aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp')
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp1684
1 files changed, 1684 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
new file mode 100644
index 000000000000..8f6b1849169a
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
@@ -0,0 +1,1684 @@
+//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of ELF support for the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#include "RuntimeDyldELF.h"
+#include "RuntimeDyldCheckerImpl.h"
+#include "Targets/RuntimeDyldELFMips.h"
+#include "llvm/ADT/IntervalMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+using namespace llvm::object;
+using namespace llvm::support::endian;
+
+#define DEBUG_TYPE "dyld"
+
+static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
+
+static void or32AArch64Imm(void *L, uint64_t Imm) {
+ or32le(L, (Imm & 0xFFF) << 10);
+}
+
+template <class T> static void write(bool isBE, void *P, T V) {
+ isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
+}
+
+static void write32AArch64Addr(void *L, uint64_t Imm) {
+ uint32_t ImmLo = (Imm & 0x3) << 29;
+ uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
+ uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
+ write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
+}
+
+// Return the bits [Start, End] from Val shifted Start bits.
+// For instance, getBits(0xF0, 4, 8) returns 0xF.
+static uint64_t getBits(uint64_t Val, int Start, int End) {
+ uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
+ return (Val >> Start) & Mask;
+}
+
+namespace {
+
+template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
+ LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
+
+ typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
+ typedef Elf_Sym_Impl<ELFT> Elf_Sym;
+ typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
+ typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
+
+ typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
+
+ typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
+
+public:
+ DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
+
+ void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
+
+ void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
+
+ // Methods for type inquiry through isa, cast and dyn_cast
+ static inline bool classof(const Binary *v) {
+ return (isa<ELFObjectFile<ELFT>>(v) &&
+ classof(cast<ELFObjectFile<ELFT>>(v)));
+ }
+ static inline bool classof(const ELFObjectFile<ELFT> *v) {
+ return v->isDyldType();
+ }
+};
+
+
+
+// The MemoryBuffer passed into this constructor is just a wrapper around the
+// actual memory. Ultimately, the Binary parent class will take ownership of
+// this MemoryBuffer object but not the underlying memory.
+template <class ELFT>
+DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
+ : ELFObjectFile<ELFT>(Wrapper, EC) {
+ this->isDyldELFObject = true;
+}
+
+template <class ELFT>
+void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
+ uint64_t Addr) {
+ DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
+ Elf_Shdr *shdr =
+ const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+
+ // This assumes the address passed in matches the target address bitness
+ // The template-based type cast handles everything else.
+ shdr->sh_addr = static_cast<addr_type>(Addr);
+}
+
+template <class ELFT>
+void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
+ uint64_t Addr) {
+
+ Elf_Sym *sym = const_cast<Elf_Sym *>(
+ ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
+
+ // This assumes the address passed in matches the target address bitness
+ // The template-based type cast handles everything else.
+ sym->st_value = static_cast<addr_type>(Addr);
+}
+
+class LoadedELFObjectInfo final
+ : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
+public:
+ LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
+ : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
+
+ OwningBinary<ObjectFile>
+ getObjectForDebug(const ObjectFile &Obj) const override;
+};
+
+template <typename ELFT>
+std::unique_ptr<DyldELFObject<ELFT>>
+createRTDyldELFObject(MemoryBufferRef Buffer,
+ const ObjectFile &SourceObject,
+ const LoadedELFObjectInfo &L,
+ std::error_code &ec) {
+ typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
+ typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
+
+ std::unique_ptr<DyldELFObject<ELFT>> Obj =
+ llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
+
+ // Iterate over all sections in the object.
+ auto SI = SourceObject.section_begin();
+ for (const auto &Sec : Obj->sections()) {
+ StringRef SectionName;
+ Sec.getName(SectionName);
+ if (SectionName != "") {
+ DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
+ Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
+ reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+
+ if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
+ // This assumes that the address passed in matches the target address
+ // bitness. The template-based type cast handles everything else.
+ shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
+ }
+ }
+ ++SI;
+ }
+
+ return Obj;
+}
+
+OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
+ const LoadedELFObjectInfo &L) {
+ assert(Obj.isELF() && "Not an ELF object file.");
+
+ std::unique_ptr<MemoryBuffer> Buffer =
+ MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
+
+ std::error_code ec;
+
+ std::unique_ptr<ObjectFile> DebugObj;
+ if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
+ typedef ELFType<support::little, false> ELF32LE;
+ DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
+ ec);
+ } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
+ typedef ELFType<support::big, false> ELF32BE;
+ DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
+ ec);
+ } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
+ typedef ELFType<support::big, true> ELF64BE;
+ DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
+ ec);
+ } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
+ typedef ELFType<support::little, true> ELF64LE;
+ DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
+ ec);
+ } else
+ llvm_unreachable("Unexpected ELF format");
+
+ assert(!ec && "Could not construct copy ELF object file");
+
+ return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
+}
+
+OwningBinary<ObjectFile>
+LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
+ return createELFDebugObject(Obj, *this);
+}
+
+} // anonymous namespace
+
+namespace llvm {
+
+RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
+ JITSymbolResolver &Resolver)
+ : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
+RuntimeDyldELF::~RuntimeDyldELF() {}
+
+void RuntimeDyldELF::registerEHFrames() {
+ for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
+ SID EHFrameSID = UnregisteredEHFrameSections[i];
+ uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
+ uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
+ size_t EHFrameSize = Sections[EHFrameSID].getSize();
+ MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
+ RegisteredEHFrameSections.push_back(EHFrameSID);
+ }
+ UnregisteredEHFrameSections.clear();
+}
+
+void RuntimeDyldELF::deregisterEHFrames() {
+ for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
+ SID EHFrameSID = RegisteredEHFrameSections[i];
+ uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
+ uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
+ size_t EHFrameSize = Sections[EHFrameSID].getSize();
+ MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
+ }
+ RegisteredEHFrameSections.clear();
+}
+
+std::unique_ptr<RuntimeDyldELF>
+llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
+ RuntimeDyld::MemoryManager &MemMgr,
+ JITSymbolResolver &Resolver) {
+ switch (Arch) {
+ default:
+ return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
+ case Triple::mips:
+ case Triple::mipsel:
+ case Triple::mips64:
+ case Triple::mips64el:
+ return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
+ }
+}
+
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
+ if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
+ return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
+ else {
+ HasError = true;
+ raw_string_ostream ErrStream(ErrorStr);
+ logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
+ return nullptr;
+ }
+}
+
+void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend,
+ uint64_t SymOffset) {
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_X86_64_64: {
+ support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
+ Value + Addend;
+ DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
+ << format("%p\n", Section.getAddressWithOffset(Offset)));
+ break;
+ }
+ case ELF::R_X86_64_32:
+ case ELF::R_X86_64_32S: {
+ Value += Addend;
+ assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
+ (Type == ELF::R_X86_64_32S &&
+ ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
+ uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
+ support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
+ TruncatedAddr;
+ DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
+ << format("%p\n", Section.getAddressWithOffset(Offset)));
+ break;
+ }
+ case ELF::R_X86_64_PC8: {
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ int64_t RealOffset = Value + Addend - FinalAddress;
+ assert(isInt<8>(RealOffset));
+ int8_t TruncOffset = (RealOffset & 0xFF);
+ Section.getAddress()[Offset] = TruncOffset;
+ break;
+ }
+ case ELF::R_X86_64_PC32: {
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ int64_t RealOffset = Value + Addend - FinalAddress;
+ assert(isInt<32>(RealOffset));
+ int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
+ support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
+ TruncOffset;
+ break;
+ }
+ case ELF::R_X86_64_PC64: {
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ int64_t RealOffset = Value + Addend - FinalAddress;
+ support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
+ RealOffset;
+ break;
+ }
+ }
+}
+
+void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint32_t Value,
+ uint32_t Type, int32_t Addend) {
+ switch (Type) {
+ case ELF::R_386_32: {
+ support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
+ Value + Addend;
+ break;
+ }
+ case ELF::R_386_PC32: {
+ uint32_t FinalAddress =
+ Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
+ uint32_t RealOffset = Value + Addend - FinalAddress;
+ support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
+ RealOffset;
+ break;
+ }
+ default:
+ // There are other relocation types, but it appears these are the
+ // only ones currently used by the LLVM ELF object writer
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
+ uint32_t *TargetPtr =
+ reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ // Data should use target endian. Code should always use little endian.
+ bool isBE = Arch == Triple::aarch64_be;
+
+ DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
+ << format("%llx", Section.getAddressWithOffset(Offset))
+ << " FinalAddress: 0x" << format("%llx", FinalAddress)
+ << " Value: 0x" << format("%llx", Value) << " Type: 0x"
+ << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
+ << "\n");
+
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_AARCH64_ABS64:
+ write(isBE, TargetPtr, Value + Addend);
+ break;
+ case ELF::R_AARCH64_PREL32: {
+ uint64_t Result = Value + Addend - FinalAddress;
+ assert(static_cast<int64_t>(Result) >= INT32_MIN &&
+ static_cast<int64_t>(Result) <= UINT32_MAX);
+ write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
+ break;
+ }
+ case ELF::R_AARCH64_CALL26: // fallthrough
+ case ELF::R_AARCH64_JUMP26: {
+ // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
+ // calculation.
+ uint64_t BranchImm = Value + Addend - FinalAddress;
+
+ // "Check that -2^27 <= result < 2^27".
+ assert(isInt<28>(BranchImm));
+ or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G3:
+ or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
+ break;
+ case ELF::R_AARCH64_MOVW_UABS_G2_NC:
+ or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
+ break;
+ case ELF::R_AARCH64_MOVW_UABS_G1_NC:
+ or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
+ break;
+ case ELF::R_AARCH64_MOVW_UABS_G0_NC:
+ or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
+ break;
+ case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
+ // Operation: Page(S+A) - Page(P)
+ uint64_t Result =
+ ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
+
+ // Check that -2^32 <= X < 2^32
+ assert(isInt<33>(Result) && "overflow check failed for relocation");
+
+ // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
+ // from bits 32:12 of X.
+ write32AArch64Addr(TargetPtr, Result >> 12);
+ break;
+ }
+ case ELF::R_AARCH64_ADD_ABS_LO12_NC:
+ // Operation: S + A
+ // Immediate goes in bits 21:10 of LD/ST instruction, taken
+ // from bits 11:0 of X
+ or32AArch64Imm(TargetPtr, Value + Addend);
+ break;
+ case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
+ // Operation: S + A
+ // Immediate goes in bits 21:10 of LD/ST instruction, taken
+ // from bits 11:2 of X
+ or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
+ break;
+ case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
+ // Operation: S + A
+ // Immediate goes in bits 21:10 of LD/ST instruction, taken
+ // from bits 11:3 of X
+ or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
+ uint64_t Offset, uint32_t Value,
+ uint32_t Type, int32_t Addend) {
+ // TODO: Add Thumb relocations.
+ uint32_t *TargetPtr =
+ reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
+ uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
+ Value += Addend;
+
+ DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
+ << Section.getAddressWithOffset(Offset)
+ << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
+ << format("%x", Value) << " Type: " << format("%x", Type)
+ << " Addend: " << format("%x", Addend) << "\n");
+
+ switch (Type) {
+ default:
+ llvm_unreachable("Not implemented relocation type!");
+
+ case ELF::R_ARM_NONE:
+ break;
+ // Write a 31bit signed offset
+ case ELF::R_ARM_PREL31:
+ support::ulittle32_t::ref{TargetPtr} =
+ (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
+ ((Value - FinalAddress) & ~0x80000000);
+ break;
+ case ELF::R_ARM_TARGET1:
+ case ELF::R_ARM_ABS32:
+ support::ulittle32_t::ref{TargetPtr} = Value;
+ break;
+ // Write first 16 bit of 32 bit value to the mov instruction.
+ // Last 4 bit should be shifted.
+ case ELF::R_ARM_MOVW_ABS_NC:
+ case ELF::R_ARM_MOVT_ABS:
+ if (Type == ELF::R_ARM_MOVW_ABS_NC)
+ Value = Value & 0xFFFF;
+ else if (Type == ELF::R_ARM_MOVT_ABS)
+ Value = (Value >> 16) & 0xFFFF;
+ support::ulittle32_t::ref{TargetPtr} =
+ (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
+ (((Value >> 12) & 0xF) << 16);
+ break;
+ // Write 24 bit relative value to the branch instruction.
+ case ELF::R_ARM_PC24: // Fall through.
+ case ELF::R_ARM_CALL: // Fall through.
+ case ELF::R_ARM_JUMP24:
+ int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
+ RelValue = (RelValue & 0x03FFFFFC) >> 2;
+ assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
+ support::ulittle32_t::ref{TargetPtr} =
+ (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
+ break;
+ }
+}
+
+void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
+ if (Arch == Triple::UnknownArch ||
+ !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
+ IsMipsO32ABI = false;
+ IsMipsN32ABI = false;
+ IsMipsN64ABI = false;
+ return;
+ }
+ unsigned AbiVariant;
+ Obj.getPlatformFlags(AbiVariant);
+ IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
+ IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
+ IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
+}
+
+// Return the .TOC. section and offset.
+Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel) {
+ // Set a default SectionID in case we do not find a TOC section below.
+ // This may happen for references to TOC base base (sym@toc, .odp
+ // relocation) without a .toc directive. In this case just use the
+ // first section (which is usually the .odp) since the code won't
+ // reference the .toc base directly.
+ Rel.SymbolName = nullptr;
+ Rel.SectionID = 0;
+
+ // The TOC consists of sections .got, .toc, .tocbss, .plt in that
+ // order. The TOC starts where the first of these sections starts.
+ for (auto &Section: Obj.sections()) {
+ StringRef SectionName;
+ if (auto EC = Section.getName(SectionName))
+ return errorCodeToError(EC);
+
+ if (SectionName == ".got"
+ || SectionName == ".toc"
+ || SectionName == ".tocbss"
+ || SectionName == ".plt") {
+ if (auto SectionIDOrErr =
+ findOrEmitSection(Obj, Section, false, LocalSections))
+ Rel.SectionID = *SectionIDOrErr;
+ else
+ return SectionIDOrErr.takeError();
+ break;
+ }
+ }
+
+ // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
+ // thus permitting a full 64 Kbytes segment.
+ Rel.Addend = 0x8000;
+
+ return Error::success();
+}
+
+// Returns the sections and offset associated with the ODP entry referenced
+// by Symbol.
+Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel) {
+ // Get the ELF symbol value (st_value) to compare with Relocation offset in
+ // .opd entries
+ for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
+ si != se; ++si) {
+ section_iterator RelSecI = si->getRelocatedSection();
+ if (RelSecI == Obj.section_end())
+ continue;
+
+ StringRef RelSectionName;
+ if (auto EC = RelSecI->getName(RelSectionName))
+ return errorCodeToError(EC);
+
+ if (RelSectionName != ".opd")
+ continue;
+
+ for (elf_relocation_iterator i = si->relocation_begin(),
+ e = si->relocation_end();
+ i != e;) {
+ // The R_PPC64_ADDR64 relocation indicates the first field
+ // of a .opd entry
+ uint64_t TypeFunc = i->getType();
+ if (TypeFunc != ELF::R_PPC64_ADDR64) {
+ ++i;
+ continue;
+ }
+
+ uint64_t TargetSymbolOffset = i->getOffset();
+ symbol_iterator TargetSymbol = i->getSymbol();
+ int64_t Addend;
+ if (auto AddendOrErr = i->getAddend())
+ Addend = *AddendOrErr;
+ else
+ return errorCodeToError(AddendOrErr.getError());
+
+ ++i;
+ if (i == e)
+ break;
+
+ // Just check if following relocation is a R_PPC64_TOC
+ uint64_t TypeTOC = i->getType();
+ if (TypeTOC != ELF::R_PPC64_TOC)
+ continue;
+
+ // Finally compares the Symbol value and the target symbol offset
+ // to check if this .opd entry refers to the symbol the relocation
+ // points to.
+ if (Rel.Addend != (int64_t)TargetSymbolOffset)
+ continue;
+
+ section_iterator TSI = Obj.section_end();
+ if (auto TSIOrErr = TargetSymbol->getSection())
+ TSI = *TSIOrErr;
+ else
+ return TSIOrErr.takeError();
+ assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
+
+ bool IsCode = TSI->isText();
+ if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
+ LocalSections))
+ Rel.SectionID = *SectionIDOrErr;
+ else
+ return SectionIDOrErr.takeError();
+ Rel.Addend = (intptr_t)Addend;
+ return Error::success();
+ }
+ }
+ llvm_unreachable("Attempting to get address of ODP entry!");
+}
+
+// Relocation masks following the #lo(value), #hi(value), #ha(value),
+// #higher(value), #highera(value), #highest(value), and #highesta(value)
+// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
+// document.
+
+static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
+
+static inline uint16_t applyPPChi(uint64_t value) {
+ return (value >> 16) & 0xffff;
+}
+
+static inline uint16_t applyPPCha (uint64_t value) {
+ return ((value + 0x8000) >> 16) & 0xffff;
+}
+
+static inline uint16_t applyPPChigher(uint64_t value) {
+ return (value >> 32) & 0xffff;
+}
+
+static inline uint16_t applyPPChighera (uint64_t value) {
+ return ((value + 0x8000) >> 32) & 0xffff;
+}
+
+static inline uint16_t applyPPChighest(uint64_t value) {
+ return (value >> 48) & 0xffff;
+}
+
+static inline uint16_t applyPPChighesta (uint64_t value) {
+ return ((value + 0x8000) >> 48) & 0xffff;
+}
+
+void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
+ uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_PPC_ADDR16_LO:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
+ break;
+ case ELF::R_PPC_ADDR16_HI:
+ writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
+ break;
+ case ELF::R_PPC_ADDR16_HA:
+ writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
+ uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_PPC64_ADDR16:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_DS:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
+ break;
+ case ELF::R_PPC64_ADDR16_LO:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_LO_DS:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
+ break;
+ case ELF::R_PPC64_ADDR16_HI:
+ writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HA:
+ writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHER:
+ writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHERA:
+ writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHEST:
+ writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHESTA:
+ writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR14: {
+ assert(((Value + Addend) & 3) == 0);
+ // Preserve the AA/LK bits in the branch instruction
+ uint8_t aalk = *(LocalAddress + 3);
+ writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
+ } break;
+ case ELF::R_PPC64_REL16_LO: {
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt16BE(LocalAddress, applyPPClo(Delta));
+ } break;
+ case ELF::R_PPC64_REL16_HI: {
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt16BE(LocalAddress, applyPPChi(Delta));
+ } break;
+ case ELF::R_PPC64_REL16_HA: {
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt16BE(LocalAddress, applyPPCha(Delta));
+ } break;
+ case ELF::R_PPC64_ADDR32: {
+ int32_t Result = static_cast<int32_t>(Value + Addend);
+ if (SignExtend32<32>(Result) != Result)
+ llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
+ writeInt32BE(LocalAddress, Result);
+ } break;
+ case ELF::R_PPC64_REL24: {
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
+ if (SignExtend32<26>(delta) != delta)
+ llvm_unreachable("Relocation R_PPC64_REL24 overflow");
+ // Generates a 'bl <address>' instruction
+ writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
+ } break;
+ case ELF::R_PPC64_REL32: {
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
+ if (SignExtend32<32>(delta) != delta)
+ llvm_unreachable("Relocation R_PPC64_REL32 overflow");
+ writeInt32BE(LocalAddress, delta);
+ } break;
+ case ELF::R_PPC64_REL64: {
+ uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt64BE(LocalAddress, Delta);
+ } break;
+ case ELF::R_PPC64_ADDR64:
+ writeInt64BE(LocalAddress, Value + Addend);
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
+ uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_390_PC16DBL:
+ case ELF::R_390_PLT16DBL: {
+ int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
+ assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
+ writeInt16BE(LocalAddress, Delta / 2);
+ break;
+ }
+ case ELF::R_390_PC32DBL:
+ case ELF::R_390_PLT32DBL: {
+ int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
+ assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
+ writeInt32BE(LocalAddress, Delta / 2);
+ break;
+ }
+ case ELF::R_390_PC32: {
+ int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
+ assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
+ writeInt32BE(LocalAddress, Delta);
+ break;
+ }
+ case ELF::R_390_64:
+ writeInt64BE(LocalAddress, Value + Addend);
+ break;
+ case ELF::R_390_PC64: {
+ int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
+ writeInt64BE(LocalAddress, Delta);
+ break;
+ }
+ }
+}
+
+// The target location for the relocation is described by RE.SectionID and
+// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
+// SectionEntry has three members describing its location.
+// SectionEntry::Address is the address at which the section has been loaded
+// into memory in the current (host) process. SectionEntry::LoadAddress is the
+// address that the section will have in the target process.
+// SectionEntry::ObjAddress is the address of the bits for this section in the
+// original emitted object image (also in the current address space).
+//
+// Relocations will be applied as if the section were loaded at
+// SectionEntry::LoadAddress, but they will be applied at an address based
+// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
+// Target memory contents if they are required for value calculations.
+//
+// The Value parameter here is the load address of the symbol for the
+// relocation to be applied. For relocations which refer to symbols in the
+// current object Value will be the LoadAddress of the section in which
+// the symbol resides (RE.Addend provides additional information about the
+// symbol location). For external symbols, Value will be the address of the
+// symbol in the target address space.
+void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
+ uint64_t Value) {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
+ RE.SymOffset, RE.SectionID);
+}
+
+void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend,
+ uint64_t SymOffset, SID SectionID) {
+ switch (Arch) {
+ case Triple::x86_64:
+ resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
+ break;
+ case Triple::x86:
+ resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::aarch64:
+ case Triple::aarch64_be:
+ resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ case Triple::arm: // Fall through.
+ case Triple::armeb:
+ case Triple::thumb:
+ case Triple::thumbeb:
+ resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::ppc:
+ resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ case Triple::ppc64: // Fall through.
+ case Triple::ppc64le:
+ resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ case Triple::systemz:
+ resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
+ break;
+ default:
+ llvm_unreachable("Unsupported CPU type!");
+ }
+}
+
+void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
+ return (void *)(Sections[SectionID].getObjAddress() + Offset);
+}
+
+void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+}
+
+uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
+ bool IsLocal) const {
+ switch (RelType) {
+ case ELF::R_MICROMIPS_GOT16:
+ if (IsLocal)
+ return ELF::R_MICROMIPS_LO16;
+ break;
+ case ELF::R_MICROMIPS_HI16:
+ return ELF::R_MICROMIPS_LO16;
+ case ELF::R_MIPS_GOT16:
+ if (IsLocal)
+ return ELF::R_MIPS_LO16;
+ break;
+ case ELF::R_MIPS_HI16:
+ return ELF::R_MIPS_LO16;
+ case ELF::R_MIPS_PCHI16:
+ return ELF::R_MIPS_PCLO16;
+ default:
+ break;
+ }
+ return ELF::R_MIPS_NONE;
+}
+
+// Sometimes we don't need to create thunk for a branch.
+// This typically happens when branch target is located
+// in the same object file. In such case target is either
+// a weak symbol or symbol in a different executable section.
+// This function checks if branch target is located in the
+// same object file and if distance between source and target
+// fits R_AARCH64_CALL26 relocation. If both conditions are
+// met, it emits direct jump to the target and returns true.
+// Otherwise false is returned and thunk is created.
+bool RuntimeDyldELF::resolveAArch64ShortBranch(
+ unsigned SectionID, relocation_iterator RelI,
+ const RelocationValueRef &Value) {
+ uint64_t Address;
+ if (Value.SymbolName) {
+ auto Loc = GlobalSymbolTable.find(Value.SymbolName);
+
+ // Don't create direct branch for external symbols.
+ if (Loc == GlobalSymbolTable.end())
+ return false;
+
+ const auto &SymInfo = Loc->second;
+ Address =
+ uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
+ SymInfo.getOffset()));
+ } else {
+ Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
+ }
+ uint64_t Offset = RelI->getOffset();
+ uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
+
+ // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
+ // If distance between source and target is out of range then we should
+ // create thunk.
+ if (!isInt<28>(Address + Value.Addend - SourceAddress))
+ return false;
+
+ resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
+ Value.Addend);
+
+ return true;
+}
+
+Expected<relocation_iterator>
+RuntimeDyldELF::processRelocationRef(
+ unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
+ ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
+ const auto &Obj = cast<ELFObjectFileBase>(O);
+ uint64_t RelType = RelI->getType();
+ ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
+ int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
+ elf_symbol_iterator Symbol = RelI->getSymbol();
+
+ // Obtain the symbol name which is referenced in the relocation
+ StringRef TargetName;
+ if (Symbol != Obj.symbol_end()) {
+ if (auto TargetNameOrErr = Symbol->getName())
+ TargetName = *TargetNameOrErr;
+ else
+ return TargetNameOrErr.takeError();
+ }
+ DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
+ << " TargetName: " << TargetName << "\n");
+ RelocationValueRef Value;
+ // First search for the symbol in the local symbol table
+ SymbolRef::Type SymType = SymbolRef::ST_Unknown;
+
+ // Search for the symbol in the global symbol table
+ RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
+ if (Symbol != Obj.symbol_end()) {
+ gsi = GlobalSymbolTable.find(TargetName.data());
+ Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
+ if (!SymTypeOrErr) {
+ std::string Buf;
+ raw_string_ostream OS(Buf);
+ logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
+ OS.flush();
+ report_fatal_error(Buf);
+ }
+ SymType = *SymTypeOrErr;
+ }
+ if (gsi != GlobalSymbolTable.end()) {
+ const auto &SymInfo = gsi->second;
+ Value.SectionID = SymInfo.getSectionID();
+ Value.Offset = SymInfo.getOffset();
+ Value.Addend = SymInfo.getOffset() + Addend;
+ } else {
+ switch (SymType) {
+ case SymbolRef::ST_Debug: {
+ // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
+ // and can be changed by another developers. Maybe best way is add
+ // a new symbol type ST_Section to SymbolRef and use it.
+ auto SectionOrErr = Symbol->getSection();
+ if (!SectionOrErr) {
+ std::string Buf;
+ raw_string_ostream OS(Buf);
+ logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
+ OS.flush();
+ report_fatal_error(Buf);
+ }
+ section_iterator si = *SectionOrErr;
+ if (si == Obj.section_end())
+ llvm_unreachable("Symbol section not found, bad object file format!");
+ DEBUG(dbgs() << "\t\tThis is section symbol\n");
+ bool isCode = si->isText();
+ if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
+ ObjSectionToID))
+ Value.SectionID = *SectionIDOrErr;
+ else
+ return SectionIDOrErr.takeError();
+ Value.Addend = Addend;
+ break;
+ }
+ case SymbolRef::ST_Data:
+ case SymbolRef::ST_Function:
+ case SymbolRef::ST_Unknown: {
+ Value.SymbolName = TargetName.data();
+ Value.Addend = Addend;
+
+ // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
+ // will manifest here as a NULL symbol name.
+ // We can set this as a valid (but empty) symbol name, and rely
+ // on addRelocationForSymbol to handle this.
+ if (!Value.SymbolName)
+ Value.SymbolName = "";
+ break;
+ }
+ default:
+ llvm_unreachable("Unresolved symbol type!");
+ break;
+ }
+ }
+
+ uint64_t Offset = RelI->getOffset();
+
+ DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
+ << "\n");
+ if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
+ (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
+ // This is an AArch64 branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.getAddressWithOffset(i->second),
+ RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.getStubOffset();
+ uint8_t *StubTargetAddr = createStubFunction(
+ Section.getAddressWithOffset(Section.getStubOffset()));
+
+ RelocationEntry REmovz_g3(SectionID,
+ StubTargetAddr - Section.getAddress(),
+ ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
+ RelocationEntry REmovk_g2(SectionID, StubTargetAddr -
+ Section.getAddress() + 4,
+ ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
+ RelocationEntry REmovk_g1(SectionID, StubTargetAddr -
+ Section.getAddress() + 8,
+ ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
+ RelocationEntry REmovk_g0(SectionID, StubTargetAddr -
+ Section.getAddress() + 12,
+ ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REmovz_g3, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g2, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g1, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g0, Value.SymbolName);
+ } else {
+ addRelocationForSection(REmovz_g3, Value.SectionID);
+ addRelocationForSection(REmovk_g2, Value.SectionID);
+ addRelocationForSection(REmovk_g1, Value.SectionID);
+ addRelocationForSection(REmovk_g0, Value.SectionID);
+ }
+ resolveRelocation(Section, Offset,
+ reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
+ Section.getStubOffset())),
+ RelType, 0);
+ Section.advanceStubOffset(getMaxStubSize());
+ }
+ } else if (Arch == Triple::arm) {
+ if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
+ RelType == ELF::R_ARM_JUMP24) {
+ // This is an ARM branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(
+ Section, Offset,
+ reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
+ RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.getStubOffset();
+ uint8_t *StubTargetAddr = createStubFunction(
+ Section.getAddressWithOffset(Section.getStubOffset()));
+ RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
+ ELF::R_ARM_ABS32, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+
+ resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
+ Section.getAddressWithOffset(
+ Section.getStubOffset())),
+ RelType, 0);
+ Section.advanceStubOffset(getMaxStubSize());
+ }
+ } else {
+ uint32_t *Placeholder =
+ reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
+ if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
+ RelType == ELF::R_ARM_ABS32) {
+ Value.Addend += *Placeholder;
+ } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
+ // See ELF for ARM documentation
+ Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
+ }
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ }
+ } else if (IsMipsO32ABI) {
+ uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
+ computePlaceholderAddress(SectionID, Offset));
+ uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
+ if (RelType == ELF::R_MIPS_26) {
+ // This is an Mips branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Extract the addend from the instruction.
+ // We shift up by two since the Value will be down shifted again
+ // when applying the relocation.
+ uint32_t Addend = (Opcode & 0x03ffffff) << 2;
+
+ Value.Addend += Addend;
+
+ // Look up for existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ RelocationEntry RE(SectionID, Offset, RelType, i->second);
+ addRelocationForSection(RE, SectionID);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.getStubOffset();
+
+ unsigned AbiVariant;
+ O.getPlatformFlags(AbiVariant);
+
+ uint8_t *StubTargetAddr = createStubFunction(
+ Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
+
+ // Creating Hi and Lo relocations for the filled stub instructions.
+ RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
+ ELF::R_MIPS_HI16, Value.Addend);
+ RelocationEntry RELo(SectionID,
+ StubTargetAddr - Section.getAddress() + 4,
+ ELF::R_MIPS_LO16, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REHi, Value.SymbolName);
+ addRelocationForSymbol(RELo, Value.SymbolName);
+ }
+ else {
+ addRelocationForSection(REHi, Value.SectionID);
+ addRelocationForSection(RELo, Value.SectionID);
+ }
+
+ RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
+ addRelocationForSection(RE, SectionID);
+ Section.advanceStubOffset(getMaxStubSize());
+ }
+ } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
+ int64_t Addend = (Opcode & 0x0000ffff) << 16;
+ RelocationEntry RE(SectionID, Offset, RelType, Addend);
+ PendingRelocs.push_back(std::make_pair(Value, RE));
+ } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
+ int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
+ for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
+ const RelocationValueRef &MatchingValue = I->first;
+ RelocationEntry &Reloc = I->second;
+ if (MatchingValue == Value &&
+ RelType == getMatchingLoRelocation(Reloc.RelType) &&
+ SectionID == Reloc.SectionID) {
+ Reloc.Addend += Addend;
+ if (Value.SymbolName)
+ addRelocationForSymbol(Reloc, Value.SymbolName);
+ else
+ addRelocationForSection(Reloc, Value.SectionID);
+ I = PendingRelocs.erase(I);
+ } else
+ ++I;
+ }
+ RelocationEntry RE(SectionID, Offset, RelType, Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ } else {
+ if (RelType == ELF::R_MIPS_32)
+ Value.Addend += Opcode;
+ else if (RelType == ELF::R_MIPS_PC16)
+ Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
+ else if (RelType == ELF::R_MIPS_PC19_S2)
+ Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
+ else if (RelType == ELF::R_MIPS_PC21_S2)
+ Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
+ else if (RelType == ELF::R_MIPS_PC26_S2)
+ Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ }
+ } else if (IsMipsN32ABI || IsMipsN64ABI) {
+ uint32_t r_type = RelType & 0xff;
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
+ if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
+ || r_type == ELF::R_MIPS_GOT_DISP) {
+ StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
+ if (i != GOTSymbolOffsets.end())
+ RE.SymOffset = i->second;
+ else {
+ RE.SymOffset = allocateGOTEntries(SectionID, 1);
+ GOTSymbolOffsets[TargetName] = RE.SymOffset;
+ }
+ }
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
+ if (RelType == ELF::R_PPC64_REL24) {
+ // Determine ABI variant in use for this object.
+ unsigned AbiVariant;
+ Obj.getPlatformFlags(AbiVariant);
+ AbiVariant &= ELF::EF_PPC64_ABI;
+ // A PPC branch relocation will need a stub function if the target is
+ // an external symbol (Symbol::ST_Unknown) or if the target address
+ // is not within the signed 24-bits branch address.
+ SectionEntry &Section = Sections[SectionID];
+ uint8_t *Target = Section.getAddressWithOffset(Offset);
+ bool RangeOverflow = false;
+ if (SymType != SymbolRef::ST_Unknown) {
+ if (AbiVariant != 2) {
+ // In the ELFv1 ABI, a function call may point to the .opd entry,
+ // so the final symbol value is calculated based on the relocation
+ // values in the .opd section.
+ if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
+ return std::move(Err);
+ } else {
+ // In the ELFv2 ABI, a function symbol may provide a local entry
+ // point, which must be used for direct calls.
+ uint8_t SymOther = Symbol->getOther();
+ Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
+ }
+ uint8_t *RelocTarget =
+ Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
+ int32_t delta = static_cast<int32_t>(Target - RelocTarget);
+ // If it is within 26-bits branch range, just set the branch target
+ if (SignExtend32<26>(delta) == delta) {
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ } else {
+ RangeOverflow = true;
+ }
+ }
+ if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
+ // It is an external symbol (SymbolRef::ST_Unknown) or within a range
+ // larger than 24-bits.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ // Symbol function stub already created, just relocate to it
+ resolveRelocation(Section, Offset,
+ reinterpret_cast<uint64_t>(
+ Section.getAddressWithOffset(i->second)),
+ RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.getStubOffset();
+ uint8_t *StubTargetAddr = createStubFunction(
+ Section.getAddressWithOffset(Section.getStubOffset()),
+ AbiVariant);
+ RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
+ ELF::R_PPC64_ADDR64, Value.Addend);
+
+ // Generates the 64-bits address loads as exemplified in section
+ // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
+ // apply to the low part of the instructions, so we have to update
+ // the offset according to the target endianness.
+ uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
+ if (!IsTargetLittleEndian)
+ StubRelocOffset += 2;
+
+ RelocationEntry REhst(SectionID, StubRelocOffset + 0,
+ ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
+ RelocationEntry REhr(SectionID, StubRelocOffset + 4,
+ ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
+ RelocationEntry REh(SectionID, StubRelocOffset + 12,
+ ELF::R_PPC64_ADDR16_HI, Value.Addend);
+ RelocationEntry REl(SectionID, StubRelocOffset + 16,
+ ELF::R_PPC64_ADDR16_LO, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REhst, Value.SymbolName);
+ addRelocationForSymbol(REhr, Value.SymbolName);
+ addRelocationForSymbol(REh, Value.SymbolName);
+ addRelocationForSymbol(REl, Value.SymbolName);
+ } else {
+ addRelocationForSection(REhst, Value.SectionID);
+ addRelocationForSection(REhr, Value.SectionID);
+ addRelocationForSection(REh, Value.SectionID);
+ addRelocationForSection(REl, Value.SectionID);
+ }
+
+ resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
+ Section.getAddressWithOffset(
+ Section.getStubOffset())),
+ RelType, 0);
+ Section.advanceStubOffset(getMaxStubSize());
+ }
+ if (SymType == SymbolRef::ST_Unknown) {
+ // Restore the TOC for external calls
+ if (AbiVariant == 2)
+ writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
+ else
+ writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
+ }
+ }
+ } else if (RelType == ELF::R_PPC64_TOC16 ||
+ RelType == ELF::R_PPC64_TOC16_DS ||
+ RelType == ELF::R_PPC64_TOC16_LO ||
+ RelType == ELF::R_PPC64_TOC16_LO_DS ||
+ RelType == ELF::R_PPC64_TOC16_HI ||
+ RelType == ELF::R_PPC64_TOC16_HA) {
+ // These relocations are supposed to subtract the TOC address from
+ // the final value. This does not fit cleanly into the RuntimeDyld
+ // scheme, since there may be *two* sections involved in determining
+ // the relocation value (the section of the symbol referred to by the
+ // relocation, and the TOC section associated with the current module).
+ //
+ // Fortunately, these relocations are currently only ever generated
+ // referring to symbols that themselves reside in the TOC, which means
+ // that the two sections are actually the same. Thus they cancel out
+ // and we can immediately resolve the relocation right now.
+ switch (RelType) {
+ case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
+ case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
+ case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
+ case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
+ case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
+ case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
+ default: llvm_unreachable("Wrong relocation type.");
+ }
+
+ RelocationValueRef TOCValue;
+ if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
+ return std::move(Err);
+ if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
+ llvm_unreachable("Unsupported TOC relocation.");
+ Value.Addend -= TOCValue.Addend;
+ resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
+ } else {
+ // There are two ways to refer to the TOC address directly: either
+ // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
+ // ignored), or via any relocation that refers to the magic ".TOC."
+ // symbols (in which case the addend is respected).
+ if (RelType == ELF::R_PPC64_TOC) {
+ RelType = ELF::R_PPC64_ADDR64;
+ if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
+ return std::move(Err);
+ } else if (TargetName == ".TOC.") {
+ if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
+ return std::move(Err);
+ Value.Addend += Addend;
+ }
+
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
+
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+ } else if (Arch == Triple::systemz &&
+ (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
+ // Create function stubs for both PLT and GOT references, regardless of
+ // whether the GOT reference is to data or code. The stub contains the
+ // full address of the symbol, as needed by GOT references, and the
+ // executable part only adds an overhead of 8 bytes.
+ //
+ // We could try to conserve space by allocating the code and data
+ // parts of the stub separately. However, as things stand, we allocate
+ // a stub for every relocation, so using a GOT in JIT code should be
+ // no less space efficient than using an explicit constant pool.
+ DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ uintptr_t StubAddress;
+ if (i != Stubs.end()) {
+ StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+
+ uintptr_t BaseAddress = uintptr_t(Section.getAddress());
+ uintptr_t StubAlignment = getStubAlignment();
+ StubAddress =
+ (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
+ -StubAlignment;
+ unsigned StubOffset = StubAddress - BaseAddress;
+
+ Stubs[Value] = StubOffset;
+ createStubFunction((uint8_t *)StubAddress);
+ RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
+ Value.Offset);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ Section.advanceStubOffset(getMaxStubSize());
+ }
+
+ if (RelType == ELF::R_390_GOTENT)
+ resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
+ Addend);
+ else
+ resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
+ } else if (Arch == Triple::x86_64) {
+ if (RelType == ELF::R_X86_64_PLT32) {
+ // The way the PLT relocations normally work is that the linker allocates
+ // the
+ // PLT and this relocation makes a PC-relative call into the PLT. The PLT
+ // entry will then jump to an address provided by the GOT. On first call,
+ // the
+ // GOT address will point back into PLT code that resolves the symbol. After
+ // the first call, the GOT entry points to the actual function.
+ //
+ // For local functions we're ignoring all of that here and just replacing
+ // the PLT32 relocation type with PC32, which will translate the relocation
+ // into a PC-relative call directly to the function. For external symbols we
+ // can't be sure the function will be within 2^32 bytes of the call site, so
+ // we need to create a stub, which calls into the GOT. This case is
+ // equivalent to the usual PLT implementation except that we use the stub
+ // mechanism in RuntimeDyld (which puts stubs at the end of the section)
+ // rather than allocating a PLT section.
+ if (Value.SymbolName) {
+ // This is a call to an external function.
+ // Look for an existing stub.
+ SectionEntry &Section = Sections[SectionID];
+ StubMap::const_iterator i = Stubs.find(Value);
+ uintptr_t StubAddress;
+ if (i != Stubs.end()) {
+ StubAddress = uintptr_t(Section.getAddress()) + i->second;
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function (equivalent to a PLT entry).
+ DEBUG(dbgs() << " Create a new stub function\n");
+
+ uintptr_t BaseAddress = uintptr_t(Section.getAddress());
+ uintptr_t StubAlignment = getStubAlignment();
+ StubAddress =
+ (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
+ -StubAlignment;
+ unsigned StubOffset = StubAddress - BaseAddress;
+ Stubs[Value] = StubOffset;
+ createStubFunction((uint8_t *)StubAddress);
+
+ // Bump our stub offset counter
+ Section.advanceStubOffset(getMaxStubSize());
+
+ // Allocate a GOT Entry
+ uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
+
+ // The load of the GOT address has an addend of -4
+ resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
+
+ // Fill in the value of the symbol we're targeting into the GOT
+ addRelocationForSymbol(
+ computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64),
+ Value.SymbolName);
+ }
+
+ // Make the target call a call into the stub table.
+ resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
+ Addend);
+ } else {
+ RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
+ Value.Offset);
+ addRelocationForSection(RE, Value.SectionID);
+ }
+ } else if (RelType == ELF::R_X86_64_GOTPCREL ||
+ RelType == ELF::R_X86_64_GOTPCRELX ||
+ RelType == ELF::R_X86_64_REX_GOTPCRELX) {
+ uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
+ resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
+
+ // Fill in the value of the symbol we're targeting into the GOT
+ RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ } else if (RelType == ELF::R_X86_64_PC32) {
+ Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ } else if (RelType == ELF::R_X86_64_PC64) {
+ Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ } else {
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ }
+ } else {
+ if (Arch == Triple::x86) {
+ Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
+ }
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ }
+ return ++RelI;
+}
+
+size_t RuntimeDyldELF::getGOTEntrySize() {
+ // We don't use the GOT in all of these cases, but it's essentially free
+ // to put them all here.
+ size_t Result = 0;
+ switch (Arch) {
+ case Triple::x86_64:
+ case Triple::aarch64:
+ case Triple::aarch64_be:
+ case Triple::ppc64:
+ case Triple::ppc64le:
+ case Triple::systemz:
+ Result = sizeof(uint64_t);
+ break;
+ case Triple::x86:
+ case Triple::arm:
+ case Triple::thumb:
+ Result = sizeof(uint32_t);
+ break;
+ case Triple::mips:
+ case Triple::mipsel:
+ case Triple::mips64:
+ case Triple::mips64el:
+ if (IsMipsO32ABI || IsMipsN32ABI)
+ Result = sizeof(uint32_t);
+ else if (IsMipsN64ABI)
+ Result = sizeof(uint64_t);
+ else
+ llvm_unreachable("Mips ABI not handled");
+ break;
+ default:
+ llvm_unreachable("Unsupported CPU type!");
+ }
+ return Result;
+}
+
+uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
+{
+ (void)SectionID; // The GOT Section is the same for all section in the object file
+ if (GOTSectionID == 0) {
+ GOTSectionID = Sections.size();
+ // Reserve a section id. We'll allocate the section later
+ // once we know the total size
+ Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
+ }
+ uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
+ CurrentGOTIndex += no;
+ return StartOffset;
+}
+
+void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
+{
+ // Fill in the relative address of the GOT Entry into the stub
+ RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
+ addRelocationForSection(GOTRE, GOTSectionID);
+}
+
+RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
+ uint32_t Type)
+{
+ (void)SectionID; // The GOT Section is the same for all section in the object file
+ return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
+}
+
+Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
+ ObjSectionToIDMap &SectionMap) {
+ if (IsMipsO32ABI)
+ if (!PendingRelocs.empty())
+ return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
+
+ // If necessary, allocate the global offset table
+ if (GOTSectionID != 0) {
+ // Allocate memory for the section
+ size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
+ uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
+ GOTSectionID, ".got", false);
+ if (!Addr)
+ return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
+
+ Sections[GOTSectionID] =
+ SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
+
+ if (Checker)
+ Checker->registerSection(Obj.getFileName(), GOTSectionID);
+
+ // For now, initialize all GOT entries to zero. We'll fill them in as
+ // needed when GOT-based relocations are applied.
+ memset(Addr, 0, TotalSize);
+ if (IsMipsN32ABI || IsMipsN64ABI) {
+ // To correctly resolve Mips GOT relocations, we need a mapping from
+ // object's sections to GOTs.
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+ if (SI->relocation_begin() != SI->relocation_end()) {
+ section_iterator RelocatedSection = SI->getRelocatedSection();
+ ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
+ assert (i != SectionMap.end());
+ SectionToGOTMap[i->second] = GOTSectionID;
+ }
+ }
+ GOTSymbolOffsets.clear();
+ }
+ }
+
+ // Look for and record the EH frame section.
+ ObjSectionToIDMap::iterator i, e;
+ for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
+ const SectionRef &Section = i->first;
+ StringRef Name;
+ Section.getName(Name);
+ if (Name == ".eh_frame") {
+ UnregisteredEHFrameSections.push_back(i->second);
+ break;
+ }
+ }
+
+ GOTSectionID = 0;
+ CurrentGOTIndex = 0;
+
+ return Error::success();
+}
+
+bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
+ return Obj.isELF();
+}
+
+bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
+ if (Arch != Triple::x86_64)
+ return true; // Conservative answer
+
+ switch (R.getType()) {
+ default:
+ return true; // Conservative answer
+
+
+ case ELF::R_X86_64_GOTPCREL:
+ case ELF::R_X86_64_GOTPCRELX:
+ case ELF::R_X86_64_REX_GOTPCRELX:
+ case ELF::R_X86_64_PC32:
+ case ELF::R_X86_64_PC64:
+ case ELF::R_X86_64_64:
+ // We know that these reloation types won't need a stub function. This list
+ // can be extended as needed.
+ return false;
+ }
+}
+
+} // namespace llvm