diff options
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp')
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp | 1335 |
1 files changed, 1335 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp new file mode 100644 index 000000000000..2a610d5b7e5b --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp @@ -0,0 +1,1335 @@ +//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the common interface used by the various execution engine +// subclasses. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "jit" +#include "llvm/ExecutionEngine/ExecutionEngine.h" +#include "llvm/ExecutionEngine/JITMemoryManager.h" +#include "llvm/ExecutionEngine/ObjectCache.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/DynamicLibrary.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Host.h" +#include "llvm/Support/MutexGuard.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <cmath> +#include <cstring> +using namespace llvm; + +STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); +STATISTIC(NumGlobals , "Number of global vars initialized"); + +// Pin the vtable to this file. +void ObjectCache::anchor() {} +void ObjectBuffer::anchor() {} +void ObjectBufferStream::anchor() {} + +ExecutionEngine *(*ExecutionEngine::JITCtor)( + Module *M, + std::string *ErrorStr, + JITMemoryManager *JMM, + bool GVsWithCode, + TargetMachine *TM) = 0; +ExecutionEngine *(*ExecutionEngine::MCJITCtor)( + Module *M, + std::string *ErrorStr, + RTDyldMemoryManager *MCJMM, + bool GVsWithCode, + TargetMachine *TM) = 0; +ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, + std::string *ErrorStr) = 0; + +ExecutionEngine::ExecutionEngine(Module *M) + : EEState(*this), + LazyFunctionCreator(0) { + CompilingLazily = false; + GVCompilationDisabled = false; + SymbolSearchingDisabled = false; + Modules.push_back(M); + assert(M && "Module is null?"); +} + +ExecutionEngine::~ExecutionEngine() { + clearAllGlobalMappings(); + for (unsigned i = 0, e = Modules.size(); i != e; ++i) + delete Modules[i]; +} + +namespace { +/// \brief Helper class which uses a value handler to automatically deletes the +/// memory block when the GlobalVariable is destroyed. +class GVMemoryBlock : public CallbackVH { + GVMemoryBlock(const GlobalVariable *GV) + : CallbackVH(const_cast<GlobalVariable*>(GV)) {} + +public: + /// \brief Returns the address the GlobalVariable should be written into. The + /// GVMemoryBlock object prefixes that. + static char *Create(const GlobalVariable *GV, const DataLayout& TD) { + Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); + void *RawMemory = ::operator new( + DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), + TD.getPreferredAlignment(GV)) + + GVSize); + new(RawMemory) GVMemoryBlock(GV); + return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); + } + + virtual void deleted() { + // We allocated with operator new and with some extra memory hanging off the + // end, so don't just delete this. I'm not sure if this is actually + // required. + this->~GVMemoryBlock(); + ::operator delete(this); + } +}; +} // anonymous namespace + +char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { + return GVMemoryBlock::Create(GV, *getDataLayout()); +} + +bool ExecutionEngine::removeModule(Module *M) { + for(SmallVectorImpl<Module *>::iterator I = Modules.begin(), + E = Modules.end(); I != E; ++I) { + Module *Found = *I; + if (Found == M) { + Modules.erase(I); + clearGlobalMappingsFromModule(M); + return true; + } + } + return false; +} + +Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { + for (unsigned i = 0, e = Modules.size(); i != e; ++i) { + if (Function *F = Modules[i]->getFunction(FnName)) + return F; + } + return 0; +} + + +void *ExecutionEngineState::RemoveMapping(const MutexGuard &, + const GlobalValue *ToUnmap) { + GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); + void *OldVal; + + // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the + // GlobalAddressMap. + if (I == GlobalAddressMap.end()) + OldVal = 0; + else { + OldVal = I->second; + GlobalAddressMap.erase(I); + } + + GlobalAddressReverseMap.erase(OldVal); + return OldVal; +} + +void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { + MutexGuard locked(lock); + + DEBUG(dbgs() << "JIT: Map \'" << GV->getName() + << "\' to [" << Addr << "]\n";); + void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; + assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); + CurVal = Addr; + + // If we are using the reverse mapping, add it too. + if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + AssertingVH<const GlobalValue> &V = + EEState.getGlobalAddressReverseMap(locked)[Addr]; + assert((V == 0 || GV == 0) && "GlobalMapping already established!"); + V = GV; + } +} + +void ExecutionEngine::clearAllGlobalMappings() { + MutexGuard locked(lock); + + EEState.getGlobalAddressMap(locked).clear(); + EEState.getGlobalAddressReverseMap(locked).clear(); +} + +void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { + MutexGuard locked(lock); + + for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) + EEState.RemoveMapping(locked, FI); + for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); + GI != GE; ++GI) + EEState.RemoveMapping(locked, GI); +} + +void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { + MutexGuard locked(lock); + + ExecutionEngineState::GlobalAddressMapTy &Map = + EEState.getGlobalAddressMap(locked); + + // Deleting from the mapping? + if (Addr == 0) + return EEState.RemoveMapping(locked, GV); + + void *&CurVal = Map[GV]; + void *OldVal = CurVal; + + if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) + EEState.getGlobalAddressReverseMap(locked).erase(CurVal); + CurVal = Addr; + + // If we are using the reverse mapping, add it too. + if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + AssertingVH<const GlobalValue> &V = + EEState.getGlobalAddressReverseMap(locked)[Addr]; + assert((V == 0 || GV == 0) && "GlobalMapping already established!"); + V = GV; + } + return OldVal; +} + +void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { + MutexGuard locked(lock); + + ExecutionEngineState::GlobalAddressMapTy::iterator I = + EEState.getGlobalAddressMap(locked).find(GV); + return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; +} + +const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { + MutexGuard locked(lock); + + // If we haven't computed the reverse mapping yet, do so first. + if (EEState.getGlobalAddressReverseMap(locked).empty()) { + for (ExecutionEngineState::GlobalAddressMapTy::iterator + I = EEState.getGlobalAddressMap(locked).begin(), + E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) + EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( + I->second, I->first)); + } + + std::map<void *, AssertingVH<const GlobalValue> >::iterator I = + EEState.getGlobalAddressReverseMap(locked).find(Addr); + return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; +} + +namespace { +class ArgvArray { + char *Array; + std::vector<char*> Values; +public: + ArgvArray() : Array(NULL) {} + ~ArgvArray() { clear(); } + void clear() { + delete[] Array; + Array = NULL; + for (size_t I = 0, E = Values.size(); I != E; ++I) { + delete[] Values[I]; + } + Values.clear(); + } + /// Turn a vector of strings into a nice argv style array of pointers to null + /// terminated strings. + void *reset(LLVMContext &C, ExecutionEngine *EE, + const std::vector<std::string> &InputArgv); +}; +} // anonymous namespace +void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, + const std::vector<std::string> &InputArgv) { + clear(); // Free the old contents. + unsigned PtrSize = EE->getDataLayout()->getPointerSize(); + Array = new char[(InputArgv.size()+1)*PtrSize]; + + DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); + Type *SBytePtr = Type::getInt8PtrTy(C); + + for (unsigned i = 0; i != InputArgv.size(); ++i) { + unsigned Size = InputArgv[i].size()+1; + char *Dest = new char[Size]; + Values.push_back(Dest); + DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); + + std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); + Dest[Size-1] = 0; + + // Endian safe: Array[i] = (PointerTy)Dest; + EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), + SBytePtr); + } + + // Null terminate it + EE->StoreValueToMemory(PTOGV(0), + (GenericValue*)(Array+InputArgv.size()*PtrSize), + SBytePtr); + return Array; +} + +void ExecutionEngine::runStaticConstructorsDestructors(Module *module, + bool isDtors) { + const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; + GlobalVariable *GV = module->getNamedGlobal(Name); + + // If this global has internal linkage, or if it has a use, then it must be + // an old-style (llvmgcc3) static ctor with __main linked in and in use. If + // this is the case, don't execute any of the global ctors, __main will do + // it. + if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; + + // Should be an array of '{ i32, void ()* }' structs. The first value is + // the init priority, which we ignore. + ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); + if (InitList == 0) + return; + for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { + ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); + if (CS == 0) continue; + + Constant *FP = CS->getOperand(1); + if (FP->isNullValue()) + continue; // Found a sentinal value, ignore. + + // Strip off constant expression casts. + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) + if (CE->isCast()) + FP = CE->getOperand(0); + + // Execute the ctor/dtor function! + if (Function *F = dyn_cast<Function>(FP)) + runFunction(F, std::vector<GenericValue>()); + + // FIXME: It is marginally lame that we just do nothing here if we see an + // entry we don't recognize. It might not be unreasonable for the verifier + // to not even allow this and just assert here. + } +} + +void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { + // Execute global ctors/dtors for each module in the program. + for (unsigned i = 0, e = Modules.size(); i != e; ++i) + runStaticConstructorsDestructors(Modules[i], isDtors); +} + +#ifndef NDEBUG +/// isTargetNullPtr - Return whether the target pointer stored at Loc is null. +static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { + unsigned PtrSize = EE->getDataLayout()->getPointerSize(); + for (unsigned i = 0; i < PtrSize; ++i) + if (*(i + (uint8_t*)Loc)) + return false; + return true; +} +#endif + +int ExecutionEngine::runFunctionAsMain(Function *Fn, + const std::vector<std::string> &argv, + const char * const * envp) { + std::vector<GenericValue> GVArgs; + GenericValue GVArgc; + GVArgc.IntVal = APInt(32, argv.size()); + + // Check main() type + unsigned NumArgs = Fn->getFunctionType()->getNumParams(); + FunctionType *FTy = Fn->getFunctionType(); + Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); + + // Check the argument types. + if (NumArgs > 3) + report_fatal_error("Invalid number of arguments of main() supplied"); + if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) + report_fatal_error("Invalid type for third argument of main() supplied"); + if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) + report_fatal_error("Invalid type for second argument of main() supplied"); + if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) + report_fatal_error("Invalid type for first argument of main() supplied"); + if (!FTy->getReturnType()->isIntegerTy() && + !FTy->getReturnType()->isVoidTy()) + report_fatal_error("Invalid return type of main() supplied"); + + ArgvArray CArgv; + ArgvArray CEnv; + if (NumArgs) { + GVArgs.push_back(GVArgc); // Arg #0 = argc. + if (NumArgs > 1) { + // Arg #1 = argv. + GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); + assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && + "argv[0] was null after CreateArgv"); + if (NumArgs > 2) { + std::vector<std::string> EnvVars; + for (unsigned i = 0; envp[i]; ++i) + EnvVars.push_back(envp[i]); + // Arg #2 = envp. + GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); + } + } + } + + return runFunction(Fn, GVArgs).IntVal.getZExtValue(); +} + +ExecutionEngine *ExecutionEngine::create(Module *M, + bool ForceInterpreter, + std::string *ErrorStr, + CodeGenOpt::Level OptLevel, + bool GVsWithCode) { + EngineBuilder EB = EngineBuilder(M) + .setEngineKind(ForceInterpreter + ? EngineKind::Interpreter + : EngineKind::JIT) + .setErrorStr(ErrorStr) + .setOptLevel(OptLevel) + .setAllocateGVsWithCode(GVsWithCode); + + return EB.create(); +} + +/// createJIT - This is the factory method for creating a JIT for the current +/// machine, it does not fall back to the interpreter. This takes ownership +/// of the module. +ExecutionEngine *ExecutionEngine::createJIT(Module *M, + std::string *ErrorStr, + JITMemoryManager *JMM, + CodeGenOpt::Level OL, + bool GVsWithCode, + Reloc::Model RM, + CodeModel::Model CMM) { + if (ExecutionEngine::JITCtor == 0) { + if (ErrorStr) + *ErrorStr = "JIT has not been linked in."; + return 0; + } + + // Use the defaults for extra parameters. Users can use EngineBuilder to + // set them. + EngineBuilder EB(M); + EB.setEngineKind(EngineKind::JIT); + EB.setErrorStr(ErrorStr); + EB.setRelocationModel(RM); + EB.setCodeModel(CMM); + EB.setAllocateGVsWithCode(GVsWithCode); + EB.setOptLevel(OL); + EB.setJITMemoryManager(JMM); + + // TODO: permit custom TargetOptions here + TargetMachine *TM = EB.selectTarget(); + if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; + + return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); +} + +ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { + OwningPtr<TargetMachine> TheTM(TM); // Take ownership. + + // Make sure we can resolve symbols in the program as well. The zero arg + // to the function tells DynamicLibrary to load the program, not a library. + if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) + return 0; + + assert(!(JMM && MCJMM)); + + // If the user specified a memory manager but didn't specify which engine to + // create, we assume they only want the JIT, and we fail if they only want + // the interpreter. + if (JMM || MCJMM) { + if (WhichEngine & EngineKind::JIT) + WhichEngine = EngineKind::JIT; + else { + if (ErrorStr) + *ErrorStr = "Cannot create an interpreter with a memory manager."; + return 0; + } + } + + if (MCJMM && ! UseMCJIT) { + if (ErrorStr) + *ErrorStr = + "Cannot create a legacy JIT with a runtime dyld memory " + "manager."; + return 0; + } + + // Unless the interpreter was explicitly selected or the JIT is not linked, + // try making a JIT. + if ((WhichEngine & EngineKind::JIT) && TheTM) { + Triple TT(M->getTargetTriple()); + if (!TM->getTarget().hasJIT()) { + errs() << "WARNING: This target JIT is not designed for the host" + << " you are running. If bad things happen, please choose" + << " a different -march switch.\n"; + } + + if (UseMCJIT && ExecutionEngine::MCJITCtor) { + ExecutionEngine *EE = + ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, + AllocateGVsWithCode, TheTM.take()); + if (EE) return EE; + } else if (ExecutionEngine::JITCtor) { + ExecutionEngine *EE = + ExecutionEngine::JITCtor(M, ErrorStr, JMM, + AllocateGVsWithCode, TheTM.take()); + if (EE) return EE; + } + } + + // If we can't make a JIT and we didn't request one specifically, try making + // an interpreter instead. + if (WhichEngine & EngineKind::Interpreter) { + if (ExecutionEngine::InterpCtor) + return ExecutionEngine::InterpCtor(M, ErrorStr); + if (ErrorStr) + *ErrorStr = "Interpreter has not been linked in."; + return 0; + } + + if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 && + ExecutionEngine::MCJITCtor == 0) { + if (ErrorStr) + *ErrorStr = "JIT has not been linked in."; + } + + return 0; +} + +void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { + if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) + return getPointerToFunction(F); + + MutexGuard locked(lock); + if (void *P = EEState.getGlobalAddressMap(locked)[GV]) + return P; + + // Global variable might have been added since interpreter started. + if (GlobalVariable *GVar = + const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) + EmitGlobalVariable(GVar); + else + llvm_unreachable("Global hasn't had an address allocated yet!"); + + return EEState.getGlobalAddressMap(locked)[GV]; +} + +/// \brief Converts a Constant* into a GenericValue, including handling of +/// ConstantExpr values. +GenericValue ExecutionEngine::getConstantValue(const Constant *C) { + // If its undefined, return the garbage. + if (isa<UndefValue>(C)) { + GenericValue Result; + switch (C->getType()->getTypeID()) { + default: + break; + case Type::IntegerTyID: + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + // Although the value is undefined, we still have to construct an APInt + // with the correct bit width. + Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); + break; + case Type::StructTyID: { + // if the whole struct is 'undef' just reserve memory for the value. + if(StructType *STy = dyn_cast<StructType>(C->getType())) { + unsigned int elemNum = STy->getNumElements(); + Result.AggregateVal.resize(elemNum); + for (unsigned int i = 0; i < elemNum; ++i) { + Type *ElemTy = STy->getElementType(i); + if (ElemTy->isIntegerTy()) + Result.AggregateVal[i].IntVal = + APInt(ElemTy->getPrimitiveSizeInBits(), 0); + else if (ElemTy->isAggregateType()) { + const Constant *ElemUndef = UndefValue::get(ElemTy); + Result.AggregateVal[i] = getConstantValue(ElemUndef); + } + } + } + } + break; + case Type::VectorTyID: + // if the whole vector is 'undef' just reserve memory for the value. + const VectorType* VTy = dyn_cast<VectorType>(C->getType()); + const Type *ElemTy = VTy->getElementType(); + unsigned int elemNum = VTy->getNumElements(); + Result.AggregateVal.resize(elemNum); + if (ElemTy->isIntegerTy()) + for (unsigned int i = 0; i < elemNum; ++i) + Result.AggregateVal[i].IntVal = + APInt(ElemTy->getPrimitiveSizeInBits(), 0); + break; + } + return Result; + } + + // Otherwise, if the value is a ConstantExpr... + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + Constant *Op0 = CE->getOperand(0); + switch (CE->getOpcode()) { + case Instruction::GetElementPtr: { + // Compute the index + GenericValue Result = getConstantValue(Op0); + APInt Offset(TD->getPointerSizeInBits(), 0); + cast<GEPOperator>(CE)->accumulateConstantOffset(*TD, Offset); + + char* tmp = (char*) Result.PointerVal; + Result = PTOGV(tmp + Offset.getSExtValue()); + return Result; + } + case Instruction::Trunc: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.trunc(BitWidth); + return GV; + } + case Instruction::ZExt: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.zext(BitWidth); + return GV; + } + case Instruction::SExt: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.sext(BitWidth); + return GV; + } + case Instruction::FPTrunc: { + // FIXME long double + GenericValue GV = getConstantValue(Op0); + GV.FloatVal = float(GV.DoubleVal); + return GV; + } + case Instruction::FPExt:{ + // FIXME long double + GenericValue GV = getConstantValue(Op0); + GV.DoubleVal = double(GV.FloatVal); + return GV; + } + case Instruction::UIToFP: { + GenericValue GV = getConstantValue(Op0); + if (CE->getType()->isFloatTy()) + GV.FloatVal = float(GV.IntVal.roundToDouble()); + else if (CE->getType()->isDoubleTy()) + GV.DoubleVal = GV.IntVal.roundToDouble(); + else if (CE->getType()->isX86_FP80Ty()) { + APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); + (void)apf.convertFromAPInt(GV.IntVal, + false, + APFloat::rmNearestTiesToEven); + GV.IntVal = apf.bitcastToAPInt(); + } + return GV; + } + case Instruction::SIToFP: { + GenericValue GV = getConstantValue(Op0); + if (CE->getType()->isFloatTy()) + GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); + else if (CE->getType()->isDoubleTy()) + GV.DoubleVal = GV.IntVal.signedRoundToDouble(); + else if (CE->getType()->isX86_FP80Ty()) { + APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); + (void)apf.convertFromAPInt(GV.IntVal, + true, + APFloat::rmNearestTiesToEven); + GV.IntVal = apf.bitcastToAPInt(); + } + return GV; + } + case Instruction::FPToUI: // double->APInt conversion handles sign + case Instruction::FPToSI: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + if (Op0->getType()->isFloatTy()) + GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); + else if (Op0->getType()->isDoubleTy()) + GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); + else if (Op0->getType()->isX86_FP80Ty()) { + APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); + uint64_t v; + bool ignored; + (void)apf.convertToInteger(&v, BitWidth, + CE->getOpcode()==Instruction::FPToSI, + APFloat::rmTowardZero, &ignored); + GV.IntVal = v; // endian? + } + return GV; + } + case Instruction::PtrToInt: { + GenericValue GV = getConstantValue(Op0); + uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType()); + assert(PtrWidth <= 64 && "Bad pointer width"); + GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); + uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType()); + GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); + return GV; + } + case Instruction::IntToPtr: { + GenericValue GV = getConstantValue(Op0); + uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType()); + GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); + assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); + GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); + return GV; + } + case Instruction::BitCast: { + GenericValue GV = getConstantValue(Op0); + Type* DestTy = CE->getType(); + switch (Op0->getType()->getTypeID()) { + default: llvm_unreachable("Invalid bitcast operand"); + case Type::IntegerTyID: + assert(DestTy->isFloatingPointTy() && "invalid bitcast"); + if (DestTy->isFloatTy()) + GV.FloatVal = GV.IntVal.bitsToFloat(); + else if (DestTy->isDoubleTy()) + GV.DoubleVal = GV.IntVal.bitsToDouble(); + break; + case Type::FloatTyID: + assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); + GV.IntVal = APInt::floatToBits(GV.FloatVal); + break; + case Type::DoubleTyID: + assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); + GV.IntVal = APInt::doubleToBits(GV.DoubleVal); + break; + case Type::PointerTyID: + assert(DestTy->isPointerTy() && "Invalid bitcast"); + break; // getConstantValue(Op0) above already converted it + } + return GV; + } + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + GenericValue LHS = getConstantValue(Op0); + GenericValue RHS = getConstantValue(CE->getOperand(1)); + GenericValue GV; + switch (CE->getOperand(0)->getType()->getTypeID()) { + default: llvm_unreachable("Bad add type!"); + case Type::IntegerTyID: + switch (CE->getOpcode()) { + default: llvm_unreachable("Invalid integer opcode"); + case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; + case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; + case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; + case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; + case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; + case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; + case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; + case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; + case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; + case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; + } + break; + case Type::FloatTyID: + switch (CE->getOpcode()) { + default: llvm_unreachable("Invalid float opcode"); + case Instruction::FAdd: + GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; + case Instruction::FSub: + GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; + case Instruction::FMul: + GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; + case Instruction::FDiv: + GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; + case Instruction::FRem: + GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; + } + break; + case Type::DoubleTyID: + switch (CE->getOpcode()) { + default: llvm_unreachable("Invalid double opcode"); + case Instruction::FAdd: + GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; + case Instruction::FSub: + GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; + case Instruction::FMul: + GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; + case Instruction::FDiv: + GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; + case Instruction::FRem: + GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; + } + break; + case Type::X86_FP80TyID: + case Type::PPC_FP128TyID: + case Type::FP128TyID: { + const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); + APFloat apfLHS = APFloat(Sem, LHS.IntVal); + switch (CE->getOpcode()) { + default: llvm_unreachable("Invalid long double opcode"); + case Instruction::FAdd: + apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FSub: + apfLHS.subtract(APFloat(Sem, RHS.IntVal), + APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FMul: + apfLHS.multiply(APFloat(Sem, RHS.IntVal), + APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FDiv: + apfLHS.divide(APFloat(Sem, RHS.IntVal), + APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + case Instruction::FRem: + apfLHS.mod(APFloat(Sem, RHS.IntVal), + APFloat::rmNearestTiesToEven); + GV.IntVal = apfLHS.bitcastToAPInt(); + break; + } + } + break; + } + return GV; + } + default: + break; + } + + SmallString<256> Msg; + raw_svector_ostream OS(Msg); + OS << "ConstantExpr not handled: " << *CE; + report_fatal_error(OS.str()); + } + + // Otherwise, we have a simple constant. + GenericValue Result; + switch (C->getType()->getTypeID()) { + case Type::FloatTyID: + Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); + break; + case Type::DoubleTyID: + Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); + break; + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); + break; + case Type::IntegerTyID: + Result.IntVal = cast<ConstantInt>(C)->getValue(); + break; + case Type::PointerTyID: + if (isa<ConstantPointerNull>(C)) + Result.PointerVal = 0; + else if (const Function *F = dyn_cast<Function>(C)) + Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); + else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) + Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); + else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) + Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( + BA->getBasicBlock()))); + else + llvm_unreachable("Unknown constant pointer type!"); + break; + case Type::VectorTyID: { + unsigned elemNum; + Type* ElemTy; + const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); + const ConstantVector *CV = dyn_cast<ConstantVector>(C); + const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); + + if (CDV) { + elemNum = CDV->getNumElements(); + ElemTy = CDV->getElementType(); + } else if (CV || CAZ) { + VectorType* VTy = dyn_cast<VectorType>(C->getType()); + elemNum = VTy->getNumElements(); + ElemTy = VTy->getElementType(); + } else { + llvm_unreachable("Unknown constant vector type!"); + } + + Result.AggregateVal.resize(elemNum); + // Check if vector holds floats. + if(ElemTy->isFloatTy()) { + if (CAZ) { + GenericValue floatZero; + floatZero.FloatVal = 0.f; + std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), + floatZero); + break; + } + if(CV) { + for (unsigned i = 0; i < elemNum; ++i) + if (!isa<UndefValue>(CV->getOperand(i))) + Result.AggregateVal[i].FloatVal = cast<ConstantFP>( + CV->getOperand(i))->getValueAPF().convertToFloat(); + break; + } + if(CDV) + for (unsigned i = 0; i < elemNum; ++i) + Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); + + break; + } + // Check if vector holds doubles. + if (ElemTy->isDoubleTy()) { + if (CAZ) { + GenericValue doubleZero; + doubleZero.DoubleVal = 0.0; + std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), + doubleZero); + break; + } + if(CV) { + for (unsigned i = 0; i < elemNum; ++i) + if (!isa<UndefValue>(CV->getOperand(i))) + Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( + CV->getOperand(i))->getValueAPF().convertToDouble(); + break; + } + if(CDV) + for (unsigned i = 0; i < elemNum; ++i) + Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); + + break; + } + // Check if vector holds integers. + if (ElemTy->isIntegerTy()) { + if (CAZ) { + GenericValue intZero; + intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); + std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), + intZero); + break; + } + if(CV) { + for (unsigned i = 0; i < elemNum; ++i) + if (!isa<UndefValue>(CV->getOperand(i))) + Result.AggregateVal[i].IntVal = cast<ConstantInt>( + CV->getOperand(i))->getValue(); + else { + Result.AggregateVal[i].IntVal = + APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); + } + break; + } + if(CDV) + for (unsigned i = 0; i < elemNum; ++i) + Result.AggregateVal[i].IntVal = APInt( + CDV->getElementType()->getPrimitiveSizeInBits(), + CDV->getElementAsInteger(i)); + + break; + } + llvm_unreachable("Unknown constant pointer type!"); + } + break; + + default: + SmallString<256> Msg; + raw_svector_ostream OS(Msg); + OS << "ERROR: Constant unimplemented for type: " << *C->getType(); + report_fatal_error(OS.str()); + } + + return Result; +} + +/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst +/// with the integer held in IntVal. +static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, + unsigned StoreBytes) { + assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); + const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); + + if (sys::IsLittleEndianHost) { + // Little-endian host - the source is ordered from LSB to MSB. Order the + // destination from LSB to MSB: Do a straight copy. + memcpy(Dst, Src, StoreBytes); + } else { + // Big-endian host - the source is an array of 64 bit words ordered from + // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination + // from MSB to LSB: Reverse the word order, but not the bytes in a word. + while (StoreBytes > sizeof(uint64_t)) { + StoreBytes -= sizeof(uint64_t); + // May not be aligned so use memcpy. + memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); + Src += sizeof(uint64_t); + } + + memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); + } +} + +void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, + GenericValue *Ptr, Type *Ty) { + const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); + + switch (Ty->getTypeID()) { + default: + dbgs() << "Cannot store value of type " << *Ty << "!\n"; + break; + case Type::IntegerTyID: + StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); + break; + case Type::FloatTyID: + *((float*)Ptr) = Val.FloatVal; + break; + case Type::DoubleTyID: + *((double*)Ptr) = Val.DoubleVal; + break; + case Type::X86_FP80TyID: + memcpy(Ptr, Val.IntVal.getRawData(), 10); + break; + case Type::PointerTyID: + // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. + if (StoreBytes != sizeof(PointerTy)) + memset(&(Ptr->PointerVal), 0, StoreBytes); + + *((PointerTy*)Ptr) = Val.PointerVal; + break; + case Type::VectorTyID: + for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { + if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) + *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; + if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) + *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; + if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { + unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; + StoreIntToMemory(Val.AggregateVal[i].IntVal, + (uint8_t*)Ptr + numOfBytes*i, numOfBytes); + } + } + break; + } + + if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) + // Host and target are different endian - reverse the stored bytes. + std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); +} + +/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting +/// from Src into IntVal, which is assumed to be wide enough and to hold zero. +static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { + assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); + uint8_t *Dst = reinterpret_cast<uint8_t *>( + const_cast<uint64_t *>(IntVal.getRawData())); + + if (sys::IsLittleEndianHost) + // Little-endian host - the destination must be ordered from LSB to MSB. + // The source is ordered from LSB to MSB: Do a straight copy. + memcpy(Dst, Src, LoadBytes); + else { + // Big-endian - the destination is an array of 64 bit words ordered from + // LSW to MSW. Each word must be ordered from MSB to LSB. The source is + // ordered from MSB to LSB: Reverse the word order, but not the bytes in + // a word. + while (LoadBytes > sizeof(uint64_t)) { + LoadBytes -= sizeof(uint64_t); + // May not be aligned so use memcpy. + memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); + Dst += sizeof(uint64_t); + } + + memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); + } +} + +/// FIXME: document +/// +void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, + GenericValue *Ptr, + Type *Ty) { + const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); + + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + // An APInt with all words initially zero. + Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); + LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); + break; + case Type::FloatTyID: + Result.FloatVal = *((float*)Ptr); + break; + case Type::DoubleTyID: + Result.DoubleVal = *((double*)Ptr); + break; + case Type::PointerTyID: + Result.PointerVal = *((PointerTy*)Ptr); + break; + case Type::X86_FP80TyID: { + // This is endian dependent, but it will only work on x86 anyway. + // FIXME: Will not trap if loading a signaling NaN. + uint64_t y[2]; + memcpy(y, Ptr, 10); + Result.IntVal = APInt(80, y); + break; + } + case Type::VectorTyID: { + const VectorType *VT = cast<VectorType>(Ty); + const Type *ElemT = VT->getElementType(); + const unsigned numElems = VT->getNumElements(); + if (ElemT->isFloatTy()) { + Result.AggregateVal.resize(numElems); + for (unsigned i = 0; i < numElems; ++i) + Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); + } + if (ElemT->isDoubleTy()) { + Result.AggregateVal.resize(numElems); + for (unsigned i = 0; i < numElems; ++i) + Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); + } + if (ElemT->isIntegerTy()) { + GenericValue intZero; + const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); + intZero.IntVal = APInt(elemBitWidth, 0); + Result.AggregateVal.resize(numElems, intZero); + for (unsigned i = 0; i < numElems; ++i) + LoadIntFromMemory(Result.AggregateVal[i].IntVal, + (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); + } + break; + } + default: + SmallString<256> Msg; + raw_svector_ostream OS(Msg); + OS << "Cannot load value of type " << *Ty << "!"; + report_fatal_error(OS.str()); + } +} + +void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { + DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); + DEBUG(Init->dump()); + if (isa<UndefValue>(Init)) + return; + + if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { + unsigned ElementSize = + getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); + for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) + InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); + return; + } + + if (isa<ConstantAggregateZero>(Init)) { + memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); + return; + } + + if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { + unsigned ElementSize = + getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); + for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) + InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); + return; + } + + if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { + const StructLayout *SL = + getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); + for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) + InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); + return; + } + + if (const ConstantDataSequential *CDS = + dyn_cast<ConstantDataSequential>(Init)) { + // CDS is already laid out in host memory order. + StringRef Data = CDS->getRawDataValues(); + memcpy(Addr, Data.data(), Data.size()); + return; + } + + if (Init->getType()->isFirstClassType()) { + GenericValue Val = getConstantValue(Init); + StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); + return; + } + + DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); + llvm_unreachable("Unknown constant type to initialize memory with!"); +} + +/// EmitGlobals - Emit all of the global variables to memory, storing their +/// addresses into GlobalAddress. This must make sure to copy the contents of +/// their initializers into the memory. +void ExecutionEngine::emitGlobals() { + // Loop over all of the global variables in the program, allocating the memory + // to hold them. If there is more than one module, do a prepass over globals + // to figure out how the different modules should link together. + std::map<std::pair<std::string, Type*>, + const GlobalValue*> LinkedGlobalsMap; + + if (Modules.size() != 1) { + for (unsigned m = 0, e = Modules.size(); m != e; ++m) { + Module &M = *Modules[m]; + for (Module::const_global_iterator I = M.global_begin(), + E = M.global_end(); I != E; ++I) { + const GlobalValue *GV = I; + if (GV->hasLocalLinkage() || GV->isDeclaration() || + GV->hasAppendingLinkage() || !GV->hasName()) + continue;// Ignore external globals and globals with internal linkage. + + const GlobalValue *&GVEntry = + LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; + + // If this is the first time we've seen this global, it is the canonical + // version. + if (!GVEntry) { + GVEntry = GV; + continue; + } + + // If the existing global is strong, never replace it. + if (GVEntry->hasExternalLinkage() || + GVEntry->hasDLLImportLinkage() || + GVEntry->hasDLLExportLinkage()) + continue; + + // Otherwise, we know it's linkonce/weak, replace it if this is a strong + // symbol. FIXME is this right for common? + if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) + GVEntry = GV; + } + } + } + + std::vector<const GlobalValue*> NonCanonicalGlobals; + for (unsigned m = 0, e = Modules.size(); m != e; ++m) { + Module &M = *Modules[m]; + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) { + // In the multi-module case, see what this global maps to. + if (!LinkedGlobalsMap.empty()) { + if (const GlobalValue *GVEntry = + LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { + // If something else is the canonical global, ignore this one. + if (GVEntry != &*I) { + NonCanonicalGlobals.push_back(I); + continue; + } + } + } + + if (!I->isDeclaration()) { + addGlobalMapping(I, getMemoryForGV(I)); + } else { + // External variable reference. Try to use the dynamic loader to + // get a pointer to it. + if (void *SymAddr = + sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) + addGlobalMapping(I, SymAddr); + else { + report_fatal_error("Could not resolve external global address: " + +I->getName()); + } + } + } + + // If there are multiple modules, map the non-canonical globals to their + // canonical location. + if (!NonCanonicalGlobals.empty()) { + for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { + const GlobalValue *GV = NonCanonicalGlobals[i]; + const GlobalValue *CGV = + LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; + void *Ptr = getPointerToGlobalIfAvailable(CGV); + assert(Ptr && "Canonical global wasn't codegen'd!"); + addGlobalMapping(GV, Ptr); + } + } + + // Now that all of the globals are set up in memory, loop through them all + // and initialize their contents. + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) { + if (!I->isDeclaration()) { + if (!LinkedGlobalsMap.empty()) { + if (const GlobalValue *GVEntry = + LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) + if (GVEntry != &*I) // Not the canonical variable. + continue; + } + EmitGlobalVariable(I); + } + } + } +} + +// EmitGlobalVariable - This method emits the specified global variable to the +// address specified in GlobalAddresses, or allocates new memory if it's not +// already in the map. +void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { + void *GA = getPointerToGlobalIfAvailable(GV); + + if (GA == 0) { + // If it's not already specified, allocate memory for the global. + GA = getMemoryForGV(GV); + + // If we failed to allocate memory for this global, return. + if (GA == 0) return; + + addGlobalMapping(GV, GA); + } + + // Don't initialize if it's thread local, let the client do it. + if (!GV->isThreadLocal()) + InitializeMemory(GV->getInitializer(), GA); + + Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); + NumInitBytes += (unsigned)GVSize; + ++NumGlobals; +} + +ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) + : EE(EE), GlobalAddressMap(this) { +} + +sys::Mutex * +ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { + return &EES->EE.lock; +} + +void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, + const GlobalValue *Old) { + void *OldVal = EES->GlobalAddressMap.lookup(Old); + EES->GlobalAddressReverseMap.erase(OldVal); +} + +void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, + const GlobalValue *, + const GlobalValue *) { + llvm_unreachable("The ExecutionEngine doesn't know how to handle a" + " RAUW on a value it has a global mapping for."); +} |