aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/ExecutionEngine/MCJIT
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/MCJIT')
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp541
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h339
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp177
3 files changed, 1057 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
new file mode 100644
index 000000000000..195c45850c6a
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
@@ -0,0 +1,541 @@
+//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCJIT.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/ExecutionEngine/MCJIT.h"
+#include "llvm/ExecutionEngine/ObjectBuffer.h"
+#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/PassManager.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/MutexGuard.h"
+
+using namespace llvm;
+
+namespace {
+
+static struct RegisterJIT {
+ RegisterJIT() { MCJIT::Register(); }
+} JITRegistrator;
+
+}
+
+extern "C" void LLVMLinkInMCJIT() {
+}
+
+ExecutionEngine *MCJIT::createJIT(Module *M,
+ std::string *ErrorStr,
+ RTDyldMemoryManager *MemMgr,
+ bool GVsWithCode,
+ TargetMachine *TM) {
+ // Try to register the program as a source of symbols to resolve against.
+ //
+ // FIXME: Don't do this here.
+ sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
+
+ return new MCJIT(M, TM, MemMgr ? MemMgr : new SectionMemoryManager(),
+ GVsWithCode);
+}
+
+MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM,
+ bool AllocateGVsWithCode)
+ : ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(this, MM), Dyld(&MemMgr),
+ ObjCache(0) {
+
+ OwnedModules.addModule(m);
+ setDataLayout(TM->getDataLayout());
+}
+
+MCJIT::~MCJIT() {
+ MutexGuard locked(lock);
+ // FIXME: We are managing our modules, so we do not want the base class
+ // ExecutionEngine to manage them as well. To avoid double destruction
+ // of the first (and only) module added in ExecutionEngine constructor
+ // we remove it from EE and will destruct it ourselves.
+ //
+ // It may make sense to move our module manager (based on SmallStPtr) back
+ // into EE if the JIT and Interpreter can live with it.
+ // If so, additional functions: addModule, removeModule, FindFunctionNamed,
+ // runStaticConstructorsDestructors could be moved back to EE as well.
+ //
+ Modules.clear();
+ Dyld.deregisterEHFrames();
+
+ LoadedObjectMap::iterator it, end = LoadedObjects.end();
+ for (it = LoadedObjects.begin(); it != end; ++it) {
+ ObjectImage *Obj = it->second;
+ if (Obj) {
+ NotifyFreeingObject(*Obj);
+ delete Obj;
+ }
+ }
+ LoadedObjects.clear();
+ delete TM;
+}
+
+void MCJIT::addModule(Module *M) {
+ MutexGuard locked(lock);
+ OwnedModules.addModule(M);
+}
+
+bool MCJIT::removeModule(Module *M) {
+ MutexGuard locked(lock);
+ return OwnedModules.removeModule(M);
+}
+
+
+
+void MCJIT::setObjectCache(ObjectCache* NewCache) {
+ MutexGuard locked(lock);
+ ObjCache = NewCache;
+}
+
+ObjectBufferStream* MCJIT::emitObject(Module *M) {
+ MutexGuard locked(lock);
+
+ // This must be a module which has already been added but not loaded to this
+ // MCJIT instance, since these conditions are tested by our caller,
+ // generateCodeForModule.
+
+ PassManager PM;
+
+ PM.add(new DataLayout(*TM->getDataLayout()));
+
+ // The RuntimeDyld will take ownership of this shortly
+ OwningPtr<ObjectBufferStream> CompiledObject(new ObjectBufferStream());
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(), false)) {
+ report_fatal_error("Target does not support MC emission!");
+ }
+
+ // Initialize passes.
+ PM.run(*M);
+ // Flush the output buffer to get the generated code into memory
+ CompiledObject->flush();
+
+ // If we have an object cache, tell it about the new object.
+ // Note that we're using the compiled image, not the loaded image (as below).
+ if (ObjCache) {
+ // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
+ // to create a temporary object here and delete it after the call.
+ OwningPtr<MemoryBuffer> MB(CompiledObject->getMemBuffer());
+ ObjCache->notifyObjectCompiled(M, MB.get());
+ }
+
+ return CompiledObject.take();
+}
+
+void MCJIT::generateCodeForModule(Module *M) {
+ // Get a thread lock to make sure we aren't trying to load multiple times
+ MutexGuard locked(lock);
+
+ // This must be a module which has already been added to this MCJIT instance.
+ assert(OwnedModules.ownsModule(M) &&
+ "MCJIT::generateCodeForModule: Unknown module.");
+
+ // Re-compilation is not supported
+ if (OwnedModules.hasModuleBeenLoaded(M))
+ return;
+
+ OwningPtr<ObjectBuffer> ObjectToLoad;
+ // Try to load the pre-compiled object from cache if possible
+ if (0 != ObjCache) {
+ OwningPtr<MemoryBuffer> PreCompiledObject(ObjCache->getObject(M));
+ if (0 != PreCompiledObject.get())
+ ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.take()));
+ }
+
+ // If the cache did not contain a suitable object, compile the object
+ if (!ObjectToLoad) {
+ ObjectToLoad.reset(emitObject(M));
+ assert(ObjectToLoad.get() && "Compilation did not produce an object.");
+ }
+
+ // Load the object into the dynamic linker.
+ // MCJIT now owns the ObjectImage pointer (via its LoadedObjects map).
+ ObjectImage *LoadedObject = Dyld.loadObject(ObjectToLoad.take());
+ LoadedObjects[M] = LoadedObject;
+ if (!LoadedObject)
+ report_fatal_error(Dyld.getErrorString());
+
+ // FIXME: Make this optional, maybe even move it to a JIT event listener
+ LoadedObject->registerWithDebugger();
+
+ NotifyObjectEmitted(*LoadedObject);
+
+ OwnedModules.markModuleAsLoaded(M);
+}
+
+void MCJIT::finalizeLoadedModules() {
+ MutexGuard locked(lock);
+
+ // Resolve any outstanding relocations.
+ Dyld.resolveRelocations();
+
+ OwnedModules.markAllLoadedModulesAsFinalized();
+
+ // Register EH frame data for any module we own which has been loaded
+ Dyld.registerEHFrames();
+
+ // Set page permissions.
+ MemMgr.finalizeMemory();
+}
+
+// FIXME: Rename this.
+void MCJIT::finalizeObject() {
+ MutexGuard locked(lock);
+
+ for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
+ E = OwnedModules.end_added();
+ I != E; ++I) {
+ Module *M = *I;
+ generateCodeForModule(M);
+ }
+
+ finalizeLoadedModules();
+}
+
+void MCJIT::finalizeModule(Module *M) {
+ MutexGuard locked(lock);
+
+ // This must be a module which has already been added to this MCJIT instance.
+ assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
+
+ // If the module hasn't been compiled, just do that.
+ if (!OwnedModules.hasModuleBeenLoaded(M))
+ generateCodeForModule(M);
+
+ finalizeLoadedModules();
+}
+
+void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) {
+ report_fatal_error("not yet implemented");
+}
+
+uint64_t MCJIT::getExistingSymbolAddress(const std::string &Name) {
+ // Check with the RuntimeDyld to see if we already have this symbol.
+ if (Name[0] == '\1')
+ return Dyld.getSymbolLoadAddress(Name.substr(1));
+ return Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix()
+ + Name));
+}
+
+Module *MCJIT::findModuleForSymbol(const std::string &Name,
+ bool CheckFunctionsOnly) {
+ MutexGuard locked(lock);
+
+ // If it hasn't already been generated, see if it's in one of our modules.
+ for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
+ E = OwnedModules.end_added();
+ I != E; ++I) {
+ Module *M = *I;
+ Function *F = M->getFunction(Name);
+ if (F && !F->isDeclaration())
+ return M;
+ if (!CheckFunctionsOnly) {
+ GlobalVariable *G = M->getGlobalVariable(Name);
+ if (G && !G->isDeclaration())
+ return M;
+ // FIXME: Do we need to worry about global aliases?
+ }
+ }
+ // We didn't find the symbol in any of our modules.
+ return NULL;
+}
+
+uint64_t MCJIT::getSymbolAddress(const std::string &Name,
+ bool CheckFunctionsOnly)
+{
+ MutexGuard locked(lock);
+
+ // First, check to see if we already have this symbol.
+ uint64_t Addr = getExistingSymbolAddress(Name);
+ if (Addr)
+ return Addr;
+
+ // If it hasn't already been generated, see if it's in one of our modules.
+ Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
+ if (!M)
+ return 0;
+
+ generateCodeForModule(M);
+
+ // Check the RuntimeDyld table again, it should be there now.
+ return getExistingSymbolAddress(Name);
+}
+
+uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
+ MutexGuard locked(lock);
+ uint64_t Result = getSymbolAddress(Name, false);
+ if (Result != 0)
+ finalizeLoadedModules();
+ return Result;
+}
+
+uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
+ MutexGuard locked(lock);
+ uint64_t Result = getSymbolAddress(Name, true);
+ if (Result != 0)
+ finalizeLoadedModules();
+ return Result;
+}
+
+// Deprecated. Use getFunctionAddress instead.
+void *MCJIT::getPointerToFunction(Function *F) {
+ MutexGuard locked(lock);
+
+ if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
+ bool AbortOnFailure = !F->hasExternalWeakLinkage();
+ void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
+ addGlobalMapping(F, Addr);
+ return Addr;
+ }
+
+ Module *M = F->getParent();
+ bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
+
+ // Make sure the relevant module has been compiled and loaded.
+ if (HasBeenAddedButNotLoaded)
+ generateCodeForModule(M);
+ else if (!OwnedModules.hasModuleBeenLoaded(M))
+ // If this function doesn't belong to one of our modules, we're done.
+ return NULL;
+
+ // FIXME: Should the Dyld be retaining module information? Probably not.
+ // FIXME: Should we be using the mangler for this? Probably.
+ //
+ // This is the accessor for the target address, so make sure to check the
+ // load address of the symbol, not the local address.
+ StringRef BaseName = F->getName();
+ if (BaseName[0] == '\1')
+ return (void*)Dyld.getSymbolLoadAddress(BaseName.substr(1));
+ return (void*)Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix()
+ + BaseName).str());
+}
+
+void *MCJIT::recompileAndRelinkFunction(Function *F) {
+ report_fatal_error("not yet implemented");
+}
+
+void MCJIT::freeMachineCodeForFunction(Function *F) {
+ report_fatal_error("not yet implemented");
+}
+
+void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
+ bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
+ for (; I != E; ++I) {
+ ExecutionEngine::runStaticConstructorsDestructors(*I, isDtors);
+ }
+}
+
+void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
+ // Execute global ctors/dtors for each module in the program.
+ runStaticConstructorsDestructorsInModulePtrSet(
+ isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
+ runStaticConstructorsDestructorsInModulePtrSet(
+ isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
+ runStaticConstructorsDestructorsInModulePtrSet(
+ isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
+}
+
+Function *MCJIT::FindFunctionNamedInModulePtrSet(const char *FnName,
+ ModulePtrSet::iterator I,
+ ModulePtrSet::iterator E) {
+ for (; I != E; ++I) {
+ if (Function *F = (*I)->getFunction(FnName))
+ return F;
+ }
+ return 0;
+}
+
+Function *MCJIT::FindFunctionNamed(const char *FnName) {
+ Function *F = FindFunctionNamedInModulePtrSet(
+ FnName, OwnedModules.begin_added(), OwnedModules.end_added());
+ if (!F)
+ F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
+ OwnedModules.end_loaded());
+ if (!F)
+ F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
+ OwnedModules.end_finalized());
+ return F;
+}
+
+GenericValue MCJIT::runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) {
+ assert(F && "Function *F was null at entry to run()");
+
+ void *FPtr = getPointerToFunction(F);
+ assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
+ FunctionType *FTy = F->getFunctionType();
+ Type *RetTy = FTy->getReturnType();
+
+ assert((FTy->getNumParams() == ArgValues.size() ||
+ (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
+ "Wrong number of arguments passed into function!");
+ assert(FTy->getNumParams() == ArgValues.size() &&
+ "This doesn't support passing arguments through varargs (yet)!");
+
+ // Handle some common cases first. These cases correspond to common `main'
+ // prototypes.
+ if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
+ switch (ArgValues.size()) {
+ case 3:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy() &&
+ FTy->getParamType(2)->isPointerTy()) {
+ int (*PF)(int, char **, const char **) =
+ (int(*)(int, char **, const char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1]),
+ (const char **)GVTOP(ArgValues[2])));
+ return rv;
+ }
+ break;
+ case 2:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy()) {
+ int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1])));
+ return rv;
+ }
+ break;
+ case 1:
+ if (FTy->getNumParams() == 1 &&
+ FTy->getParamType(0)->isIntegerTy(32)) {
+ GenericValue rv;
+ int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
+ return rv;
+ }
+ break;
+ }
+ }
+
+ // Handle cases where no arguments are passed first.
+ if (ArgValues.empty()) {
+ GenericValue rv;
+ switch (RetTy->getTypeID()) {
+ default: llvm_unreachable("Unknown return type for function call!");
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
+ if (BitWidth == 1)
+ rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 8)
+ rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 16)
+ rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 32)
+ rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 64)
+ rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
+ else
+ llvm_unreachable("Integer types > 64 bits not supported");
+ return rv;
+ }
+ case Type::VoidTyID:
+ rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
+ return rv;
+ case Type::FloatTyID:
+ rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::DoubleTyID:
+ rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ llvm_unreachable("long double not supported yet");
+ case Type::PointerTyID:
+ return PTOGV(((void*(*)())(intptr_t)FPtr)());
+ }
+ }
+
+ llvm_unreachable("Full-featured argument passing not supported yet!");
+}
+
+void *MCJIT::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure) {
+ if (!isSymbolSearchingDisabled()) {
+ void *ptr = MemMgr.getPointerToNamedFunction(Name, false);
+ if (ptr)
+ return ptr;
+ }
+
+ /// If a LazyFunctionCreator is installed, use it to get/create the function.
+ if (LazyFunctionCreator)
+ if (void *RP = LazyFunctionCreator(Name))
+ return RP;
+
+ if (AbortOnFailure) {
+ report_fatal_error("Program used external function '"+Name+
+ "' which could not be resolved!");
+ }
+ return 0;
+}
+
+void MCJIT::RegisterJITEventListener(JITEventListener *L) {
+ if (L == NULL)
+ return;
+ MutexGuard locked(lock);
+ EventListeners.push_back(L);
+}
+void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
+ if (L == NULL)
+ return;
+ MutexGuard locked(lock);
+ SmallVector<JITEventListener*, 2>::reverse_iterator I=
+ std::find(EventListeners.rbegin(), EventListeners.rend(), L);
+ if (I != EventListeners.rend()) {
+ std::swap(*I, EventListeners.back());
+ EventListeners.pop_back();
+ }
+}
+void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
+ MutexGuard locked(lock);
+ MemMgr.notifyObjectLoaded(this, &Obj);
+ for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
+ EventListeners[I]->NotifyObjectEmitted(Obj);
+ }
+}
+void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) {
+ MutexGuard locked(lock);
+ for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
+ EventListeners[I]->NotifyFreeingObject(Obj);
+ }
+}
+
+uint64_t LinkingMemoryManager::getSymbolAddress(const std::string &Name) {
+ uint64_t Result = ParentEngine->getSymbolAddress(Name, false);
+ // If the symbols wasn't found and it begins with an underscore, try again
+ // without the underscore.
+ if (!Result && Name[0] == '_')
+ Result = ParentEngine->getSymbolAddress(Name.substr(1), false);
+ if (Result)
+ return Result;
+ return ClientMM->getSymbolAddress(Name);
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
new file mode 100644
index 000000000000..86b478bff56f
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
@@ -0,0 +1,339 @@
+//===-- MCJIT.h - Class definition for the MCJIT ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_H
+#define LLVM_LIB_EXECUTIONENGINE_MCJIT_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/ObjectCache.h"
+#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "llvm/IR/Module.h"
+
+namespace llvm {
+class MCJIT;
+
+// This is a helper class that the MCJIT execution engine uses for linking
+// functions across modules that it owns. It aggregates the memory manager
+// that is passed in to the MCJIT constructor and defers most functionality
+// to that object.
+class LinkingMemoryManager : public RTDyldMemoryManager {
+public:
+ LinkingMemoryManager(MCJIT *Parent, RTDyldMemoryManager *MM)
+ : ParentEngine(Parent), ClientMM(MM) {}
+
+ virtual uint64_t getSymbolAddress(const std::string &Name);
+
+ // Functions deferred to client memory manager
+ virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID, StringRef SectionName) {
+ return ClientMM->allocateCodeSection(Size, Alignment, SectionID, SectionName);
+ }
+
+ virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID, StringRef SectionName,
+ bool IsReadOnly) {
+ return ClientMM->allocateDataSection(Size, Alignment,
+ SectionID, SectionName, IsReadOnly);
+ }
+
+ virtual void notifyObjectLoaded(ExecutionEngine *EE,
+ const ObjectImage *Obj) {
+ ClientMM->notifyObjectLoaded(EE, Obj);
+ }
+
+ virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) {
+ ClientMM->registerEHFrames(Addr, LoadAddr, Size);
+ }
+
+ virtual void deregisterEHFrames(uint8_t *Addr,
+ uint64_t LoadAddr,
+ size_t Size) {
+ ClientMM->deregisterEHFrames(Addr, LoadAddr, Size);
+ }
+
+ virtual bool finalizeMemory(std::string *ErrMsg = 0) {
+ return ClientMM->finalizeMemory(ErrMsg);
+ }
+
+private:
+ MCJIT *ParentEngine;
+ OwningPtr<RTDyldMemoryManager> ClientMM;
+};
+
+// About Module states: added->loaded->finalized.
+//
+// The purpose of the "added" state is having modules in standby. (added=known
+// but not compiled). The idea is that you can add a module to provide function
+// definitions but if nothing in that module is referenced by a module in which
+// a function is executed (note the wording here because it's not exactly the
+// ideal case) then the module never gets compiled. This is sort of lazy
+// compilation.
+//
+// The purpose of the "loaded" state (loaded=compiled and required sections
+// copied into local memory but not yet ready for execution) is to have an
+// intermediate state wherein clients can remap the addresses of sections, using
+// MCJIT::mapSectionAddress, (in preparation for later copying to a new location
+// or an external process) before relocations and page permissions are applied.
+//
+// It might not be obvious at first glance, but the "remote-mcjit" case in the
+// lli tool does this. In that case, the intermediate action is taken by the
+// RemoteMemoryManager in response to the notifyObjectLoaded function being
+// called.
+
+class MCJIT : public ExecutionEngine {
+ MCJIT(Module *M, TargetMachine *tm, RTDyldMemoryManager *MemMgr,
+ bool AllocateGVsWithCode);
+
+ typedef llvm::SmallPtrSet<Module *, 4> ModulePtrSet;
+
+ class OwningModuleContainer {
+ public:
+ OwningModuleContainer() {
+ }
+ ~OwningModuleContainer() {
+ freeModulePtrSet(AddedModules);
+ freeModulePtrSet(LoadedModules);
+ freeModulePtrSet(FinalizedModules);
+ }
+
+ ModulePtrSet::iterator begin_added() { return AddedModules.begin(); }
+ ModulePtrSet::iterator end_added() { return AddedModules.end(); }
+
+ ModulePtrSet::iterator begin_loaded() { return LoadedModules.begin(); }
+ ModulePtrSet::iterator end_loaded() { return LoadedModules.end(); }
+
+ ModulePtrSet::iterator begin_finalized() { return FinalizedModules.begin(); }
+ ModulePtrSet::iterator end_finalized() { return FinalizedModules.end(); }
+
+ void addModule(Module *M) {
+ AddedModules.insert(M);
+ }
+
+ bool removeModule(Module *M) {
+ return AddedModules.erase(M) || LoadedModules.erase(M) ||
+ FinalizedModules.erase(M);
+ }
+
+ bool hasModuleBeenAddedButNotLoaded(Module *M) {
+ return AddedModules.count(M) != 0;
+ }
+
+ bool hasModuleBeenLoaded(Module *M) {
+ // If the module is in either the "loaded" or "finalized" sections it
+ // has been loaded.
+ return (LoadedModules.count(M) != 0 ) || (FinalizedModules.count(M) != 0);
+ }
+
+ bool hasModuleBeenFinalized(Module *M) {
+ return FinalizedModules.count(M) != 0;
+ }
+
+ bool ownsModule(Module* M) {
+ return (AddedModules.count(M) != 0) || (LoadedModules.count(M) != 0) ||
+ (FinalizedModules.count(M) != 0);
+ }
+
+ void markModuleAsLoaded(Module *M) {
+ // This checks against logic errors in the MCJIT implementation.
+ // This function should never be called with either a Module that MCJIT
+ // does not own or a Module that has already been loaded and/or finalized.
+ assert(AddedModules.count(M) &&
+ "markModuleAsLoaded: Module not found in AddedModules");
+
+ // Remove the module from the "Added" set.
+ AddedModules.erase(M);
+
+ // Add the Module to the "Loaded" set.
+ LoadedModules.insert(M);
+ }
+
+ void markModuleAsFinalized(Module *M) {
+ // This checks against logic errors in the MCJIT implementation.
+ // This function should never be called with either a Module that MCJIT
+ // does not own, a Module that has not been loaded or a Module that has
+ // already been finalized.
+ assert(LoadedModules.count(M) &&
+ "markModuleAsFinalized: Module not found in LoadedModules");
+
+ // Remove the module from the "Loaded" section of the list.
+ LoadedModules.erase(M);
+
+ // Add the Module to the "Finalized" section of the list by inserting it
+ // before the 'end' iterator.
+ FinalizedModules.insert(M);
+ }
+
+ void markAllLoadedModulesAsFinalized() {
+ for (ModulePtrSet::iterator I = LoadedModules.begin(),
+ E = LoadedModules.end();
+ I != E; ++I) {
+ Module *M = *I;
+ FinalizedModules.insert(M);
+ }
+ LoadedModules.clear();
+ }
+
+ private:
+ ModulePtrSet AddedModules;
+ ModulePtrSet LoadedModules;
+ ModulePtrSet FinalizedModules;
+
+ void freeModulePtrSet(ModulePtrSet& MPS) {
+ // Go through the module set and delete everything.
+ for (ModulePtrSet::iterator I = MPS.begin(), E = MPS.end(); I != E; ++I) {
+ Module *M = *I;
+ delete M;
+ }
+ MPS.clear();
+ }
+ };
+
+ TargetMachine *TM;
+ MCContext *Ctx;
+ LinkingMemoryManager MemMgr;
+ RuntimeDyld Dyld;
+ SmallVector<JITEventListener*, 2> EventListeners;
+
+ OwningModuleContainer OwnedModules;
+
+ typedef DenseMap<Module *, ObjectImage *> LoadedObjectMap;
+ LoadedObjectMap LoadedObjects;
+
+ // An optional ObjectCache to be notified of compiled objects and used to
+ // perform lookup of pre-compiled code to avoid re-compilation.
+ ObjectCache *ObjCache;
+
+ Function *FindFunctionNamedInModulePtrSet(const char *FnName,
+ ModulePtrSet::iterator I,
+ ModulePtrSet::iterator E);
+
+ void runStaticConstructorsDestructorsInModulePtrSet(bool isDtors,
+ ModulePtrSet::iterator I,
+ ModulePtrSet::iterator E);
+
+public:
+ ~MCJIT();
+
+ /// @name ExecutionEngine interface implementation
+ /// @{
+ virtual void addModule(Module *M);
+ virtual bool removeModule(Module *M);
+
+ /// FindFunctionNamed - Search all of the active modules to find the one that
+ /// defines FnName. This is very slow operation and shouldn't be used for
+ /// general code.
+ virtual Function *FindFunctionNamed(const char *FnName);
+
+ /// Sets the object manager that MCJIT should use to avoid compilation.
+ virtual void setObjectCache(ObjectCache *manager);
+
+ virtual void generateCodeForModule(Module *M);
+
+ /// finalizeObject - ensure the module is fully processed and is usable.
+ ///
+ /// It is the user-level function for completing the process of making the
+ /// object usable for execution. It should be called after sections within an
+ /// object have been relocated using mapSectionAddress. When this method is
+ /// called the MCJIT execution engine will reapply relocations for a loaded
+ /// object.
+ /// Is it OK to finalize a set of modules, add modules and finalize again.
+ // FIXME: Do we really need both of these?
+ virtual void finalizeObject();
+ virtual void finalizeModule(Module *);
+ void finalizeLoadedModules();
+
+ /// runStaticConstructorsDestructors - This method is used to execute all of
+ /// the static constructors or destructors for a program.
+ ///
+ /// \param isDtors - Run the destructors instead of constructors.
+ void runStaticConstructorsDestructors(bool isDtors);
+
+ virtual void *getPointerToBasicBlock(BasicBlock *BB);
+
+ virtual void *getPointerToFunction(Function *F);
+
+ virtual void *recompileAndRelinkFunction(Function *F);
+
+ virtual void freeMachineCodeForFunction(Function *F);
+
+ virtual GenericValue runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues);
+
+ /// getPointerToNamedFunction - This method returns the address of the
+ /// specified function by using the dlsym function call. As such it is only
+ /// useful for resolving library symbols, not code generated symbols.
+ ///
+ /// If AbortOnFailure is false and no function with the given name is
+ /// found, this function silently returns a null pointer. Otherwise,
+ /// it prints a message to stderr and aborts.
+ ///
+ virtual void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true);
+
+ /// mapSectionAddress - map a section to its target address space value.
+ /// Map the address of a JIT section as returned from the memory manager
+ /// to the address in the target process as the running code will see it.
+ /// This is the address which will be used for relocation resolution.
+ virtual void mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) {
+ Dyld.mapSectionAddress(LocalAddress, TargetAddress);
+ }
+ virtual void RegisterJITEventListener(JITEventListener *L);
+ virtual void UnregisterJITEventListener(JITEventListener *L);
+
+ // If successful, these function will implicitly finalize all loaded objects.
+ // To get a function address within MCJIT without causing a finalize, use
+ // getSymbolAddress.
+ virtual uint64_t getGlobalValueAddress(const std::string &Name);
+ virtual uint64_t getFunctionAddress(const std::string &Name);
+
+ /// @}
+ /// @name (Private) Registration Interfaces
+ /// @{
+
+ static void Register() {
+ MCJITCtor = createJIT;
+ }
+
+ static ExecutionEngine *createJIT(Module *M,
+ std::string *ErrorStr,
+ RTDyldMemoryManager *MemMgr,
+ bool GVsWithCode,
+ TargetMachine *TM);
+
+ // @}
+
+ // This is not directly exposed via the ExecutionEngine API, but it is
+ // used by the LinkingMemoryManager.
+ uint64_t getSymbolAddress(const std::string &Name,
+ bool CheckFunctionsOnly);
+
+protected:
+ /// emitObject -- Generate a JITed object in memory from the specified module
+ /// Currently, MCJIT only supports a single module and the module passed to
+ /// this function call is expected to be the contained module. The module
+ /// is passed as a parameter here to prepare for multiple module support in
+ /// the future.
+ ObjectBufferStream* emitObject(Module *M);
+
+ void NotifyObjectEmitted(const ObjectImage& Obj);
+ void NotifyFreeingObject(const ObjectImage& Obj);
+
+ uint64_t getExistingSymbolAddress(const std::string &Name);
+ Module *findModuleForSymbol(const std::string &Name,
+ bool CheckFunctionsOnly);
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp
new file mode 100644
index 000000000000..cf90e77e3895
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp
@@ -0,0 +1,177 @@
+//===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the section-based memory manager used by the MCJIT
+// execution engine and RuntimeDyld
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/Support/MathExtras.h"
+
+namespace llvm {
+
+uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size,
+ unsigned Alignment,
+ unsigned SectionID,
+ StringRef SectionName,
+ bool IsReadOnly) {
+ if (IsReadOnly)
+ return allocateSection(RODataMem, Size, Alignment);
+ return allocateSection(RWDataMem, Size, Alignment);
+}
+
+uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size,
+ unsigned Alignment,
+ unsigned SectionID,
+ StringRef SectionName) {
+ return allocateSection(CodeMem, Size, Alignment);
+}
+
+uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup,
+ uintptr_t Size,
+ unsigned Alignment) {
+ if (!Alignment)
+ Alignment = 16;
+
+ assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two.");
+
+ uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1)/Alignment + 1);
+ uintptr_t Addr = 0;
+
+ // Look in the list of free memory regions and use a block there if one
+ // is available.
+ for (int i = 0, e = MemGroup.FreeMem.size(); i != e; ++i) {
+ sys::MemoryBlock &MB = MemGroup.FreeMem[i];
+ if (MB.size() >= RequiredSize) {
+ Addr = (uintptr_t)MB.base();
+ uintptr_t EndOfBlock = Addr + MB.size();
+ // Align the address.
+ Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
+ // Store cutted free memory block.
+ MemGroup.FreeMem[i] = sys::MemoryBlock((void*)(Addr + Size),
+ EndOfBlock - Addr - Size);
+ return (uint8_t*)Addr;
+ }
+ }
+
+ // No pre-allocated free block was large enough. Allocate a new memory region.
+ // Note that all sections get allocated as read-write. The permissions will
+ // be updated later based on memory group.
+ //
+ // FIXME: It would be useful to define a default allocation size (or add
+ // it as a constructor parameter) to minimize the number of allocations.
+ //
+ // FIXME: Initialize the Near member for each memory group to avoid
+ // interleaving.
+ error_code ec;
+ sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(RequiredSize,
+ &MemGroup.Near,
+ sys::Memory::MF_READ |
+ sys::Memory::MF_WRITE,
+ ec);
+ if (ec) {
+ // FIXME: Add error propogation to the interface.
+ return NULL;
+ }
+
+ // Save this address as the basis for our next request
+ MemGroup.Near = MB;
+
+ MemGroup.AllocatedMem.push_back(MB);
+ Addr = (uintptr_t)MB.base();
+ uintptr_t EndOfBlock = Addr + MB.size();
+
+ // Align the address.
+ Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
+
+ // The allocateMappedMemory may allocate much more memory than we need. In
+ // this case, we store the unused memory as a free memory block.
+ unsigned FreeSize = EndOfBlock-Addr-Size;
+ if (FreeSize > 16)
+ MemGroup.FreeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize));
+
+ // Return aligned address
+ return (uint8_t*)Addr;
+}
+
+bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg)
+{
+ // FIXME: Should in-progress permissions be reverted if an error occurs?
+ error_code ec;
+
+ // Don't allow free memory blocks to be used after setting protection flags.
+ CodeMem.FreeMem.clear();
+
+ // Make code memory executable.
+ ec = applyMemoryGroupPermissions(CodeMem,
+ sys::Memory::MF_READ | sys::Memory::MF_EXEC);
+ if (ec) {
+ if (ErrMsg) {
+ *ErrMsg = ec.message();
+ }
+ return true;
+ }
+
+ // Don't allow free memory blocks to be used after setting protection flags.
+ RODataMem.FreeMem.clear();
+
+ // Make read-only data memory read-only.
+ ec = applyMemoryGroupPermissions(RODataMem,
+ sys::Memory::MF_READ | sys::Memory::MF_EXEC);
+ if (ec) {
+ if (ErrMsg) {
+ *ErrMsg = ec.message();
+ }
+ return true;
+ }
+
+ // Read-write data memory already has the correct permissions
+
+ // Some platforms with separate data cache and instruction cache require
+ // explicit cache flush, otherwise JIT code manipulations (like resolved
+ // relocations) will get to the data cache but not to the instruction cache.
+ invalidateInstructionCache();
+
+ return false;
+}
+
+error_code SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup,
+ unsigned Permissions) {
+
+ for (int i = 0, e = MemGroup.AllocatedMem.size(); i != e; ++i) {
+ error_code ec;
+ ec = sys::Memory::protectMappedMemory(MemGroup.AllocatedMem[i],
+ Permissions);
+ if (ec) {
+ return ec;
+ }
+ }
+
+ return error_code::success();
+}
+
+void SectionMemoryManager::invalidateInstructionCache() {
+ for (int i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::InvalidateInstructionCache(CodeMem.AllocatedMem[i].base(),
+ CodeMem.AllocatedMem[i].size());
+}
+
+SectionMemoryManager::~SectionMemoryManager() {
+ for (unsigned i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::releaseMappedMemory(CodeMem.AllocatedMem[i]);
+ for (unsigned i = 0, e = RWDataMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::releaseMappedMemory(RWDataMem.AllocatedMem[i]);
+ for (unsigned i = 0, e = RODataMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::releaseMappedMemory(RODataMem.AllocatedMem[i]);
+}
+
+} // namespace llvm
+