aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp')
-rw-r--r--contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp1335
1 files changed, 1335 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
new file mode 100644
index 000000000000..2a610d5b7e5b
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -0,0 +1,1335 @@
+//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the common interface used by the various execution engine
+// subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/ExecutionEngine/ObjectCache.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cmath>
+#include <cstring>
+using namespace llvm;
+
+STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
+STATISTIC(NumGlobals , "Number of global vars initialized");
+
+// Pin the vtable to this file.
+void ObjectCache::anchor() {}
+void ObjectBuffer::anchor() {}
+void ObjectBufferStream::anchor() {}
+
+ExecutionEngine *(*ExecutionEngine::JITCtor)(
+ Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM) = 0;
+ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
+ Module *M,
+ std::string *ErrorStr,
+ RTDyldMemoryManager *MCJMM,
+ bool GVsWithCode,
+ TargetMachine *TM) = 0;
+ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
+ std::string *ErrorStr) = 0;
+
+ExecutionEngine::ExecutionEngine(Module *M)
+ : EEState(*this),
+ LazyFunctionCreator(0) {
+ CompilingLazily = false;
+ GVCompilationDisabled = false;
+ SymbolSearchingDisabled = false;
+ Modules.push_back(M);
+ assert(M && "Module is null?");
+}
+
+ExecutionEngine::~ExecutionEngine() {
+ clearAllGlobalMappings();
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i)
+ delete Modules[i];
+}
+
+namespace {
+/// \brief Helper class which uses a value handler to automatically deletes the
+/// memory block when the GlobalVariable is destroyed.
+class GVMemoryBlock : public CallbackVH {
+ GVMemoryBlock(const GlobalVariable *GV)
+ : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
+
+public:
+ /// \brief Returns the address the GlobalVariable should be written into. The
+ /// GVMemoryBlock object prefixes that.
+ static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
+ Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
+ void *RawMemory = ::operator new(
+ DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock),
+ TD.getPreferredAlignment(GV))
+ + GVSize);
+ new(RawMemory) GVMemoryBlock(GV);
+ return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
+ }
+
+ virtual void deleted() {
+ // We allocated with operator new and with some extra memory hanging off the
+ // end, so don't just delete this. I'm not sure if this is actually
+ // required.
+ this->~GVMemoryBlock();
+ ::operator delete(this);
+ }
+};
+} // anonymous namespace
+
+char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
+ return GVMemoryBlock::Create(GV, *getDataLayout());
+}
+
+bool ExecutionEngine::removeModule(Module *M) {
+ for(SmallVectorImpl<Module *>::iterator I = Modules.begin(),
+ E = Modules.end(); I != E; ++I) {
+ Module *Found = *I;
+ if (Found == M) {
+ Modules.erase(I);
+ clearGlobalMappingsFromModule(M);
+ return true;
+ }
+ }
+ return false;
+}
+
+Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
+ if (Function *F = Modules[i]->getFunction(FnName))
+ return F;
+ }
+ return 0;
+}
+
+
+void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
+ const GlobalValue *ToUnmap) {
+ GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
+ void *OldVal;
+
+ // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
+ // GlobalAddressMap.
+ if (I == GlobalAddressMap.end())
+ OldVal = 0;
+ else {
+ OldVal = I->second;
+ GlobalAddressMap.erase(I);
+ }
+
+ GlobalAddressReverseMap.erase(OldVal);
+ return OldVal;
+}
+
+void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
+ MutexGuard locked(lock);
+
+ DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
+ << "\' to [" << Addr << "]\n";);
+ void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
+ assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too.
+ if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
+ AssertingVH<const GlobalValue> &V =
+ EEState.getGlobalAddressReverseMap(locked)[Addr];
+ assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+ V = GV;
+ }
+}
+
+void ExecutionEngine::clearAllGlobalMappings() {
+ MutexGuard locked(lock);
+
+ EEState.getGlobalAddressMap(locked).clear();
+ EEState.getGlobalAddressReverseMap(locked).clear();
+}
+
+void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
+ MutexGuard locked(lock);
+
+ for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
+ EEState.RemoveMapping(locked, FI);
+ for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
+ GI != GE; ++GI)
+ EEState.RemoveMapping(locked, GI);
+}
+
+void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
+ MutexGuard locked(lock);
+
+ ExecutionEngineState::GlobalAddressMapTy &Map =
+ EEState.getGlobalAddressMap(locked);
+
+ // Deleting from the mapping?
+ if (Addr == 0)
+ return EEState.RemoveMapping(locked, GV);
+
+ void *&CurVal = Map[GV];
+ void *OldVal = CurVal;
+
+ if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
+ EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too.
+ if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
+ AssertingVH<const GlobalValue> &V =
+ EEState.getGlobalAddressReverseMap(locked)[Addr];
+ assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+ V = GV;
+ }
+ return OldVal;
+}
+
+void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
+ MutexGuard locked(lock);
+
+ ExecutionEngineState::GlobalAddressMapTy::iterator I =
+ EEState.getGlobalAddressMap(locked).find(GV);
+ return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
+}
+
+const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
+ MutexGuard locked(lock);
+
+ // If we haven't computed the reverse mapping yet, do so first.
+ if (EEState.getGlobalAddressReverseMap(locked).empty()) {
+ for (ExecutionEngineState::GlobalAddressMapTy::iterator
+ I = EEState.getGlobalAddressMap(locked).begin(),
+ E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
+ EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
+ I->second, I->first));
+ }
+
+ std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
+ EEState.getGlobalAddressReverseMap(locked).find(Addr);
+ return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
+}
+
+namespace {
+class ArgvArray {
+ char *Array;
+ std::vector<char*> Values;
+public:
+ ArgvArray() : Array(NULL) {}
+ ~ArgvArray() { clear(); }
+ void clear() {
+ delete[] Array;
+ Array = NULL;
+ for (size_t I = 0, E = Values.size(); I != E; ++I) {
+ delete[] Values[I];
+ }
+ Values.clear();
+ }
+ /// Turn a vector of strings into a nice argv style array of pointers to null
+ /// terminated strings.
+ void *reset(LLVMContext &C, ExecutionEngine *EE,
+ const std::vector<std::string> &InputArgv);
+};
+} // anonymous namespace
+void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
+ const std::vector<std::string> &InputArgv) {
+ clear(); // Free the old contents.
+ unsigned PtrSize = EE->getDataLayout()->getPointerSize();
+ Array = new char[(InputArgv.size()+1)*PtrSize];
+
+ DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
+ Type *SBytePtr = Type::getInt8PtrTy(C);
+
+ for (unsigned i = 0; i != InputArgv.size(); ++i) {
+ unsigned Size = InputArgv[i].size()+1;
+ char *Dest = new char[Size];
+ Values.push_back(Dest);
+ DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
+
+ std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
+ Dest[Size-1] = 0;
+
+ // Endian safe: Array[i] = (PointerTy)Dest;
+ EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
+ SBytePtr);
+ }
+
+ // Null terminate it
+ EE->StoreValueToMemory(PTOGV(0),
+ (GenericValue*)(Array+InputArgv.size()*PtrSize),
+ SBytePtr);
+ return Array;
+}
+
+void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
+ bool isDtors) {
+ const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
+ GlobalVariable *GV = module->getNamedGlobal(Name);
+
+ // If this global has internal linkage, or if it has a use, then it must be
+ // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
+ // this is the case, don't execute any of the global ctors, __main will do
+ // it.
+ if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
+
+ // Should be an array of '{ i32, void ()* }' structs. The first value is
+ // the init priority, which we ignore.
+ ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (InitList == 0)
+ return;
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
+ ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
+ if (CS == 0) continue;
+
+ Constant *FP = CS->getOperand(1);
+ if (FP->isNullValue())
+ continue; // Found a sentinal value, ignore.
+
+ // Strip off constant expression casts.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+ if (CE->isCast())
+ FP = CE->getOperand(0);
+
+ // Execute the ctor/dtor function!
+ if (Function *F = dyn_cast<Function>(FP))
+ runFunction(F, std::vector<GenericValue>());
+
+ // FIXME: It is marginally lame that we just do nothing here if we see an
+ // entry we don't recognize. It might not be unreasonable for the verifier
+ // to not even allow this and just assert here.
+ }
+}
+
+void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
+ // Execute global ctors/dtors for each module in the program.
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i)
+ runStaticConstructorsDestructors(Modules[i], isDtors);
+}
+
+#ifndef NDEBUG
+/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
+static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
+ unsigned PtrSize = EE->getDataLayout()->getPointerSize();
+ for (unsigned i = 0; i < PtrSize; ++i)
+ if (*(i + (uint8_t*)Loc))
+ return false;
+ return true;
+}
+#endif
+
+int ExecutionEngine::runFunctionAsMain(Function *Fn,
+ const std::vector<std::string> &argv,
+ const char * const * envp) {
+ std::vector<GenericValue> GVArgs;
+ GenericValue GVArgc;
+ GVArgc.IntVal = APInt(32, argv.size());
+
+ // Check main() type
+ unsigned NumArgs = Fn->getFunctionType()->getNumParams();
+ FunctionType *FTy = Fn->getFunctionType();
+ Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
+
+ // Check the argument types.
+ if (NumArgs > 3)
+ report_fatal_error("Invalid number of arguments of main() supplied");
+ if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
+ report_fatal_error("Invalid type for third argument of main() supplied");
+ if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
+ report_fatal_error("Invalid type for second argument of main() supplied");
+ if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
+ report_fatal_error("Invalid type for first argument of main() supplied");
+ if (!FTy->getReturnType()->isIntegerTy() &&
+ !FTy->getReturnType()->isVoidTy())
+ report_fatal_error("Invalid return type of main() supplied");
+
+ ArgvArray CArgv;
+ ArgvArray CEnv;
+ if (NumArgs) {
+ GVArgs.push_back(GVArgc); // Arg #0 = argc.
+ if (NumArgs > 1) {
+ // Arg #1 = argv.
+ GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
+ assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
+ "argv[0] was null after CreateArgv");
+ if (NumArgs > 2) {
+ std::vector<std::string> EnvVars;
+ for (unsigned i = 0; envp[i]; ++i)
+ EnvVars.push_back(envp[i]);
+ // Arg #2 = envp.
+ GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
+ }
+ }
+ }
+
+ return runFunction(Fn, GVArgs).IntVal.getZExtValue();
+}
+
+ExecutionEngine *ExecutionEngine::create(Module *M,
+ bool ForceInterpreter,
+ std::string *ErrorStr,
+ CodeGenOpt::Level OptLevel,
+ bool GVsWithCode) {
+ EngineBuilder EB = EngineBuilder(M)
+ .setEngineKind(ForceInterpreter
+ ? EngineKind::Interpreter
+ : EngineKind::JIT)
+ .setErrorStr(ErrorStr)
+ .setOptLevel(OptLevel)
+ .setAllocateGVsWithCode(GVsWithCode);
+
+ return EB.create();
+}
+
+/// createJIT - This is the factory method for creating a JIT for the current
+/// machine, it does not fall back to the interpreter. This takes ownership
+/// of the module.
+ExecutionEngine *ExecutionEngine::createJIT(Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ CodeGenOpt::Level OL,
+ bool GVsWithCode,
+ Reloc::Model RM,
+ CodeModel::Model CMM) {
+ if (ExecutionEngine::JITCtor == 0) {
+ if (ErrorStr)
+ *ErrorStr = "JIT has not been linked in.";
+ return 0;
+ }
+
+ // Use the defaults for extra parameters. Users can use EngineBuilder to
+ // set them.
+ EngineBuilder EB(M);
+ EB.setEngineKind(EngineKind::JIT);
+ EB.setErrorStr(ErrorStr);
+ EB.setRelocationModel(RM);
+ EB.setCodeModel(CMM);
+ EB.setAllocateGVsWithCode(GVsWithCode);
+ EB.setOptLevel(OL);
+ EB.setJITMemoryManager(JMM);
+
+ // TODO: permit custom TargetOptions here
+ TargetMachine *TM = EB.selectTarget();
+ if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
+
+ return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM);
+}
+
+ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
+ OwningPtr<TargetMachine> TheTM(TM); // Take ownership.
+
+ // Make sure we can resolve symbols in the program as well. The zero arg
+ // to the function tells DynamicLibrary to load the program, not a library.
+ if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
+ return 0;
+
+ assert(!(JMM && MCJMM));
+
+ // If the user specified a memory manager but didn't specify which engine to
+ // create, we assume they only want the JIT, and we fail if they only want
+ // the interpreter.
+ if (JMM || MCJMM) {
+ if (WhichEngine & EngineKind::JIT)
+ WhichEngine = EngineKind::JIT;
+ else {
+ if (ErrorStr)
+ *ErrorStr = "Cannot create an interpreter with a memory manager.";
+ return 0;
+ }
+ }
+
+ if (MCJMM && ! UseMCJIT) {
+ if (ErrorStr)
+ *ErrorStr =
+ "Cannot create a legacy JIT with a runtime dyld memory "
+ "manager.";
+ return 0;
+ }
+
+ // Unless the interpreter was explicitly selected or the JIT is not linked,
+ // try making a JIT.
+ if ((WhichEngine & EngineKind::JIT) && TheTM) {
+ Triple TT(M->getTargetTriple());
+ if (!TM->getTarget().hasJIT()) {
+ errs() << "WARNING: This target JIT is not designed for the host"
+ << " you are running. If bad things happen, please choose"
+ << " a different -march switch.\n";
+ }
+
+ if (UseMCJIT && ExecutionEngine::MCJITCtor) {
+ ExecutionEngine *EE =
+ ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM,
+ AllocateGVsWithCode, TheTM.take());
+ if (EE) return EE;
+ } else if (ExecutionEngine::JITCtor) {
+ ExecutionEngine *EE =
+ ExecutionEngine::JITCtor(M, ErrorStr, JMM,
+ AllocateGVsWithCode, TheTM.take());
+ if (EE) return EE;
+ }
+ }
+
+ // If we can't make a JIT and we didn't request one specifically, try making
+ // an interpreter instead.
+ if (WhichEngine & EngineKind::Interpreter) {
+ if (ExecutionEngine::InterpCtor)
+ return ExecutionEngine::InterpCtor(M, ErrorStr);
+ if (ErrorStr)
+ *ErrorStr = "Interpreter has not been linked in.";
+ return 0;
+ }
+
+ if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 &&
+ ExecutionEngine::MCJITCtor == 0) {
+ if (ErrorStr)
+ *ErrorStr = "JIT has not been linked in.";
+ }
+
+ return 0;
+}
+
+void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
+ if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
+ return getPointerToFunction(F);
+
+ MutexGuard locked(lock);
+ if (void *P = EEState.getGlobalAddressMap(locked)[GV])
+ return P;
+
+ // Global variable might have been added since interpreter started.
+ if (GlobalVariable *GVar =
+ const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
+ EmitGlobalVariable(GVar);
+ else
+ llvm_unreachable("Global hasn't had an address allocated yet!");
+
+ return EEState.getGlobalAddressMap(locked)[GV];
+}
+
+/// \brief Converts a Constant* into a GenericValue, including handling of
+/// ConstantExpr values.
+GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
+ // If its undefined, return the garbage.
+ if (isa<UndefValue>(C)) {
+ GenericValue Result;
+ switch (C->getType()->getTypeID()) {
+ default:
+ break;
+ case Type::IntegerTyID:
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ // Although the value is undefined, we still have to construct an APInt
+ // with the correct bit width.
+ Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
+ break;
+ case Type::StructTyID: {
+ // if the whole struct is 'undef' just reserve memory for the value.
+ if(StructType *STy = dyn_cast<StructType>(C->getType())) {
+ unsigned int elemNum = STy->getNumElements();
+ Result.AggregateVal.resize(elemNum);
+ for (unsigned int i = 0; i < elemNum; ++i) {
+ Type *ElemTy = STy->getElementType(i);
+ if (ElemTy->isIntegerTy())
+ Result.AggregateVal[i].IntVal =
+ APInt(ElemTy->getPrimitiveSizeInBits(), 0);
+ else if (ElemTy->isAggregateType()) {
+ const Constant *ElemUndef = UndefValue::get(ElemTy);
+ Result.AggregateVal[i] = getConstantValue(ElemUndef);
+ }
+ }
+ }
+ }
+ break;
+ case Type::VectorTyID:
+ // if the whole vector is 'undef' just reserve memory for the value.
+ const VectorType* VTy = dyn_cast<VectorType>(C->getType());
+ const Type *ElemTy = VTy->getElementType();
+ unsigned int elemNum = VTy->getNumElements();
+ Result.AggregateVal.resize(elemNum);
+ if (ElemTy->isIntegerTy())
+ for (unsigned int i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].IntVal =
+ APInt(ElemTy->getPrimitiveSizeInBits(), 0);
+ break;
+ }
+ return Result;
+ }
+
+ // Otherwise, if the value is a ConstantExpr...
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ Constant *Op0 = CE->getOperand(0);
+ switch (CE->getOpcode()) {
+ case Instruction::GetElementPtr: {
+ // Compute the index
+ GenericValue Result = getConstantValue(Op0);
+ APInt Offset(TD->getPointerSizeInBits(), 0);
+ cast<GEPOperator>(CE)->accumulateConstantOffset(*TD, Offset);
+
+ char* tmp = (char*) Result.PointerVal;
+ Result = PTOGV(tmp + Offset.getSExtValue());
+ return Result;
+ }
+ case Instruction::Trunc: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.trunc(BitWidth);
+ return GV;
+ }
+ case Instruction::ZExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.zext(BitWidth);
+ return GV;
+ }
+ case Instruction::SExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.sext(BitWidth);
+ return GV;
+ }
+ case Instruction::FPTrunc: {
+ // FIXME long double
+ GenericValue GV = getConstantValue(Op0);
+ GV.FloatVal = float(GV.DoubleVal);
+ return GV;
+ }
+ case Instruction::FPExt:{
+ // FIXME long double
+ GenericValue GV = getConstantValue(Op0);
+ GV.DoubleVal = double(GV.FloatVal);
+ return GV;
+ }
+ case Instruction::UIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType()->isFloatTy())
+ GV.FloatVal = float(GV.IntVal.roundToDouble());
+ else if (CE->getType()->isDoubleTy())
+ GV.DoubleVal = GV.IntVal.roundToDouble();
+ else if (CE->getType()->isX86_FP80Ty()) {
+ APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
+ (void)apf.convertFromAPInt(GV.IntVal,
+ false,
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apf.bitcastToAPInt();
+ }
+ return GV;
+ }
+ case Instruction::SIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType()->isFloatTy())
+ GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
+ else if (CE->getType()->isDoubleTy())
+ GV.DoubleVal = GV.IntVal.signedRoundToDouble();
+ else if (CE->getType()->isX86_FP80Ty()) {
+ APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
+ (void)apf.convertFromAPInt(GV.IntVal,
+ true,
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apf.bitcastToAPInt();
+ }
+ return GV;
+ }
+ case Instruction::FPToUI: // double->APInt conversion handles sign
+ case Instruction::FPToSI: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ if (Op0->getType()->isFloatTy())
+ GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
+ else if (Op0->getType()->isDoubleTy())
+ GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
+ else if (Op0->getType()->isX86_FP80Ty()) {
+ APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
+ uint64_t v;
+ bool ignored;
+ (void)apf.convertToInteger(&v, BitWidth,
+ CE->getOpcode()==Instruction::FPToSI,
+ APFloat::rmTowardZero, &ignored);
+ GV.IntVal = v; // endian?
+ }
+ return GV;
+ }
+ case Instruction::PtrToInt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType());
+ assert(PtrWidth <= 64 && "Bad pointer width");
+ GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
+ uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType());
+ GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
+ return GV;
+ }
+ case Instruction::IntToPtr: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType());
+ GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
+ assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
+ GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
+ return GV;
+ }
+ case Instruction::BitCast: {
+ GenericValue GV = getConstantValue(Op0);
+ Type* DestTy = CE->getType();
+ switch (Op0->getType()->getTypeID()) {
+ default: llvm_unreachable("Invalid bitcast operand");
+ case Type::IntegerTyID:
+ assert(DestTy->isFloatingPointTy() && "invalid bitcast");
+ if (DestTy->isFloatTy())
+ GV.FloatVal = GV.IntVal.bitsToFloat();
+ else if (DestTy->isDoubleTy())
+ GV.DoubleVal = GV.IntVal.bitsToDouble();
+ break;
+ case Type::FloatTyID:
+ assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
+ GV.IntVal = APInt::floatToBits(GV.FloatVal);
+ break;
+ case Type::DoubleTyID:
+ assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
+ GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
+ break;
+ case Type::PointerTyID:
+ assert(DestTy->isPointerTy() && "Invalid bitcast");
+ break; // getConstantValue(Op0) above already converted it
+ }
+ return GV;
+ }
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ GenericValue LHS = getConstantValue(Op0);
+ GenericValue RHS = getConstantValue(CE->getOperand(1));
+ GenericValue GV;
+ switch (CE->getOperand(0)->getType()->getTypeID()) {
+ default: llvm_unreachable("Bad add type!");
+ case Type::IntegerTyID:
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid integer opcode");
+ case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
+ case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
+ case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
+ case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
+ case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
+ case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
+ case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
+ case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
+ case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
+ case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
+ }
+ break;
+ case Type::FloatTyID:
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid float opcode");
+ case Instruction::FAdd:
+ GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
+ case Instruction::FSub:
+ GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
+ case Instruction::FMul:
+ GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
+ case Instruction::FDiv:
+ GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
+ case Instruction::FRem:
+ GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
+ }
+ break;
+ case Type::DoubleTyID:
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid double opcode");
+ case Instruction::FAdd:
+ GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
+ case Instruction::FSub:
+ GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
+ case Instruction::FMul:
+ GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
+ case Instruction::FDiv:
+ GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
+ case Instruction::FRem:
+ GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
+ }
+ break;
+ case Type::X86_FP80TyID:
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID: {
+ const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
+ APFloat apfLHS = APFloat(Sem, LHS.IntVal);
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid long double opcode");
+ case Instruction::FAdd:
+ apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FSub:
+ apfLHS.subtract(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FMul:
+ apfLHS.multiply(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FDiv:
+ apfLHS.divide(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FRem:
+ apfLHS.mod(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ }
+ }
+ break;
+ }
+ return GV;
+ }
+ default:
+ break;
+ }
+
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ConstantExpr not handled: " << *CE;
+ report_fatal_error(OS.str());
+ }
+
+ // Otherwise, we have a simple constant.
+ GenericValue Result;
+ switch (C->getType()->getTypeID()) {
+ case Type::FloatTyID:
+ Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
+ break;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
+ break;
+ case Type::IntegerTyID:
+ Result.IntVal = cast<ConstantInt>(C)->getValue();
+ break;
+ case Type::PointerTyID:
+ if (isa<ConstantPointerNull>(C))
+ Result.PointerVal = 0;
+ else if (const Function *F = dyn_cast<Function>(C))
+ Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
+ else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
+ Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
+ else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
+ Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
+ BA->getBasicBlock())));
+ else
+ llvm_unreachable("Unknown constant pointer type!");
+ break;
+ case Type::VectorTyID: {
+ unsigned elemNum;
+ Type* ElemTy;
+ const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
+ const ConstantVector *CV = dyn_cast<ConstantVector>(C);
+ const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
+
+ if (CDV) {
+ elemNum = CDV->getNumElements();
+ ElemTy = CDV->getElementType();
+ } else if (CV || CAZ) {
+ VectorType* VTy = dyn_cast<VectorType>(C->getType());
+ elemNum = VTy->getNumElements();
+ ElemTy = VTy->getElementType();
+ } else {
+ llvm_unreachable("Unknown constant vector type!");
+ }
+
+ Result.AggregateVal.resize(elemNum);
+ // Check if vector holds floats.
+ if(ElemTy->isFloatTy()) {
+ if (CAZ) {
+ GenericValue floatZero;
+ floatZero.FloatVal = 0.f;
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ floatZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
+ CV->getOperand(i))->getValueAPF().convertToFloat();
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
+
+ break;
+ }
+ // Check if vector holds doubles.
+ if (ElemTy->isDoubleTy()) {
+ if (CAZ) {
+ GenericValue doubleZero;
+ doubleZero.DoubleVal = 0.0;
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ doubleZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
+ CV->getOperand(i))->getValueAPF().convertToDouble();
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
+
+ break;
+ }
+ // Check if vector holds integers.
+ if (ElemTy->isIntegerTy()) {
+ if (CAZ) {
+ GenericValue intZero;
+ intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ intZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].IntVal = cast<ConstantInt>(
+ CV->getOperand(i))->getValue();
+ else {
+ Result.AggregateVal[i].IntVal =
+ APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
+ }
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].IntVal = APInt(
+ CDV->getElementType()->getPrimitiveSizeInBits(),
+ CDV->getElementAsInteger(i));
+
+ break;
+ }
+ llvm_unreachable("Unknown constant pointer type!");
+ }
+ break;
+
+ default:
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ERROR: Constant unimplemented for type: " << *C->getType();
+ report_fatal_error(OS.str());
+ }
+
+ return Result;
+}
+
+/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
+/// with the integer held in IntVal.
+static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
+ unsigned StoreBytes) {
+ assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
+ const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
+
+ if (sys::IsLittleEndianHost) {
+ // Little-endian host - the source is ordered from LSB to MSB. Order the
+ // destination from LSB to MSB: Do a straight copy.
+ memcpy(Dst, Src, StoreBytes);
+ } else {
+ // Big-endian host - the source is an array of 64 bit words ordered from
+ // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
+ // from MSB to LSB: Reverse the word order, but not the bytes in a word.
+ while (StoreBytes > sizeof(uint64_t)) {
+ StoreBytes -= sizeof(uint64_t);
+ // May not be aligned so use memcpy.
+ memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
+ Src += sizeof(uint64_t);
+ }
+
+ memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
+ }
+}
+
+void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
+ GenericValue *Ptr, Type *Ty) {
+ const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
+
+ switch (Ty->getTypeID()) {
+ default:
+ dbgs() << "Cannot store value of type " << *Ty << "!\n";
+ break;
+ case Type::IntegerTyID:
+ StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
+ break;
+ case Type::FloatTyID:
+ *((float*)Ptr) = Val.FloatVal;
+ break;
+ case Type::DoubleTyID:
+ *((double*)Ptr) = Val.DoubleVal;
+ break;
+ case Type::X86_FP80TyID:
+ memcpy(Ptr, Val.IntVal.getRawData(), 10);
+ break;
+ case Type::PointerTyID:
+ // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
+ if (StoreBytes != sizeof(PointerTy))
+ memset(&(Ptr->PointerVal), 0, StoreBytes);
+
+ *((PointerTy*)Ptr) = Val.PointerVal;
+ break;
+ case Type::VectorTyID:
+ for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
+ if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
+ *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
+ if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
+ *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
+ if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
+ unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
+ StoreIntToMemory(Val.AggregateVal[i].IntVal,
+ (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
+ }
+ }
+ break;
+ }
+
+ if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian())
+ // Host and target are different endian - reverse the stored bytes.
+ std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
+}
+
+/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
+/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
+static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
+ assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
+ uint8_t *Dst = reinterpret_cast<uint8_t *>(
+ const_cast<uint64_t *>(IntVal.getRawData()));
+
+ if (sys::IsLittleEndianHost)
+ // Little-endian host - the destination must be ordered from LSB to MSB.
+ // The source is ordered from LSB to MSB: Do a straight copy.
+ memcpy(Dst, Src, LoadBytes);
+ else {
+ // Big-endian - the destination is an array of 64 bit words ordered from
+ // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
+ // ordered from MSB to LSB: Reverse the word order, but not the bytes in
+ // a word.
+ while (LoadBytes > sizeof(uint64_t)) {
+ LoadBytes -= sizeof(uint64_t);
+ // May not be aligned so use memcpy.
+ memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
+ Dst += sizeof(uint64_t);
+ }
+
+ memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
+ }
+}
+
+/// FIXME: document
+///
+void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
+ GenericValue *Ptr,
+ Type *Ty) {
+ const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty);
+
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ // An APInt with all words initially zero.
+ Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
+ LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
+ break;
+ case Type::FloatTyID:
+ Result.FloatVal = *((float*)Ptr);
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = *((double*)Ptr);
+ break;
+ case Type::PointerTyID:
+ Result.PointerVal = *((PointerTy*)Ptr);
+ break;
+ case Type::X86_FP80TyID: {
+ // This is endian dependent, but it will only work on x86 anyway.
+ // FIXME: Will not trap if loading a signaling NaN.
+ uint64_t y[2];
+ memcpy(y, Ptr, 10);
+ Result.IntVal = APInt(80, y);
+ break;
+ }
+ case Type::VectorTyID: {
+ const VectorType *VT = cast<VectorType>(Ty);
+ const Type *ElemT = VT->getElementType();
+ const unsigned numElems = VT->getNumElements();
+ if (ElemT->isFloatTy()) {
+ Result.AggregateVal.resize(numElems);
+ for (unsigned i = 0; i < numElems; ++i)
+ Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
+ }
+ if (ElemT->isDoubleTy()) {
+ Result.AggregateVal.resize(numElems);
+ for (unsigned i = 0; i < numElems; ++i)
+ Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
+ }
+ if (ElemT->isIntegerTy()) {
+ GenericValue intZero;
+ const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
+ intZero.IntVal = APInt(elemBitWidth, 0);
+ Result.AggregateVal.resize(numElems, intZero);
+ for (unsigned i = 0; i < numElems; ++i)
+ LoadIntFromMemory(Result.AggregateVal[i].IntVal,
+ (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
+ }
+ break;
+ }
+ default:
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "Cannot load value of type " << *Ty << "!";
+ report_fatal_error(OS.str());
+ }
+}
+
+void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
+ DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
+ DEBUG(Init->dump());
+ if (isa<UndefValue>(Init))
+ return;
+
+ if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
+ unsigned ElementSize =
+ getDataLayout()->getTypeAllocSize(CP->getType()->getElementType());
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+ InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ }
+
+ if (isa<ConstantAggregateZero>(Init)) {
+ memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType()));
+ return;
+ }
+
+ if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
+ unsigned ElementSize =
+ getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType());
+ for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ }
+
+ if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
+ const StructLayout *SL =
+ getDataLayout()->getStructLayout(cast<StructType>(CPS->getType()));
+ for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
+ return;
+ }
+
+ if (const ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(Init)) {
+ // CDS is already laid out in host memory order.
+ StringRef Data = CDS->getRawDataValues();
+ memcpy(Addr, Data.data(), Data.size());
+ return;
+ }
+
+ if (Init->getType()->isFirstClassType()) {
+ GenericValue Val = getConstantValue(Init);
+ StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
+ return;
+ }
+
+ DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
+ llvm_unreachable("Unknown constant type to initialize memory with!");
+}
+
+/// EmitGlobals - Emit all of the global variables to memory, storing their
+/// addresses into GlobalAddress. This must make sure to copy the contents of
+/// their initializers into the memory.
+void ExecutionEngine::emitGlobals() {
+ // Loop over all of the global variables in the program, allocating the memory
+ // to hold them. If there is more than one module, do a prepass over globals
+ // to figure out how the different modules should link together.
+ std::map<std::pair<std::string, Type*>,
+ const GlobalValue*> LinkedGlobalsMap;
+
+ if (Modules.size() != 1) {
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m];
+ for (Module::const_global_iterator I = M.global_begin(),
+ E = M.global_end(); I != E; ++I) {
+ const GlobalValue *GV = I;
+ if (GV->hasLocalLinkage() || GV->isDeclaration() ||
+ GV->hasAppendingLinkage() || !GV->hasName())
+ continue;// Ignore external globals and globals with internal linkage.
+
+ const GlobalValue *&GVEntry =
+ LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+
+ // If this is the first time we've seen this global, it is the canonical
+ // version.
+ if (!GVEntry) {
+ GVEntry = GV;
+ continue;
+ }
+
+ // If the existing global is strong, never replace it.
+ if (GVEntry->hasExternalLinkage() ||
+ GVEntry->hasDLLImportLinkage() ||
+ GVEntry->hasDLLExportLinkage())
+ continue;
+
+ // Otherwise, we know it's linkonce/weak, replace it if this is a strong
+ // symbol. FIXME is this right for common?
+ if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
+ GVEntry = GV;
+ }
+ }
+ }
+
+ std::vector<const GlobalValue*> NonCanonicalGlobals;
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m];
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+ // In the multi-module case, see what this global maps to.
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
+ // If something else is the canonical global, ignore this one.
+ if (GVEntry != &*I) {
+ NonCanonicalGlobals.push_back(I);
+ continue;
+ }
+ }
+ }
+
+ if (!I->isDeclaration()) {
+ addGlobalMapping(I, getMemoryForGV(I));
+ } else {
+ // External variable reference. Try to use the dynamic loader to
+ // get a pointer to it.
+ if (void *SymAddr =
+ sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
+ addGlobalMapping(I, SymAddr);
+ else {
+ report_fatal_error("Could not resolve external global address: "
+ +I->getName());
+ }
+ }
+ }
+
+ // If there are multiple modules, map the non-canonical globals to their
+ // canonical location.
+ if (!NonCanonicalGlobals.empty()) {
+ for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
+ const GlobalValue *GV = NonCanonicalGlobals[i];
+ const GlobalValue *CGV =
+ LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+ void *Ptr = getPointerToGlobalIfAvailable(CGV);
+ assert(Ptr && "Canonical global wasn't codegen'd!");
+ addGlobalMapping(GV, Ptr);
+ }
+ }
+
+ // Now that all of the globals are set up in memory, loop through them all
+ // and initialize their contents.
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+ if (!I->isDeclaration()) {
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
+ if (GVEntry != &*I) // Not the canonical variable.
+ continue;
+ }
+ EmitGlobalVariable(I);
+ }
+ }
+ }
+}
+
+// EmitGlobalVariable - This method emits the specified global variable to the
+// address specified in GlobalAddresses, or allocates new memory if it's not
+// already in the map.
+void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
+ void *GA = getPointerToGlobalIfAvailable(GV);
+
+ if (GA == 0) {
+ // If it's not already specified, allocate memory for the global.
+ GA = getMemoryForGV(GV);
+
+ // If we failed to allocate memory for this global, return.
+ if (GA == 0) return;
+
+ addGlobalMapping(GV, GA);
+ }
+
+ // Don't initialize if it's thread local, let the client do it.
+ if (!GV->isThreadLocal())
+ InitializeMemory(GV->getInitializer(), GA);
+
+ Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy);
+ NumInitBytes += (unsigned)GVSize;
+ ++NumGlobals;
+}
+
+ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
+ : EE(EE), GlobalAddressMap(this) {
+}
+
+sys::Mutex *
+ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
+ return &EES->EE.lock;
+}
+
+void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
+ const GlobalValue *Old) {
+ void *OldVal = EES->GlobalAddressMap.lookup(Old);
+ EES->GlobalAddressReverseMap.erase(OldVal);
+}
+
+void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
+ const GlobalValue *,
+ const GlobalValue *) {
+ llvm_unreachable("The ExecutionEngine doesn't know how to handle a"
+ " RAUW on a value it has a global mapping for.");
+}