diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SpillPlacement.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SpillPlacement.cpp | 378 |
1 files changed, 378 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SpillPlacement.cpp b/contrib/llvm/lib/CodeGen/SpillPlacement.cpp new file mode 100644 index 000000000000..10a93b7fa4db --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SpillPlacement.cpp @@ -0,0 +1,378 @@ +//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the spill code placement analysis. +// +// Each edge bundle corresponds to a node in a Hopfield network. Constraints on +// basic blocks are weighted by the block frequency and added to become the node +// bias. +// +// Transparent basic blocks have the variable live through, but don't care if it +// is spilled or in a register. These blocks become connections in the Hopfield +// network, again weighted by block frequency. +// +// The Hopfield network minimizes (possibly locally) its energy function: +// +// E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b ) +// +// The energy function represents the expected spill code execution frequency, +// or the cost of spilling. This is a Lyapunov function which never increases +// when a node is updated. It is guaranteed to converge to a local minimum. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "spillplacement" +#include "SpillPlacement.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/CodeGen/EdgeBundles.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Format.h" + +using namespace llvm; + +char SpillPlacement::ID = 0; +INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement", + "Spill Code Placement Analysis", true, true) +INITIALIZE_PASS_DEPENDENCY(EdgeBundles) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement", + "Spill Code Placement Analysis", true, true) + +char &llvm::SpillPlacementID = SpillPlacement::ID; + +void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<MachineBlockFrequencyInfo>(); + AU.addRequiredTransitive<EdgeBundles>(); + AU.addRequiredTransitive<MachineLoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +/// Decision threshold. A node gets the output value 0 if the weighted sum of +/// its inputs falls in the open interval (-Threshold;Threshold). +static const BlockFrequency Threshold = 2; + +/// Node - Each edge bundle corresponds to a Hopfield node. +/// +/// The node contains precomputed frequency data that only depends on the CFG, +/// but Bias and Links are computed each time placeSpills is called. +/// +/// The node Value is positive when the variable should be in a register. The +/// value can change when linked nodes change, but convergence is very fast +/// because all weights are positive. +/// +struct SpillPlacement::Node { + /// BiasN - Sum of blocks that prefer a spill. + BlockFrequency BiasN; + /// BiasP - Sum of blocks that prefer a register. + BlockFrequency BiasP; + + /// Value - Output value of this node computed from the Bias and links. + /// This is always on of the values {-1, 0, 1}. A positive number means the + /// variable should go in a register through this bundle. + int Value; + + typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector; + + /// Links - (Weight, BundleNo) for all transparent blocks connecting to other + /// bundles. The weights are all positive block frequencies. + LinkVector Links; + + /// SumLinkWeights - Cached sum of the weights of all links + ThresHold. + BlockFrequency SumLinkWeights; + + /// preferReg - Return true when this node prefers to be in a register. + bool preferReg() const { + // Undecided nodes (Value==0) go on the stack. + return Value > 0; + } + + /// mustSpill - Return True if this node is so biased that it must spill. + bool mustSpill() const { + // We must spill if Bias < -sum(weights) or the MustSpill flag was set. + // BiasN is saturated when MustSpill is set, make sure this still returns + // true when the RHS saturates. Note that SumLinkWeights includes Threshold. + return BiasN >= BiasP + SumLinkWeights; + } + + /// clear - Reset per-query data, but preserve frequencies that only depend on + // the CFG. + void clear() { + BiasN = BiasP = Value = 0; + SumLinkWeights = Threshold; + Links.clear(); + } + + /// addLink - Add a link to bundle b with weight w. + void addLink(unsigned b, BlockFrequency w) { + // Update cached sum. + SumLinkWeights += w; + + // There can be multiple links to the same bundle, add them up. + for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) + if (I->second == b) { + I->first += w; + return; + } + // This must be the first link to b. + Links.push_back(std::make_pair(w, b)); + } + + /// addBias - Bias this node. + void addBias(BlockFrequency freq, BorderConstraint direction) { + switch (direction) { + default: + break; + case PrefReg: + BiasP += freq; + break; + case PrefSpill: + BiasN += freq; + break; + case MustSpill: + BiasN = BlockFrequency::getMaxFrequency(); + break; + } + } + + /// update - Recompute Value from Bias and Links. Return true when node + /// preference changes. + bool update(const Node nodes[]) { + // Compute the weighted sum of inputs. + BlockFrequency SumN = BiasN; + BlockFrequency SumP = BiasP; + for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) { + if (nodes[I->second].Value == -1) + SumN += I->first; + else if (nodes[I->second].Value == 1) + SumP += I->first; + } + + // Each weighted sum is going to be less than the total frequency of the + // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we + // will add a dead zone around 0 for two reasons: + // + // 1. It avoids arbitrary bias when all links are 0 as is possible during + // initial iterations. + // 2. It helps tame rounding errors when the links nominally sum to 0. + // + bool Before = preferReg(); + if (SumN >= SumP + Threshold) + Value = -1; + else if (SumP >= SumN + Threshold) + Value = 1; + else + Value = 0; + return Before != preferReg(); + } +}; + +bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) { + MF = &mf; + bundles = &getAnalysis<EdgeBundles>(); + loops = &getAnalysis<MachineLoopInfo>(); + + assert(!nodes && "Leaking node array"); + nodes = new Node[bundles->getNumBundles()]; + + // Compute total ingoing and outgoing block frequencies for all bundles. + BlockFrequencies.resize(mf.getNumBlockIDs()); + MachineBlockFrequencyInfo &MBFI = getAnalysis<MachineBlockFrequencyInfo>(); + for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) { + unsigned Num = I->getNumber(); + BlockFrequencies[Num] = MBFI.getBlockFreq(I); + } + + // We never change the function. + return false; +} + +void SpillPlacement::releaseMemory() { + delete[] nodes; + nodes = 0; +} + +/// activate - mark node n as active if it wasn't already. +void SpillPlacement::activate(unsigned n) { + if (ActiveNodes->test(n)) + return; + ActiveNodes->set(n); + nodes[n].clear(); + + // Very large bundles usually come from big switches, indirect branches, + // landing pads, or loops with many 'continue' statements. It is difficult to + // allocate registers when so many different blocks are involved. + // + // Give a small negative bias to large bundles such that a substantial + // fraction of the connected blocks need to be interested before we consider + // expanding the region through the bundle. This helps compile time by + // limiting the number of blocks visited and the number of links in the + // Hopfield network. + if (bundles->getBlocks(n).size() > 100) { + nodes[n].BiasP = 0; + nodes[n].BiasN = (BlockFrequency::getEntryFrequency() / 16); + } +} + + +/// addConstraints - Compute node biases and weights from a set of constraints. +/// Set a bit in NodeMask for each active node. +void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) { + for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(), + E = LiveBlocks.end(); I != E; ++I) { + BlockFrequency Freq = BlockFrequencies[I->Number]; + + // Live-in to block? + if (I->Entry != DontCare) { + unsigned ib = bundles->getBundle(I->Number, 0); + activate(ib); + nodes[ib].addBias(Freq, I->Entry); + } + + // Live-out from block? + if (I->Exit != DontCare) { + unsigned ob = bundles->getBundle(I->Number, 1); + activate(ob); + nodes[ob].addBias(Freq, I->Exit); + } + } +} + +/// addPrefSpill - Same as addConstraints(PrefSpill) +void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) { + for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); + I != E; ++I) { + BlockFrequency Freq = BlockFrequencies[*I]; + if (Strong) + Freq += Freq; + unsigned ib = bundles->getBundle(*I, 0); + unsigned ob = bundles->getBundle(*I, 1); + activate(ib); + activate(ob); + nodes[ib].addBias(Freq, PrefSpill); + nodes[ob].addBias(Freq, PrefSpill); + } +} + +void SpillPlacement::addLinks(ArrayRef<unsigned> Links) { + for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E; + ++I) { + unsigned Number = *I; + unsigned ib = bundles->getBundle(Number, 0); + unsigned ob = bundles->getBundle(Number, 1); + + // Ignore self-loops. + if (ib == ob) + continue; + activate(ib); + activate(ob); + if (nodes[ib].Links.empty() && !nodes[ib].mustSpill()) + Linked.push_back(ib); + if (nodes[ob].Links.empty() && !nodes[ob].mustSpill()) + Linked.push_back(ob); + BlockFrequency Freq = BlockFrequencies[Number]; + nodes[ib].addLink(ob, Freq); + nodes[ob].addLink(ib, Freq); + } +} + +bool SpillPlacement::scanActiveBundles() { + Linked.clear(); + RecentPositive.clear(); + for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) { + nodes[n].update(nodes); + // A node that must spill, or a node without any links is not going to + // change its value ever again, so exclude it from iterations. + if (nodes[n].mustSpill()) + continue; + if (!nodes[n].Links.empty()) + Linked.push_back(n); + if (nodes[n].preferReg()) + RecentPositive.push_back(n); + } + return !RecentPositive.empty(); +} + +/// iterate - Repeatedly update the Hopfield nodes until stability or the +/// maximum number of iterations is reached. +/// @param Linked - Numbers of linked nodes that need updating. +void SpillPlacement::iterate() { + // First update the recently positive nodes. They have likely received new + // negative bias that will turn them off. + while (!RecentPositive.empty()) + nodes[RecentPositive.pop_back_val()].update(nodes); + + if (Linked.empty()) + return; + + // Run up to 10 iterations. The edge bundle numbering is closely related to + // basic block numbering, so there is a strong tendency towards chains of + // linked nodes with sequential numbers. By scanning the linked nodes + // backwards and forwards, we make it very likely that a single node can + // affect the entire network in a single iteration. That means very fast + // convergence, usually in a single iteration. + for (unsigned iteration = 0; iteration != 10; ++iteration) { + // Scan backwards, skipping the last node which was just updated. + bool Changed = false; + for (SmallVectorImpl<unsigned>::const_reverse_iterator I = + llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) { + unsigned n = *I; + if (nodes[n].update(nodes)) { + Changed = true; + if (nodes[n].preferReg()) + RecentPositive.push_back(n); + } + } + if (!Changed || !RecentPositive.empty()) + return; + + // Scan forwards, skipping the first node which was just updated. + Changed = false; + for (SmallVectorImpl<unsigned>::const_iterator I = + llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) { + unsigned n = *I; + if (nodes[n].update(nodes)) { + Changed = true; + if (nodes[n].preferReg()) + RecentPositive.push_back(n); + } + } + if (!Changed || !RecentPositive.empty()) + return; + } +} + +void SpillPlacement::prepare(BitVector &RegBundles) { + Linked.clear(); + RecentPositive.clear(); + // Reuse RegBundles as our ActiveNodes vector. + ActiveNodes = &RegBundles; + ActiveNodes->clear(); + ActiveNodes->resize(bundles->getNumBundles()); +} + +bool +SpillPlacement::finish() { + assert(ActiveNodes && "Call prepare() first"); + + // Write preferences back to ActiveNodes. + bool Perfect = true; + for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) + if (!nodes[n].preferReg()) { + ActiveNodes->reset(n); + Perfect = false; + } + ActiveNodes = 0; + return Perfect; +} |