diff options
Diffstat (limited to 'contrib/llvm/lib/IR/Constants.cpp')
-rw-r--r-- | contrib/llvm/lib/IR/Constants.cpp | 2779 |
1 files changed, 2779 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/Constants.cpp b/contrib/llvm/lib/IR/Constants.cpp new file mode 100644 index 000000000000..1abb65643559 --- /dev/null +++ b/contrib/llvm/lib/IR/Constants.cpp @@ -0,0 +1,2779 @@ +//===-- Constants.cpp - Implement Constant nodes --------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Constant* classes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Constants.h" +#include "ConstantFold.h" +#include "LLVMContextImpl.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cstdarg> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Constant Class +//===----------------------------------------------------------------------===// + +void Constant::anchor() { } + +bool Constant::isNegativeZeroValue() const { + // Floating point values have an explicit -0.0 value. + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) + return CFP->isZero() && CFP->isNegative(); + + // Equivalent for a vector of -0.0's. + if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) + if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) + if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) + return true; + + // We've already handled true FP case; any other FP vectors can't represent -0.0. + if (getType()->isFPOrFPVectorTy()) + return false; + + // Otherwise, just use +0.0. + return isNullValue(); +} + +// Return true iff this constant is positive zero (floating point), negative +// zero (floating point), or a null value. +bool Constant::isZeroValue() const { + // Floating point values have an explicit -0.0 value. + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) + return CFP->isZero(); + + // Otherwise, just use +0.0. + return isNullValue(); +} + +bool Constant::isNullValue() const { + // 0 is null. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) + return CI->isZero(); + + // +0.0 is null. + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) + return CFP->isZero() && !CFP->isNegative(); + + // constant zero is zero for aggregates and cpnull is null for pointers. + return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this); +} + +bool Constant::isAllOnesValue() const { + // Check for -1 integers + if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) + return CI->isMinusOne(); + + // Check for FP which are bitcasted from -1 integers + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) + return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); + + // Check for constant vectors which are splats of -1 values. + if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) + if (Constant *Splat = CV->getSplatValue()) + return Splat->isAllOnesValue(); + + // Check for constant vectors which are splats of -1 values. + if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) + if (Constant *Splat = CV->getSplatValue()) + return Splat->isAllOnesValue(); + + return false; +} + +// Constructor to create a '0' constant of arbitrary type... +Constant *Constant::getNullValue(Type *Ty) { + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + return ConstantInt::get(Ty, 0); + case Type::HalfTyID: + return ConstantFP::get(Ty->getContext(), + APFloat::getZero(APFloat::IEEEhalf)); + case Type::FloatTyID: + return ConstantFP::get(Ty->getContext(), + APFloat::getZero(APFloat::IEEEsingle)); + case Type::DoubleTyID: + return ConstantFP::get(Ty->getContext(), + APFloat::getZero(APFloat::IEEEdouble)); + case Type::X86_FP80TyID: + return ConstantFP::get(Ty->getContext(), + APFloat::getZero(APFloat::x87DoubleExtended)); + case Type::FP128TyID: + return ConstantFP::get(Ty->getContext(), + APFloat::getZero(APFloat::IEEEquad)); + case Type::PPC_FP128TyID: + return ConstantFP::get(Ty->getContext(), + APFloat(APFloat::PPCDoubleDouble, + APInt::getNullValue(128))); + case Type::PointerTyID: + return ConstantPointerNull::get(cast<PointerType>(Ty)); + case Type::StructTyID: + case Type::ArrayTyID: + case Type::VectorTyID: + return ConstantAggregateZero::get(Ty); + default: + // Function, Label, or Opaque type? + llvm_unreachable("Cannot create a null constant of that type!"); + } +} + +Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { + Type *ScalarTy = Ty->getScalarType(); + + // Create the base integer constant. + Constant *C = ConstantInt::get(Ty->getContext(), V); + + // Convert an integer to a pointer, if necessary. + if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) + C = ConstantExpr::getIntToPtr(C, PTy); + + // Broadcast a scalar to a vector, if necessary. + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + C = ConstantVector::getSplat(VTy->getNumElements(), C); + + return C; +} + +Constant *Constant::getAllOnesValue(Type *Ty) { + if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) + return ConstantInt::get(Ty->getContext(), + APInt::getAllOnesValue(ITy->getBitWidth())); + + if (Ty->isFloatingPointTy()) { + APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), + !Ty->isPPC_FP128Ty()); + return ConstantFP::get(Ty->getContext(), FL); + } + + VectorType *VTy = cast<VectorType>(Ty); + return ConstantVector::getSplat(VTy->getNumElements(), + getAllOnesValue(VTy->getElementType())); +} + +/// getAggregateElement - For aggregates (struct/array/vector) return the +/// constant that corresponds to the specified element if possible, or null if +/// not. This can return null if the element index is a ConstantExpr, or if +/// 'this' is a constant expr. +Constant *Constant::getAggregateElement(unsigned Elt) const { + if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) + return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0; + + if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) + return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0; + + if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) + return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0; + + if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this)) + return CAZ->getElementValue(Elt); + + if (const UndefValue *UV = dyn_cast<UndefValue>(this)) + return UV->getElementValue(Elt); + + if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) + return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0; + return 0; +} + +Constant *Constant::getAggregateElement(Constant *Elt) const { + assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) + return getAggregateElement(CI->getZExtValue()); + return 0; +} + + +void Constant::destroyConstantImpl() { + // When a Constant is destroyed, there may be lingering + // references to the constant by other constants in the constant pool. These + // constants are implicitly dependent on the module that is being deleted, + // but they don't know that. Because we only find out when the CPV is + // deleted, we must now notify all of our users (that should only be + // Constants) that they are, in fact, invalid now and should be deleted. + // + while (!use_empty()) { + Value *V = use_back(); +#ifndef NDEBUG // Only in -g mode... + if (!isa<Constant>(V)) { + dbgs() << "While deleting: " << *this + << "\n\nUse still stuck around after Def is destroyed: " + << *V << "\n\n"; + } +#endif + assert(isa<Constant>(V) && "References remain to Constant being destroyed"); + cast<Constant>(V)->destroyConstant(); + + // The constant should remove itself from our use list... + assert((use_empty() || use_back() != V) && "Constant not removed!"); + } + + // Value has no outstanding references it is safe to delete it now... + delete this; +} + +/// canTrap - Return true if evaluation of this constant could trap. This is +/// true for things like constant expressions that could divide by zero. +bool Constant::canTrap() const { + assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); + // The only thing that could possibly trap are constant exprs. + const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); + if (!CE) return false; + + // ConstantExpr traps if any operands can trap. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (CE->getOperand(i)->canTrap()) + return true; + + // Otherwise, only specific operations can trap. + switch (CE->getOpcode()) { + default: + return false; + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + // Div and rem can trap if the RHS is not known to be non-zero. + if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) + return true; + return false; + } +} + +/// isThreadDependent - Return true if the value can vary between threads. +bool Constant::isThreadDependent() const { + SmallPtrSet<const Constant*, 64> Visited; + SmallVector<const Constant*, 64> WorkList; + WorkList.push_back(this); + Visited.insert(this); + + while (!WorkList.empty()) { + const Constant *C = WorkList.pop_back_val(); + + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { + if (GV->isThreadLocal()) + return true; + } + + for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) { + const Constant *D = dyn_cast<Constant>(C->getOperand(I)); + if (!D) + continue; + if (Visited.insert(D)) + WorkList.push_back(D); + } + } + + return false; +} + +/// isConstantUsed - Return true if the constant has users other than constant +/// exprs and other dangling things. +bool Constant::isConstantUsed() const { + for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { + const Constant *UC = dyn_cast<Constant>(*UI); + if (UC == 0 || isa<GlobalValue>(UC)) + return true; + + if (UC->isConstantUsed()) + return true; + } + return false; +} + + + +/// getRelocationInfo - This method classifies the entry according to +/// whether or not it may generate a relocation entry. This must be +/// conservative, so if it might codegen to a relocatable entry, it should say +/// so. The return values are: +/// +/// NoRelocation: This constant pool entry is guaranteed to never have a +/// relocation applied to it (because it holds a simple constant like +/// '4'). +/// LocalRelocation: This entry has relocations, but the entries are +/// guaranteed to be resolvable by the static linker, so the dynamic +/// linker will never see them. +/// GlobalRelocations: This entry may have arbitrary relocations. +/// +/// FIXME: This really should not be in IR. +Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { + if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) + return LocalRelocation; // Local to this file/library. + return GlobalRelocations; // Global reference. + } + + if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) + return BA->getFunction()->getRelocationInfo(); + + // While raw uses of blockaddress need to be relocated, differences between + // two of them don't when they are for labels in the same function. This is a + // common idiom when creating a table for the indirect goto extension, so we + // handle it efficiently here. + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) + if (CE->getOpcode() == Instruction::Sub) { + ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); + ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); + if (LHS && RHS && + LHS->getOpcode() == Instruction::PtrToInt && + RHS->getOpcode() == Instruction::PtrToInt && + isa<BlockAddress>(LHS->getOperand(0)) && + isa<BlockAddress>(RHS->getOperand(0)) && + cast<BlockAddress>(LHS->getOperand(0))->getFunction() == + cast<BlockAddress>(RHS->getOperand(0))->getFunction()) + return NoRelocation; + } + + PossibleRelocationsTy Result = NoRelocation; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + Result = std::max(Result, + cast<Constant>(getOperand(i))->getRelocationInfo()); + + return Result; +} + +/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove +/// it. This involves recursively eliminating any dead users of the +/// constantexpr. +static bool removeDeadUsersOfConstant(const Constant *C) { + if (isa<GlobalValue>(C)) return false; // Cannot remove this + + while (!C->use_empty()) { + const Constant *User = dyn_cast<Constant>(C->use_back()); + if (!User) return false; // Non-constant usage; + if (!removeDeadUsersOfConstant(User)) + return false; // Constant wasn't dead + } + + const_cast<Constant*>(C)->destroyConstant(); + return true; +} + + +/// removeDeadConstantUsers - If there are any dead constant users dangling +/// off of this constant, remove them. This method is useful for clients +/// that want to check to see if a global is unused, but don't want to deal +/// with potentially dead constants hanging off of the globals. +void Constant::removeDeadConstantUsers() const { + Value::const_use_iterator I = use_begin(), E = use_end(); + Value::const_use_iterator LastNonDeadUser = E; + while (I != E) { + const Constant *User = dyn_cast<Constant>(*I); + if (User == 0) { + LastNonDeadUser = I; + ++I; + continue; + } + + if (!removeDeadUsersOfConstant(User)) { + // If the constant wasn't dead, remember that this was the last live use + // and move on to the next constant. + LastNonDeadUser = I; + ++I; + continue; + } + + // If the constant was dead, then the iterator is invalidated. + if (LastNonDeadUser == E) { + I = use_begin(); + if (I == E) break; + } else { + I = LastNonDeadUser; + ++I; + } + } +} + + + +//===----------------------------------------------------------------------===// +// ConstantInt +//===----------------------------------------------------------------------===// + +void ConstantInt::anchor() { } + +ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) + : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { + assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); +} + +ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { + LLVMContextImpl *pImpl = Context.pImpl; + if (!pImpl->TheTrueVal) + pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); + return pImpl->TheTrueVal; +} + +ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { + LLVMContextImpl *pImpl = Context.pImpl; + if (!pImpl->TheFalseVal) + pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); + return pImpl->TheFalseVal; +} + +Constant *ConstantInt::getTrue(Type *Ty) { + VectorType *VTy = dyn_cast<VectorType>(Ty); + if (!VTy) { + assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); + return ConstantInt::getTrue(Ty->getContext()); + } + assert(VTy->getElementType()->isIntegerTy(1) && + "True must be vector of i1 or i1."); + return ConstantVector::getSplat(VTy->getNumElements(), + ConstantInt::getTrue(Ty->getContext())); +} + +Constant *ConstantInt::getFalse(Type *Ty) { + VectorType *VTy = dyn_cast<VectorType>(Ty); + if (!VTy) { + assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); + return ConstantInt::getFalse(Ty->getContext()); + } + assert(VTy->getElementType()->isIntegerTy(1) && + "False must be vector of i1 or i1."); + return ConstantVector::getSplat(VTy->getNumElements(), + ConstantInt::getFalse(Ty->getContext())); +} + + +// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap +// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the +// operator== and operator!= to ensure that the DenseMap doesn't attempt to +// compare APInt's of different widths, which would violate an APInt class +// invariant which generates an assertion. +ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { + // Get the corresponding integer type for the bit width of the value. + IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); + // get an existing value or the insertion position + DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); + ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; + if (!Slot) Slot = new ConstantInt(ITy, V); + return Slot; +} + +Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { + Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); + + // For vectors, broadcast the value. + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::getSplat(VTy->getNumElements(), C); + + return C; +} + +ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, + bool isSigned) { + return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); +} + +ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { + return get(Ty, V, true); +} + +Constant *ConstantInt::get(Type *Ty, const APInt& V) { + ConstantInt *C = get(Ty->getContext(), V); + assert(C->getType() == Ty->getScalarType() && + "ConstantInt type doesn't match the type implied by its value!"); + + // For vectors, broadcast the value. + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::getSplat(VTy->getNumElements(), C); + + return C; +} + +ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, + uint8_t radix) { + return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); +} + +//===----------------------------------------------------------------------===// +// ConstantFP +//===----------------------------------------------------------------------===// + +static const fltSemantics *TypeToFloatSemantics(Type *Ty) { + if (Ty->isHalfTy()) + return &APFloat::IEEEhalf; + if (Ty->isFloatTy()) + return &APFloat::IEEEsingle; + if (Ty->isDoubleTy()) + return &APFloat::IEEEdouble; + if (Ty->isX86_FP80Ty()) + return &APFloat::x87DoubleExtended; + else if (Ty->isFP128Ty()) + return &APFloat::IEEEquad; + + assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); + return &APFloat::PPCDoubleDouble; +} + +void ConstantFP::anchor() { } + +/// get() - This returns a constant fp for the specified value in the +/// specified type. This should only be used for simple constant values like +/// 2.0/1.0 etc, that are known-valid both as double and as the target format. +Constant *ConstantFP::get(Type *Ty, double V) { + LLVMContext &Context = Ty->getContext(); + + APFloat FV(V); + bool ignored; + FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), + APFloat::rmNearestTiesToEven, &ignored); + Constant *C = get(Context, FV); + + // For vectors, broadcast the value. + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::getSplat(VTy->getNumElements(), C); + + return C; +} + + +Constant *ConstantFP::get(Type *Ty, StringRef Str) { + LLVMContext &Context = Ty->getContext(); + + APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); + Constant *C = get(Context, FV); + + // For vectors, broadcast the value. + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::getSplat(VTy->getNumElements(), C); + + return C; +} + + +ConstantFP *ConstantFP::getNegativeZero(Type *Ty) { + LLVMContext &Context = Ty->getContext(); + APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); + apf.changeSign(); + return get(Context, apf); +} + + +Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { + Type *ScalarTy = Ty->getScalarType(); + if (ScalarTy->isFloatingPointTy()) { + Constant *C = getNegativeZero(ScalarTy); + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::getSplat(VTy->getNumElements(), C); + return C; + } + + return Constant::getNullValue(Ty); +} + + +// ConstantFP accessors. +ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { + DenseMapAPFloatKeyInfo::KeyTy Key(V); + + LLVMContextImpl* pImpl = Context.pImpl; + + ConstantFP *&Slot = pImpl->FPConstants[Key]; + + if (!Slot) { + Type *Ty; + if (&V.getSemantics() == &APFloat::IEEEhalf) + Ty = Type::getHalfTy(Context); + else if (&V.getSemantics() == &APFloat::IEEEsingle) + Ty = Type::getFloatTy(Context); + else if (&V.getSemantics() == &APFloat::IEEEdouble) + Ty = Type::getDoubleTy(Context); + else if (&V.getSemantics() == &APFloat::x87DoubleExtended) + Ty = Type::getX86_FP80Ty(Context); + else if (&V.getSemantics() == &APFloat::IEEEquad) + Ty = Type::getFP128Ty(Context); + else { + assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && + "Unknown FP format"); + Ty = Type::getPPC_FP128Ty(Context); + } + Slot = new ConstantFP(Ty, V); + } + + return Slot; +} + +ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { + const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); + return ConstantFP::get(Ty->getContext(), + APFloat::getInf(Semantics, Negative)); +} + +ConstantFP::ConstantFP(Type *Ty, const APFloat& V) + : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { + assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && + "FP type Mismatch"); +} + +bool ConstantFP::isExactlyValue(const APFloat &V) const { + return Val.bitwiseIsEqual(V); +} + +//===----------------------------------------------------------------------===// +// ConstantAggregateZero Implementation +//===----------------------------------------------------------------------===// + +/// getSequentialElement - If this CAZ has array or vector type, return a zero +/// with the right element type. +Constant *ConstantAggregateZero::getSequentialElement() const { + return Constant::getNullValue(getType()->getSequentialElementType()); +} + +/// getStructElement - If this CAZ has struct type, return a zero with the +/// right element type for the specified element. +Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { + return Constant::getNullValue(getType()->getStructElementType(Elt)); +} + +/// getElementValue - Return a zero of the right value for the specified GEP +/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). +Constant *ConstantAggregateZero::getElementValue(Constant *C) const { + if (isa<SequentialType>(getType())) + return getSequentialElement(); + return getStructElement(cast<ConstantInt>(C)->getZExtValue()); +} + +/// getElementValue - Return a zero of the right value for the specified GEP +/// index. +Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { + if (isa<SequentialType>(getType())) + return getSequentialElement(); + return getStructElement(Idx); +} + + +//===----------------------------------------------------------------------===// +// UndefValue Implementation +//===----------------------------------------------------------------------===// + +/// getSequentialElement - If this undef has array or vector type, return an +/// undef with the right element type. +UndefValue *UndefValue::getSequentialElement() const { + return UndefValue::get(getType()->getSequentialElementType()); +} + +/// getStructElement - If this undef has struct type, return a zero with the +/// right element type for the specified element. +UndefValue *UndefValue::getStructElement(unsigned Elt) const { + return UndefValue::get(getType()->getStructElementType(Elt)); +} + +/// getElementValue - Return an undef of the right value for the specified GEP +/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). +UndefValue *UndefValue::getElementValue(Constant *C) const { + if (isa<SequentialType>(getType())) + return getSequentialElement(); + return getStructElement(cast<ConstantInt>(C)->getZExtValue()); +} + +/// getElementValue - Return an undef of the right value for the specified GEP +/// index. +UndefValue *UndefValue::getElementValue(unsigned Idx) const { + if (isa<SequentialType>(getType())) + return getSequentialElement(); + return getStructElement(Idx); +} + + + +//===----------------------------------------------------------------------===// +// ConstantXXX Classes +//===----------------------------------------------------------------------===// + +template <typename ItTy, typename EltTy> +static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { + for (; Start != End; ++Start) + if (*Start != Elt) + return false; + return true; +} + +ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) + : Constant(T, ConstantArrayVal, + OperandTraits<ConstantArray>::op_end(this) - V.size(), + V.size()) { + assert(V.size() == T->getNumElements() && + "Invalid initializer vector for constant array"); + for (unsigned i = 0, e = V.size(); i != e; ++i) + assert(V[i]->getType() == T->getElementType() && + "Initializer for array element doesn't match array element type!"); + std::copy(V.begin(), V.end(), op_begin()); +} + +Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { + // Empty arrays are canonicalized to ConstantAggregateZero. + if (V.empty()) + return ConstantAggregateZero::get(Ty); + + for (unsigned i = 0, e = V.size(); i != e; ++i) { + assert(V[i]->getType() == Ty->getElementType() && + "Wrong type in array element initializer"); + } + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + + // If this is an all-zero array, return a ConstantAggregateZero object. If + // all undef, return an UndefValue, if "all simple", then return a + // ConstantDataArray. + Constant *C = V[0]; + if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) + return UndefValue::get(Ty); + + if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) + return ConstantAggregateZero::get(Ty); + + // Check to see if all of the elements are ConstantFP or ConstantInt and if + // the element type is compatible with ConstantDataVector. If so, use it. + if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { + // We speculatively build the elements here even if it turns out that there + // is a constantexpr or something else weird in the array, since it is so + // uncommon for that to happen. + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + if (CI->getType()->isIntegerTy(8)) { + SmallVector<uint8_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(16)) { + SmallVector<uint16_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(32)) { + SmallVector<uint32_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(64)) { + SmallVector<uint64_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } + } + + if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + if (CFP->getType()->isFloatTy()) { + SmallVector<float, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) + Elts.push_back(CFP->getValueAPF().convertToFloat()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } else if (CFP->getType()->isDoubleTy()) { + SmallVector<double, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) + Elts.push_back(CFP->getValueAPF().convertToDouble()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } + } + } + + // Otherwise, we really do want to create a ConstantArray. + return pImpl->ArrayConstants.getOrCreate(Ty, V); +} + +/// getTypeForElements - Return an anonymous struct type to use for a constant +/// with the specified set of elements. The list must not be empty. +StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, + ArrayRef<Constant*> V, + bool Packed) { + unsigned VecSize = V.size(); + SmallVector<Type*, 16> EltTypes(VecSize); + for (unsigned i = 0; i != VecSize; ++i) + EltTypes[i] = V[i]->getType(); + + return StructType::get(Context, EltTypes, Packed); +} + + +StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, + bool Packed) { + assert(!V.empty() && + "ConstantStruct::getTypeForElements cannot be called on empty list"); + return getTypeForElements(V[0]->getContext(), V, Packed); +} + + +ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) + : Constant(T, ConstantStructVal, + OperandTraits<ConstantStruct>::op_end(this) - V.size(), + V.size()) { + assert(V.size() == T->getNumElements() && + "Invalid initializer vector for constant structure"); + for (unsigned i = 0, e = V.size(); i != e; ++i) + assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && + "Initializer for struct element doesn't match struct element type!"); + std::copy(V.begin(), V.end(), op_begin()); +} + +// ConstantStruct accessors. +Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { + assert((ST->isOpaque() || ST->getNumElements() == V.size()) && + "Incorrect # elements specified to ConstantStruct::get"); + + // Create a ConstantAggregateZero value if all elements are zeros. + bool isZero = true; + bool isUndef = false; + + if (!V.empty()) { + isUndef = isa<UndefValue>(V[0]); + isZero = V[0]->isNullValue(); + if (isUndef || isZero) { + for (unsigned i = 0, e = V.size(); i != e; ++i) { + if (!V[i]->isNullValue()) + isZero = false; + if (!isa<UndefValue>(V[i])) + isUndef = false; + } + } + } + if (isZero) + return ConstantAggregateZero::get(ST); + if (isUndef) + return UndefValue::get(ST); + + return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); +} + +Constant *ConstantStruct::get(StructType *T, ...) { + va_list ap; + SmallVector<Constant*, 8> Values; + va_start(ap, T); + while (Constant *Val = va_arg(ap, llvm::Constant*)) + Values.push_back(Val); + va_end(ap); + return get(T, Values); +} + +ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) + : Constant(T, ConstantVectorVal, + OperandTraits<ConstantVector>::op_end(this) - V.size(), + V.size()) { + for (size_t i = 0, e = V.size(); i != e; i++) + assert(V[i]->getType() == T->getElementType() && + "Initializer for vector element doesn't match vector element type!"); + std::copy(V.begin(), V.end(), op_begin()); +} + +// ConstantVector accessors. +Constant *ConstantVector::get(ArrayRef<Constant*> V) { + assert(!V.empty() && "Vectors can't be empty"); + VectorType *T = VectorType::get(V.front()->getType(), V.size()); + LLVMContextImpl *pImpl = T->getContext().pImpl; + + // If this is an all-undef or all-zero vector, return a + // ConstantAggregateZero or UndefValue. + Constant *C = V[0]; + bool isZero = C->isNullValue(); + bool isUndef = isa<UndefValue>(C); + + if (isZero || isUndef) { + for (unsigned i = 1, e = V.size(); i != e; ++i) + if (V[i] != C) { + isZero = isUndef = false; + break; + } + } + + if (isZero) + return ConstantAggregateZero::get(T); + if (isUndef) + return UndefValue::get(T); + + // Check to see if all of the elements are ConstantFP or ConstantInt and if + // the element type is compatible with ConstantDataVector. If so, use it. + if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { + // We speculatively build the elements here even if it turns out that there + // is a constantexpr or something else weird in the array, since it is so + // uncommon for that to happen. + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + if (CI->getType()->isIntegerTy(8)) { + SmallVector<uint8_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(16)) { + SmallVector<uint16_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(32)) { + SmallVector<uint32_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(64)) { + SmallVector<uint64_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } + } + + if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + if (CFP->getType()->isFloatTy()) { + SmallVector<float, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) + Elts.push_back(CFP->getValueAPF().convertToFloat()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } else if (CFP->getType()->isDoubleTy()) { + SmallVector<double, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) + Elts.push_back(CFP->getValueAPF().convertToDouble()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } + } + } + + // Otherwise, the element type isn't compatible with ConstantDataVector, or + // the operand list constants a ConstantExpr or something else strange. + return pImpl->VectorConstants.getOrCreate(T, V); +} + +Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { + // If this splat is compatible with ConstantDataVector, use it instead of + // ConstantVector. + if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && + ConstantDataSequential::isElementTypeCompatible(V->getType())) + return ConstantDataVector::getSplat(NumElts, V); + + SmallVector<Constant*, 32> Elts(NumElts, V); + return get(Elts); +} + + +// Utility function for determining if a ConstantExpr is a CastOp or not. This +// can't be inline because we don't want to #include Instruction.h into +// Constant.h +bool ConstantExpr::isCast() const { + return Instruction::isCast(getOpcode()); +} + +bool ConstantExpr::isCompare() const { + return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; +} + +bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { + if (getOpcode() != Instruction::GetElementPtr) return false; + + gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); + User::const_op_iterator OI = llvm::next(this->op_begin()); + + // Skip the first index, as it has no static limit. + ++GEPI; + ++OI; + + // The remaining indices must be compile-time known integers within the + // bounds of the corresponding notional static array types. + for (; GEPI != E; ++GEPI, ++OI) { + ConstantInt *CI = dyn_cast<ConstantInt>(*OI); + if (!CI) return false; + if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) + if (CI->getValue().getActiveBits() > 64 || + CI->getZExtValue() >= ATy->getNumElements()) + return false; + } + + // All the indices checked out. + return true; +} + +bool ConstantExpr::hasIndices() const { + return getOpcode() == Instruction::ExtractValue || + getOpcode() == Instruction::InsertValue; +} + +ArrayRef<unsigned> ConstantExpr::getIndices() const { + if (const ExtractValueConstantExpr *EVCE = + dyn_cast<ExtractValueConstantExpr>(this)) + return EVCE->Indices; + + return cast<InsertValueConstantExpr>(this)->Indices; +} + +unsigned ConstantExpr::getPredicate() const { + assert(isCompare()); + return ((const CompareConstantExpr*)this)->predicate; +} + +/// getWithOperandReplaced - Return a constant expression identical to this +/// one, but with the specified operand set to the specified value. +Constant * +ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { + assert(Op->getType() == getOperand(OpNo)->getType() && + "Replacing operand with value of different type!"); + if (getOperand(OpNo) == Op) + return const_cast<ConstantExpr*>(this); + + SmallVector<Constant*, 8> NewOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + NewOps.push_back(i == OpNo ? Op : getOperand(i)); + + return getWithOperands(NewOps); +} + +/// getWithOperands - This returns the current constant expression with the +/// operands replaced with the specified values. The specified array must +/// have the same number of operands as our current one. +Constant *ConstantExpr:: +getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { + assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); + bool AnyChange = Ty != getType(); + for (unsigned i = 0; i != Ops.size(); ++i) + AnyChange |= Ops[i] != getOperand(i); + + if (!AnyChange) // No operands changed, return self. + return const_cast<ConstantExpr*>(this); + + switch (getOpcode()) { + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::BitCast: + return ConstantExpr::getCast(getOpcode(), Ops[0], Ty); + case Instruction::Select: + return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); + case Instruction::InsertElement: + return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); + case Instruction::ExtractElement: + return ConstantExpr::getExtractElement(Ops[0], Ops[1]); + case Instruction::InsertValue: + return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices()); + case Instruction::ExtractValue: + return ConstantExpr::getExtractValue(Ops[0], getIndices()); + case Instruction::ShuffleVector: + return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); + case Instruction::GetElementPtr: + return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), + cast<GEPOperator>(this)->isInBounds()); + case Instruction::ICmp: + case Instruction::FCmp: + return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); + default: + assert(getNumOperands() == 2 && "Must be binary operator?"); + return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); + } +} + + +//===----------------------------------------------------------------------===// +// isValueValidForType implementations + +bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { + unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay + if (Ty->isIntegerTy(1)) + return Val == 0 || Val == 1; + if (NumBits >= 64) + return true; // always true, has to fit in largest type + uint64_t Max = (1ll << NumBits) - 1; + return Val <= Max; +} + +bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { + unsigned NumBits = Ty->getIntegerBitWidth(); + if (Ty->isIntegerTy(1)) + return Val == 0 || Val == 1 || Val == -1; + if (NumBits >= 64) + return true; // always true, has to fit in largest type + int64_t Min = -(1ll << (NumBits-1)); + int64_t Max = (1ll << (NumBits-1)) - 1; + return (Val >= Min && Val <= Max); +} + +bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { + // convert modifies in place, so make a copy. + APFloat Val2 = APFloat(Val); + bool losesInfo; + switch (Ty->getTypeID()) { + default: + return false; // These can't be represented as floating point! + + // FIXME rounding mode needs to be more flexible + case Type::HalfTyID: { + if (&Val2.getSemantics() == &APFloat::IEEEhalf) + return true; + Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); + return !losesInfo; + } + case Type::FloatTyID: { + if (&Val2.getSemantics() == &APFloat::IEEEsingle) + return true; + Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); + return !losesInfo; + } + case Type::DoubleTyID: { + if (&Val2.getSemantics() == &APFloat::IEEEhalf || + &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble) + return true; + Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); + return !losesInfo; + } + case Type::X86_FP80TyID: + return &Val2.getSemantics() == &APFloat::IEEEhalf || + &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::x87DoubleExtended; + case Type::FP128TyID: + return &Val2.getSemantics() == &APFloat::IEEEhalf || + &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::IEEEquad; + case Type::PPC_FP128TyID: + return &Val2.getSemantics() == &APFloat::IEEEhalf || + &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::PPCDoubleDouble; + } +} + + +//===----------------------------------------------------------------------===// +// Factory Function Implementation + +ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { + assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && + "Cannot create an aggregate zero of non-aggregate type!"); + + ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; + if (Entry == 0) + Entry = new ConstantAggregateZero(Ty); + + return Entry; +} + +/// destroyConstant - Remove the constant from the constant table. +/// +void ConstantAggregateZero::destroyConstant() { + getContext().pImpl->CAZConstants.erase(getType()); + destroyConstantImpl(); +} + +/// destroyConstant - Remove the constant from the constant table... +/// +void ConstantArray::destroyConstant() { + getType()->getContext().pImpl->ArrayConstants.remove(this); + destroyConstantImpl(); +} + + +//---- ConstantStruct::get() implementation... +// + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantStruct::destroyConstant() { + getType()->getContext().pImpl->StructConstants.remove(this); + destroyConstantImpl(); +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantVector::destroyConstant() { + getType()->getContext().pImpl->VectorConstants.remove(this); + destroyConstantImpl(); +} + +/// getSplatValue - If this is a splat vector constant, meaning that all of +/// the elements have the same value, return that value. Otherwise return 0. +Constant *Constant::getSplatValue() const { + assert(this->getType()->isVectorTy() && "Only valid for vectors!"); + if (isa<ConstantAggregateZero>(this)) + return getNullValue(this->getType()->getVectorElementType()); + if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) + return CV->getSplatValue(); + if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) + return CV->getSplatValue(); + return 0; +} + +/// getSplatValue - If this is a splat constant, where all of the +/// elements have the same value, return that value. Otherwise return null. +Constant *ConstantVector::getSplatValue() const { + // Check out first element. + Constant *Elt = getOperand(0); + // Then make sure all remaining elements point to the same value. + for (unsigned I = 1, E = getNumOperands(); I < E; ++I) + if (getOperand(I) != Elt) + return 0; + return Elt; +} + +/// If C is a constant integer then return its value, otherwise C must be a +/// vector of constant integers, all equal, and the common value is returned. +const APInt &Constant::getUniqueInteger() const { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) + return CI->getValue(); + assert(this->getSplatValue() && "Doesn't contain a unique integer!"); + const Constant *C = this->getAggregateElement(0U); + assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); + return cast<ConstantInt>(C)->getValue(); +} + + +//---- ConstantPointerNull::get() implementation. +// + +ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { + ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; + if (Entry == 0) + Entry = new ConstantPointerNull(Ty); + + return Entry; +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantPointerNull::destroyConstant() { + getContext().pImpl->CPNConstants.erase(getType()); + // Free the constant and any dangling references to it. + destroyConstantImpl(); +} + + +//---- UndefValue::get() implementation. +// + +UndefValue *UndefValue::get(Type *Ty) { + UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; + if (Entry == 0) + Entry = new UndefValue(Ty); + + return Entry; +} + +// destroyConstant - Remove the constant from the constant table. +// +void UndefValue::destroyConstant() { + // Free the constant and any dangling references to it. + getContext().pImpl->UVConstants.erase(getType()); + destroyConstantImpl(); +} + +//---- BlockAddress::get() implementation. +// + +BlockAddress *BlockAddress::get(BasicBlock *BB) { + assert(BB->getParent() != 0 && "Block must have a parent"); + return get(BB->getParent(), BB); +} + +BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { + BlockAddress *&BA = + F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; + if (BA == 0) + BA = new BlockAddress(F, BB); + + assert(BA->getFunction() == F && "Basic block moved between functions"); + return BA; +} + +BlockAddress::BlockAddress(Function *F, BasicBlock *BB) +: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, + &Op<0>(), 2) { + setOperand(0, F); + setOperand(1, BB); + BB->AdjustBlockAddressRefCount(1); +} + + +// destroyConstant - Remove the constant from the constant table. +// +void BlockAddress::destroyConstant() { + getFunction()->getType()->getContext().pImpl + ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); + getBasicBlock()->AdjustBlockAddressRefCount(-1); + destroyConstantImpl(); +} + +void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { + // This could be replacing either the Basic Block or the Function. In either + // case, we have to remove the map entry. + Function *NewF = getFunction(); + BasicBlock *NewBB = getBasicBlock(); + + if (U == &Op<0>()) + NewF = cast<Function>(To); + else + NewBB = cast<BasicBlock>(To); + + // See if the 'new' entry already exists, if not, just update this in place + // and return early. + BlockAddress *&NewBA = + getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; + if (NewBA == 0) { + getBasicBlock()->AdjustBlockAddressRefCount(-1); + + // Remove the old entry, this can't cause the map to rehash (just a + // tombstone will get added). + getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), + getBasicBlock())); + NewBA = this; + setOperand(0, NewF); + setOperand(1, NewBB); + getBasicBlock()->AdjustBlockAddressRefCount(1); + return; + } + + // Otherwise, I do need to replace this with an existing value. + assert(NewBA != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + replaceAllUsesWith(NewBA); + + destroyConstant(); +} + +//---- ConstantExpr::get() implementations. +// + +/// This is a utility function to handle folding of casts and lookup of the +/// cast in the ExprConstants map. It is used by the various get* methods below. +static inline Constant *getFoldedCast( + Instruction::CastOps opc, Constant *C, Type *Ty) { + assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); + // Fold a few common cases + if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) + return FC; + + LLVMContextImpl *pImpl = Ty->getContext().pImpl; + + // Look up the constant in the table first to ensure uniqueness. + ExprMapKeyType Key(opc, C); + + return pImpl->ExprConstants.getOrCreate(Ty, Key); +} + +Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { + Instruction::CastOps opc = Instruction::CastOps(oc); + assert(Instruction::isCast(opc) && "opcode out of range"); + assert(C && Ty && "Null arguments to getCast"); + assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); + + switch (opc) { + default: + llvm_unreachable("Invalid cast opcode"); + case Instruction::Trunc: return getTrunc(C, Ty); + case Instruction::ZExt: return getZExt(C, Ty); + case Instruction::SExt: return getSExt(C, Ty); + case Instruction::FPTrunc: return getFPTrunc(C, Ty); + case Instruction::FPExt: return getFPExtend(C, Ty); + case Instruction::UIToFP: return getUIToFP(C, Ty); + case Instruction::SIToFP: return getSIToFP(C, Ty); + case Instruction::FPToUI: return getFPToUI(C, Ty); + case Instruction::FPToSI: return getFPToSI(C, Ty); + case Instruction::PtrToInt: return getPtrToInt(C, Ty); + case Instruction::IntToPtr: return getIntToPtr(C, Ty); + case Instruction::BitCast: return getBitCast(C, Ty); + } +} + +Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { + if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return getBitCast(C, Ty); + return getZExt(C, Ty); +} + +Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { + if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return getBitCast(C, Ty); + return getSExt(C, Ty); +} + +Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { + if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) + return getBitCast(C, Ty); + return getTrunc(C, Ty); +} + +Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { + assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); + assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && + "Invalid cast"); + + if (Ty->isIntOrIntVectorTy()) + return getPtrToInt(S, Ty); + return getBitCast(S, Ty); +} + +Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, + bool isSigned) { + assert(C->getType()->isIntOrIntVectorTy() && + Ty->isIntOrIntVectorTy() && "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::Trunc : + (isSigned ? Instruction::SExt : Instruction::ZExt))); + return getCast(opcode, C, Ty); +} + +Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getScalarSizeInBits(); + unsigned DstBits = Ty->getScalarSizeInBits(); + if (SrcBits == DstBits) + return C; // Avoid a useless cast + Instruction::CastOps opcode = + (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); + return getCast(opcode, C, Ty); +} + +Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); + assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); + assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& + "SrcTy must be larger than DestTy for Trunc!"); + + return getFoldedCast(Instruction::Trunc, C, Ty); +} + +Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); + assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); + assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& + "SrcTy must be smaller than DestTy for SExt!"); + + return getFoldedCast(Instruction::SExt, C, Ty); +} + +Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); + assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); + assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& + "SrcTy must be smaller than DestTy for ZExt!"); + + return getFoldedCast(Instruction::ZExt, C, Ty); +} + +Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& + "This is an illegal floating point truncation!"); + return getFoldedCast(Instruction::FPTrunc, C, Ty); +} + +Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && + C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& + "This is an illegal floating point extension!"); + return getFoldedCast(Instruction::FPExt, C, Ty); +} + +Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && + "This is an illegal uint to floating point cast!"); + return getFoldedCast(Instruction::UIToFP, C, Ty); +} + +Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && + "This is an illegal sint to floating point cast!"); + return getFoldedCast(Instruction::SIToFP, C, Ty); +} + +Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && + "This is an illegal floating point to uint cast!"); + return getFoldedCast(Instruction::FPToUI, C, Ty); +} + +Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { +#ifndef NDEBUG + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && + "This is an illegal floating point to sint cast!"); + return getFoldedCast(Instruction::FPToSI, C, Ty); +} + +Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { + assert(C->getType()->getScalarType()->isPointerTy() && + "PtrToInt source must be pointer or pointer vector"); + assert(DstTy->getScalarType()->isIntegerTy() && + "PtrToInt destination must be integer or integer vector"); + assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); + if (isa<VectorType>(C->getType())) + assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& + "Invalid cast between a different number of vector elements"); + return getFoldedCast(Instruction::PtrToInt, C, DstTy); +} + +Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { + assert(C->getType()->getScalarType()->isIntegerTy() && + "IntToPtr source must be integer or integer vector"); + assert(DstTy->getScalarType()->isPointerTy() && + "IntToPtr destination must be a pointer or pointer vector"); + assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); + if (isa<VectorType>(C->getType())) + assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& + "Invalid cast between a different number of vector elements"); + return getFoldedCast(Instruction::IntToPtr, C, DstTy); +} + +Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) { + assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && + "Invalid constantexpr bitcast!"); + + // It is common to ask for a bitcast of a value to its own type, handle this + // speedily. + if (C->getType() == DstTy) return C; + + return getFoldedCast(Instruction::BitCast, C, DstTy); +} + +Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, + unsigned Flags) { + // Check the operands for consistency first. + assert(Opcode >= Instruction::BinaryOpsBegin && + Opcode < Instruction::BinaryOpsEnd && + "Invalid opcode in binary constant expression"); + assert(C1->getType() == C2->getType() && + "Operand types in binary constant expression should match"); + +#ifndef NDEBUG + switch (Opcode) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create an integer operation on a non-integer type!"); + break; + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isFPOrFPVectorTy() && + "Tried to create a floating-point operation on a " + "non-floating-point type!"); + break; + case Instruction::UDiv: + case Instruction::SDiv: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::FDiv: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isFPOrFPVectorTy() && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::URem: + case Instruction::SRem: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::FRem: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isFPOrFPVectorTy() && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create a logical operation on a non-integral type!"); + break; + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isIntOrIntVectorTy() && + "Tried to create a shift operation on a non-integer type!"); + break; + default: + break; + } +#endif + + if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) + return FC; // Fold a few common cases. + + Constant *ArgVec[] = { C1, C2 }; + ExprMapKeyType Key(Opcode, ArgVec, 0, Flags); + + LLVMContextImpl *pImpl = C1->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); +} + +Constant *ConstantExpr::getSizeOf(Type* Ty) { + // sizeof is implemented as: (i64) gep (Ty*)null, 1 + // Note that a non-inbounds gep is used, as null isn't within any object. + Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); + Constant *GEP = getGetElementPtr( + Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); + return getPtrToInt(GEP, + Type::getInt64Ty(Ty->getContext())); +} + +Constant *ConstantExpr::getAlignOf(Type* Ty) { + // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 + // Note that a non-inbounds gep is used, as null isn't within any object. + Type *AligningTy = + StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); + Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); + Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); + Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); + Constant *Indices[2] = { Zero, One }; + Constant *GEP = getGetElementPtr(NullPtr, Indices); + return getPtrToInt(GEP, + Type::getInt64Ty(Ty->getContext())); +} + +Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { + return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), + FieldNo)); +} + +Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { + // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo + // Note that a non-inbounds gep is used, as null isn't within any object. + Constant *GEPIdx[] = { + ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), + FieldNo + }; + Constant *GEP = getGetElementPtr( + Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); + return getPtrToInt(GEP, + Type::getInt64Ty(Ty->getContext())); +} + +Constant *ConstantExpr::getCompare(unsigned short Predicate, + Constant *C1, Constant *C2) { + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + + switch (Predicate) { + default: llvm_unreachable("Invalid CmpInst predicate"); + case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: + case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: + case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: + case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: + case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: + case CmpInst::FCMP_TRUE: + return getFCmp(Predicate, C1, C2); + + case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: + case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: + case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: + case CmpInst::ICMP_SLE: + return getICmp(Predicate, C1, C2); + } +} + +Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { + assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); + + if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) + return SC; // Fold common cases + + Constant *ArgVec[] = { C, V1, V2 }; + ExprMapKeyType Key(Instruction::Select, ArgVec); + + LLVMContextImpl *pImpl = C->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); +} + +Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs, + bool InBounds) { + assert(C->getType()->isPtrOrPtrVectorTy() && + "Non-pointer type for constant GetElementPtr expression"); + + if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs)) + return FC; // Fold a few common cases. + + // Get the result type of the getelementptr! + Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); + assert(Ty && "GEP indices invalid!"); + unsigned AS = C->getType()->getPointerAddressSpace(); + Type *ReqTy = Ty->getPointerTo(AS); + if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) + ReqTy = VectorType::get(ReqTy, VecTy->getNumElements()); + + // Look up the constant in the table first to ensure uniqueness + std::vector<Constant*> ArgVec; + ArgVec.reserve(1 + Idxs.size()); + ArgVec.push_back(C); + for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { + assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() && + "getelementptr index type missmatch"); + assert((!Idxs[i]->getType()->isVectorTy() || + ReqTy->getVectorNumElements() == + Idxs[i]->getType()->getVectorNumElements()) && + "getelementptr index type missmatch"); + ArgVec.push_back(cast<Constant>(Idxs[i])); + } + const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, + InBounds ? GEPOperator::IsInBounds : 0); + + LLVMContextImpl *pImpl = C->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant * +ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { + assert(LHS->getType() == RHS->getType()); + assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && + pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); + + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + return FC; // Fold a few common cases... + + // Look up the constant in the table first to ensure uniqueness + Constant *ArgVec[] = { LHS, RHS }; + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); + + Type *ResultTy = Type::getInt1Ty(LHS->getContext()); + if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) + ResultTy = VectorType::get(ResultTy, VT->getNumElements()); + + LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ResultTy, Key); +} + +Constant * +ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { + assert(LHS->getType() == RHS->getType()); + assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); + + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + return FC; // Fold a few common cases... + + // Look up the constant in the table first to ensure uniqueness + Constant *ArgVec[] = { LHS, RHS }; + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); + + Type *ResultTy = Type::getInt1Ty(LHS->getContext()); + if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) + ResultTy = VectorType::get(ResultTy, VT->getNumElements()); + + LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ResultTy, Key); +} + +Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { + assert(Val->getType()->isVectorTy() && + "Tried to create extractelement operation on non-vector type!"); + assert(Idx->getType()->isIntegerTy(32) && + "Extractelement index must be i32 type!"); + + if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) + return FC; // Fold a few common cases. + + // Look up the constant in the table first to ensure uniqueness + Constant *ArgVec[] = { Val, Idx }; + const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec); + + LLVMContextImpl *pImpl = Val->getContext().pImpl; + Type *ReqTy = Val->getType()->getVectorElementType(); + return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, + Constant *Idx) { + assert(Val->getType()->isVectorTy() && + "Tried to create insertelement operation on non-vector type!"); + assert(Elt->getType() == Val->getType()->getVectorElementType() && + "Insertelement types must match!"); + assert(Idx->getType()->isIntegerTy(32) && + "Insertelement index must be i32 type!"); + + if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) + return FC; // Fold a few common cases. + // Look up the constant in the table first to ensure uniqueness + Constant *ArgVec[] = { Val, Elt, Idx }; + const ExprMapKeyType Key(Instruction::InsertElement, ArgVec); + + LLVMContextImpl *pImpl = Val->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); +} + +Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, + Constant *Mask) { + assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && + "Invalid shuffle vector constant expr operands!"); + + if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) + return FC; // Fold a few common cases. + + unsigned NElts = Mask->getType()->getVectorNumElements(); + Type *EltTy = V1->getType()->getVectorElementType(); + Type *ShufTy = VectorType::get(EltTy, NElts); + + // Look up the constant in the table first to ensure uniqueness + Constant *ArgVec[] = { V1, V2, Mask }; + const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec); + + LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ShufTy, Key); +} + +Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, + ArrayRef<unsigned> Idxs) { + assert(ExtractValueInst::getIndexedType(Agg->getType(), + Idxs) == Val->getType() && + "insertvalue indices invalid!"); + assert(Agg->getType()->isFirstClassType() && + "Non-first-class type for constant insertvalue expression"); + Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs); + assert(FC && "insertvalue constant expr couldn't be folded!"); + return FC; +} + +Constant *ConstantExpr::getExtractValue(Constant *Agg, + ArrayRef<unsigned> Idxs) { + assert(Agg->getType()->isFirstClassType() && + "Tried to create extractelement operation on non-first-class type!"); + + Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); + (void)ReqTy; + assert(ReqTy && "extractvalue indices invalid!"); + + assert(Agg->getType()->isFirstClassType() && + "Non-first-class type for constant extractvalue expression"); + Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs); + assert(FC && "ExtractValue constant expr couldn't be folded!"); + return FC; +} + +Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NEG a nonintegral value!"); + return getSub(ConstantFP::getZeroValueForNegation(C->getType()), + C, HasNUW, HasNSW); +} + +Constant *ConstantExpr::getFNeg(Constant *C) { + assert(C->getType()->isFPOrFPVectorTy() && + "Cannot FNEG a non-floating-point value!"); + return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); +} + +Constant *ConstantExpr::getNot(Constant *C) { + assert(C->getType()->isIntOrIntVectorTy() && + "Cannot NOT a nonintegral value!"); + return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); +} + +Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, + bool HasNUW, bool HasNSW) { + unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | + (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); + return get(Instruction::Add, C1, C2, Flags); +} + +Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { + return get(Instruction::FAdd, C1, C2); +} + +Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, + bool HasNUW, bool HasNSW) { + unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | + (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); + return get(Instruction::Sub, C1, C2, Flags); +} + +Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { + return get(Instruction::FSub, C1, C2); +} + +Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, + bool HasNUW, bool HasNSW) { + unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | + (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); + return get(Instruction::Mul, C1, C2, Flags); +} + +Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { + return get(Instruction::FMul, C1, C2); +} + +Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { + return get(Instruction::UDiv, C1, C2, + isExact ? PossiblyExactOperator::IsExact : 0); +} + +Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { + return get(Instruction::SDiv, C1, C2, + isExact ? PossiblyExactOperator::IsExact : 0); +} + +Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { + return get(Instruction::FDiv, C1, C2); +} + +Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { + return get(Instruction::URem, C1, C2); +} + +Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { + return get(Instruction::SRem, C1, C2); +} + +Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { + return get(Instruction::FRem, C1, C2); +} + +Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { + return get(Instruction::And, C1, C2); +} + +Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { + return get(Instruction::Or, C1, C2); +} + +Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { + return get(Instruction::Xor, C1, C2); +} + +Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, + bool HasNUW, bool HasNSW) { + unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | + (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); + return get(Instruction::Shl, C1, C2, Flags); +} + +Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { + return get(Instruction::LShr, C1, C2, + isExact ? PossiblyExactOperator::IsExact : 0); +} + +Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { + return get(Instruction::AShr, C1, C2, + isExact ? PossiblyExactOperator::IsExact : 0); +} + +/// getBinOpIdentity - Return the identity for the given binary operation, +/// i.e. a constant C such that X op C = X and C op X = X for every X. It +/// returns null if the operator doesn't have an identity. +Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { + switch (Opcode) { + default: + // Doesn't have an identity. + return 0; + + case Instruction::Add: + case Instruction::Or: + case Instruction::Xor: + return Constant::getNullValue(Ty); + + case Instruction::Mul: + return ConstantInt::get(Ty, 1); + + case Instruction::And: + return Constant::getAllOnesValue(Ty); + } +} + +/// getBinOpAbsorber - Return the absorbing element for the given binary +/// operation, i.e. a constant C such that X op C = C and C op X = C for +/// every X. For example, this returns zero for integer multiplication. +/// It returns null if the operator doesn't have an absorbing element. +Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { + switch (Opcode) { + default: + // Doesn't have an absorber. + return 0; + + case Instruction::Or: + return Constant::getAllOnesValue(Ty); + + case Instruction::And: + case Instruction::Mul: + return Constant::getNullValue(Ty); + } +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantExpr::destroyConstant() { + getType()->getContext().pImpl->ExprConstants.remove(this); + destroyConstantImpl(); +} + +const char *ConstantExpr::getOpcodeName() const { + return Instruction::getOpcodeName(getOpcode()); +} + + + +GetElementPtrConstantExpr:: +GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, + Type *DestTy) + : ConstantExpr(DestTy, Instruction::GetElementPtr, + OperandTraits<GetElementPtrConstantExpr>::op_end(this) + - (IdxList.size()+1), IdxList.size()+1) { + OperandList[0] = C; + for (unsigned i = 0, E = IdxList.size(); i != E; ++i) + OperandList[i+1] = IdxList[i]; +} + +//===----------------------------------------------------------------------===// +// ConstantData* implementations + +void ConstantDataArray::anchor() {} +void ConstantDataVector::anchor() {} + +/// getElementType - Return the element type of the array/vector. +Type *ConstantDataSequential::getElementType() const { + return getType()->getElementType(); +} + +StringRef ConstantDataSequential::getRawDataValues() const { + return StringRef(DataElements, getNumElements()*getElementByteSize()); +} + +/// isElementTypeCompatible - Return true if a ConstantDataSequential can be +/// formed with a vector or array of the specified element type. +/// ConstantDataArray only works with normal float and int types that are +/// stored densely in memory, not with things like i42 or x86_f80. +bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) { + if (Ty->isFloatTy() || Ty->isDoubleTy()) return true; + if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) { + switch (IT->getBitWidth()) { + case 8: + case 16: + case 32: + case 64: + return true; + default: break; + } + } + return false; +} + +/// getNumElements - Return the number of elements in the array or vector. +unsigned ConstantDataSequential::getNumElements() const { + if (ArrayType *AT = dyn_cast<ArrayType>(getType())) + return AT->getNumElements(); + return getType()->getVectorNumElements(); +} + + +/// getElementByteSize - Return the size in bytes of the elements in the data. +uint64_t ConstantDataSequential::getElementByteSize() const { + return getElementType()->getPrimitiveSizeInBits()/8; +} + +/// getElementPointer - Return the start of the specified element. +const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { + assert(Elt < getNumElements() && "Invalid Elt"); + return DataElements+Elt*getElementByteSize(); +} + + +/// isAllZeros - return true if the array is empty or all zeros. +static bool isAllZeros(StringRef Arr) { + for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) + if (*I != 0) + return false; + return true; +} + +/// getImpl - This is the underlying implementation of all of the +/// ConstantDataSequential::get methods. They all thunk down to here, providing +/// the correct element type. We take the bytes in as a StringRef because +/// we *want* an underlying "char*" to avoid TBAA type punning violations. +Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { + assert(isElementTypeCompatible(Ty->getSequentialElementType())); + // If the elements are all zero or there are no elements, return a CAZ, which + // is more dense and canonical. + if (isAllZeros(Elements)) + return ConstantAggregateZero::get(Ty); + + // Do a lookup to see if we have already formed one of these. + StringMap<ConstantDataSequential*>::MapEntryTy &Slot = + Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements); + + // The bucket can point to a linked list of different CDS's that have the same + // body but different types. For example, 0,0,0,1 could be a 4 element array + // of i8, or a 1-element array of i32. They'll both end up in the same + /// StringMap bucket, linked up by their Next pointers. Walk the list. + ConstantDataSequential **Entry = &Slot.getValue(); + for (ConstantDataSequential *Node = *Entry; Node != 0; + Entry = &Node->Next, Node = *Entry) + if (Node->getType() == Ty) + return Node; + + // Okay, we didn't get a hit. Create a node of the right class, link it in, + // and return it. + if (isa<ArrayType>(Ty)) + return *Entry = new ConstantDataArray(Ty, Slot.getKeyData()); + + assert(isa<VectorType>(Ty)); + return *Entry = new ConstantDataVector(Ty, Slot.getKeyData()); +} + +void ConstantDataSequential::destroyConstant() { + // Remove the constant from the StringMap. + StringMap<ConstantDataSequential*> &CDSConstants = + getType()->getContext().pImpl->CDSConstants; + + StringMap<ConstantDataSequential*>::iterator Slot = + CDSConstants.find(getRawDataValues()); + + assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); + + ConstantDataSequential **Entry = &Slot->getValue(); + + // Remove the entry from the hash table. + if ((*Entry)->Next == 0) { + // If there is only one value in the bucket (common case) it must be this + // entry, and removing the entry should remove the bucket completely. + assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); + getContext().pImpl->CDSConstants.erase(Slot); + } else { + // Otherwise, there are multiple entries linked off the bucket, unlink the + // node we care about but keep the bucket around. + for (ConstantDataSequential *Node = *Entry; ; + Entry = &Node->Next, Node = *Entry) { + assert(Node && "Didn't find entry in its uniquing hash table!"); + // If we found our entry, unlink it from the list and we're done. + if (Node == this) { + *Entry = Node->Next; + break; + } + } + } + + // If we were part of a list, make sure that we don't delete the list that is + // still owned by the uniquing map. + Next = 0; + + // Finally, actually delete it. + destroyConstantImpl(); +} + +/// get() constructors - Return a constant with array type with an element +/// count and element type matching the ArrayRef passed in. Note that this +/// can return a ConstantAggregateZero object. +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { + Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ + Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ + Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ + Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { + Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { + Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); +} + +/// getString - This method constructs a CDS and initializes it with a text +/// string. The default behavior (AddNull==true) causes a null terminator to +/// be placed at the end of the array (increasing the length of the string by +/// one more than the StringRef would normally indicate. Pass AddNull=false +/// to disable this behavior. +Constant *ConstantDataArray::getString(LLVMContext &Context, + StringRef Str, bool AddNull) { + if (!AddNull) { + const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data()); + return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data), + Str.size())); + } + + SmallVector<uint8_t, 64> ElementVals; + ElementVals.append(Str.begin(), Str.end()); + ElementVals.push_back(0); + return get(Context, ElementVals); +} + +/// get() constructors - Return a constant with vector type with an element +/// count and element type matching the ArrayRef passed in. Note that this +/// can return a ConstantAggregateZero object. +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ + Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ + Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ + Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ + Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { + Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { + Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); +} + +Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { + assert(isElementTypeCompatible(V->getType()) && + "Element type not compatible with ConstantData"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + if (CI->getType()->isIntegerTy(8)) { + SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); + return get(V->getContext(), Elts); + } + if (CI->getType()->isIntegerTy(16)) { + SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); + return get(V->getContext(), Elts); + } + if (CI->getType()->isIntegerTy(32)) { + SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); + return get(V->getContext(), Elts); + } + assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); + SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); + return get(V->getContext(), Elts); + } + + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { + if (CFP->getType()->isFloatTy()) { + SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat()); + return get(V->getContext(), Elts); + } + if (CFP->getType()->isDoubleTy()) { + SmallVector<double, 16> Elts(NumElts, + CFP->getValueAPF().convertToDouble()); + return get(V->getContext(), Elts); + } + } + return ConstantVector::getSplat(NumElts, V); +} + + +/// getElementAsInteger - If this is a sequential container of integers (of +/// any size), return the specified element in the low bits of a uint64_t. +uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { + assert(isa<IntegerType>(getElementType()) && + "Accessor can only be used when element is an integer"); + const char *EltPtr = getElementPointer(Elt); + + // The data is stored in host byte order, make sure to cast back to the right + // type to load with the right endianness. + switch (getElementType()->getIntegerBitWidth()) { + default: llvm_unreachable("Invalid bitwidth for CDS"); + case 8: + return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr)); + case 16: + return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr)); + case 32: + return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr)); + case 64: + return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr)); + } +} + +/// getElementAsAPFloat - If this is a sequential container of floating point +/// type, return the specified element as an APFloat. +APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { + const char *EltPtr = getElementPointer(Elt); + + switch (getElementType()->getTypeID()) { + default: + llvm_unreachable("Accessor can only be used when element is float/double!"); + case Type::FloatTyID: { + const float *FloatPrt = reinterpret_cast<const float *>(EltPtr); + return APFloat(*const_cast<float *>(FloatPrt)); + } + case Type::DoubleTyID: { + const double *DoublePtr = reinterpret_cast<const double *>(EltPtr); + return APFloat(*const_cast<double *>(DoublePtr)); + } + } +} + +/// getElementAsFloat - If this is an sequential container of floats, return +/// the specified element as a float. +float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { + assert(getElementType()->isFloatTy() && + "Accessor can only be used when element is a 'float'"); + const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt)); + return *const_cast<float *>(EltPtr); +} + +/// getElementAsDouble - If this is an sequential container of doubles, return +/// the specified element as a float. +double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { + assert(getElementType()->isDoubleTy() && + "Accessor can only be used when element is a 'float'"); + const double *EltPtr = + reinterpret_cast<const double *>(getElementPointer(Elt)); + return *const_cast<double *>(EltPtr); +} + +/// getElementAsConstant - Return a Constant for a specified index's element. +/// Note that this has to compute a new constant to return, so it isn't as +/// efficient as getElementAsInteger/Float/Double. +Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { + if (getElementType()->isFloatTy() || getElementType()->isDoubleTy()) + return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); + + return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); +} + +/// isString - This method returns true if this is an array of i8. +bool ConstantDataSequential::isString() const { + return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); +} + +/// isCString - This method returns true if the array "isString", ends with a +/// nul byte, and does not contains any other nul bytes. +bool ConstantDataSequential::isCString() const { + if (!isString()) + return false; + + StringRef Str = getAsString(); + + // The last value must be nul. + if (Str.back() != 0) return false; + + // Other elements must be non-nul. + return Str.drop_back().find(0) == StringRef::npos; +} + +/// getSplatValue - If this is a splat constant, meaning that all of the +/// elements have the same value, return that value. Otherwise return NULL. +Constant *ConstantDataVector::getSplatValue() const { + const char *Base = getRawDataValues().data(); + + // Compare elements 1+ to the 0'th element. + unsigned EltSize = getElementByteSize(); + for (unsigned i = 1, e = getNumElements(); i != e; ++i) + if (memcmp(Base, Base+i*EltSize, EltSize)) + return 0; + + // If they're all the same, return the 0th one as a representative. + return getElementAsConstant(0); +} + +//===----------------------------------------------------------------------===// +// replaceUsesOfWithOnConstant implementations + +/// replaceUsesOfWithOnConstant - Update this constant array to change uses of +/// 'From' to be uses of 'To'. This must update the uniquing data structures +/// etc. +/// +/// Note that we intentionally replace all uses of From with To here. Consider +/// a large array that uses 'From' 1000 times. By handling this case all here, +/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that +/// single invocation handles all 1000 uses. Handling them one at a time would +/// work, but would be really slow because it would have to unique each updated +/// array instance. +/// +void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, + Use *U) { + assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); + Constant *ToC = cast<Constant>(To); + + LLVMContextImpl *pImpl = getType()->getContext().pImpl; + + SmallVector<Constant*, 8> Values; + LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup; + Lookup.first = cast<ArrayType>(getType()); + Values.reserve(getNumOperands()); // Build replacement array. + + // Fill values with the modified operands of the constant array. Also, + // compute whether this turns into an all-zeros array. + unsigned NumUpdated = 0; + + // Keep track of whether all the values in the array are "ToC". + bool AllSame = true; + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast<Constant>(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; + } + Values.push_back(Val); + AllSame &= Val == ToC; + } + + Constant *Replacement = 0; + if (AllSame && ToC->isNullValue()) { + Replacement = ConstantAggregateZero::get(getType()); + } else if (AllSame && isa<UndefValue>(ToC)) { + Replacement = UndefValue::get(getType()); + } else { + // Check to see if we have this array type already. + Lookup.second = makeArrayRef(Values); + LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = + pImpl->ArrayConstants.find(Lookup); + + if (I != pImpl->ArrayConstants.map_end()) { + Replacement = I->first; + } else { + // Okay, the new shape doesn't exist in the system yet. Instead of + // creating a new constant array, inserting it, replaceallusesof'ing the + // old with the new, then deleting the old... just update the current one + // in place! + pImpl->ArrayConstants.remove(this); + + // Update to the new value. Optimize for the case when we have a single + // operand that we're changing, but handle bulk updates efficiently. + if (NumUpdated == 1) { + unsigned OperandToUpdate = U - OperandList; + assert(getOperand(OperandToUpdate) == From && + "ReplaceAllUsesWith broken!"); + setOperand(OperandToUpdate, ToC); + } else { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i) == From) + setOperand(i, ToC); + } + pImpl->ArrayConstants.insert(this); + return; + } + } + + // Otherwise, I do need to replace this with an existing value. + assert(Replacement != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + replaceAllUsesWith(Replacement); + + // Delete the old constant! + destroyConstant(); +} + +void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, + Use *U) { + assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); + Constant *ToC = cast<Constant>(To); + + unsigned OperandToUpdate = U-OperandList; + assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); + + SmallVector<Constant*, 8> Values; + LLVMContextImpl::StructConstantsTy::LookupKey Lookup; + Lookup.first = cast<StructType>(getType()); + Values.reserve(getNumOperands()); // Build replacement struct. + + // Fill values with the modified operands of the constant struct. Also, + // compute whether this turns into an all-zeros struct. + bool isAllZeros = false; + bool isAllUndef = false; + if (ToC->isNullValue()) { + isAllZeros = true; + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast<Constant>(O->get()); + Values.push_back(Val); + if (isAllZeros) isAllZeros = Val->isNullValue(); + } + } else if (isa<UndefValue>(ToC)) { + isAllUndef = true; + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast<Constant>(O->get()); + Values.push_back(Val); + if (isAllUndef) isAllUndef = isa<UndefValue>(Val); + } + } else { + for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) + Values.push_back(cast<Constant>(O->get())); + } + Values[OperandToUpdate] = ToC; + + LLVMContextImpl *pImpl = getContext().pImpl; + + Constant *Replacement = 0; + if (isAllZeros) { + Replacement = ConstantAggregateZero::get(getType()); + } else if (isAllUndef) { + Replacement = UndefValue::get(getType()); + } else { + // Check to see if we have this struct type already. + Lookup.second = makeArrayRef(Values); + LLVMContextImpl::StructConstantsTy::MapTy::iterator I = + pImpl->StructConstants.find(Lookup); + + if (I != pImpl->StructConstants.map_end()) { + Replacement = I->first; + } else { + // Okay, the new shape doesn't exist in the system yet. Instead of + // creating a new constant struct, inserting it, replaceallusesof'ing the + // old with the new, then deleting the old... just update the current one + // in place! + pImpl->StructConstants.remove(this); + + // Update to the new value. + setOperand(OperandToUpdate, ToC); + pImpl->StructConstants.insert(this); + return; + } + } + + assert(Replacement != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + replaceAllUsesWith(Replacement); + + // Delete the old constant! + destroyConstant(); +} + +void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, + Use *U) { + assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); + + SmallVector<Constant*, 8> Values; + Values.reserve(getNumOperands()); // Build replacement array... + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + Constant *Val = getOperand(i); + if (Val == From) Val = cast<Constant>(To); + Values.push_back(Val); + } + + Constant *Replacement = get(Values); + assert(Replacement != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + replaceAllUsesWith(Replacement); + + // Delete the old constant! + destroyConstant(); +} + +void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, + Use *U) { + assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); + Constant *To = cast<Constant>(ToV); + + SmallVector<Constant*, 8> NewOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + Constant *Op = getOperand(i); + NewOps.push_back(Op == From ? To : Op); + } + + Constant *Replacement = getWithOperands(NewOps); + assert(Replacement != this && "I didn't contain From!"); + + // Everyone using this now uses the replacement. + replaceAllUsesWith(Replacement); + + // Delete the old constant! + destroyConstant(); +} + +Instruction *ConstantExpr::getAsInstruction() { + SmallVector<Value*,4> ValueOperands; + for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) + ValueOperands.push_back(cast<Value>(I)); + + ArrayRef<Value*> Ops(ValueOperands); + + switch (getOpcode()) { + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::BitCast: + return CastInst::Create((Instruction::CastOps)getOpcode(), + Ops[0], getType()); + case Instruction::Select: + return SelectInst::Create(Ops[0], Ops[1], Ops[2]); + case Instruction::InsertElement: + return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); + case Instruction::ExtractElement: + return ExtractElementInst::Create(Ops[0], Ops[1]); + case Instruction::InsertValue: + return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); + case Instruction::ExtractValue: + return ExtractValueInst::Create(Ops[0], getIndices()); + case Instruction::ShuffleVector: + return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]); + + case Instruction::GetElementPtr: + if (cast<GEPOperator>(this)->isInBounds()) + return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1)); + else + return GetElementPtrInst::Create(Ops[0], Ops.slice(1)); + + case Instruction::ICmp: + case Instruction::FCmp: + return CmpInst::Create((Instruction::OtherOps)getOpcode(), + getPredicate(), Ops[0], Ops[1]); + + default: + assert(getNumOperands() == 2 && "Must be binary operator?"); + BinaryOperator *BO = + BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), + Ops[0], Ops[1]); + if (isa<OverflowingBinaryOperator>(BO)) { + BO->setHasNoUnsignedWrap(SubclassOptionalData & + OverflowingBinaryOperator::NoUnsignedWrap); + BO->setHasNoSignedWrap(SubclassOptionalData & + OverflowingBinaryOperator::NoSignedWrap); + } + if (isa<PossiblyExactOperator>(BO)) + BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); + return BO; + } +} |