
+
+ // If the client didn't provide enough bits for us to shift the mantissa into
+ // then the result is undefined, just return 0
+ if (width <= exp - 52)
+ return APInt(width, 0);
+
+ // Otherwise, we have to shift the mantissa bits up to the right location
+ APInt Tmp(width, mantissa);
+ Tmp = Tmp.shl((unsigned)exp - 52);
+ return isNeg ? -Tmp : Tmp;
+}
+
+/// RoundToDouble - This function converts this APInt to a double.
+/// The layout for double is as following (IEEE Standard 754):
+/// --------------------------------------
+/// | Sign Exponent Fraction Bias |
+/// |-------------------------------------- |
+/// | 1[63] 11[62-52] 52[51-00] 1023 |
+/// --------------------------------------
+double APInt::roundToDouble(bool isSigned) const {
+
+ // Handle the simple case where the value is contained in one uint64_t.
+ // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
+ if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
+ if (isSigned) {
+ int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
+ return double(sext);
+ } else
+ return double(getWord(0));
+ }
+
+ // Determine if the value is negative.
+ bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
+
+ // Construct the absolute value if we're negative.
+ APInt Tmp(isNeg ? -(*this) : (*this));
+
+ // Figure out how many bits we're using.
+ unsigned n = Tmp.getActiveBits();
+
+ // The exponent (without bias normalization) is just the number of bits
+ // we are using. Note that the sign bit is gone since we constructed the
+ // absolute value.
+ uint64_t exp = n;
+
+ // Return infinity for exponent overflow
+ if (exp > 1023) {
+ if (!isSigned || !isNeg)
+ return std::numeric_limits<double>::infinity();
+ else
+ return -std::numeric_limits<double>::infinity();
+ }
+ exp += 1023; // Increment for 1023 bias
+
+ // Number of bits in mantissa is 52. To obtain the mantissa value, we must
+ // extract the high 52 bits from the correct words in pVal.
+ uint64_t mantissa;
+ unsigned hiWord = whichWord(n-1);
+ if (hiWord == 0) {
+ mantissa = Tmp.pVal[0];
+ if (n > 52)
+ mantissa >>= n - 52; // shift down, we want the top 52 bits.
+ } else {
+ assert(hiWord > 0 && "huh?");
+ uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
+ uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
+ mantissa = hibits | lobits;
+ }
+
+ // The leading bit of mantissa is implicit, so get rid of it.
+ uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
+ union {
+ double D;
+ uint64_t I;
+ } T;
+ T.I = sign | (exp << 52) | mantissa;
+ return T.D;
+}
+
+// Truncate to new width.
+APInt APInt::trunc(unsigned width) const {
+ assert(width < BitWidth && "Invalid APInt Truncate request");
+ assert(width && "Can't truncate to 0 bits");
+
+ if (width <= APINT_BITS_PER_WORD)
+ return APInt(width, getRawData()[0]);
+
+ APInt Result(getMemory(getNumWords(width)), width);
+
+ // Copy full words.
+ unsigned i;
+ for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
+ Result.pVal[i] = pVal[i];
+
+ // Truncate and copy any partial word.
+ unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
+ if (bits != 0)
+ Result.pVal[i] = pVal[i] << bits >> bits;
+
+ return Result;
+}
+
+// Sign extend to a new width.
+APInt APInt::sext(unsigned width) const {
+ assert(width > BitWidth && "Invalid APInt SignExtend request");
+
+ if (width <= APINT_BITS_PER_WORD) {
+ uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
+ val = (int64_t)val >> (width - BitWidth);
+ return APInt(width, val >> (APINT_BITS_PER_WORD - width));
+ }
+
+ APInt Result(getMemory(getNumWords(width)), width);
+
+ // Copy full words.
+ unsigned i;
+ uint64_t word = 0;
+ for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
+ word = getRawData()[i];
+ Result.pVal[i] = word;
+ }
+
+ // Read and sign-extend any partial word.
+ unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
+ if (bits != 0)
+ word = (int64_t)getRawData()[i] << bits >> bits;
+ else
+ word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
+
+ // Write remaining full words.
+ for (; i != width / APINT_BITS_PER_WORD; i++) {
+ Result.pVal[i] = word;
+ word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
+ }
+
+ // Write any partial word.
+ bits = (0 - width) % APINT_BITS_PER_WORD;
+ if (bits != 0)
+ Result.pVal[i] = word << bits >> bits;
+
+ return Result;
+}
+
+// Zero extend to a new width.
+APInt APInt::zext(unsigned width) const {
+ assert(width > BitWidth && "Invalid APInt ZeroExtend request");
+
+ if (width <= APINT_BITS_PER_WORD)
+ return APInt(width, VAL);
+
+ APInt Result(getMemory(getNumWords(width)), width);
+
+ // Copy words.
+ unsigned i;
+ for (i = 0; i != getNumWords(); i++)
+ Result.pVal[i] = getRawData()[i];
+
+ // Zero remaining words.
+ memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
+
+ return Result;
+}
+
+APInt APInt::zextOrTrunc(unsigned width) const {
+ if (BitWidth < width)
+ return zext(width);
+ if (BitWidth > width)
+ return trunc(width);
+ return *this;
+}
+
+APInt APInt::sextOrTrunc(unsigned width) const {
+ if (BitWidth < width)
+ return sext(width);
+ if (BitWidth > width)
+ return trunc(width);
+ return *this;
+}
+
+APInt APInt::zextOrSelf(unsigned width) const {
+ if (BitWidth < width)
+ return zext(width);
+ return *this;
+}
+
+APInt APInt::sextOrSelf(unsigned width) const {
+ if (BitWidth < width)
+ return sext(width);
+ return *this;
+}
+
+/// Arithmetic right-shift this APInt by shiftAmt.
+/// @brief Arithmetic right-shift function.
+APInt APInt::ashr(const APInt &shiftAmt) const {
+ return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
+}
+
+/// Arithmetic right-shift this APInt by shiftAmt.
+/// @brief Arithmetic right-shift function.
+APInt APInt::ashr(unsigned shiftAmt) const {
+ assert(shiftAmt <= BitWidth && "Invalid shift amount");
+ // Handle a degenerate case
+ if (shiftAmt == 0)
+ return *this;
+
+ // Handle single word shifts with built-in ashr
+ if (isSingleWord()) {
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0); // undefined
+ else {
+ unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
+ return APInt(BitWidth,
+ (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
+ }
+ }
+
+ // If all the bits were shifted out, the result is, technically, undefined.
+ // We return -1 if it was negative, 0 otherwise. We check this early to avoid
+ // issues in the algorithm below.
+ if (shiftAmt == BitWidth) {
+ if (isNegative())
+ return APInt(BitWidth, -1ULL, true);
+ else
+ return APInt(BitWidth, 0);
+ }
+
+ // Create some space for the result.
+ uint64_t * val = new uint64_t[getNumWords()];
+
+ // Compute some values needed by the following shift algorithms
+ unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
+ unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
+ unsigned breakWord = getNumWords() - 1 - offset; // last word affected
+ unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
+ if (bitsInWord == 0)
+ bitsInWord = APINT_BITS_PER_WORD;
+
+ // If we are shifting whole words, just move whole words
+ if (wordShift == 0) {
+ // Move the words containing significant bits
+ for (unsigned i = 0; i <= breakWord; ++i)
+ val[i] = pVal[i+offset]; // move whole word
+
+ // Adjust the top significant word for sign bit fill, if negative
+ if (isNegative())
+ if (bitsInWord < APINT_BITS_PER_WORD)
+ val[breakWord] |= ~0ULL << bitsInWord; // set high bits
+ } else {
+ // Shift the low order words
+ for (unsigned i = 0; i < breakWord; ++i) {
+ // This combines the shifted corresponding word with the low bits from
+ // the next word (shifted into this word's high bits).
+ val[i] = (pVal[i+offset] >> wordShift) |
+ (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
+ }
+
+ // Shift the break word. In this case there are no bits from the next word
+ // to include in this word.
+ val[breakWord] = pVal[breakWord+offset] >> wordShift;
+
+ // Deal with sign extenstion in the break word, and possibly the word before
+ // it.
+ if (isNegative()) {
+ if (wordShift > bitsInWord) {
+ if (breakWord > 0)
+ val[breakWord-1] |=
+ ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
+ val[breakWord] |= ~0ULL;
+ } else
+ val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
+ }
+ }
+
+ // Remaining words are 0 or -1, just assign them.
+ uint64_t fillValue = (isNegative() ? -1ULL : 0);
+ for (unsigned i = breakWord+1; i < getNumWords(); ++i)
+ val[i] = fillValue;
+ return APInt(val, BitWidth).clearUnusedBits();
+}
+
+/// Logical right-shift this APInt by shiftAmt.
+/// @brief Logical right-shift function.
+APInt APInt::lshr(const APInt &shiftAmt) const {
+ return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
+}
+
+/// Logical right-shift this APInt by shiftAmt.
+/// @brief Logical right-shift function.
+APInt APInt::lshr(unsigned shiftAmt) const {
+ if (isSingleWord()) {
+ if (shiftAmt >= BitWidth)
+ return APInt(BitWidth, 0);
+ else
+ return APInt(BitWidth, this->VAL >> shiftAmt);
+ }
+
+ // If all the bits were shifted out, the result is 0. This avoids issues
+ // with shifting by the size of the integer type, which produces undefined
+ // results. We define these "undefined results" to always be 0.
+ if (shiftAmt >= BitWidth)
+ return APInt(BitWidth, 0);
+
+ // If none of the bits are shifted out, the result is *this. This avoids
+ // issues with shifting by the size of the integer type, which produces
+ // undefined results in the code below. This is also an optimization.
+ if (shiftAmt == 0)
+ return *this;
+
+ // Create some space for the result.
+ uint64_t * val = new uint64_t[getNumWords()];
+
+ // If we are shifting less than a word, compute the shift with a simple carry
+ if (shiftAmt < APINT_BITS_PER_WORD) {
+ lshrNear(val, pVal, getNumWords(), shiftAmt);
+ return APInt(val, BitWidth).clearUnusedBits();
+ }
+
+ // Compute some values needed by the remaining shift algorithms
+ unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
+ unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
+
+ // If we are shifting whole words, just move whole words
+ if (wordShift == 0) {
+ for (unsigned i = 0; i < getNumWords() - offset; ++i)
+ val[i] = pVal[i+offset];
+ for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
+ val[i] = 0;
+ return APInt(val,BitWidth).clearUnusedBits();
+ }
+
+ // Shift the low order words
+ unsigned breakWord = getNumWords() - offset -1;
+ for (unsigned i = 0; i < breakWord; ++i)
+ val[i] = (pVal[i+offset] >> wordShift) |
+ (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
+ // Shift the break word.
+ val[breakWord] = pVal[breakWord+offset] >> wordShift;
+
+ // Remaining words are 0
+ for (unsigned i = breakWord+1; i < getNumWords(); ++i)
+ val[i] = 0;
+ return APInt(val, BitWidth).clearUnusedBits();
+}
+
+/// Left-shift this APInt by shiftAmt.
+/// @brief Left-shift function.
+APInt APInt::shl(const APInt &shiftAmt) const {
+ // It's undefined behavior in C to shift by BitWidth or greater.
+ return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
+}
+
+APInt APInt::shlSlowCase(unsigned shiftAmt) const {
+ // If all the bits were shifted out, the result is 0. This avoids issues
+ // with shifting by the size of the integer type, which produces undefined
+ // results. We define these "undefined results" to always be 0.
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0);
+
+ // If none of the bits are shifted out, the result is *this. This avoids a
+ // lshr by the words size in the loop below which can produce incorrect
+ // results. It also avoids the expensive computation below for a common case.
+ if (shiftAmt == 0)
+ return *this;
+
+ // Create some space for the result.
+ uint64_t * val = new uint64_t[getNumWords()];
+
+ // If we are shifting less than a word, do it the easy way
+ if (shiftAmt < APINT_BITS_PER_WORD) {
+ uint64_t carry = 0;
+ for (unsigned i = 0; i < getNumWords(); i++) {
+ val[i] = pVal[i] << shiftAmt | carry;
+ carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
+ }
+ return APInt(val, BitWidth).clearUnusedBits();
+ }
+
+ // Compute some values needed by the remaining shift algorithms
+ unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
+ unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
+
+ // If we are shifting whole words, just move whole words
+ if (wordShift == 0) {
+ for (unsigned i = 0; i < offset; i++)
+ val[i] = 0;
+ for (unsigned i = offset; i < getNumWords(); i++)
+ val[i] = pVal[i-offset];
+ return APInt(val,BitWidth).clearUnusedBits();
+ }
+
+ // Copy whole words from this to Result.
+ unsigned i = getNumWords() - 1;
+ for (; i > offset; --i)
+ val[i] = pVal[i-offset] << wordShift |
+ pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
+ val[offset] = pVal[0] << wordShift;
+ for (i = 0; i < offset; ++i)
+ val[i] = 0;
+ return APInt(val, BitWidth).clearUnusedBits();
+}
+
+APInt APInt::rotl(const APInt &rotateAmt) const {
+ return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
+}
+
+APInt APInt::rotl(unsigned rotateAmt) const {
+ rotateAmt %= BitWidth;
+ if (rotateAmt == 0)
+ return *this;
+ return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
+}
+
+APInt APInt::rotr(const APInt &rotateAmt) const {
+ return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
+}
+
+APInt APInt::rotr(unsigned rotateAmt) const {
+ rotateAmt %= BitWidth;
+ if (rotateAmt == 0)
+ return *this;
+ return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
+}
+
+// Square Root - this method computes and returns the square root of "this".
+// Three mechanisms are used for computation. For small values (<= 5 bits),
+// a table lookup is done. This gets some performance for common cases. For
+// values using less than 52 bits, the value is converted to double and then
+// the libc sqrt function is called. The result is rounded and then converted
+// back to a uint64_t which is then used to construct the result. Finally,
+// the Babylonian method for computing square roots is used.
+APInt APInt::sqrt() const {
+
+ // Determine the magnitude of the value.
+ unsigned magnitude = getActiveBits();
+
+ // Use a fast table for some small values. This also gets rid of some
+ // rounding errors in libc sqrt for small values.
+ if (magnitude <= 5) {
+ static const uint8_t results[32] = {
+ /* 0 */ 0,
+ /* 1- 2 */ 1, 1,
+ /* 3- 6 */ 2, 2, 2, 2,
+ /* 7-12 */ 3, 3, 3, 3, 3, 3,
+ /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
+ /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ /* 31 */ 6
+ };
+ return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
+ }
+
+ // If the magnitude of the value fits in less than 52 bits (the precision of
+ // an IEEE double precision floating point value), then we can use the
+ // libc sqrt function which will probably use a hardware sqrt computation.
+ // This should be faster than the algorithm below.
+ if (magnitude < 52) {
+#if HAVE_ROUND
+ return APInt(BitWidth,
+ uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
+#else
+ return APInt(BitWidth,
+ uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5));
+#endif
+ }
+
+ // Okay, all the short cuts are exhausted. We must compute it. The following
+ // is a classical Babylonian method for computing the square root. This code
+ // was adapted to APINt from a wikipedia article on such computations.
+ // See http://www.wikipedia.org/ and go to the page named
+ // Calculate_an_integer_square_root.
+ unsigned nbits = BitWidth, i = 4;
+ APInt testy(BitWidth, 16);
+ APInt x_old(BitWidth, 1);
+ APInt x_new(BitWidth, 0);
+ APInt two(BitWidth, 2);
+
+ // Select a good starting value using binary logarithms.
+ for (;; i += 2, testy = testy.shl(2))
+ if (i >= nbits || this->ule(testy)) {
+ x_old = x_old.shl(i / 2);
+ break;
+ }
+
+ // Use the Babylonian method to arrive at the integer square root:
+ for (;;) {
+ x_new = (this->udiv(x_old) + x_old).udiv(two);
+ if (x_old.ule(x_new))
+ break;
+ x_old = x_new;
+ }
+
+ // Make sure we return the closest approximation
+ // NOTE: The rounding calculation below is correct. It will produce an
+ // off-by-one discrepancy with results from pari/gp. That discrepancy has been
+ // determined to be a rounding issue with pari/gp as it begins to use a
+ // floating point representation after 192 bits. There are no discrepancies
+ // between this algorithm and pari/gp for bit widths < 192 bits.
+ APInt square(x_old * x_old);
+ APInt nextSquare((x_old + 1) * (x_old +1));
+ if (this->ult(square))
+ return x_old;
+ assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
+ APInt midpoint((nextSquare - square).udiv(two));
+ APInt offset(*this - square);
+ if (offset.ult(midpoint))
+ return x_old;
+ return x_old + 1;
+}
+
+/// Computes the multiplicative inverse of this APInt for a given modulo. The
+/// iterative extended Euclidean algorithm is used to solve for this value,
+/// however we simplify it to speed up calculating only the inverse, and take
+/// advantage of div+rem calculations. We also use some tricks to avoid copying
+/// (potentially large) APInts around.
+APInt APInt::multiplicativeInverse(const APInt& modulo) const {
+ assert(ult(modulo) && "This APInt must be smaller than the modulo");
+
+ // Using the properties listed at the following web page (accessed 06/21/08):
+ // http://www.numbertheory.org/php/euclid.html
+ // (especially the properties numbered 3, 4 and 9) it can be proved that
+ // BitWidth bits suffice for all the computations in the algorithm implemented
+ // below. More precisely, this number of bits suffice if the multiplicative
+ // inverse exists, but may not suffice for the general extended Euclidean
+ // algorithm.
+
+ APInt r[2] = { modulo, *this };
+ APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
+ APInt q(BitWidth, 0);
+
+ unsigned i;
+ for (i = 0; r[i^1] != 0; i ^= 1) {
+ // An overview of the math without the confusing bit-flipping:
+ // q = r[i-2] / r[i-1]
+ // r[i] = r[i-2] % r[i-1]
+ // t[i] = t[i-2] - t[i-1] * q
+ udivrem(r[i], r[i^1], q, r[i]);
+ t[i] -= t[i^1] * q;
+ }
+
+ // If this APInt and the modulo are not coprime, there is no multiplicative
+ // inverse, so return 0. We check this by looking at the next-to-last
+ // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
+ // algorithm.
+ if (r[i] != 1)
+ return APInt(BitWidth, 0);
+
+ // The next-to-last t is the multiplicative inverse. However, we are
+ // interested in a positive inverse. Calcuate a positive one from a negative
+ // one if necessary. A simple addition of the modulo suffices because
+ // abs(t[i]) is known to be less than *this/2 (see the link above).
+ return t[i].isNegative() ? t[i] + modulo : t[i];
+}
+
+/// Calculate the magic numbers required to implement a signed integer division
+/// by a constant as a sequence of multiplies, adds and shifts. Requires that
+/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
+/// Warren, Jr., chapter 10.
+APInt::ms APInt::magic() const {
+ const APInt& d = *this;
+ unsigned p;
+ APInt ad, anc, delta, q1, r1, q2, r2, t;
+ APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
+ struct ms mag;
+
+ ad = d.abs();
+ t = signedMin + (d.lshr(d.getBitWidth() - 1));
+ anc = t - 1 - t.urem(ad); // absolute value of nc
+ p = d.getBitWidth() - 1; // initialize p
+ q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
+ r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
+ q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
+ r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
+ do {
+ p = p + 1;
+ q1 = q1<<1; // update q1 = 2p/abs(nc)
+ r1 = r1<<1; // update r1 = rem(2p/abs(nc))
+ if (r1.uge(anc)) { // must be unsigned comparison
+ q1 = q1 + 1;
+ r1 = r1 - anc;
+ }
+ q2 = q2<<1; // update q2 = 2p/abs(d)
+ r2 = r2<<1; // update r2 = rem(2p/abs(d))
+ if (r2.uge(ad)) { // must be unsigned comparison
+ q2 = q2 + 1;
+ r2 = r2 - ad;
+ }
+ delta = ad - r2;
+ } while (q1.ult(delta) || (q1 == delta && r1 == 0));
+
+ mag.m = q2 + 1;
+ if (d.isNegative()) mag.m = -mag.m; // resulting magic number
+ mag.s = p - d.getBitWidth(); // resulting shift
+ return mag;
+}
+
+/// Calculate the magic numbers required to implement an unsigned integer
+/// division by a constant as a sequence of multiplies, adds and shifts.
+/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
+/// S. Warren, Jr., chapter 10.
+/// LeadingZeros can be used to simplify the calculation if the upper bits
+/// of the divided value are known zero.
+APInt::mu APInt::magicu(unsigned LeadingZeros) const {
+ const APInt& d = *this;
+ unsigned p;
+ APInt nc, delta, q1, r1, q2, r2;
+ struct mu magu;
+ magu.a = 0; // initialize "add" indicator
+ APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
+ APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
+ APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
+
+ nc = allOnes - (allOnes - d).urem(d);
+ p = d.getBitWidth() - 1; // initialize p
+ q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
+ r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
+ q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
+ r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
+ do {
+ p = p + 1;
+ if (r1.uge(nc - r1)) {
+ q1 = q1 + q1 + 1; // update q1
+ r1 = r1 + r1 - nc; // update r1
+ }
+ else {
+ q1 = q1+q1; // update q1
+ r1 = r1+r1; // update r1
+ }
+ if ((r2 + 1).uge(d - r2)) {
+ if (q2.uge(signedMax)) magu.a = 1;
+ q2 = q2+q2 + 1; // update q2
+ r2 = r2+r2 + 1 - d; // update r2
+ }
+ else {
+ if (q2.uge(signedMin)) magu.a = 1;
+ q2 = q2+q2; // update q2
+ r2 = r2+r2 + 1; // update r2
+ }
+ delta = d - 1 - r2;
+ } while (p < d.getBitWidth()*2 &&
+ (q1.ult(delta) || (q1 == delta && r1 == 0)));
+ magu.m = q2 + 1; // resulting magic number
+ magu.s = p - d.getBitWidth(); // resulting shift
+ return magu;
+}
+
+/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
+/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
+/// variables here have the same names as in the algorithm. Comments explain
+/// the algorithm and any deviation from it.
+static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
+ unsigned m, unsigned n) {
+ assert(u && "Must provide dividend");
+ assert(v && "Must provide divisor");
+ assert(q && "Must provide quotient");
+ assert(u != v && u != q && v != q && "Must us different memory");
+ assert(n>1 && "n must be > 1");
+
+ // Knuth uses the value b as the base of the number system. In our case b
+ // is 2^31 so we just set it to -1u.
+ uint64_t b = uint64_t(1) << 32;
+
+#if 0
+ DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
+ DEBUG(dbgs() << "KnuthDiv: original:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
+ DEBUG(dbgs() << " by");
+ DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
+ DEBUG(dbgs() << '\n');
+#endif
+ // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
+ // u and v by d. Note that we have taken Knuth's advice here to use a power
+ // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
+ // 2 allows us to shift instead of multiply and it is easy to determine the
+ // shift amount from the leading zeros. We are basically normalizing the u
+ // and v so that its high bits are shifted to the top of v's range without
+ // overflow. Note that this can require an extra word in u so that u must
+ // be of length m+n+1.
+ unsigned shift = countLeadingZeros(v[n-1]);
+ unsigned v_carry = 0;
+ unsigned u_carry = 0;
+ if (shift) {
+ for (unsigned i = 0; i < m+n; ++i) {
+ unsigned u_tmp = u[i] >> (32 - shift);
+ u[i] = (u[i] << shift) | u_carry;
+ u_carry = u_tmp;
+ }
+ for (unsigned i = 0; i < n; ++i) {
+ unsigned v_tmp = v[i] >> (32 - shift);
+ v[i] = (v[i] << shift) | v_carry;
+ v_carry = v_tmp;
+ }
+ }
+ u[m+n] = u_carry;
+#if 0
+ DEBUG(dbgs() << "KnuthDiv: normal:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
+ DEBUG(dbgs() << " by");
+ DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
+ DEBUG(dbgs() << '\n');
+#endif
+
+ // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
+ int j = m;
+ do {
+ DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
+ // D3. [Calculate q'.].
+ // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
+ // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
+ // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
+ // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
+ // on v[n-2] determines at high speed most of the cases in which the trial
+ // value qp is one too large, and it eliminates all cases where qp is two
+ // too large.
+ uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
+ DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
+ uint64_t qp = dividend / v[n-1];
+ uint64_t rp = dividend % v[n-1];
+ if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
+ qp--;
+ rp += v[n-1];
+ if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
+ qp--;
+ }
+ DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
+
+ // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
+ // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
+ // consists of a simple multiplication by a one-place number, combined with
+ // a subtraction.
+ bool isNeg = false;
+ for (unsigned i = 0; i < n; ++i) {
+ uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
+ uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
+ bool borrow = subtrahend > u_tmp;
+ DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
+ << ", subtrahend == " << subtrahend
+ << ", borrow = " << borrow << '\n');
+
+ uint64_t result = u_tmp - subtrahend;
+ unsigned k = j + i;
+ u[k++] = (unsigned)(result & (b-1)); // subtract low word
+ u[k++] = (unsigned)(result >> 32); // subtract high word
+ while (borrow && k <= m+n) { // deal with borrow to the left
+ borrow = u[k] == 0;
+ u[k]--;
+ k++;
+ }
+ isNeg |= borrow;
+ DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
+ u[j+i+1] << '\n');
+ }
+ DEBUG(dbgs() << "KnuthDiv: after subtraction:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
+ DEBUG(dbgs() << '\n');
+ // The digits (u[j+n]...u[j]) should be kept positive; if the result of
+ // this step is actually negative, (u[j+n]...u[j]) should be left as the
+ // true value plus b**(n+1), namely as the b's complement of
+ // the true value, and a "borrow" to the left should be remembered.
+ //
+ if (isNeg) {
+ bool carry = true; // true because b's complement is "complement + 1"
+ for (unsigned i = 0; i <= m+n; ++i) {
+ u[i] = ~u[i] + carry; // b's complement
+ carry = carry && u[i] == 0;
+ }
+ }
+ DEBUG(dbgs() << "KnuthDiv: after complement:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
+ DEBUG(dbgs() << '\n');
+
+ // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
+ // negative, go to step D6; otherwise go on to step D7.
+ q[j] = (unsigned)qp;
+ if (isNeg) {
+ // D6. [Add back]. The probability that this step is necessary is very
+ // small, on the order of only 2/b. Make sure that test data accounts for
+ // this possibility. Decrease q[j] by 1
+ q[j]--;
+ // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
+ // A carry will occur to the left of u[j+n], and it should be ignored
+ // since it cancels with the borrow that occurred in D4.
+ bool carry = false;
+ for (unsigned i = 0; i < n; i++) {
+ unsigned limit = std::min(u[j+i],v[i]);
+ u[j+i] += v[i] + carry;
+ carry = u[j+i] < limit || (carry && u[j+i] == limit);
+ }
+ u[j+n] += carry;
+ }
+ DEBUG(dbgs() << "KnuthDiv: after correction:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
+ DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
+
+ // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
+ } while (--j >= 0);
+
+ DEBUG(dbgs() << "KnuthDiv: quotient:");
+ DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
+ DEBUG(dbgs() << '\n');
+
+ // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
+ // remainder may be obtained by dividing u[...] by d. If r is non-null we
+ // compute the remainder (urem uses this).
+ if (r) {
+ // The value d is expressed by the "shift" value above since we avoided
+ // multiplication by d by using a shift left. So, all we have to do is
+ // shift right here. In order to mak
+ if (shift) {
+ unsigned carry = 0;
+ DEBUG(dbgs() << "KnuthDiv: remainder:");
+ for (int i = n-1; i >= 0; i--) {
+ r[i] = (u[i] >> shift) | carry;
+ carry = u[i] << (32 - shift);
+ DEBUG(dbgs() << " " << r[i]);
+ }
+ } else {
+ for (int i = n-1; i >= 0; i--) {
+ r[i] = u[i];
+ DEBUG(dbgs() << " " << r[i]);
+ }
+ }
+ DEBUG(dbgs() << '\n');
+ }
+#if 0
+ DEBUG(dbgs() << '\n');
+#endif
+}
+
+void APInt::divide(const APInt LHS, unsigned lhsWords,
+ const APInt &RHS, unsigned rhsWords,
+ APInt *Quotient, APInt *Remainder)
+{
+ assert(lhsWords >= rhsWords && "Fractional result");
+
+ // First, compose the values into an array of 32-bit words instead of
+ // 64-bit words. This is a necessity of both the "short division" algorithm
+ // and the Knuth "classical algorithm" which requires there to be native
+ // operations for +, -, and * on an m bit value with an m*2 bit result. We
+ // can't use 64-bit operands here because we don't have native results of
+ // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
+ // work on large-endian machines.
+ uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
+ unsigned n = rhsWords * 2;
+ unsigned m = (lhsWords * 2) - n;
+
+ // Allocate space for the temporary values we need either on the stack, if
+ // it will fit, or on the heap if it won't.
+ unsigned SPACE[128];
+ unsigned *U = 0;
+ unsigned *V = 0;
+ unsigned *Q = 0;
+ unsigned *R = 0;
+ if ((Remainder?4:3)*n+2*m+1 <= 128) {
+ U = &SPACE[0];
+ V = &SPACE[m+n+1];
+ Q = &SPACE[(m+n+1) + n];
+ if (Remainder)
+ R = &SPACE[(m+n+1) + n + (m+n)];
+ } else {
+ U = new unsigned[m + n + 1];
+ V = new unsigned[n];
+ Q = new unsigned[m+n];
+ if (Remainder)
+ R = new unsigned[n];
+ }
+
+ // Initialize the dividend
+ memset(U, 0, (m+n+1)*sizeof(unsigned));
+ for (unsigned i = 0; i < lhsWords; ++i) {
+ uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
+ U[i * 2] = (unsigned)(tmp & mask);
+ U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
+ }
+ U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
+
+ // Initialize the divisor
+ memset(V, 0, (n)*sizeof(unsigned));
+ for (unsigned i = 0; i < rhsWords; ++i) {
+ uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
+ V[i * 2] = (unsigned)(tmp & mask);
+ V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
+ }
+
+ // initialize the quotient and remainder
+ memset(Q, 0, (m+n) * sizeof(unsigned));
+ if (Remainder)
+ memset(R, 0, n * sizeof(unsigned));
+
+ // Now, adjust m and n for the Knuth division. n is the number of words in
+ // the divisor. m is the number of words by which the dividend exceeds the
+ // divisor (i.e. m+n is the length of the dividend). These sizes must not
+ // contain any zero words or the Knuth algorithm fails.
+ for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
+ n--;
+ m++;
+ }
+ for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
+ m--;
+
+ // If we're left with only a single word for the divisor, Knuth doesn't work
+ // so we implement the short division algorithm here. This is much simpler
+ // and faster because we are certain that we can divide a 64-bit quantity
+ // by a 32-bit quantity at hardware speed and short division is simply a
+ // series of such operations. This is just like doing short division but we
+ // are using base 2^32 instead of base 10.
+ assert(n != 0 && "Divide by zero?");
+ if (n == 1) {
+ unsigned divisor = V[0];
+ unsigned remainder = 0;
+ for (int i = m+n-1; i >= 0; i--) {
+ uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
+ if (partial_dividend == 0) {
+ Q[i] = 0;
+ remainder = 0;
+ } else if (partial_dividend < divisor) {
+ Q[i] = 0;
+ remainder = (unsigned)partial_dividend;
+ } else if (partial_dividend == divisor) {
+ Q[i] = 1;
+ remainder = 0;
+ } else {
+ Q[i] = (unsigned)(partial_dividend / divisor);
+ remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
+ }
+ }
+ if (R)
+ R[0] = remainder;
+ } else {
+ // Now we're ready to invoke the Knuth classical divide algorithm. In this
+ // case n > 1.
+ KnuthDiv(U, V, Q, R, m, n);
+ }
+
+ // If the caller wants the quotient
+ if (Quotient) {
+ // Set up the Quotient value's memory.
+ if (Quotient->BitWidth != LHS.BitWidth) {
+ if (Quotient->isSingleWord())
+ Quotient->VAL = 0;
+ else
+ delete [] Quotient->pVal;
+ Quotient->BitWidth = LHS.BitWidth;
+ if (!Quotient->isSingleWord())
+ Quotient->pVal = getClearedMemory(Quotient->getNumWords());
+ } else
+ Quotient->clearAllBits();
+
+ // The quotient is in Q. Reconstitute the quotient into Quotient's low
+ // order words.
+ if (lhsWords == 1) {
+ uint64_t tmp =
+ uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
+ if (Quotient->isSingleWord())
+ Quotient->VAL = tmp;
+ else
+ Quotient->pVal[0] = tmp;
+ } else {
+ assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
+ for (unsigned i = 0; i < lhsWords; ++i)
+ Quotient->pVal[i] =
+ uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
+ }
+ }
+
+ // If the caller wants the remainder
+ if (Remainder) {
+ // Set up the Remainder value's memory.
+ if (Remainder->BitWidth != RHS.BitWidth) {
+ if (Remainder->isSingleWord())
+ Remainder->VAL = 0;
+ else
+ delete [] Remainder->pVal;
+ Remainder->BitWidth = RHS.BitWidth;
+ if (!Remainder->isSingleWord())
+ Remainder->pVal = getClearedMemory(Remainder->getNumWords());
+ } else
+ Remainder->clearAllBits();
+
+ // The remainder is in R. Reconstitute the remainder into Remainder's low
+ // order words.
+ if (rhsWords == 1) {
+ uint64_t tmp =
+ uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
+ if (Remainder->isSingleWord())
+ Remainder->VAL = tmp;
+ else
+ Remainder->pVal[0] = tmp;
+ } else {
+ assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
+ for (unsigned i = 0; i < rhsWords; ++i)
+ Remainder->pVal[i] =
+ uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
+ }
+ }
+
+ // Clean up the memory we allocated.
+ if (U != &SPACE[0]) {
+ delete [] U;
+ delete [] V;
+ delete [] Q;
+ delete [] R;
+ }
+}
+
+APInt APInt::udiv(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+
+ // First, deal with the easy case
+ if (isSingleWord()) {
+ assert(RHS.VAL != 0 && "Divide by zero?");
+ return APInt(BitWidth, VAL / RHS.VAL);
+ }
+
+ // Get some facts about the LHS and RHS number of bits and words
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+ assert(rhsWords && "Divided by zero???");
+ unsigned lhsBits = this->getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
+
+ // Deal with some degenerate cases
+ if (!lhsWords)
+ // 0 / X ===> 0
+ return APInt(BitWidth, 0);
+ else if (lhsWords < rhsWords || this->ult(RHS)) {
+ // X / Y ===> 0, iff X < Y
+ return APInt(BitWidth, 0);
+ } else if (*this == RHS) {
+ // X / X ===> 1
+ return APInt(BitWidth, 1);
+ } else if (lhsWords == 1 && rhsWords == 1) {
+ // All high words are zero, just use native divide
+ return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
+ }
+
+ // We have to compute it the hard way. Invoke the Knuth divide algorithm.
+ APInt Quotient(1,0); // to hold result.
+ divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
+ return Quotient;
+}
+
+APInt APInt::sdiv(const APInt &RHS) const {
+ if (isNegative()) {
+ if (RHS.isNegative())
+ return (-(*this)).udiv(-RHS);
+ return -((-(*this)).udiv(RHS));
+ }
+ if (RHS.isNegative())
+ return -(this->udiv(-RHS));
+ return this->udiv(RHS);
+}
+
+APInt APInt::urem(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ assert(RHS.VAL != 0 && "Remainder by zero?");
+ return APInt(BitWidth, VAL % RHS.VAL);
+ }
+
+ // Get some facts about the LHS
+ unsigned lhsBits = getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
+
+ // Get some facts about the RHS
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+ assert(rhsWords && "Performing remainder operation by zero ???");
+
+ // Check the degenerate cases
+ if (lhsWords == 0) {
+ // 0 % Y ===> 0
+ return APInt(BitWidth, 0);
+ } else if (lhsWords < rhsWords || this->ult(RHS)) {
+ // X % Y ===> X, iff X < Y
+ return *this;
+ } else if (*this == RHS) {
+ // X % X == 0;
+ return APInt(BitWidth, 0);
+ } else if (lhsWords == 1) {
+ // All high words are zero, just use native remainder
+ return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
+ }
+
+ // We have to compute it the hard way. Invoke the Knuth divide algorithm.
+ APInt Remainder(1,0);
+ divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
+ return Remainder;
+}
+
+APInt APInt::srem(const APInt &RHS) const {
+ if (isNegative()) {
+ if (RHS.isNegative())
+ return -((-(*this)).urem(-RHS));
+ return -((-(*this)).urem(RHS));
+ }
+ if (RHS.isNegative())
+ return this->urem(-RHS);
+ return this->urem(RHS);
+}
+
+void APInt::udivrem(const APInt &LHS, const APInt &RHS,
+ APInt &Quotient, APInt &Remainder) {
+ // Get some size facts about the dividend and divisor
+ unsigned lhsBits = LHS.getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+
+ // Check the degenerate cases
+ if (lhsWords == 0) {
+ Quotient = 0; // 0 / Y ===> 0
+ Remainder = 0; // 0 % Y ===> 0
+ return;
+ }
+
+ if (lhsWords < rhsWords || LHS.ult(RHS)) {
+ Remainder = LHS; // X % Y ===> X, iff X < Y
+ Quotient = 0; // X / Y ===> 0, iff X < Y
+ return;
+ }
+
+ if (LHS == RHS) {
+ Quotient = 1; // X / X ===> 1
+ Remainder = 0; // X % X ===> 0;
+ return;
+ }
+
+ if (lhsWords == 1 && rhsWords == 1) {
+ // There is only one word to consider so use the native versions.
+ uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
+ uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+ Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
+ Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
+ return;
+ }
+
+ // Okay, lets do it the long way
+ divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
+}
+
+void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
+ APInt &Quotient, APInt &Remainder) {
+ if (LHS.isNegative()) {
+ if (RHS.isNegative())
+ APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
+ else {
+ APInt::udivrem(-LHS, RHS, Quotient, Remainder);
+ Quotient = -Quotient;
+ }
+ Remainder = -Remainder;
+ } else if (RHS.isNegative()) {
+ APInt::udivrem(LHS, -RHS, Quotient, Remainder);
+ Quotient = -Quotient;
+ } else {
+ APInt::udivrem(LHS, RHS, Quotient, Remainder);
+ }
+}
+
+APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
+ APInt Res = *this+RHS;
+ Overflow = isNonNegative() == RHS.isNonNegative() &&
+ Res.isNonNegative() != isNonNegative();
+ return Res;
+}
+
+APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
+ APInt Res = *this+RHS;
+ Overflow = Res.ult(RHS);
+ return Res;
+}
+
+APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
+ APInt Res = *this - RHS;
+ Overflow = isNonNegative() != RHS.isNonNegative() &&
+ Res.isNonNegative() != isNonNegative();
+ return Res;
+}
+
+APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
+ APInt Res = *this-RHS;
+ Overflow = Res.ugt(*this);
+ return Res;
+}
+
+APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
+ // MININT/-1 --> overflow.
+ Overflow = isMinSignedValue() && RHS.isAllOnesValue();
+ return sdiv(RHS);
+}
+
+APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
+ APInt Res = *this * RHS;
+
+ if (*this != 0 && RHS != 0)
+ Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
+ else
+ Overflow = false;
+ return Res;
+}
+
+APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
+ APInt Res = *this * RHS;
+
+ if (*this != 0 && RHS != 0)
+ Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
+ else
+ Overflow = false;
+ return Res;
+}
+
+APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
+ Overflow = ShAmt >= getBitWidth();
+ if (Overflow)
+ ShAmt = getBitWidth()-1;
+
+ if (isNonNegative()) // Don't allow sign change.
+ Overflow = ShAmt >= countLeadingZeros();
+ else
+ Overflow = ShAmt >= countLeadingOnes();
+
+ return *this << ShAmt;
+}
+
+
+
+
+void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
+ // Check our assumptions here
+ assert(!str.empty() && "Invalid string length");
+ assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
+ radix == 36) &&
+ "Radix should be 2, 8, 10, 16, or 36!");
+
+ StringRef::iterator p = str.begin();
+ size_t slen = str.size();
+ bool isNeg = *p == '-';
+ if (*p == '-' || *p == '+') {
+ p++;
+ slen--;
+ assert(slen && "String is only a sign, needs a value.");
+ }
+ assert((slen <= numbits || radix != 2) && "Insufficient bit width");
+ assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
+ assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
+ assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
+ "Insufficient bit width");
+
+ // Allocate memory
+ if (!isSingleWord())
+ pVal = getClearedMemory(getNumWords());
+
+ // Figure out if we can shift instead of multiply
+ unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
+
+ // Set up an APInt for the digit to add outside the loop so we don't
+ // constantly construct/destruct it.
+ APInt apdigit(getBitWidth(), 0);
+ APInt apradix(getBitWidth(), radix);
+
+ // Enter digit traversal loop
+ for (StringRef::iterator e = str.end(); p != e; ++p) {
+ unsigned digit = getDigit(*p, radix);
+ assert(digit < radix && "Invalid character in digit string");
+
+ // Shift or multiply the value by the radix
+ if (slen > 1) {
+ if (shift)
+ *this <<= shift;
+ else
+ *this *= apradix;
+ }
+
+ // Add in the digit we just interpreted
+ if (apdigit.isSingleWord())
+ apdigit.VAL = digit;
+ else
+ apdigit.pVal[0] = digit;
+ *this += apdigit;
+ }
+ // If its negative, put it in two's complement form
+ if (isNeg) {
+ --(*this);
+ this->flipAllBits();
+ }
+}
+
+void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
+ bool Signed, bool formatAsCLiteral) const {
+ assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
+ Radix == 36) &&
+ "Radix should be 2, 8, 10, 16, or 36!");
+
+ const char *Prefix = "";
+ if (formatAsCLiteral) {
+ switch (Radix) {
+ case 2:
+ // Binary literals are a non-standard extension added in gcc 4.3:
+ // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
+ Prefix = "0b";
+ break;
+ case 8:
+ Prefix = "0";
+ break;
+ case 10:
+ break; // No prefix
+ case 16:
+ Prefix = "0x";
+ break;
+ default:
+ llvm_unreachable("Invalid radix!");
+ }
+ }
+
+ // First, check for a zero value and just short circuit the logic below.
+ if (*this == 0) {
+ while (*Prefix) {
+ Str.push_back(*Prefix);
+ ++Prefix;
+ };
+ Str.push_back('0');
+ return;
+ }
+
+ static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
+
+ if (isSingleWord()) {
+ char Buffer[65];
+ char *BufPtr = Buffer+65;
+
+ uint64_t N;
+ if (!Signed) {
+ N = getZExtValue();
+ } else {
+ int64_t I = getSExtValue();
+ if (I >= 0) {
+ N = I;
+ } else {
+ Str.push_back('-');
+ N = -(uint64_t)I;
+ }
+ }
+
+ while (*Prefix) {
+ Str.push_back(*Prefix);
+ ++Prefix;
+ };
+
+ while (N) {
+ *--BufPtr = Digits[N % Radix];
+ N /= Radix;
+ }
+ Str.append(BufPtr, Buffer+65);
+ return;
+ }
+
+ APInt Tmp(*this);
+
+ if (Signed && isNegative()) {
+ // They want to print the signed version and it is a negative value
+ // Flip the bits and add one to turn it into the equivalent positive
+ // value and put a '-' in the result.
+ Tmp.flipAllBits();
+ ++Tmp;
+ Str.push_back('-');
+ }
+
+ while (*Prefix) {
+ Str.push_back(*Prefix);
+ ++Prefix;
+ };
+
+ // We insert the digits backward, then reverse them to get the right order.
+ unsigned StartDig = Str.size();
+
+ // For the 2, 8 and 16 bit cases, we can just shift instead of divide
+ // because the number of bits per digit (1, 3 and 4 respectively) divides
+ // equaly. We just shift until the value is zero.
+ if (Radix == 2 || Radix == 8 || Radix == 16) {
+ // Just shift tmp right for each digit width until it becomes zero
+ unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
+ unsigned MaskAmt = Radix - 1;
+
+ while (Tmp != 0) {
+ unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
+ Str.push_back(Digits[Digit]);
+ Tmp = Tmp.lshr(ShiftAmt);
+ }
+ } else {
+ APInt divisor(Radix == 10? 4 : 8, Radix);
+ while (Tmp != 0) {
+ APInt APdigit(1, 0);
+ APInt tmp2(Tmp.getBitWidth(), 0);
+ divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
+ &APdigit);
+ unsigned Digit = (unsigned)APdigit.getZExtValue();
+ assert(Digit < Radix && "divide failed");
+ Str.push_back(Digits[Digit]);
+ Tmp = tmp2;
+ }
+ }
+
+ // Reverse the digits before returning.
+ std::reverse(Str.begin()+StartDig, Str.end());
+}
+
+/// toString - This returns the APInt as a std::string. Note that this is an
+/// inefficient method. It is better to pass in a SmallVector/SmallString
+/// to the methods above.
+std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
+ SmallString<40> S;
+ toString(S, Radix, Signed, /* formatAsCLiteral = */false);
+ return S.str();
+}
+
+
+void APInt::dump() const {
+ SmallString<40> S, U;
+ this->toStringUnsigned(U);
+ this->toStringSigned(S);
+ dbgs() << "APInt(" << BitWidth << "b, "
+ << U.str() << "u " << S.str() << "s)";
+}
+
+void APInt::print(raw_ostream &OS, bool isSigned) const {
+ SmallString<40> S;
+ this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
+ OS << S.str();
+}
+
+// This implements a variety of operations on a representation of
+// arbitrary precision, two's-complement, bignum integer values.
+
+// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
+// and unrestricting assumption.
+#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
+COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
+
+/* Some handy functions local to this file. */
+namespace {
+
+ /* Returns the integer part with the least significant BITS set.
+ BITS cannot be zero. */
+ static inline integerPart
+ lowBitMask(unsigned int bits)
+ {
+ assert(bits != 0 && bits <= integerPartWidth);
+
+ return ~(integerPart) 0 >> (integerPartWidth - bits);
+ }
+
+ /* Returns the value of the lower half of PART. */
+ static inline integerPart
+ lowHalf(integerPart part)
+ {
+ return part & lowBitMask(integerPartWidth / 2);
+ }
+
+ /* Returns the value of the upper half of PART. */
+ static inline integerPart
+ highHalf(integerPart part)
+ {
+ return part >> (integerPartWidth / 2);
+ }
+
+ /* Returns the bit number of the most significant set bit of a part.
+ If the input number has no bits set -1U is returned. */
+ static unsigned int
+ partMSB(integerPart value)
+ {
+ return findLastSet(value, ZB_Max);
+ }
+
+ /* Returns the bit number of the least significant set bit of a
+ part. If the input number has no bits set -1U is returned. */
+ static unsigned int
+ partLSB(integerPart value)
+ {
+ return findFirstSet(value, ZB_Max);
+ }
+}
+
+/* Sets the least significant part of a bignum to the input value, and
+ zeroes out higher parts. */
+void
+APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
+{
+ unsigned int i;
+
+ assert(parts > 0);
+
+ dst[0] = part;
+ for (i = 1; i < parts; i++)
+ dst[i] = 0;
+}
+
+/* Assign one bignum to another. */
+void
+APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
+{
+ unsigned int i;
+
+ for (i = 0; i < parts; i++)
+ dst[i] = src[i];
+}
+
+/* Returns true if a bignum is zero, false otherwise. */
+bool
+APInt::tcIsZero(const integerPart *src, unsigned int parts)
+{
+ unsigned int i;
+
+ for (i = 0; i < parts; i++)
+ if (src[i])
+ return false;
+
+ return true;
+}
+
+/* Extract the given bit of a bignum; returns 0 or 1. */
+int
+APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
+{
+ return (parts[bit / integerPartWidth] &
+ ((integerPart) 1 << bit % integerPartWidth)) != 0;
+}
+
+/* Set the given bit of a bignum. */
+void
+APInt::tcSetBit(integerPart *parts, unsigned int bit)
+{
+ parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
+}
+
+/* Clears the given bit of a bignum. */
+void
+APInt::tcClearBit(integerPart *parts, unsigned int bit)
+{
+ parts[bit / integerPartWidth] &=
+ ~((integerPart) 1 << (bit % integerPartWidth));
+}
+
+/* Returns the bit number of the least significant set bit of a
+ number. If the input number has no bits set -1U is returned. */
+unsigned int
+APInt::tcLSB(const integerPart *parts, unsigned int n)
+{
+ unsigned int i, lsb;
+
+ for (i = 0; i < n; i++) {
+ if (parts[i] != 0) {
+ lsb = partLSB(parts[i]);
+
+ return lsb + i * integerPartWidth;
+ }
+ }
+
+ return -1U;
+}
+
+/* Returns the bit number of the most significant set bit of a number.
+ If the input number has no bits set -1U is returned. */
+unsigned int
+APInt::tcMSB(const integerPart *parts, unsigned int n)
+{
+ unsigned int msb;
+
+ do {
+ --n;
+
+ if (parts[n] != 0) {
+ msb = partMSB(parts[n]);
+
+ return msb + n * integerPartWidth;
+ }
+ } while (n);
+
+ return -1U;
+}
+
+/* Copy the bit vector of width srcBITS from SRC, starting at bit
+ srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
+ the least significant bit of DST. All high bits above srcBITS in
+ DST are zero-filled. */
+void
+APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
+ unsigned int srcBits, unsigned int srcLSB)
+{
+ unsigned int firstSrcPart, dstParts, shift, n;
+
+ dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
+ assert(dstParts <= dstCount);
+
+ firstSrcPart = srcLSB / integerPartWidth;
+ tcAssign (dst, src + firstSrcPart, dstParts);
+
+ shift = srcLSB % integerPartWidth;
+ tcShiftRight (dst, dstParts, shift);
+
+ /* We now have (dstParts * integerPartWidth - shift) bits from SRC
+ in DST. If this is less that srcBits, append the rest, else
+ clear the high bits. */
+ n = dstParts * integerPartWidth - shift;
+ if (n < srcBits) {
+ integerPart mask = lowBitMask (srcBits - n);
+ dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
+ << n % integerPartWidth);
+ } else if (n > srcBits) {
+ if (srcBits % integerPartWidth)
+ dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
+ }
+
+ /* Clear high parts. */
+ while (dstParts < dstCount)
+ dst[dstParts++] = 0;
+}
+
+/* DST += RHS + C where C is zero or one. Returns the carry flag. */
+integerPart
+APInt::tcAdd(integerPart *dst, const integerPart *rhs,
+ integerPart c, unsigned int parts)
+{
+ unsigned int i;
+
+ assert(c <= 1);
+
+ for (i = 0; i < parts; i++) {
+ integerPart l;
+
+ l = dst[i];
+ if (c) {
+ dst[i] += rhs[i] + 1;
+ c = (dst[i] <= l);
+ } else {
+ dst[i] += rhs[i];
+ c = (dst[i] < l);
+ }
+ }
+
+ return c;
+}
+
+/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
+integerPart
+APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
+ integerPart c, unsigned int parts)
+{
+ unsigned int i;
+
+ assert(c <= 1);
+
+ for (i = 0; i < parts; i++) {
+ integerPart l;
+
+ l = dst[i];
+ if (c) {
+ dst[i] -= rhs[i] + 1;
+ c = (dst[i] >= l);
+ } else {
+ dst[i] -= rhs[i];
+ c = (dst[i] > l);
+ }
+ }
+
+ return c;
+}
+
+/* Negate a bignum in-place. */
+void
+APInt::tcNegate(integerPart *dst, unsigned int parts)
+{
+ tcComplement(dst, parts);
+ tcIncrement(dst, parts);
+}
+
+/* DST += SRC * MULTIPLIER + CARRY if add is true
+ DST = SRC * MULTIPLIER + CARRY if add is false
+
+ Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
+ they must start at the same point, i.e. DST == SRC.
+
+ If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
+ returned. Otherwise DST is filled with the least significant
+ DSTPARTS parts of the result, and if all of the omitted higher
+ parts were zero return zero, otherwise overflow occurred and
+ return one. */
+int
+APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
+ integerPart multiplier, integerPart carry,
+ unsigned int srcParts, unsigned int dstParts,
+ bool add)
+{
+ unsigned int i, n;
+
+ /* Otherwise our writes of DST kill our later reads of SRC. */
+ assert(dst <= src || dst >= src + srcParts);
+ assert(dstParts <= srcParts + 1);
+
+ /* N loops; minimum of dstParts and srcParts. */
+ n = dstParts < srcParts ? dstParts: srcParts;
+
+ for (i = 0; i < n; i++) {
+ integerPart low, mid, high, srcPart;
+
+ /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
+
+ This cannot overflow, because
+
+ (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
+
+ which is less than n^2. */
+
+ srcPart = src[i];
+
+ if (multiplier == 0 || srcPart == 0) {
+ low = carry;
+ high = 0;
+ } else {
+ low = lowHalf(srcPart) * lowHalf(multiplier);
+ high = highHalf(srcPart) * highHalf(multiplier);
+
+ mid = lowHalf(srcPart) * highHalf(multiplier);
+ high += highHalf(mid);
+ mid <<= integerPartWidth / 2;
+ if (low + mid < low)
+ high++;
+ low += mid;
+
+ mid = highHalf(srcPart) * lowHalf(multiplier);
+ high += highHalf(mid);
+ mid <<= integerPartWidth / 2;
+ if (low + mid < low)
+ high++;
+ low += mid;
+
+ /* Now add carry. */
+ if (low + carry < low)
+ high++;
+ low += carry;
+ }
+
+ if (add) {
+ /* And now DST[i], and store the new low part there. */
+ if (low + dst[i] < low)
+ high++;
+ dst[i] += low;
+ } else
+ dst[i] = low;
+
+ carry = high;
+ }
+
+ if (i < dstParts) {
+ /* Full multiplication, there is no overflow. */
+ assert(i + 1 == dstParts);
+ dst[i] = carry;
+ return 0;
+ } else {
+ /* We overflowed if there is carry. */
+ if (carry)
+ return 1;
+
+ /* We would overflow if any significant unwritten parts would be
+ non-zero. This is true if any remaining src parts are non-zero
+ and the multiplier is non-zero. */
+ if (multiplier)
+ for (; i < srcParts; i++)
+ if (src[i])
+ return 1;
+
+ /* We fitted in the narrow destination. */
+ return 0;
+ }
+}
+
+/* DST = LHS * RHS, where DST has the same width as the operands and
+ is filled with the least significant parts of the result. Returns
+ one if overflow occurred, otherwise zero. DST must be disjoint
+ from both operands. */
+int
+APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
+ const integerPart *rhs, unsigned int parts)
+{
+ unsigned int i;
+ int overflow;
+
+ assert(dst != lhs && dst != rhs);
+
+ overflow = 0;
+ tcSet(dst, 0, parts);
+
+ for (i = 0; i < parts; i++)
+ overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
+ parts - i, true);
+
+ return overflow;
+}
+
+/* DST = LHS * RHS, where DST has width the sum of the widths of the
+ operands. No overflow occurs. DST must be disjoint from both
+ operands. Returns the number of parts required to hold the
+ result. */
+unsigned int
+APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
+ const integerPart *rhs, unsigned int lhsParts,
+ unsigned int rhsParts)
+{
+ /* Put the narrower number on the LHS for less loops below. */
+ if (lhsParts > rhsParts) {
+ return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
+ } else {
+ unsigned int n;
+
+ assert(dst != lhs && dst != rhs);
+
+ tcSet(dst, 0, rhsParts);
+
+ for (n = 0; n < lhsParts; n++)
+ tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
+
+ n = lhsParts + rhsParts;
+
+ return n - (dst[n - 1] == 0);
+ }
+}
+
+/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
+ Otherwise set LHS to LHS / RHS with the fractional part discarded,
+ set REMAINDER to the remainder, return zero. i.e.
+
+ OLD_LHS = RHS * LHS + REMAINDER
+
+ SCRATCH is a bignum of the same size as the operands and result for
+ use by the routine; its contents need not be initialized and are
+ destroyed. LHS, REMAINDER and SCRATCH must be distinct.
+*/
+int
+APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
+ integerPart *remainder, integerPart *srhs,
+ unsigned int parts)
+{
+ unsigned int n, shiftCount;
+ integerPart mask;
+
+ assert(lhs != remainder && lhs != srhs && remainder != srhs);
+
+ shiftCount = tcMSB(rhs, parts) + 1;
+ if (shiftCount == 0)
+ return true;
+
+ shiftCount = parts * integerPartWidth - shiftCount;
+ n = shiftCount / integerPartWidth;
+ mask = (integerPart) 1 << (shiftCount % integerPartWidth);
+
+ tcAssign(srhs, rhs, parts);
+ tcShiftLeft(srhs, parts, shiftCount);
+ tcAssign(remainder, lhs, parts);
+ tcSet(lhs, 0, parts);
+
+ /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
+ the total. */
+ for (;;) {
+ int compare;
+
+ compare = tcCompare(remainder, srhs, parts);
+ if (compare >= 0) {
+ tcSubtract(remainder, srhs, 0, parts);
+ lhs[n] |= mask;
+ }
+
+ if (shiftCount == 0)
+ break;
+ shiftCount--;
+ tcShiftRight(srhs, parts, 1);
+ if ((mask >>= 1) == 0)
+ mask = (integerPart) 1 << (integerPartWidth - 1), n--;
+ }
+
+ return false;
+}
+
+/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
+ There are no restrictions on COUNT. */
+void
+APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
+{
+ if (count) {
+ unsigned int jump, shift;
+
+ /* Jump is the inter-part jump; shift is is intra-part shift. */
+ jump = count / integerPartWidth;
+ shift = count % integerPartWidth;
+
+ while (parts > jump) {
+ integerPart part;
+
+ parts--;
+
+ /* dst[i] comes from the two parts src[i - jump] and, if we have
+ an intra-part shift, src[i - jump - 1]. */
+ part = dst[parts - jump];
+ if (shift) {
+ part <<= shift;
+ if (parts >= jump + 1)
+ part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
+ }
+
+ dst[parts] = part;
+ }
+
+ while (parts > 0)
+ dst[--parts] = 0;
+ }
+}
+
+/* Shift a bignum right COUNT bits in-place. Shifted in bits are
+ zero. There are no restrictions on COUNT. */
+void
+APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
+{
+ if (count) {
+ unsigned int i, jump, shift;
+
+ /* Jump is the inter-part jump; shift is is intra-part shift. */
+ jump = count / integerPartWidth;
+ shift = count % integerPartWidth;
+
+ /* Perform the shift. This leaves the most significant COUNT bits
+ of the result at zero. */
+ for (i = 0; i < parts; i++) {
+ integerPart part;
+
+ if (i + jump >= parts) {
+ part = 0;
+ } else {
+ part = dst[i + jump];
+ if (shift) {
+ part >>= shift;
+ if (i + jump + 1 < parts)
+ part |= dst[i + jump + 1] << (integerPartWidth - shift);
+ }
+ }
+
+ dst[i] = part;
+ }
+ }
+}
+
+/* Bitwise and of two bignums. */
+void
+APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+ unsigned int i;
+
+ for (i = 0; i < parts; i++)
+ dst[i] &= rhs[i];
+}
+
+/* Bitwise inclusive or of two bignums. */
+void
+APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+ unsigned int i;
+
+ for (i = 0; i < parts; i++)
+ dst[i] |= rhs[i];
+}
+
+/* Bitwise exclusive or of two bignums. */
+void
+APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+ unsigned int i;
+
+ for (i = 0; i < parts; i++)
+ dst[i] ^= rhs[i];
+}
+
+/* Complement a bignum in-place. */
+void
+APInt::tcComplement(integerPart *dst, unsigned int parts)
+{
+ unsigned int i;
+
+ for (i = 0; i < parts; i++)
+ dst[i] = ~dst[i];
+}
+
+/* Comparison (unsigned) of two bignums. */
+int
+APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
+ unsigned int parts)
+{
+ while (parts) {
+ parts--;
+ if (lhs[parts] == rhs[parts])
+ continue;
+
+ if (lhs[parts] > rhs[parts])
+ return 1;
+ else
+ return -1;
+ }
+
+ return 0;
+}
+
+/* Increment a bignum in-place, return the carry flag. */
+integerPart
+APInt::tcIncrement(integerPart *dst, unsigned int parts)
+{
+ unsigned int i;
+
+ for (i = 0; i < parts; i++)
+ if (++dst[i] != 0)
+ break;
+
+ return i == parts;
+}
+
+/* Decrement a bignum in-place, return the borrow flag. */
+integerPart
+APInt::tcDecrement(integerPart *dst, unsigned int parts) {
+ for (unsigned int i = 0; i < parts; i++) {
+ // If the current word is non-zero, then the decrement has no effect on the
+ // higher-order words of the integer and no borrow can occur. Exit early.
+ if (dst[i]--)
+ return 0;
+ }
+ // If every word was zero, then there is a borrow.
+ return 1;
+}
+
+
+/* Set the least significant BITS bits of a bignum, clear the
+ rest. */
+void
+APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
+ unsigned int bits)
+{
+ unsigned int i;
+
+ i = 0;
+ while (bits > integerPartWidth) {
+ dst[i++] = ~(integerPart) 0;
+ bits -= integerPartWidth;
+ }
+
+ if (bits)
+ dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
+
+ while (i < parts)
+ dst[i++] = 0;
+}