aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/SplitKit.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SplitKit.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SplitKit.cpp1525
1 files changed, 1525 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SplitKit.cpp b/contrib/llvm/lib/CodeGen/SplitKit.cpp
new file mode 100644
index 000000000000..07be24b18dd5
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SplitKit.cpp
@@ -0,0 +1,1525 @@
+//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SplitAnalysis class as well as mutator functions for
+// live range splitting.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SplitKit.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveRangeEdit.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+STATISTIC(NumFinished, "Number of splits finished");
+STATISTIC(NumSimple, "Number of splits that were simple");
+STATISTIC(NumCopies, "Number of copies inserted for splitting");
+STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
+STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
+
+//===----------------------------------------------------------------------===//
+// Last Insert Point Analysis
+//===----------------------------------------------------------------------===//
+
+InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
+ unsigned BBNum)
+ : LIS(lis), LastInsertPoint(BBNum) {}
+
+SlotIndex
+InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
+ const MachineBasicBlock &MBB) {
+ unsigned Num = MBB.getNumber();
+ std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
+ SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
+
+ SmallVector<const MachineBasicBlock *, 1> EHPadSucessors;
+ for (const MachineBasicBlock *SMBB : MBB.successors())
+ if (SMBB->isEHPad())
+ EHPadSucessors.push_back(SMBB);
+
+ // Compute insert points on the first call. The pair is independent of the
+ // current live interval.
+ if (!LIP.first.isValid()) {
+ MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
+ if (FirstTerm == MBB.end())
+ LIP.first = MBBEnd;
+ else
+ LIP.first = LIS.getInstructionIndex(*FirstTerm);
+
+ // If there is a landing pad successor, also find the call instruction.
+ if (EHPadSucessors.empty())
+ return LIP.first;
+ // There may not be a call instruction (?) in which case we ignore LPad.
+ LIP.second = LIP.first;
+ for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
+ I != E;) {
+ --I;
+ if (I->isCall()) {
+ LIP.second = LIS.getInstructionIndex(*I);
+ break;
+ }
+ }
+ }
+
+ // If CurLI is live into a landing pad successor, move the last insert point
+ // back to the call that may throw.
+ if (!LIP.second)
+ return LIP.first;
+
+ if (none_of(EHPadSucessors, [&](const MachineBasicBlock *EHPad) {
+ return LIS.isLiveInToMBB(CurLI, EHPad);
+ }))
+ return LIP.first;
+
+ // Find the value leaving MBB.
+ const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
+ if (!VNI)
+ return LIP.first;
+
+ // If the value leaving MBB was defined after the call in MBB, it can't
+ // really be live-in to the landing pad. This can happen if the landing pad
+ // has a PHI, and this register is undef on the exceptional edge.
+ // <rdar://problem/10664933>
+ if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
+ return LIP.first;
+
+ // Value is properly live-in to the landing pad.
+ // Only allow inserts before the call.
+ return LIP.second;
+}
+
+MachineBasicBlock::iterator
+InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
+ MachineBasicBlock &MBB) {
+ SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
+ if (LIP == LIS.getMBBEndIdx(&MBB))
+ return MBB.end();
+ return LIS.getInstructionFromIndex(LIP);
+}
+
+//===----------------------------------------------------------------------===//
+// Split Analysis
+//===----------------------------------------------------------------------===//
+
+SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
+ const MachineLoopInfo &mli)
+ : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
+ TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
+ IPA(lis, MF.getNumBlockIDs()) {}
+
+void SplitAnalysis::clear() {
+ UseSlots.clear();
+ UseBlocks.clear();
+ ThroughBlocks.clear();
+ CurLI = nullptr;
+ DidRepairRange = false;
+}
+
+/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
+void SplitAnalysis::analyzeUses() {
+ assert(UseSlots.empty() && "Call clear first");
+
+ // First get all the defs from the interval values. This provides the correct
+ // slots for early clobbers.
+ for (const VNInfo *VNI : CurLI->valnos)
+ if (!VNI->isPHIDef() && !VNI->isUnused())
+ UseSlots.push_back(VNI->def);
+
+ // Get use slots form the use-def chain.
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
+ if (!MO.isUndef())
+ UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
+
+ array_pod_sort(UseSlots.begin(), UseSlots.end());
+
+ // Remove duplicates, keeping the smaller slot for each instruction.
+ // That is what we want for early clobbers.
+ UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
+ SlotIndex::isSameInstr),
+ UseSlots.end());
+
+ // Compute per-live block info.
+ if (!calcLiveBlockInfo()) {
+ // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
+ // I am looking at you, RegisterCoalescer!
+ DidRepairRange = true;
+ ++NumRepairs;
+ DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
+ const_cast<LiveIntervals&>(LIS)
+ .shrinkToUses(const_cast<LiveInterval*>(CurLI));
+ UseBlocks.clear();
+ ThroughBlocks.clear();
+ bool fixed = calcLiveBlockInfo();
+ (void)fixed;
+ assert(fixed && "Couldn't fix broken live interval");
+ }
+
+ DEBUG(dbgs() << "Analyze counted "
+ << UseSlots.size() << " instrs in "
+ << UseBlocks.size() << " blocks, through "
+ << NumThroughBlocks << " blocks.\n");
+}
+
+/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
+/// where CurLI is live.
+bool SplitAnalysis::calcLiveBlockInfo() {
+ ThroughBlocks.resize(MF.getNumBlockIDs());
+ NumThroughBlocks = NumGapBlocks = 0;
+ if (CurLI->empty())
+ return true;
+
+ LiveInterval::const_iterator LVI = CurLI->begin();
+ LiveInterval::const_iterator LVE = CurLI->end();
+
+ SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
+ UseI = UseSlots.begin();
+ UseE = UseSlots.end();
+
+ // Loop over basic blocks where CurLI is live.
+ MachineFunction::iterator MFI =
+ LIS.getMBBFromIndex(LVI->start)->getIterator();
+ for (;;) {
+ BlockInfo BI;
+ BI.MBB = &*MFI;
+ SlotIndex Start, Stop;
+ std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
+
+ // If the block contains no uses, the range must be live through. At one
+ // point, RegisterCoalescer could create dangling ranges that ended
+ // mid-block.
+ if (UseI == UseE || *UseI >= Stop) {
+ ++NumThroughBlocks;
+ ThroughBlocks.set(BI.MBB->getNumber());
+ // The range shouldn't end mid-block if there are no uses. This shouldn't
+ // happen.
+ if (LVI->end < Stop)
+ return false;
+ } else {
+ // This block has uses. Find the first and last uses in the block.
+ BI.FirstInstr = *UseI;
+ assert(BI.FirstInstr >= Start);
+ do ++UseI;
+ while (UseI != UseE && *UseI < Stop);
+ BI.LastInstr = UseI[-1];
+ assert(BI.LastInstr < Stop);
+
+ // LVI is the first live segment overlapping MBB.
+ BI.LiveIn = LVI->start <= Start;
+
+ // When not live in, the first use should be a def.
+ if (!BI.LiveIn) {
+ assert(LVI->start == LVI->valno->def && "Dangling Segment start");
+ assert(LVI->start == BI.FirstInstr && "First instr should be a def");
+ BI.FirstDef = BI.FirstInstr;
+ }
+
+ // Look for gaps in the live range.
+ BI.LiveOut = true;
+ while (LVI->end < Stop) {
+ SlotIndex LastStop = LVI->end;
+ if (++LVI == LVE || LVI->start >= Stop) {
+ BI.LiveOut = false;
+ BI.LastInstr = LastStop;
+ break;
+ }
+
+ if (LastStop < LVI->start) {
+ // There is a gap in the live range. Create duplicate entries for the
+ // live-in snippet and the live-out snippet.
+ ++NumGapBlocks;
+
+ // Push the Live-in part.
+ BI.LiveOut = false;
+ UseBlocks.push_back(BI);
+ UseBlocks.back().LastInstr = LastStop;
+
+ // Set up BI for the live-out part.
+ BI.LiveIn = false;
+ BI.LiveOut = true;
+ BI.FirstInstr = BI.FirstDef = LVI->start;
+ }
+
+ // A Segment that starts in the middle of the block must be a def.
+ assert(LVI->start == LVI->valno->def && "Dangling Segment start");
+ if (!BI.FirstDef)
+ BI.FirstDef = LVI->start;
+ }
+
+ UseBlocks.push_back(BI);
+
+ // LVI is now at LVE or LVI->end >= Stop.
+ if (LVI == LVE)
+ break;
+ }
+
+ // Live segment ends exactly at Stop. Move to the next segment.
+ if (LVI->end == Stop && ++LVI == LVE)
+ break;
+
+ // Pick the next basic block.
+ if (LVI->start < Stop)
+ ++MFI;
+ else
+ MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
+ }
+
+ assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
+ return true;
+}
+
+unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
+ if (cli->empty())
+ return 0;
+ LiveInterval *li = const_cast<LiveInterval*>(cli);
+ LiveInterval::iterator LVI = li->begin();
+ LiveInterval::iterator LVE = li->end();
+ unsigned Count = 0;
+
+ // Loop over basic blocks where li is live.
+ MachineFunction::const_iterator MFI =
+ LIS.getMBBFromIndex(LVI->start)->getIterator();
+ SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
+ for (;;) {
+ ++Count;
+ LVI = li->advanceTo(LVI, Stop);
+ if (LVI == LVE)
+ return Count;
+ do {
+ ++MFI;
+ Stop = LIS.getMBBEndIdx(&*MFI);
+ } while (Stop <= LVI->start);
+ }
+}
+
+bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
+ unsigned OrigReg = VRM.getOriginal(CurLI->reg);
+ const LiveInterval &Orig = LIS.getInterval(OrigReg);
+ assert(!Orig.empty() && "Splitting empty interval?");
+ LiveInterval::const_iterator I = Orig.find(Idx);
+
+ // Range containing Idx should begin at Idx.
+ if (I != Orig.end() && I->start <= Idx)
+ return I->start == Idx;
+
+ // Range does not contain Idx, previous must end at Idx.
+ return I != Orig.begin() && (--I)->end == Idx;
+}
+
+void SplitAnalysis::analyze(const LiveInterval *li) {
+ clear();
+ CurLI = li;
+ analyzeUses();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Split Editor
+//===----------------------------------------------------------------------===//
+
+/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
+SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
+ LiveIntervals &lis, VirtRegMap &vrm,
+ MachineDominatorTree &mdt,
+ MachineBlockFrequencyInfo &mbfi)
+ : SA(sa), AA(aa), LIS(lis), VRM(vrm),
+ MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
+ TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
+ TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
+ MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
+ RegAssign(Allocator) {}
+
+void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
+ Edit = &LRE;
+ SpillMode = SM;
+ OpenIdx = 0;
+ RegAssign.clear();
+ Values.clear();
+
+ // Reset the LiveRangeCalc instances needed for this spill mode.
+ LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
+ &LIS.getVNInfoAllocator());
+ if (SpillMode)
+ LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
+ &LIS.getVNInfoAllocator());
+
+ // We don't need an AliasAnalysis since we will only be performing
+ // cheap-as-a-copy remats anyway.
+ Edit->anyRematerializable(nullptr);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void SplitEditor::dump() const {
+ if (RegAssign.empty()) {
+ dbgs() << " empty\n";
+ return;
+ }
+
+ for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
+ dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
+ dbgs() << '\n';
+}
+#endif
+
+VNInfo *SplitEditor::defValue(unsigned RegIdx,
+ const VNInfo *ParentVNI,
+ SlotIndex Idx) {
+ assert(ParentVNI && "Mapping NULL value");
+ assert(Idx.isValid() && "Invalid SlotIndex");
+ assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
+ LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
+
+ // Create a new value.
+ VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
+
+ // Use insert for lookup, so we can add missing values with a second lookup.
+ std::pair<ValueMap::iterator, bool> InsP =
+ Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
+ ValueForcePair(VNI, false)));
+
+ // This was the first time (RegIdx, ParentVNI) was mapped.
+ // Keep it as a simple def without any liveness.
+ if (InsP.second)
+ return VNI;
+
+ // If the previous value was a simple mapping, add liveness for it now.
+ if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
+ SlotIndex Def = OldVNI->def;
+ LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
+ // No longer a simple mapping. Switch to a complex, non-forced mapping.
+ InsP.first->second = ValueForcePair();
+ }
+
+ // This is a complex mapping, add liveness for VNI
+ SlotIndex Def = VNI->def;
+ LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
+
+ return VNI;
+}
+
+void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
+ assert(ParentVNI && "Mapping NULL value");
+ ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
+ VNInfo *VNI = VFP.getPointer();
+
+ // ParentVNI was either unmapped or already complex mapped. Either way, just
+ // set the force bit.
+ if (!VNI) {
+ VFP.setInt(true);
+ return;
+ }
+
+ // This was previously a single mapping. Make sure the old def is represented
+ // by a trivial live range.
+ SlotIndex Def = VNI->def;
+ LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
+ LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
+ // Mark as complex mapped, forced.
+ VFP = ValueForcePair(nullptr, true);
+}
+
+VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
+ VNInfo *ParentVNI,
+ SlotIndex UseIdx,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+ MachineInstr *CopyMI = nullptr;
+ SlotIndex Def;
+ LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
+
+ // We may be trying to avoid interference that ends at a deleted instruction,
+ // so always begin RegIdx 0 early and all others late.
+ bool Late = RegIdx != 0;
+
+ // Attempt cheap-as-a-copy rematerialization.
+ unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
+ LiveInterval &OrigLI = LIS.getInterval(Original);
+ VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
+ LiveRangeEdit::Remat RM(ParentVNI);
+ RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
+
+ if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
+ Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
+ ++NumRemats;
+ } else {
+ // Can't remat, just insert a copy from parent.
+ CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
+ .addReg(Edit->getReg());
+ Def = LIS.getSlotIndexes()
+ ->insertMachineInstrInMaps(*CopyMI, Late)
+ .getRegSlot();
+ ++NumCopies;
+ }
+
+ // Define the value in Reg.
+ return defValue(RegIdx, ParentVNI, Def);
+}
+
+/// Create a new virtual register and live interval.
+unsigned SplitEditor::openIntv() {
+ // Create the complement as index 0.
+ if (Edit->empty())
+ Edit->createEmptyInterval();
+
+ // Create the open interval.
+ OpenIdx = Edit->size();
+ Edit->createEmptyInterval();
+ return OpenIdx;
+}
+
+void SplitEditor::selectIntv(unsigned Idx) {
+ assert(Idx != 0 && "Cannot select the complement interval");
+ assert(Idx < Edit->size() && "Can only select previously opened interval");
+ DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
+ OpenIdx = Idx;
+}
+
+SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before enterIntvBefore");
+ DEBUG(dbgs() << " enterIntvBefore " << Idx);
+ Idx = Idx.getBaseIndex();
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx;
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "enterIntvBefore called with invalid index");
+
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before enterIntvAfter");
+ DEBUG(dbgs() << " enterIntvAfter " << Idx);
+ Idx = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx;
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "enterIntvAfter called with invalid index");
+
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
+ std::next(MachineBasicBlock::iterator(MI)));
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
+ assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
+ SlotIndex End = LIS.getMBBEndIdx(&MBB);
+ SlotIndex Last = End.getPrevSlot();
+ DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return End;
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id);
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
+ SA.getLastSplitPointIter(&MBB));
+ RegAssign.insert(VNI->def, End, OpenIdx);
+ DEBUG(dump());
+ return VNI->def;
+}
+
+/// useIntv - indicate that all instructions in MBB should use OpenLI.
+void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
+ useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
+}
+
+void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
+ assert(OpenIdx && "openIntv not called before useIntv");
+ DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
+ RegAssign.insert(Start, End, OpenIdx);
+ DEBUG(dump());
+}
+
+SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before leaveIntvAfter");
+ DEBUG(dbgs() << " leaveIntvAfter " << Idx);
+
+ // The interval must be live beyond the instruction at Idx.
+ SlotIndex Boundary = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Boundary.getNextSlot();
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
+ assert(MI && "No instruction at index");
+
+ // In spill mode, make live ranges as short as possible by inserting the copy
+ // before MI. This is only possible if that instruction doesn't redefine the
+ // value. The inserted COPY is not a kill, and we don't need to recompute
+ // the source live range. The spiller also won't try to hoist this copy.
+ if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
+ MI->readsVirtualRegister(Edit->getReg())) {
+ forceRecompute(0, ParentVNI);
+ defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
+ return Idx;
+ }
+
+ VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
+ std::next(MachineBasicBlock::iterator(MI)));
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before leaveIntvBefore");
+ DEBUG(dbgs() << " leaveIntvBefore " << Idx);
+
+ // The interval must be live into the instruction at Idx.
+ Idx = Idx.getBaseIndex();
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx.getNextSlot();
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "No instruction at index");
+ VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
+ assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
+ SlotIndex Start = LIS.getMBBStartIdx(&MBB);
+ DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
+
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Start;
+ }
+
+ VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
+ MBB.SkipPHIsAndLabels(MBB.begin()));
+ RegAssign.insert(Start, VNI->def, OpenIdx);
+ DEBUG(dump());
+ return VNI->def;
+}
+
+void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
+ assert(OpenIdx && "openIntv not called before overlapIntv");
+ const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
+ assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
+ "Parent changes value in extended range");
+ assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
+ "Range cannot span basic blocks");
+
+ // The complement interval will be extended as needed by LRCalc.extend().
+ if (ParentVNI)
+ forceRecompute(0, ParentVNI);
+ DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
+ RegAssign.insert(Start, End, OpenIdx);
+ DEBUG(dump());
+}
+
+//===----------------------------------------------------------------------===//
+// Spill modes
+//===----------------------------------------------------------------------===//
+
+void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
+ LiveInterval *LI = &LIS.getInterval(Edit->get(0));
+ DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
+ RegAssignMap::iterator AssignI;
+ AssignI.setMap(RegAssign);
+
+ for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
+ SlotIndex Def = Copies[i]->def;
+ MachineInstr *MI = LIS.getInstructionFromIndex(Def);
+ assert(MI && "No instruction for back-copy");
+
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineBasicBlock::iterator MBBI(MI);
+ bool AtBegin;
+ do AtBegin = MBBI == MBB->begin();
+ while (!AtBegin && (--MBBI)->isDebugValue());
+
+ DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
+ LIS.removeVRegDefAt(*LI, Def);
+ LIS.RemoveMachineInstrFromMaps(*MI);
+ MI->eraseFromParent();
+
+ // Adjust RegAssign if a register assignment is killed at Def. We want to
+ // avoid calculating the live range of the source register if possible.
+ AssignI.find(Def.getPrevSlot());
+ if (!AssignI.valid() || AssignI.start() >= Def)
+ continue;
+ // If MI doesn't kill the assigned register, just leave it.
+ if (AssignI.stop() != Def)
+ continue;
+ unsigned RegIdx = AssignI.value();
+ if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
+ DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n');
+ forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
+ } else {
+ SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
+ DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
+ AssignI.setStop(Kill);
+ }
+ }
+}
+
+MachineBasicBlock*
+SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
+ MachineBasicBlock *DefMBB) {
+ if (MBB == DefMBB)
+ return MBB;
+ assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
+
+ const MachineLoopInfo &Loops = SA.Loops;
+ const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
+ MachineDomTreeNode *DefDomNode = MDT[DefMBB];
+
+ // Best candidate so far.
+ MachineBasicBlock *BestMBB = MBB;
+ unsigned BestDepth = UINT_MAX;
+
+ for (;;) {
+ const MachineLoop *Loop = Loops.getLoopFor(MBB);
+
+ // MBB isn't in a loop, it doesn't get any better. All dominators have a
+ // higher frequency by definition.
+ if (!Loop) {
+ DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
+ << MBB->getNumber() << " at depth 0\n");
+ return MBB;
+ }
+
+ // We'll never be able to exit the DefLoop.
+ if (Loop == DefLoop) {
+ DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
+ << MBB->getNumber() << " in the same loop\n");
+ return MBB;
+ }
+
+ // Least busy dominator seen so far.
+ unsigned Depth = Loop->getLoopDepth();
+ if (Depth < BestDepth) {
+ BestMBB = MBB;
+ BestDepth = Depth;
+ DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
+ << MBB->getNumber() << " at depth " << Depth << '\n');
+ }
+
+ // Leave loop by going to the immediate dominator of the loop header.
+ // This is a bigger stride than simply walking up the dominator tree.
+ MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
+
+ // Too far up the dominator tree?
+ if (!IDom || !MDT.dominates(DefDomNode, IDom))
+ return BestMBB;
+
+ MBB = IDom->getBlock();
+ }
+}
+
+void SplitEditor::computeRedundantBackCopies(
+ DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
+ LiveInterval *LI = &LIS.getInterval(Edit->get(0));
+ LiveInterval *Parent = &Edit->getParent();
+ SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
+ SmallPtrSet<VNInfo *, 8> DominatedVNIs;
+
+ // Aggregate VNIs having the same value as ParentVNI.
+ for (VNInfo *VNI : LI->valnos) {
+ if (VNI->isUnused())
+ continue;
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
+ EqualVNs[ParentVNI->id].insert(VNI);
+ }
+
+ // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
+ // redundant VNIs to BackCopies.
+ for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
+ VNInfo *ParentVNI = Parent->getValNumInfo(i);
+ if (!NotToHoistSet.count(ParentVNI->id))
+ continue;
+ SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
+ SmallPtrSetIterator<VNInfo *> It2 = It1;
+ for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
+ It2 = It1;
+ for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
+ if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
+ continue;
+
+ MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
+ MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
+ if (MBB1 == MBB2) {
+ DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
+ } else if (MDT.dominates(MBB1, MBB2)) {
+ DominatedVNIs.insert(*It2);
+ } else if (MDT.dominates(MBB2, MBB1)) {
+ DominatedVNIs.insert(*It1);
+ }
+ }
+ }
+ if (!DominatedVNIs.empty()) {
+ forceRecompute(0, ParentVNI);
+ for (auto VNI : DominatedVNIs) {
+ BackCopies.push_back(VNI);
+ }
+ DominatedVNIs.clear();
+ }
+ }
+}
+
+/// For SM_Size mode, find a common dominator for all the back-copies for
+/// the same ParentVNI and hoist the backcopies to the dominator BB.
+/// For SM_Speed mode, if the common dominator is hot and it is not beneficial
+/// to do the hoisting, simply remove the dominated backcopies for the same
+/// ParentVNI.
+void SplitEditor::hoistCopies() {
+ // Get the complement interval, always RegIdx 0.
+ LiveInterval *LI = &LIS.getInterval(Edit->get(0));
+ LiveInterval *Parent = &Edit->getParent();
+
+ // Track the nearest common dominator for all back-copies for each ParentVNI,
+ // indexed by ParentVNI->id.
+ typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
+ SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
+ // The total cost of all the back-copies for each ParentVNI.
+ SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
+ // The ParentVNI->id set for which hoisting back-copies are not beneficial
+ // for Speed.
+ DenseSet<unsigned> NotToHoistSet;
+
+ // Find the nearest common dominator for parent values with multiple
+ // back-copies. If a single back-copy dominates, put it in DomPair.second.
+ for (VNInfo *VNI : LI->valnos) {
+ if (VNI->isUnused())
+ continue;
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
+ assert(ParentVNI && "Parent not live at complement def");
+
+ // Don't hoist remats. The complement is probably going to disappear
+ // completely anyway.
+ if (Edit->didRematerialize(ParentVNI))
+ continue;
+
+ MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
+
+ DomPair &Dom = NearestDom[ParentVNI->id];
+
+ // Keep directly defined parent values. This is either a PHI or an
+ // instruction in the complement range. All other copies of ParentVNI
+ // should be eliminated.
+ if (VNI->def == ParentVNI->def) {
+ DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
+ Dom = DomPair(ValMBB, VNI->def);
+ continue;
+ }
+ // Skip the singly mapped values. There is nothing to gain from hoisting a
+ // single back-copy.
+ if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
+ DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
+ continue;
+ }
+
+ if (!Dom.first) {
+ // First time we see ParentVNI. VNI dominates itself.
+ Dom = DomPair(ValMBB, VNI->def);
+ } else if (Dom.first == ValMBB) {
+ // Two defs in the same block. Pick the earlier def.
+ if (!Dom.second.isValid() || VNI->def < Dom.second)
+ Dom.second = VNI->def;
+ } else {
+ // Different basic blocks. Check if one dominates.
+ MachineBasicBlock *Near =
+ MDT.findNearestCommonDominator(Dom.first, ValMBB);
+ if (Near == ValMBB)
+ // Def ValMBB dominates.
+ Dom = DomPair(ValMBB, VNI->def);
+ else if (Near != Dom.first)
+ // None dominate. Hoist to common dominator, need new def.
+ Dom = DomPair(Near, SlotIndex());
+ Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
+ }
+
+ DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
+ << " for parent " << ParentVNI->id << '@' << ParentVNI->def
+ << " hoist to BB#" << Dom.first->getNumber() << ' '
+ << Dom.second << '\n');
+ }
+
+ // Insert the hoisted copies.
+ for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
+ DomPair &Dom = NearestDom[i];
+ if (!Dom.first || Dom.second.isValid())
+ continue;
+ // This value needs a hoisted copy inserted at the end of Dom.first.
+ VNInfo *ParentVNI = Parent->getValNumInfo(i);
+ MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
+ // Get a less loopy dominator than Dom.first.
+ Dom.first = findShallowDominator(Dom.first, DefMBB);
+ if (SpillMode == SM_Speed &&
+ MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
+ NotToHoistSet.insert(ParentVNI->id);
+ continue;
+ }
+ SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
+ Dom.second =
+ defFromParent(0, ParentVNI, Last, *Dom.first,
+ SA.getLastSplitPointIter(Dom.first))->def;
+ }
+
+ // Remove redundant back-copies that are now known to be dominated by another
+ // def with the same value.
+ SmallVector<VNInfo*, 8> BackCopies;
+ for (VNInfo *VNI : LI->valnos) {
+ if (VNI->isUnused())
+ continue;
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
+ const DomPair &Dom = NearestDom[ParentVNI->id];
+ if (!Dom.first || Dom.second == VNI->def ||
+ NotToHoistSet.count(ParentVNI->id))
+ continue;
+ BackCopies.push_back(VNI);
+ forceRecompute(0, ParentVNI);
+ }
+
+ // If it is not beneficial to hoist all the BackCopies, simply remove
+ // redundant BackCopies in speed mode.
+ if (SpillMode == SM_Speed && !NotToHoistSet.empty())
+ computeRedundantBackCopies(NotToHoistSet, BackCopies);
+
+ removeBackCopies(BackCopies);
+}
+
+
+/// transferValues - Transfer all possible values to the new live ranges.
+/// Values that were rematerialized are left alone, they need LRCalc.extend().
+bool SplitEditor::transferValues() {
+ bool Skipped = false;
+ RegAssignMap::const_iterator AssignI = RegAssign.begin();
+ for (const LiveRange::Segment &S : Edit->getParent()) {
+ DEBUG(dbgs() << " blit " << S << ':');
+ VNInfo *ParentVNI = S.valno;
+ // RegAssign has holes where RegIdx 0 should be used.
+ SlotIndex Start = S.start;
+ AssignI.advanceTo(Start);
+ do {
+ unsigned RegIdx;
+ SlotIndex End = S.end;
+ if (!AssignI.valid()) {
+ RegIdx = 0;
+ } else if (AssignI.start() <= Start) {
+ RegIdx = AssignI.value();
+ if (AssignI.stop() < End) {
+ End = AssignI.stop();
+ ++AssignI;
+ }
+ } else {
+ RegIdx = 0;
+ End = std::min(End, AssignI.start());
+ }
+
+ // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
+ DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
+ LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
+
+ // Check for a simply defined value that can be blitted directly.
+ ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
+ if (VNInfo *VNI = VFP.getPointer()) {
+ DEBUG(dbgs() << ':' << VNI->id);
+ LR.addSegment(LiveInterval::Segment(Start, End, VNI));
+ Start = End;
+ continue;
+ }
+
+ // Skip values with forced recomputation.
+ if (VFP.getInt()) {
+ DEBUG(dbgs() << "(recalc)");
+ Skipped = true;
+ Start = End;
+ continue;
+ }
+
+ LiveRangeCalc &LRC = getLRCalc(RegIdx);
+
+ // This value has multiple defs in RegIdx, but it wasn't rematerialized,
+ // so the live range is accurate. Add live-in blocks in [Start;End) to the
+ // LiveInBlocks.
+ MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
+ SlotIndex BlockStart, BlockEnd;
+ std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
+
+ // The first block may be live-in, or it may have its own def.
+ if (Start != BlockStart) {
+ VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
+ assert(VNI && "Missing def for complex mapped value");
+ DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
+ // MBB has its own def. Is it also live-out?
+ if (BlockEnd <= End)
+ LRC.setLiveOutValue(&*MBB, VNI);
+
+ // Skip to the next block for live-in.
+ ++MBB;
+ BlockStart = BlockEnd;
+ }
+
+ // Handle the live-in blocks covered by [Start;End).
+ assert(Start <= BlockStart && "Expected live-in block");
+ while (BlockStart < End) {
+ DEBUG(dbgs() << ">BB#" << MBB->getNumber());
+ BlockEnd = LIS.getMBBEndIdx(&*MBB);
+ if (BlockStart == ParentVNI->def) {
+ // This block has the def of a parent PHI, so it isn't live-in.
+ assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
+ VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
+ assert(VNI && "Missing def for complex mapped parent PHI");
+ if (End >= BlockEnd)
+ LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
+ } else {
+ // This block needs a live-in value. The last block covered may not
+ // be live-out.
+ if (End < BlockEnd)
+ LRC.addLiveInBlock(LR, MDT[&*MBB], End);
+ else {
+ // Live-through, and we don't know the value.
+ LRC.addLiveInBlock(LR, MDT[&*MBB]);
+ LRC.setLiveOutValue(&*MBB, nullptr);
+ }
+ }
+ BlockStart = BlockEnd;
+ ++MBB;
+ }
+ Start = End;
+ } while (Start != S.end);
+ DEBUG(dbgs() << '\n');
+ }
+
+ LRCalc[0].calculateValues();
+ if (SpillMode)
+ LRCalc[1].calculateValues();
+
+ return Skipped;
+}
+
+void SplitEditor::extendPHIKillRanges() {
+ // Extend live ranges to be live-out for successor PHI values.
+ for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
+ if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
+ continue;
+ unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
+ LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
+
+ // Check whether PHI is dead.
+ const LiveRange::Segment *Segment = LR.getSegmentContaining(PHIVNI->def);
+ assert(Segment != nullptr && "Missing segment for VNI");
+ if (Segment->end == PHIVNI->def.getDeadSlot()) {
+ // This is a dead PHI. Remove it.
+ LR.removeSegment(*Segment, true);
+ continue;
+ }
+
+ LiveRangeCalc &LRC = getLRCalc(RegIdx);
+ MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ SlotIndex End = LIS.getMBBEndIdx(*PI);
+ SlotIndex LastUse = End.getPrevSlot();
+ // The predecessor may not have a live-out value. That is OK, like an
+ // undef PHI operand.
+ if (Edit->getParent().liveAt(LastUse)) {
+ assert(RegAssign.lookup(LastUse) == RegIdx &&
+ "Different register assignment in phi predecessor");
+ LRC.extend(LR, End);
+ }
+ }
+ }
+}
+
+/// rewriteAssigned - Rewrite all uses of Edit->getReg().
+void SplitEditor::rewriteAssigned(bool ExtendRanges) {
+ for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
+ RE = MRI.reg_end(); RI != RE;) {
+ MachineOperand &MO = *RI;
+ MachineInstr *MI = MO.getParent();
+ ++RI;
+ // LiveDebugVariables should have handled all DBG_VALUE instructions.
+ if (MI->isDebugValue()) {
+ DEBUG(dbgs() << "Zapping " << *MI);
+ MO.setReg(0);
+ continue;
+ }
+
+ // <undef> operands don't really read the register, so it doesn't matter
+ // which register we choose. When the use operand is tied to a def, we must
+ // use the same register as the def, so just do that always.
+ SlotIndex Idx = LIS.getInstructionIndex(*MI);
+ if (MO.isDef() || MO.isUndef())
+ Idx = Idx.getRegSlot(MO.isEarlyClobber());
+
+ // Rewrite to the mapped register at Idx.
+ unsigned RegIdx = RegAssign.lookup(Idx);
+ LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
+ MO.setReg(LI->reg);
+ DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
+ << Idx << ':' << RegIdx << '\t' << *MI);
+
+ // Extend liveness to Idx if the instruction reads reg.
+ if (!ExtendRanges || MO.isUndef())
+ continue;
+
+ // Skip instructions that don't read Reg.
+ if (MO.isDef()) {
+ if (!MO.getSubReg() && !MO.isEarlyClobber())
+ continue;
+ // We may wan't to extend a live range for a partial redef, or for a use
+ // tied to an early clobber.
+ Idx = Idx.getPrevSlot();
+ if (!Edit->getParent().liveAt(Idx))
+ continue;
+ } else
+ Idx = Idx.getRegSlot(true);
+
+ getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
+ }
+}
+
+void SplitEditor::deleteRematVictims() {
+ SmallVector<MachineInstr*, 8> Dead;
+ for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
+ LiveInterval *LI = &LIS.getInterval(*I);
+ for (const LiveRange::Segment &S : LI->segments) {
+ // Dead defs end at the dead slot.
+ if (S.end != S.valno->def.getDeadSlot())
+ continue;
+ if (S.valno->isPHIDef())
+ continue;
+ MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
+ assert(MI && "Missing instruction for dead def");
+ MI->addRegisterDead(LI->reg, &TRI);
+
+ if (!MI->allDefsAreDead())
+ continue;
+
+ DEBUG(dbgs() << "All defs dead: " << *MI);
+ Dead.push_back(MI);
+ }
+ }
+
+ if (Dead.empty())
+ return;
+
+ Edit->eliminateDeadDefs(Dead, None, &AA);
+}
+
+void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
+ ++NumFinished;
+
+ // At this point, the live intervals in Edit contain VNInfos corresponding to
+ // the inserted copies.
+
+ // Add the original defs from the parent interval.
+ for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
+ if (ParentVNI->isUnused())
+ continue;
+ unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
+ defValue(RegIdx, ParentVNI, ParentVNI->def);
+
+ // Force rematted values to be recomputed everywhere.
+ // The new live ranges may be truncated.
+ if (Edit->didRematerialize(ParentVNI))
+ for (unsigned i = 0, e = Edit->size(); i != e; ++i)
+ forceRecompute(i, ParentVNI);
+ }
+
+ // Hoist back-copies to the complement interval when in spill mode.
+ switch (SpillMode) {
+ case SM_Partition:
+ // Leave all back-copies as is.
+ break;
+ case SM_Size:
+ case SM_Speed:
+ // hoistCopies will behave differently between size and speed.
+ hoistCopies();
+ }
+
+ // Transfer the simply mapped values, check if any are skipped.
+ bool Skipped = transferValues();
+
+ // Rewrite virtual registers, possibly extending ranges.
+ rewriteAssigned(Skipped);
+
+ if (Skipped)
+ extendPHIKillRanges();
+ else
+ ++NumSimple;
+
+ // Delete defs that were rematted everywhere.
+ if (Skipped)
+ deleteRematVictims();
+
+ // Get rid of unused values and set phi-kill flags.
+ for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
+ LiveInterval &LI = LIS.getInterval(*I);
+ LI.RenumberValues();
+ }
+
+ // Provide a reverse mapping from original indices to Edit ranges.
+ if (LRMap) {
+ LRMap->clear();
+ for (unsigned i = 0, e = Edit->size(); i != e; ++i)
+ LRMap->push_back(i);
+ }
+
+ // Now check if any registers were separated into multiple components.
+ ConnectedVNInfoEqClasses ConEQ(LIS);
+ for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
+ // Don't use iterators, they are invalidated by create() below.
+ unsigned VReg = Edit->get(i);
+ LiveInterval &LI = LIS.getInterval(VReg);
+ SmallVector<LiveInterval*, 8> SplitLIs;
+ LIS.splitSeparateComponents(LI, SplitLIs);
+ unsigned Original = VRM.getOriginal(VReg);
+ for (LiveInterval *SplitLI : SplitLIs)
+ VRM.setIsSplitFromReg(SplitLI->reg, Original);
+
+ // The new intervals all map back to i.
+ if (LRMap)
+ LRMap->resize(Edit->size(), i);
+ }
+
+ // Calculate spill weight and allocation hints for new intervals.
+ Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
+
+ assert(!LRMap || LRMap->size() == Edit->size());
+}
+
+
+//===----------------------------------------------------------------------===//
+// Single Block Splitting
+//===----------------------------------------------------------------------===//
+
+bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
+ bool SingleInstrs) const {
+ // Always split for multiple instructions.
+ if (!BI.isOneInstr())
+ return true;
+ // Don't split for single instructions unless explicitly requested.
+ if (!SingleInstrs)
+ return false;
+ // Splitting a live-through range always makes progress.
+ if (BI.LiveIn && BI.LiveOut)
+ return true;
+ // No point in isolating a copy. It has no register class constraints.
+ if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
+ return false;
+ // Finally, don't isolate an end point that was created by earlier splits.
+ return isOriginalEndpoint(BI.FirstInstr);
+}
+
+void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
+ openIntv();
+ SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
+ SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
+ LastSplitPoint));
+ if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
+ useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
+ } else {
+ // The last use is after the last valid split point.
+ SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
+ useIntv(SegStart, SegStop);
+ overlapIntv(SegStop, BI.LastInstr);
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Global Live Range Splitting Support
+//===----------------------------------------------------------------------===//
+
+// These methods support a method of global live range splitting that uses a
+// global algorithm to decide intervals for CFG edges. They will insert split
+// points and color intervals in basic blocks while avoiding interference.
+//
+// Note that splitSingleBlock is also useful for blocks where both CFG edges
+// are on the stack.
+
+void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
+ unsigned IntvIn, SlotIndex LeaveBefore,
+ unsigned IntvOut, SlotIndex EnterAfter){
+ SlotIndex Start, Stop;
+ std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
+
+ DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
+ << ") intf " << LeaveBefore << '-' << EnterAfter
+ << ", live-through " << IntvIn << " -> " << IntvOut);
+
+ assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
+
+ assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
+ assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
+ assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
+
+ MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
+
+ if (!IntvOut) {
+ DEBUG(dbgs() << ", spill on entry.\n");
+ //
+ // <<<<<<<<< Possible LeaveBefore interference.
+ // |-----------| Live through.
+ // -____________ Spill on entry.
+ //
+ selectIntv(IntvIn);
+ SlotIndex Idx = leaveIntvAtTop(*MBB);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+ (void)Idx;
+ return;
+ }
+
+ if (!IntvIn) {
+ DEBUG(dbgs() << ", reload on exit.\n");
+ //
+ // >>>>>>> Possible EnterAfter interference.
+ // |-----------| Live through.
+ // ___________-- Reload on exit.
+ //
+ selectIntv(IntvOut);
+ SlotIndex Idx = enterIntvAtEnd(*MBB);
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+ (void)Idx;
+ return;
+ }
+
+ if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
+ DEBUG(dbgs() << ", straight through.\n");
+ //
+ // |-----------| Live through.
+ // ------------- Straight through, same intv, no interference.
+ //
+ selectIntv(IntvOut);
+ useIntv(Start, Stop);
+ return;
+ }
+
+ // We cannot legally insert splits after LSP.
+ SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
+ assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
+
+ if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
+ LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
+ DEBUG(dbgs() << ", switch avoiding interference.\n");
+ //
+ // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
+ // |-----------| Live through.
+ // ------======= Switch intervals between interference.
+ //
+ selectIntv(IntvOut);
+ SlotIndex Idx;
+ if (LeaveBefore && LeaveBefore < LSP) {
+ Idx = enterIntvBefore(LeaveBefore);
+ useIntv(Idx, Stop);
+ } else {
+ Idx = enterIntvAtEnd(*MBB);
+ }
+ selectIntv(IntvIn);
+ useIntv(Start, Idx);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+ return;
+ }
+
+ DEBUG(dbgs() << ", create local intv for interference.\n");
+ //
+ // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
+ // |-----------| Live through.
+ // ==---------== Switch intervals before/after interference.
+ //
+ assert(LeaveBefore <= EnterAfter && "Missed case");
+
+ selectIntv(IntvOut);
+ SlotIndex Idx = enterIntvAfter(EnterAfter);
+ useIntv(Idx, Stop);
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+
+ selectIntv(IntvIn);
+ Idx = leaveIntvBefore(LeaveBefore);
+ useIntv(Start, Idx);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+}
+
+
+void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
+ unsigned IntvIn, SlotIndex LeaveBefore) {
+ SlotIndex Start, Stop;
+ std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
+
+ DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
+ << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
+ << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
+ << (BI.LiveOut ? ", stack-out" : ", killed in block"));
+
+ assert(IntvIn && "Must have register in");
+ assert(BI.LiveIn && "Must be live-in");
+ assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
+
+ if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
+ DEBUG(dbgs() << " before interference.\n");
+ //
+ // <<< Interference after kill.
+ // |---o---x | Killed in block.
+ // ========= Use IntvIn everywhere.
+ //
+ selectIntv(IntvIn);
+ useIntv(Start, BI.LastInstr);
+ return;
+ }
+
+ SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
+
+ if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
+ //
+ // <<< Possible interference after last use.
+ // |---o---o---| Live-out on stack.
+ // =========____ Leave IntvIn after last use.
+ //
+ // < Interference after last use.
+ // |---o---o--o| Live-out on stack, late last use.
+ // ============ Copy to stack after LSP, overlap IntvIn.
+ // \_____ Stack interval is live-out.
+ //
+ if (BI.LastInstr < LSP) {
+ DEBUG(dbgs() << ", spill after last use before interference.\n");
+ selectIntv(IntvIn);
+ SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
+ useIntv(Start, Idx);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+ } else {
+ DEBUG(dbgs() << ", spill before last split point.\n");
+ selectIntv(IntvIn);
+ SlotIndex Idx = leaveIntvBefore(LSP);
+ overlapIntv(Idx, BI.LastInstr);
+ useIntv(Start, Idx);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+ }
+ return;
+ }
+
+ // The interference is overlapping somewhere we wanted to use IntvIn. That
+ // means we need to create a local interval that can be allocated a
+ // different register.
+ unsigned LocalIntv = openIntv();
+ (void)LocalIntv;
+ DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
+
+ if (!BI.LiveOut || BI.LastInstr < LSP) {
+ //
+ // <<<<<<< Interference overlapping uses.
+ // |---o---o---| Live-out on stack.
+ // =====----____ Leave IntvIn before interference, then spill.
+ //
+ SlotIndex To = leaveIntvAfter(BI.LastInstr);
+ SlotIndex From = enterIntvBefore(LeaveBefore);
+ useIntv(From, To);
+ selectIntv(IntvIn);
+ useIntv(Start, From);
+ assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
+ return;
+ }
+
+ // <<<<<<< Interference overlapping uses.
+ // |---o---o--o| Live-out on stack, late last use.
+ // =====------- Copy to stack before LSP, overlap LocalIntv.
+ // \_____ Stack interval is live-out.
+ //
+ SlotIndex To = leaveIntvBefore(LSP);
+ overlapIntv(To, BI.LastInstr);
+ SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
+ useIntv(From, To);
+ selectIntv(IntvIn);
+ useIntv(Start, From);
+ assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
+}
+
+void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
+ unsigned IntvOut, SlotIndex EnterAfter) {
+ SlotIndex Start, Stop;
+ std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
+
+ DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
+ << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
+ << ", reg-out " << IntvOut << ", enter after " << EnterAfter
+ << (BI.LiveIn ? ", stack-in" : ", defined in block"));
+
+ SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
+
+ assert(IntvOut && "Must have register out");
+ assert(BI.LiveOut && "Must be live-out");
+ assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
+
+ if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
+ DEBUG(dbgs() << " after interference.\n");
+ //
+ // >>>> Interference before def.
+ // | o---o---| Defined in block.
+ // ========= Use IntvOut everywhere.
+ //
+ selectIntv(IntvOut);
+ useIntv(BI.FirstInstr, Stop);
+ return;
+ }
+
+ if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
+ DEBUG(dbgs() << ", reload after interference.\n");
+ //
+ // >>>> Interference before def.
+ // |---o---o---| Live-through, stack-in.
+ // ____========= Enter IntvOut before first use.
+ //
+ selectIntv(IntvOut);
+ SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
+ useIntv(Idx, Stop);
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+ return;
+ }
+
+ // The interference is overlapping somewhere we wanted to use IntvOut. That
+ // means we need to create a local interval that can be allocated a
+ // different register.
+ DEBUG(dbgs() << ", interference overlaps uses.\n");
+ //
+ // >>>>>>> Interference overlapping uses.
+ // |---o---o---| Live-through, stack-in.
+ // ____---====== Create local interval for interference range.
+ //
+ selectIntv(IntvOut);
+ SlotIndex Idx = enterIntvAfter(EnterAfter);
+ useIntv(Idx, Stop);
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+
+ openIntv();
+ SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
+ useIntv(From, Idx);
+}