aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp2665
1 files changed, 2665 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
new file mode 100644
index 000000000000..82b068d25c8e
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -0,0 +1,2665 @@
+//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the TargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <cctype>
+using namespace llvm;
+
+/// NOTE: The constructor takes ownership of TLOF.
+TargetLowering::TargetLowering(const TargetMachine &tm,
+ const TargetLoweringObjectFile *tlof)
+ : TargetLoweringBase(tm, tlof) {}
+
+const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ return NULL;
+}
+
+/// Check whether a given call node is in tail position within its function. If
+/// so, it sets Chain to the input chain of the tail call.
+bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
+ SDValue &Chain) const {
+ const Function *F = DAG.getMachineFunction().getFunction();
+
+ // Conservatively require the attributes of the call to match those of
+ // the return. Ignore noalias because it doesn't affect the call sequence.
+ AttributeSet CallerAttrs = F->getAttributes();
+ if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
+ .removeAttribute(Attribute::NoAlias).hasAttributes())
+ return false;
+
+ // It's not safe to eliminate the sign / zero extension of the return value.
+ if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
+ CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
+ return false;
+
+ // Check if the only use is a function return node.
+ return isUsedByReturnOnly(Node, Chain);
+}
+
+/// \brief Set CallLoweringInfo attribute flags based on a call instruction
+/// and called function attributes.
+void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
+ unsigned AttrIdx) {
+ isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
+ isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
+ isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
+ isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
+ isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
+ isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
+ isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
+ Alignment = CS->getParamAlignment(AttrIdx);
+}
+
+/// Generate a libcall taking the given operands as arguments and returning a
+/// result of type RetVT.
+std::pair<SDValue, SDValue>
+TargetLowering::makeLibCall(SelectionDAG &DAG,
+ RTLIB::Libcall LC, EVT RetVT,
+ const SDValue *Ops, unsigned NumOps,
+ bool isSigned, SDLoc dl,
+ bool doesNotReturn,
+ bool isReturnValueUsed) const {
+ TargetLowering::ArgListTy Args;
+ Args.reserve(NumOps);
+
+ TargetLowering::ArgListEntry Entry;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ Entry.Node = Ops[i];
+ Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
+ Entry.isSExt = isSigned;
+ Entry.isZExt = !isSigned;
+ Args.push_back(Entry);
+ }
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
+
+ Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
+ TargetLowering::
+ CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
+ false, 0, getLibcallCallingConv(LC),
+ /*isTailCall=*/false,
+ doesNotReturn, isReturnValueUsed, Callee, Args,
+ DAG, dl);
+ return LowerCallTo(CLI);
+}
+
+
+/// SoftenSetCCOperands - Soften the operands of a comparison. This code is
+/// shared among BR_CC, SELECT_CC, and SETCC handlers.
+void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
+ SDValue &NewLHS, SDValue &NewRHS,
+ ISD::CondCode &CCCode,
+ SDLoc dl) const {
+ assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
+ && "Unsupported setcc type!");
+
+ // Expand into one or more soft-fp libcall(s).
+ RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
+ switch (CCCode) {
+ case ISD::SETEQ:
+ case ISD::SETOEQ:
+ LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
+ (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
+ break;
+ case ISD::SETNE:
+ case ISD::SETUNE:
+ LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
+ (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
+ break;
+ case ISD::SETGE:
+ case ISD::SETOGE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
+ (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
+ break;
+ case ISD::SETLT:
+ case ISD::SETOLT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
+ (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
+ break;
+ case ISD::SETLE:
+ case ISD::SETOLE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
+ (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
+ break;
+ case ISD::SETGT:
+ case ISD::SETOGT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
+ (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
+ break;
+ case ISD::SETUO:
+ LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
+ (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
+ break;
+ case ISD::SETO:
+ LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
+ (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
+ break;
+ default:
+ LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
+ (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
+ switch (CCCode) {
+ case ISD::SETONE:
+ // SETONE = SETOLT | SETOGT
+ LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
+ (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
+ // Fallthrough
+ case ISD::SETUGT:
+ LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
+ (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
+ break;
+ case ISD::SETUGE:
+ LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
+ (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
+ break;
+ case ISD::SETULT:
+ LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
+ (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
+ break;
+ case ISD::SETULE:
+ LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
+ (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
+ break;
+ case ISD::SETUEQ:
+ LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
+ (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
+ break;
+ default: llvm_unreachable("Do not know how to soften this setcc!");
+ }
+ }
+
+ // Use the target specific return value for comparions lib calls.
+ EVT RetVT = getCmpLibcallReturnType();
+ SDValue Ops[2] = { NewLHS, NewRHS };
+ NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
+ dl).first;
+ NewRHS = DAG.getConstant(0, RetVT);
+ CCCode = getCmpLibcallCC(LC1);
+ if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
+ SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
+ getSetCCResultType(*DAG.getContext(), RetVT),
+ NewLHS, NewRHS, DAG.getCondCode(CCCode));
+ NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
+ dl).first;
+ NewLHS = DAG.getNode(ISD::SETCC, dl,
+ getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
+ NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
+ NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
+ NewRHS = SDValue();
+ }
+}
+
+/// getJumpTableEncoding - Return the entry encoding for a jump table in the
+/// current function. The returned value is a member of the
+/// MachineJumpTableInfo::JTEntryKind enum.
+unsigned TargetLowering::getJumpTableEncoding() const {
+ // In non-pic modes, just use the address of a block.
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
+ return MachineJumpTableInfo::EK_BlockAddress;
+
+ // In PIC mode, if the target supports a GPRel32 directive, use it.
+ if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
+ return MachineJumpTableInfo::EK_GPRel32BlockAddress;
+
+ // Otherwise, use a label difference.
+ return MachineJumpTableInfo::EK_LabelDifference32;
+}
+
+SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const {
+ // If our PIC model is GP relative, use the global offset table as the base.
+ unsigned JTEncoding = getJumpTableEncoding();
+
+ if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
+ (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
+ return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
+
+ return Table;
+}
+
+/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
+/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
+/// MCExpr.
+const MCExpr *
+TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
+ unsigned JTI,MCContext &Ctx) const{
+ // The normal PIC reloc base is the label at the start of the jump table.
+ return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
+}
+
+bool
+TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // Assume that everything is safe in static mode.
+ if (getTargetMachine().getRelocationModel() == Reloc::Static)
+ return true;
+
+ // In dynamic-no-pic mode, assume that known defined values are safe.
+ if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
+ GA &&
+ !GA->getGlobal()->isDeclaration() &&
+ !GA->getGlobal()->isWeakForLinker())
+ return true;
+
+ // Otherwise assume nothing is safe.
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Optimization Methods
+//===----------------------------------------------------------------------===//
+
+/// ShrinkDemandedConstant - Check to see if the specified operand of the
+/// specified instruction is a constant integer. If so, check to see if there
+/// are any bits set in the constant that are not demanded. If so, shrink the
+/// constant and return true.
+bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
+ const APInt &Demanded) {
+ SDLoc dl(Op);
+
+ // FIXME: ISD::SELECT, ISD::SELECT_CC
+ switch (Op.getOpcode()) {
+ default: break;
+ case ISD::XOR:
+ case ISD::AND:
+ case ISD::OR: {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!C) return false;
+
+ if (Op.getOpcode() == ISD::XOR &&
+ (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
+ return false;
+
+ // if we can expand it to have all bits set, do it
+ if (C->getAPIntValue().intersects(~Demanded)) {
+ EVT VT = Op.getValueType();
+ SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
+ DAG.getConstant(Demanded &
+ C->getAPIntValue(),
+ VT));
+ return CombineTo(Op, New);
+ }
+
+ break;
+ }
+ }
+
+ return false;
+}
+
+/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
+/// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
+/// cast, but it could be generalized for targets with other types of
+/// implicit widening casts.
+bool
+TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
+ unsigned BitWidth,
+ const APInt &Demanded,
+ SDLoc dl) {
+ assert(Op.getNumOperands() == 2 &&
+ "ShrinkDemandedOp only supports binary operators!");
+ assert(Op.getNode()->getNumValues() == 1 &&
+ "ShrinkDemandedOp only supports nodes with one result!");
+
+ // Don't do this if the node has another user, which may require the
+ // full value.
+ if (!Op.getNode()->hasOneUse())
+ return false;
+
+ // Search for the smallest integer type with free casts to and from
+ // Op's type. For expedience, just check power-of-2 integer types.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
+ unsigned SmallVTBits = DemandedSize;
+ if (!isPowerOf2_32(SmallVTBits))
+ SmallVTBits = NextPowerOf2(SmallVTBits);
+ for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
+ EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
+ if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
+ TLI.isZExtFree(SmallVT, Op.getValueType())) {
+ // We found a type with free casts.
+ SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
+ DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
+ Op.getNode()->getOperand(0)),
+ DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
+ Op.getNode()->getOperand(1)));
+ bool NeedZext = DemandedSize > SmallVTBits;
+ SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
+ dl, Op.getValueType(), X);
+ return CombineTo(Op, Z);
+ }
+ }
+ return false;
+}
+
+/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
+/// DemandedMask bits of the result of Op are ever used downstream. If we can
+/// use this information to simplify Op, create a new simplified DAG node and
+/// return true, returning the original and new nodes in Old and New. Otherwise,
+/// analyze the expression and return a mask of KnownOne and KnownZero bits for
+/// the expression (used to simplify the caller). The KnownZero/One bits may
+/// only be accurate for those bits in the DemandedMask.
+bool TargetLowering::SimplifyDemandedBits(SDValue Op,
+ const APInt &DemandedMask,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ TargetLoweringOpt &TLO,
+ unsigned Depth) const {
+ unsigned BitWidth = DemandedMask.getBitWidth();
+ assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
+ "Mask size mismatches value type size!");
+ APInt NewMask = DemandedMask;
+ SDLoc dl(Op);
+
+ // Don't know anything.
+ KnownZero = KnownOne = APInt(BitWidth, 0);
+
+ // Other users may use these bits.
+ if (!Op.getNode()->hasOneUse()) {
+ if (Depth != 0) {
+ // If not at the root, Just compute the KnownZero/KnownOne bits to
+ // simplify things downstream.
+ TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
+ return false;
+ }
+ // If this is the root being simplified, allow it to have multiple uses,
+ // just set the NewMask to all bits.
+ NewMask = APInt::getAllOnesValue(BitWidth);
+ } else if (DemandedMask == 0) {
+ // Not demanding any bits from Op.
+ if (Op.getOpcode() != ISD::UNDEF)
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
+ return false;
+ } else if (Depth == 6) { // Limit search depth.
+ return false;
+ }
+
+ APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
+ switch (Op.getOpcode()) {
+ case ISD::Constant:
+ // We know all of the bits for a constant!
+ KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
+ KnownZero = ~KnownOne;
+ return false; // Don't fall through, will infinitely loop.
+ case ISD::AND:
+ // If the RHS is a constant, check to see if the LHS would be zero without
+ // using the bits from the RHS. Below, we use knowledge about the RHS to
+ // simplify the LHS, here we're using information from the LHS to simplify
+ // the RHS.
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ APInt LHSZero, LHSOne;
+ // Do not increment Depth here; that can cause an infinite loop.
+ TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
+ // If the LHS already has zeros where RHSC does, this and is dead.
+ if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ // If any of the set bits in the RHS are known zero on the LHS, shrink
+ // the constant.
+ if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
+ return true;
+ }
+
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
+ KnownZero2, KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known one on one side, return the other.
+ // These bits cannot contribute to the result of the 'and'.
+ if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(1));
+ // If all of the demanded bits in the inputs are known zeros, return zero.
+ if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
+ // If the RHS is a constant, see if we can simplify it.
+ if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
+ return true;
+ // If the operation can be done in a smaller type, do so.
+ if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ return true;
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ KnownOne &= KnownOne2;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ KnownZero |= KnownZero2;
+ break;
+ case ISD::OR:
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
+ KnownZero2, KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'or'.
+ if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(1));
+ // If all of the potentially set bits on one side are known to be set on
+ // the other side, just use the 'other' side.
+ if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(1));
+ // If the RHS is a constant, see if we can simplify it.
+ if (TLO.ShrinkDemandedConstant(Op, NewMask))
+ return true;
+ // If the operation can be done in a smaller type, do so.
+ if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ return true;
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ KnownZero &= KnownZero2;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ KnownOne |= KnownOne2;
+ break;
+ case ISD::XOR:
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'xor'.
+ if ((KnownZero & NewMask) == NewMask)
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ if ((KnownZero2 & NewMask) == NewMask)
+ return TLO.CombineTo(Op, Op.getOperand(1));
+ // If the operation can be done in a smaller type, do so.
+ if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ return true;
+
+ // If all of the unknown bits are known to be zero on one side or the other
+ // (but not both) turn this into an *inclusive* or.
+ // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
+ if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
+ Op.getOperand(0),
+ Op.getOperand(1)));
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
+
+ // If all of the demanded bits on one side are known, and all of the set
+ // bits on that side are also known to be set on the other side, turn this
+ // into an AND, as we know the bits will be cleared.
+ // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
+ // NB: it is okay if more bits are known than are requested
+ if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
+ if (KnownOne == KnownOne2) { // set bits are the same on both sides
+ EVT VT = Op.getValueType();
+ SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
+ Op.getOperand(0), ANDC));
+ }
+ }
+
+ // If the RHS is a constant, see if we can simplify it.
+ // for XOR, we prefer to force bits to 1 if they will make a -1.
+ // if we can't force bits, try to shrink constant
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ APInt Expanded = C->getAPIntValue() | (~NewMask);
+ // if we can expand it to have all bits set, do it
+ if (Expanded.isAllOnesValue()) {
+ if (Expanded != C->getAPIntValue()) {
+ EVT VT = Op.getValueType();
+ SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
+ TLO.DAG.getConstant(Expanded, VT));
+ return TLO.CombineTo(Op, New);
+ }
+ // if it already has all the bits set, nothing to change
+ // but don't shrink either!
+ } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
+ return true;
+ }
+ }
+
+ KnownZero = KnownZeroOut;
+ KnownOne = KnownOneOut;
+ break;
+ case ISD::SELECT:
+ if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If the operands are constants, see if we can simplify them.
+ if (TLO.ShrinkDemandedConstant(Op, NewMask))
+ return true;
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ break;
+ case ISD::SELECT_CC:
+ if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If the operands are constants, see if we can simplify them.
+ if (TLO.ShrinkDemandedConstant(Op, NewMask))
+ return true;
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ break;
+ case ISD::SHL:
+ if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ unsigned ShAmt = SA->getZExtValue();
+ SDValue InOp = Op.getOperand(0);
+
+ // If the shift count is an invalid immediate, don't do anything.
+ if (ShAmt >= BitWidth)
+ break;
+
+ // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
+ // single shift. We can do this if the bottom bits (which are shifted
+ // out) are never demanded.
+ if (InOp.getOpcode() == ISD::SRL &&
+ isa<ConstantSDNode>(InOp.getOperand(1))) {
+ if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
+ unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
+ unsigned Opc = ISD::SHL;
+ int Diff = ShAmt-C1;
+ if (Diff < 0) {
+ Diff = -Diff;
+ Opc = ISD::SRL;
+ }
+
+ SDValue NewSA =
+ TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
+ EVT VT = Op.getValueType();
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
+ InOp.getOperand(0), NewSA));
+ }
+ }
+
+ if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+
+ // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
+ // are not demanded. This will likely allow the anyext to be folded away.
+ if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
+ SDValue InnerOp = InOp.getNode()->getOperand(0);
+ EVT InnerVT = InnerOp.getValueType();
+ unsigned InnerBits = InnerVT.getSizeInBits();
+ if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
+ isTypeDesirableForOp(ISD::SHL, InnerVT)) {
+ EVT ShTy = getShiftAmountTy(InnerVT);
+ if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
+ ShTy = InnerVT;
+ SDValue NarrowShl =
+ TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
+ TLO.DAG.getConstant(ShAmt, ShTy));
+ return
+ TLO.CombineTo(Op,
+ TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
+ NarrowShl));
+ }
+ // Repeat the SHL optimization above in cases where an extension
+ // intervenes: (shl (anyext (shr x, c1)), c2) to
+ // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
+ // aren't demanded (as above) and that the shifted upper c1 bits of
+ // x aren't demanded.
+ if (InOp.hasOneUse() &&
+ InnerOp.getOpcode() == ISD::SRL &&
+ InnerOp.hasOneUse() &&
+ isa<ConstantSDNode>(InnerOp.getOperand(1))) {
+ uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
+ ->getZExtValue();
+ if (InnerShAmt < ShAmt &&
+ InnerShAmt < InnerBits &&
+ NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
+ NewMask.trunc(ShAmt) == 0) {
+ SDValue NewSA =
+ TLO.DAG.getConstant(ShAmt - InnerShAmt,
+ Op.getOperand(1).getValueType());
+ EVT VT = Op.getValueType();
+ SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
+ InnerOp.getOperand(0));
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
+ NewExt, NewSA));
+ }
+ }
+ }
+
+ KnownZero <<= SA->getZExtValue();
+ KnownOne <<= SA->getZExtValue();
+ // low bits known zero.
+ KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
+ }
+ break;
+ case ISD::SRL:
+ if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ EVT VT = Op.getValueType();
+ unsigned ShAmt = SA->getZExtValue();
+ unsigned VTSize = VT.getSizeInBits();
+ SDValue InOp = Op.getOperand(0);
+
+ // If the shift count is an invalid immediate, don't do anything.
+ if (ShAmt >= BitWidth)
+ break;
+
+ // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
+ // single shift. We can do this if the top bits (which are shifted out)
+ // are never demanded.
+ if (InOp.getOpcode() == ISD::SHL &&
+ isa<ConstantSDNode>(InOp.getOperand(1))) {
+ if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
+ unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
+ unsigned Opc = ISD::SRL;
+ int Diff = ShAmt-C1;
+ if (Diff < 0) {
+ Diff = -Diff;
+ Opc = ISD::SHL;
+ }
+
+ SDValue NewSA =
+ TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
+ InOp.getOperand(0), NewSA));
+ }
+ }
+
+ // Compute the new bits that are at the top now.
+ if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.lshr(ShAmt);
+ KnownOne = KnownOne.lshr(ShAmt);
+
+ APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
+ KnownZero |= HighBits; // High bits known zero.
+ }
+ break;
+ case ISD::SRA:
+ // If this is an arithmetic shift right and only the low-bit is set, we can
+ // always convert this into a logical shr, even if the shift amount is
+ // variable. The low bit of the shift cannot be an input sign bit unless
+ // the shift amount is >= the size of the datatype, which is undefined.
+ if (NewMask == 1)
+ return TLO.CombineTo(Op,
+ TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
+ Op.getOperand(0), Op.getOperand(1)));
+
+ if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ EVT VT = Op.getValueType();
+ unsigned ShAmt = SA->getZExtValue();
+
+ // If the shift count is an invalid immediate, don't do anything.
+ if (ShAmt >= BitWidth)
+ break;
+
+ APInt InDemandedMask = (NewMask << ShAmt);
+
+ // If any of the demanded bits are produced by the sign extension, we also
+ // demand the input sign bit.
+ APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
+ if (HighBits.intersects(NewMask))
+ InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
+
+ if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.lshr(ShAmt);
+ KnownOne = KnownOne.lshr(ShAmt);
+
+ // Handle the sign bit, adjusted to where it is now in the mask.
+ APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
+
+ // If the input sign bit is known to be zero, or if none of the top bits
+ // are demanded, turn this into an unsigned shift right.
+ if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
+ Op.getOperand(0),
+ Op.getOperand(1)));
+
+ int Log2 = NewMask.exactLogBase2();
+ if (Log2 >= 0) {
+ // The bit must come from the sign.
+ SDValue NewSA =
+ TLO.DAG.getConstant(BitWidth - 1 - Log2,
+ Op.getOperand(1).getValueType());
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
+ Op.getOperand(0), NewSA));
+ }
+
+ if (KnownOne.intersects(SignBit))
+ // New bits are known one.
+ KnownOne |= HighBits;
+ }
+ break;
+ case ISD::SIGN_EXTEND_INREG: {
+ EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+
+ APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
+ // If we only care about the highest bit, don't bother shifting right.
+ if (MsbMask == DemandedMask) {
+ unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
+ SDValue InOp = Op.getOperand(0);
+
+ // Compute the correct shift amount type, which must be getShiftAmountTy
+ // for scalar types after legalization.
+ EVT ShiftAmtTy = Op.getValueType();
+ if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
+ ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
+
+ SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
+ Op.getValueType(), InOp, ShiftAmt));
+ }
+
+ // Sign extension. Compute the demanded bits in the result that are not
+ // present in the input.
+ APInt NewBits =
+ APInt::getHighBitsSet(BitWidth,
+ BitWidth - ExVT.getScalarType().getSizeInBits());
+
+ // If none of the extended bits are demanded, eliminate the sextinreg.
+ if ((NewBits & NewMask) == 0)
+ return TLO.CombineTo(Op, Op.getOperand(0));
+
+ APInt InSignBit =
+ APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
+ APInt InputDemandedBits =
+ APInt::getLowBitsSet(BitWidth,
+ ExVT.getScalarType().getSizeInBits()) &
+ NewMask;
+
+ // Since the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ InputDemandedBits |= InSignBit;
+
+ if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+
+ // If the input sign bit is known zero, convert this into a zero extension.
+ if (KnownZero.intersects(InSignBit))
+ return TLO.CombineTo(Op,
+ TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
+
+ if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
+ KnownOne |= NewBits;
+ KnownZero &= ~NewBits;
+ } else { // Input sign bit unknown
+ KnownZero &= ~NewBits;
+ KnownOne &= ~NewBits;
+ }
+ break;
+ }
+ case ISD::ZERO_EXTEND: {
+ unsigned OperandBitWidth =
+ Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ APInt InMask = NewMask.trunc(OperandBitWidth);
+
+ // If none of the top bits are demanded, convert this into an any_extend.
+ APInt NewBits =
+ APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
+ if (!NewBits.intersects(NewMask))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
+ Op.getValueType(),
+ Op.getOperand(0)));
+
+ if (SimplifyDemandedBits(Op.getOperand(0), InMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+ KnownZero |= NewBits;
+ break;
+ }
+ case ISD::SIGN_EXTEND: {
+ EVT InVT = Op.getOperand(0).getValueType();
+ unsigned InBits = InVT.getScalarType().getSizeInBits();
+ APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
+ APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
+ APInt NewBits = ~InMask & NewMask;
+
+ // If none of the top bits are demanded, convert this into an any_extend.
+ if (NewBits == 0)
+ return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
+ Op.getValueType(),
+ Op.getOperand(0)));
+
+ // Since some of the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ APInt InDemandedBits = InMask & NewMask;
+ InDemandedBits |= InSignBit;
+ InDemandedBits = InDemandedBits.trunc(InBits);
+
+ if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+
+ // If the sign bit is known zero, convert this to a zero extend.
+ if (KnownZero.intersects(InSignBit))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
+ Op.getValueType(),
+ Op.getOperand(0)));
+
+ // If the sign bit is known one, the top bits match.
+ if (KnownOne.intersects(InSignBit)) {
+ KnownOne |= NewBits;
+ assert((KnownZero & NewBits) == 0);
+ } else { // Otherwise, top bits aren't known.
+ assert((KnownOne & NewBits) == 0);
+ assert((KnownZero & NewBits) == 0);
+ }
+ break;
+ }
+ case ISD::ANY_EXTEND: {
+ unsigned OperandBitWidth =
+ Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ APInt InMask = NewMask.trunc(OperandBitWidth);
+ if (SimplifyDemandedBits(Op.getOperand(0), InMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+ break;
+ }
+ case ISD::TRUNCATE: {
+ // Simplify the input, using demanded bit information, and compute the known
+ // zero/one bits live out.
+ unsigned OperandBitWidth =
+ Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ APInt TruncMask = NewMask.zext(OperandBitWidth);
+ if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ KnownZero = KnownZero.trunc(BitWidth);
+ KnownOne = KnownOne.trunc(BitWidth);
+
+ // If the input is only used by this truncate, see if we can shrink it based
+ // on the known demanded bits.
+ if (Op.getOperand(0).getNode()->hasOneUse()) {
+ SDValue In = Op.getOperand(0);
+ switch (In.getOpcode()) {
+ default: break;
+ case ISD::SRL:
+ // Shrink SRL by a constant if none of the high bits shifted in are
+ // demanded.
+ if (TLO.LegalTypes() &&
+ !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
+ // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
+ // undesirable.
+ break;
+ ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
+ if (!ShAmt)
+ break;
+ SDValue Shift = In.getOperand(1);
+ if (TLO.LegalTypes()) {
+ uint64_t ShVal = ShAmt->getZExtValue();
+ Shift =
+ TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
+ }
+
+ APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
+ OperandBitWidth - BitWidth);
+ HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
+
+ if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
+ // None of the shifted in bits are needed. Add a truncate of the
+ // shift input, then shift it.
+ SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
+ Op.getValueType(),
+ In.getOperand(0));
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
+ Op.getValueType(),
+ NewTrunc,
+ Shift));
+ }
+ break;
+ }
+ }
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ break;
+ }
+ case ISD::AssertZext: {
+ // AssertZext demands all of the high bits, plus any of the low bits
+ // demanded by its users.
+ EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ APInt InMask = APInt::getLowBitsSet(BitWidth,
+ VT.getSizeInBits());
+ if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+
+ KnownZero |= ~InMask & NewMask;
+ break;
+ }
+ case ISD::BITCAST:
+ // If this is an FP->Int bitcast and if the sign bit is the only
+ // thing demanded, turn this into a FGETSIGN.
+ if (!TLO.LegalOperations() &&
+ !Op.getValueType().isVector() &&
+ !Op.getOperand(0).getValueType().isVector() &&
+ NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
+ Op.getOperand(0).getValueType().isFloatingPoint()) {
+ bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
+ bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
+ if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
+ EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
+ // Make a FGETSIGN + SHL to move the sign bit into the appropriate
+ // place. We expect the SHL to be eliminated by other optimizations.
+ SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
+ unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
+ if (!OpVTLegal && OpVTSizeInBits > 32)
+ Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
+ unsigned ShVal = Op.getValueType().getSizeInBits()-1;
+ SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
+ Op.getValueType(),
+ Sign, ShAmt));
+ }
+ }
+ break;
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::SUB: {
+ // Add, Sub, and Mul don't demand any bits in positions beyond that
+ // of the highest bit demanded of them.
+ APInt LoMask = APInt::getLowBitsSet(BitWidth,
+ BitWidth - NewMask.countLeadingZeros());
+ if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ // See if the operation should be performed at a smaller bit width.
+ if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ return true;
+ }
+ // FALL THROUGH
+ default:
+ // Just use ComputeMaskedBits to compute output bits.
+ TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
+ break;
+ }
+
+ // If we know the value of all of the demanded bits, return this as a
+ // constant.
+ if ((NewMask & (KnownZero|KnownOne)) == NewMask)
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
+
+ return false;
+}
+
+/// computeMaskedBitsForTargetNode - Determine which of the bits specified
+/// in Mask are known to be either zero or one and return them in the
+/// KnownZero/KnownOne bitsets.
+void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use MaskedValueIsZero if you don't know whether Op"
+ " is a target node!");
+ KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
+}
+
+/// ComputeNumSignBitsForTargetNode - This method can be implemented by
+/// targets that want to expose additional information about sign bits to the
+/// DAG Combiner.
+unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use ComputeNumSignBits if you don't know whether Op"
+ " is a target node!");
+ return 1;
+}
+
+/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
+/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
+/// determine which bit is set.
+///
+static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
+ // A left-shift of a constant one will have exactly one bit set, because
+ // shifting the bit off the end is undefined.
+ if (Val.getOpcode() == ISD::SHL)
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
+ if (C->getAPIntValue() == 1)
+ return true;
+
+ // Similarly, a right-shift of a constant sign-bit will have exactly
+ // one bit set.
+ if (Val.getOpcode() == ISD::SRL)
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
+ if (C->getAPIntValue().isSignBit())
+ return true;
+
+ // More could be done here, though the above checks are enough
+ // to handle some common cases.
+
+ // Fall back to ComputeMaskedBits to catch other known cases.
+ EVT OpVT = Val.getValueType();
+ unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
+ APInt KnownZero, KnownOne;
+ DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
+ return (KnownZero.countPopulation() == BitWidth - 1) &&
+ (KnownOne.countPopulation() == 1);
+}
+
+/// SimplifySetCC - Try to simplify a setcc built with the specified operands
+/// and cc. If it is unable to simplify it, return a null SDValue.
+SDValue
+TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, bool foldBooleans,
+ DAGCombinerInfo &DCI, SDLoc dl) const {
+ SelectionDAG &DAG = DCI.DAG;
+
+ // These setcc operations always fold.
+ switch (Cond) {
+ default: break;
+ case ISD::SETFALSE:
+ case ISD::SETFALSE2: return DAG.getConstant(0, VT);
+ case ISD::SETTRUE:
+ case ISD::SETTRUE2: {
+ TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector());
+ return DAG.getConstant(
+ Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
+ }
+ }
+
+ // Ensure that the constant occurs on the RHS, and fold constant
+ // comparisons.
+ ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
+ if (isa<ConstantSDNode>(N0.getNode()) &&
+ (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
+ return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
+
+ if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
+ // equality comparison, then we're just comparing whether X itself is
+ // zero.
+ if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
+ N0.getOperand(0).getOpcode() == ISD::CTLZ &&
+ N0.getOperand(1).getOpcode() == ISD::Constant) {
+ const APInt &ShAmt
+ = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
+ if ((C1 == 0) == (Cond == ISD::SETEQ)) {
+ // (srl (ctlz x), 5) == 0 -> X != 0
+ // (srl (ctlz x), 5) != 1 -> X != 0
+ Cond = ISD::SETNE;
+ } else {
+ // (srl (ctlz x), 5) != 0 -> X == 0
+ // (srl (ctlz x), 5) == 1 -> X == 0
+ Cond = ISD::SETEQ;
+ }
+ SDValue Zero = DAG.getConstant(0, N0.getValueType());
+ return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
+ Zero, Cond);
+ }
+ }
+
+ SDValue CTPOP = N0;
+ // Look through truncs that don't change the value of a ctpop.
+ if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
+ CTPOP = N0.getOperand(0);
+
+ if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
+ (N0 == CTPOP || N0.getValueType().getSizeInBits() >
+ Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
+ EVT CTVT = CTPOP.getValueType();
+ SDValue CTOp = CTPOP.getOperand(0);
+
+ // (ctpop x) u< 2 -> (x & x-1) == 0
+ // (ctpop x) u> 1 -> (x & x-1) != 0
+ if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
+ DAG.getConstant(1, CTVT));
+ SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
+ ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
+ return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
+ }
+
+ // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
+ }
+
+ // (zext x) == C --> x == (trunc C)
+ if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ unsigned MinBits = N0.getValueSizeInBits();
+ SDValue PreZExt;
+ if (N0->getOpcode() == ISD::ZERO_EXTEND) {
+ // ZExt
+ MinBits = N0->getOperand(0).getValueSizeInBits();
+ PreZExt = N0->getOperand(0);
+ } else if (N0->getOpcode() == ISD::AND) {
+ // DAGCombine turns costly ZExts into ANDs
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
+ if ((C->getAPIntValue()+1).isPowerOf2()) {
+ MinBits = C->getAPIntValue().countTrailingOnes();
+ PreZExt = N0->getOperand(0);
+ }
+ } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
+ // ZEXTLOAD
+ if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
+ MinBits = LN0->getMemoryVT().getSizeInBits();
+ PreZExt = N0;
+ }
+ }
+
+ // Make sure we're not losing bits from the constant.
+ if (MinBits > 0 &&
+ MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) {
+ EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
+ if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
+ // Will get folded away.
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
+ SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
+ return DAG.getSetCC(dl, VT, Trunc, C, Cond);
+ }
+ }
+ }
+
+ // If the LHS is '(and load, const)', the RHS is 0,
+ // the test is for equality or unsigned, and all 1 bits of the const are
+ // in the same partial word, see if we can shorten the load.
+ if (DCI.isBeforeLegalize() &&
+ !ISD::isSignedIntSetCC(Cond) &&
+ N0.getOpcode() == ISD::AND && C1 == 0 &&
+ N0.getNode()->hasOneUse() &&
+ isa<LoadSDNode>(N0.getOperand(0)) &&
+ N0.getOperand(0).getNode()->hasOneUse() &&
+ isa<ConstantSDNode>(N0.getOperand(1))) {
+ LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
+ APInt bestMask;
+ unsigned bestWidth = 0, bestOffset = 0;
+ if (!Lod->isVolatile() && Lod->isUnindexed()) {
+ unsigned origWidth = N0.getValueType().getSizeInBits();
+ unsigned maskWidth = origWidth;
+ // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
+ // 8 bits, but have to be careful...
+ if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
+ origWidth = Lod->getMemoryVT().getSizeInBits();
+ const APInt &Mask =
+ cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ for (unsigned width = origWidth / 2; width>=8; width /= 2) {
+ APInt newMask = APInt::getLowBitsSet(maskWidth, width);
+ for (unsigned offset=0; offset<origWidth/width; offset++) {
+ if ((newMask & Mask) == Mask) {
+ if (!getDataLayout()->isLittleEndian())
+ bestOffset = (origWidth/width - offset - 1) * (width/8);
+ else
+ bestOffset = (uint64_t)offset * (width/8);
+ bestMask = Mask.lshr(offset * (width/8) * 8);
+ bestWidth = width;
+ break;
+ }
+ newMask = newMask << width;
+ }
+ }
+ }
+ if (bestWidth) {
+ EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
+ if (newVT.isRound()) {
+ EVT PtrType = Lod->getOperand(1).getValueType();
+ SDValue Ptr = Lod->getBasePtr();
+ if (bestOffset != 0)
+ Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
+ DAG.getConstant(bestOffset, PtrType));
+ unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
+ SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
+ Lod->getPointerInfo().getWithOffset(bestOffset),
+ false, false, false, NewAlign);
+ return DAG.getSetCC(dl, VT,
+ DAG.getNode(ISD::AND, dl, newVT, NewLoad,
+ DAG.getConstant(bestMask.trunc(bestWidth),
+ newVT)),
+ DAG.getConstant(0LL, newVT), Cond);
+ }
+ }
+ }
+
+ // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
+ if (N0.getOpcode() == ISD::ZERO_EXTEND) {
+ unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
+
+ // If the comparison constant has bits in the upper part, the
+ // zero-extended value could never match.
+ if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
+ C1.getBitWidth() - InSize))) {
+ switch (Cond) {
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETEQ: return DAG.getConstant(0, VT);
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETNE: return DAG.getConstant(1, VT);
+ case ISD::SETGT:
+ case ISD::SETGE:
+ // True if the sign bit of C1 is set.
+ return DAG.getConstant(C1.isNegative(), VT);
+ case ISD::SETLT:
+ case ISD::SETLE:
+ // True if the sign bit of C1 isn't set.
+ return DAG.getConstant(C1.isNonNegative(), VT);
+ default:
+ break;
+ }
+ }
+
+ // Otherwise, we can perform the comparison with the low bits.
+ switch (Cond) {
+ case ISD::SETEQ:
+ case ISD::SETNE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETULT:
+ case ISD::SETULE: {
+ EVT newVT = N0.getOperand(0).getValueType();
+ if (DCI.isBeforeLegalizeOps() ||
+ (isOperationLegal(ISD::SETCC, newVT) &&
+ getCondCodeAction(Cond, newVT.getSimpleVT())==Legal))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(C1.trunc(InSize), newVT),
+ Cond);
+ break;
+ }
+ default:
+ break; // todo, be more careful with signed comparisons
+ }
+ } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
+ unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
+ EVT ExtDstTy = N0.getValueType();
+ unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
+
+ // If the constant doesn't fit into the number of bits for the source of
+ // the sign extension, it is impossible for both sides to be equal.
+ if (C1.getMinSignedBits() > ExtSrcTyBits)
+ return DAG.getConstant(Cond == ISD::SETNE, VT);
+
+ SDValue ZextOp;
+ EVT Op0Ty = N0.getOperand(0).getValueType();
+ if (Op0Ty == ExtSrcTy) {
+ ZextOp = N0.getOperand(0);
+ } else {
+ APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
+ ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
+ DAG.getConstant(Imm, Op0Ty));
+ }
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(ZextOp.getNode());
+ // Otherwise, make this a use of a zext.
+ return DAG.getSetCC(dl, VT, ZextOp,
+ DAG.getConstant(C1 & APInt::getLowBitsSet(
+ ExtDstTyBits,
+ ExtSrcTyBits),
+ ExtDstTy),
+ Cond);
+ } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
+ if (N0.getOpcode() == ISD::SETCC &&
+ isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
+ bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
+ if (TrueWhenTrue)
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
+ // Invert the condition.
+ ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+ CC = ISD::getSetCCInverse(CC,
+ N0.getOperand(0).getValueType().isInteger());
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
+ }
+
+ if ((N0.getOpcode() == ISD::XOR ||
+ (N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR &&
+ N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
+ isa<ConstantSDNode>(N0.getOperand(1)) &&
+ cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
+ // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
+ // can only do this if the top bits are known zero.
+ unsigned BitWidth = N0.getValueSizeInBits();
+ if (DAG.MaskedValueIsZero(N0,
+ APInt::getHighBitsSet(BitWidth,
+ BitWidth-1))) {
+ // Okay, get the un-inverted input value.
+ SDValue Val;
+ if (N0.getOpcode() == ISD::XOR)
+ Val = N0.getOperand(0);
+ else {
+ assert(N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR);
+ // ((X^1)&1)^1 -> X & 1
+ Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
+ N0.getOperand(0).getOperand(0),
+ N0.getOperand(1));
+ }
+
+ return DAG.getSetCC(dl, VT, Val, N1,
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ } else if (N1C->getAPIntValue() == 1 &&
+ (VT == MVT::i1 ||
+ getBooleanContents(false) == ZeroOrOneBooleanContent)) {
+ SDValue Op0 = N0;
+ if (Op0.getOpcode() == ISD::TRUNCATE)
+ Op0 = Op0.getOperand(0);
+
+ if ((Op0.getOpcode() == ISD::XOR) &&
+ Op0.getOperand(0).getOpcode() == ISD::SETCC &&
+ Op0.getOperand(1).getOpcode() == ISD::SETCC) {
+ // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
+ Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
+ return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
+ Cond);
+ }
+ if (Op0.getOpcode() == ISD::AND &&
+ isa<ConstantSDNode>(Op0.getOperand(1)) &&
+ cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
+ // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
+ if (Op0.getValueType().bitsGT(VT))
+ Op0 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
+ DAG.getConstant(1, VT));
+ else if (Op0.getValueType().bitsLT(VT))
+ Op0 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
+ DAG.getConstant(1, VT));
+
+ return DAG.getSetCC(dl, VT, Op0,
+ DAG.getConstant(0, Op0.getValueType()),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ if (Op0.getOpcode() == ISD::AssertZext &&
+ cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
+ return DAG.getSetCC(dl, VT, Op0,
+ DAG.getConstant(0, Op0.getValueType()),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ }
+
+ APInt MinVal, MaxVal;
+ unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
+ if (ISD::isSignedIntSetCC(Cond)) {
+ MinVal = APInt::getSignedMinValue(OperandBitSize);
+ MaxVal = APInt::getSignedMaxValue(OperandBitSize);
+ } else {
+ MinVal = APInt::getMinValue(OperandBitSize);
+ MaxVal = APInt::getMaxValue(OperandBitSize);
+ }
+
+ // Canonicalize GE/LE comparisons to use GT/LT comparisons.
+ if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
+ if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
+ // X >= C0 --> X > (C0-1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C1-1, N1.getValueType()),
+ (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
+ }
+
+ if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
+ if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
+ // X <= C0 --> X < (C0+1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C1+1, N1.getValueType()),
+ (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
+ }
+
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
+ return DAG.getConstant(0, VT); // X < MIN --> false
+ if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
+ return DAG.getConstant(1, VT); // X >= MIN --> true
+ if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
+ return DAG.getConstant(0, VT); // X > MAX --> false
+ if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
+ return DAG.getConstant(1, VT); // X <= MAX --> true
+
+ // Canonicalize setgt X, Min --> setne X, Min
+ if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+ // Canonicalize setlt X, Max --> setne X, Max
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+
+ // If we have setult X, 1, turn it into seteq X, 0
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MinVal, N0.getValueType()),
+ ISD::SETEQ);
+ // If we have setugt X, Max-1, turn it into seteq X, Max
+ if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MaxVal, N0.getValueType()),
+ ISD::SETEQ);
+
+ // If we have "setcc X, C0", check to see if we can shrink the immediate
+ // by changing cc.
+
+ // SETUGT X, SINTMAX -> SETLT X, 0
+ if (Cond == ISD::SETUGT &&
+ C1 == APInt::getSignedMaxValue(OperandBitSize))
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(0, N1.getValueType()),
+ ISD::SETLT);
+
+ // SETULT X, SINTMIN -> SETGT X, -1
+ if (Cond == ISD::SETULT &&
+ C1 == APInt::getSignedMinValue(OperandBitSize)) {
+ SDValue ConstMinusOne =
+ DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
+ N1.getValueType());
+ return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
+ }
+
+ // Fold bit comparisons when we can.
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ (VT == N0.getValueType() ||
+ (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
+ N0.getOpcode() == ISD::AND)
+ if (ConstantSDNode *AndRHS =
+ dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
+ getPointerTy() : getShiftAmountTy(N0.getValueType());
+ if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
+ // Perform the xform if the AND RHS is a single bit.
+ if (AndRHS->getAPIntValue().isPowerOf2()) {
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
+ DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
+ }
+ } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
+ // (X & 8) == 8 --> (X & 8) >> 3
+ // Perform the xform if C1 is a single bit.
+ if (C1.isPowerOf2()) {
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
+ DAG.getConstant(C1.logBase2(), ShiftTy)));
+ }
+ }
+ }
+
+ if (C1.getMinSignedBits() <= 64 &&
+ !isLegalICmpImmediate(C1.getSExtValue())) {
+ // (X & -256) == 256 -> (X >> 8) == 1
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
+ if (ConstantSDNode *AndRHS =
+ dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ const APInt &AndRHSC = AndRHS->getAPIntValue();
+ if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
+ unsigned ShiftBits = AndRHSC.countTrailingZeros();
+ EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
+ getPointerTy() : getShiftAmountTy(N0.getValueType());
+ EVT CmpTy = N0.getValueType();
+ SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
+ DAG.getConstant(ShiftBits, ShiftTy));
+ SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
+ return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
+ }
+ }
+ } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
+ Cond == ISD::SETULE || Cond == ISD::SETUGT) {
+ bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
+ // X < 0x100000000 -> (X >> 32) < 1
+ // X >= 0x100000000 -> (X >> 32) >= 1
+ // X <= 0x0ffffffff -> (X >> 32) < 1
+ // X > 0x0ffffffff -> (X >> 32) >= 1
+ unsigned ShiftBits;
+ APInt NewC = C1;
+ ISD::CondCode NewCond = Cond;
+ if (AdjOne) {
+ ShiftBits = C1.countTrailingOnes();
+ NewC = NewC + 1;
+ NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ } else {
+ ShiftBits = C1.countTrailingZeros();
+ }
+ NewC = NewC.lshr(ShiftBits);
+ if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
+ EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
+ getPointerTy() : getShiftAmountTy(N0.getValueType());
+ EVT CmpTy = N0.getValueType();
+ SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
+ DAG.getConstant(ShiftBits, ShiftTy));
+ SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
+ return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
+ }
+ }
+ }
+ }
+
+ if (isa<ConstantFPSDNode>(N0.getNode())) {
+ // Constant fold or commute setcc.
+ SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
+ if (O.getNode()) return O;
+ } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
+ // If the RHS of an FP comparison is a constant, simplify it away in
+ // some cases.
+ if (CFP->getValueAPF().isNaN()) {
+ // If an operand is known to be a nan, we can fold it.
+ switch (ISD::getUnorderedFlavor(Cond)) {
+ default: llvm_unreachable("Unknown flavor!");
+ case 0: // Known false.
+ return DAG.getConstant(0, VT);
+ case 1: // Known true.
+ return DAG.getConstant(1, VT);
+ case 2: // Undefined.
+ return DAG.getUNDEF(VT);
+ }
+ }
+
+ // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
+ // constant if knowing that the operand is non-nan is enough. We prefer to
+ // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
+ // materialize 0.0.
+ if (Cond == ISD::SETO || Cond == ISD::SETUO)
+ return DAG.getSetCC(dl, VT, N0, N0, Cond);
+
+ // If the condition is not legal, see if we can find an equivalent one
+ // which is legal.
+ if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
+ // If the comparison was an awkward floating-point == or != and one of
+ // the comparison operands is infinity or negative infinity, convert the
+ // condition to a less-awkward <= or >=.
+ if (CFP->getValueAPF().isInfinity()) {
+ if (CFP->getValueAPF().isNegative()) {
+ if (Cond == ISD::SETOEQ &&
+ isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
+ if (Cond == ISD::SETUEQ &&
+ isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
+ if (Cond == ISD::SETUNE &&
+ isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
+ if (Cond == ISD::SETONE &&
+ isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
+ } else {
+ if (Cond == ISD::SETOEQ &&
+ isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
+ if (Cond == ISD::SETUEQ &&
+ isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
+ if (Cond == ISD::SETUNE &&
+ isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
+ if (Cond == ISD::SETONE &&
+ isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
+ }
+ }
+ }
+ }
+
+ if (N0 == N1) {
+ // The sext(setcc()) => setcc() optimization relies on the appropriate
+ // constant being emitted.
+ uint64_t EqVal = 0;
+ switch (getBooleanContents(N0.getValueType().isVector())) {
+ case UndefinedBooleanContent:
+ case ZeroOrOneBooleanContent:
+ EqVal = ISD::isTrueWhenEqual(Cond);
+ break;
+ case ZeroOrNegativeOneBooleanContent:
+ EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
+ break;
+ }
+
+ // We can always fold X == X for integer setcc's.
+ if (N0.getValueType().isInteger()) {
+ return DAG.getConstant(EqVal, VT);
+ }
+ unsigned UOF = ISD::getUnorderedFlavor(Cond);
+ if (UOF == 2) // FP operators that are undefined on NaNs.
+ return DAG.getConstant(EqVal, VT);
+ if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
+ return DAG.getConstant(EqVal, VT);
+ // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
+ // if it is not already.
+ ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
+ if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
+ getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
+ return DAG.getSetCC(dl, VT, N0, N1, NewCond);
+ }
+
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ N0.getValueType().isInteger()) {
+ if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
+ N0.getOpcode() == ISD::XOR) {
+ // Simplify (X+Y) == (X+Z) --> Y == Z
+ if (N0.getOpcode() == N1.getOpcode()) {
+ if (N0.getOperand(0) == N1.getOperand(0))
+ return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
+ if (N0.getOperand(1) == N1.getOperand(1))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
+ if (DAG.isCommutativeBinOp(N0.getOpcode())) {
+ // If X op Y == Y op X, try other combinations.
+ if (N0.getOperand(0) == N1.getOperand(1))
+ return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
+ Cond);
+ if (N0.getOperand(1) == N1.getOperand(0))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
+ Cond);
+ }
+ }
+
+ // If RHS is a legal immediate value for a compare instruction, we need
+ // to be careful about increasing register pressure needlessly.
+ bool LegalRHSImm = false;
+
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
+ if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ // Turn (X+C1) == C2 --> X == C2-C1
+ if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
+ return DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(RHSC->getAPIntValue()-
+ LHSR->getAPIntValue(),
+ N0.getValueType()), Cond);
+ }
+
+ // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
+ if (N0.getOpcode() == ISD::XOR)
+ // If we know that all of the inverted bits are zero, don't bother
+ // performing the inversion.
+ if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
+ return
+ DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(LHSR->getAPIntValue() ^
+ RHSC->getAPIntValue(),
+ N0.getValueType()),
+ Cond);
+ }
+
+ // Turn (C1-X) == C2 --> X == C1-C2
+ if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
+ if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
+ return
+ DAG.getSetCC(dl, VT, N0.getOperand(1),
+ DAG.getConstant(SUBC->getAPIntValue() -
+ RHSC->getAPIntValue(),
+ N0.getValueType()),
+ Cond);
+ }
+ }
+
+ // Could RHSC fold directly into a compare?
+ if (RHSC->getValueType(0).getSizeInBits() <= 64)
+ LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
+ }
+
+ // Simplify (X+Z) == X --> Z == 0
+ // Don't do this if X is an immediate that can fold into a cmp
+ // instruction and X+Z has other uses. It could be an induction variable
+ // chain, and the transform would increase register pressure.
+ if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
+ if (N0.getOperand(0) == N1)
+ return DAG.getSetCC(dl, VT, N0.getOperand(1),
+ DAG.getConstant(0, N0.getValueType()), Cond);
+ if (N0.getOperand(1) == N1) {
+ if (DAG.isCommutativeBinOp(N0.getOpcode()))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(0, N0.getValueType()), Cond);
+ if (N0.getNode()->hasOneUse()) {
+ assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
+ // (Z-X) == X --> Z == X<<1
+ SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
+ DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(SH.getNode());
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
+ }
+ }
+ }
+ }
+
+ if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
+ N1.getOpcode() == ISD::XOR) {
+ // Simplify X == (X+Z) --> Z == 0
+ if (N1.getOperand(0) == N0)
+ return DAG.getSetCC(dl, VT, N1.getOperand(1),
+ DAG.getConstant(0, N1.getValueType()), Cond);
+ if (N1.getOperand(1) == N0) {
+ if (DAG.isCommutativeBinOp(N1.getOpcode()))
+ return DAG.getSetCC(dl, VT, N1.getOperand(0),
+ DAG.getConstant(0, N1.getValueType()), Cond);
+ if (N1.getNode()->hasOneUse()) {
+ assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
+ // X == (Z-X) --> X<<1 == Z
+ SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
+ DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(SH.getNode());
+ return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
+ }
+ }
+ }
+
+ // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
+ // Note that where y is variable and is known to have at most
+ // one bit set (for example, if it is z&1) we cannot do this;
+ // the expressions are not equivalent when y==0.
+ if (N0.getOpcode() == ISD::AND)
+ if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
+ if (ValueHasExactlyOneBitSet(N1, DAG)) {
+ Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(Cond, N0.getSimpleValueType())) {
+ SDValue Zero = DAG.getConstant(0, N1.getValueType());
+ return DAG.getSetCC(dl, VT, N0, Zero, Cond);
+ }
+ }
+ }
+ if (N1.getOpcode() == ISD::AND)
+ if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
+ if (ValueHasExactlyOneBitSet(N0, DAG)) {
+ Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(Cond, N1.getSimpleValueType())) {
+ SDValue Zero = DAG.getConstant(0, N0.getValueType());
+ return DAG.getSetCC(dl, VT, N1, Zero, Cond);
+ }
+ }
+ }
+ }
+
+ // Fold away ALL boolean setcc's.
+ SDValue Temp;
+ if (N0.getValueType() == MVT::i1 && foldBooleans) {
+ switch (Cond) {
+ default: llvm_unreachable("Unknown integer setcc!");
+ case ISD::SETEQ: // X == Y -> ~(X^Y)
+ Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
+ N0 = DAG.getNOT(dl, Temp, MVT::i1);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETNE: // X != Y --> (X^Y)
+ N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
+ break;
+ case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
+ case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
+ Temp = DAG.getNOT(dl, N0, MVT::i1);
+ N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
+ case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
+ Temp = DAG.getNOT(dl, N1, MVT::i1);
+ N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
+ case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
+ Temp = DAG.getNOT(dl, N0, MVT::i1);
+ N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
+ case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
+ Temp = DAG.getNOT(dl, N1, MVT::i1);
+ N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
+ break;
+ }
+ if (VT != MVT::i1) {
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(N0.getNode());
+ // FIXME: If running after legalize, we probably can't do this.
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
+ }
+ return N0;
+ }
+
+ // Could not fold it.
+ return SDValue();
+}
+
+/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
+/// node is a GlobalAddress + offset.
+bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
+ int64_t &Offset) const {
+ if (isa<GlobalAddressSDNode>(N)) {
+ GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
+ GA = GASD->getGlobal();
+ Offset += GASD->getOffset();
+ return true;
+ }
+
+ if (N->getOpcode() == ISD::ADD) {
+ SDValue N1 = N->getOperand(0);
+ SDValue N2 = N->getOperand(1);
+ if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
+ ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
+ if (V) {
+ Offset += V->getSExtValue();
+ return true;
+ }
+ } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
+ ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
+ if (V) {
+ Offset += V->getSExtValue();
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+
+SDValue TargetLowering::
+PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
+ // Default implementation: no optimization.
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Assembler Implementation Methods
+//===----------------------------------------------------------------------===//
+
+
+TargetLowering::ConstraintType
+TargetLowering::getConstraintType(const std::string &Constraint) const {
+ unsigned S = Constraint.size();
+
+ if (S == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'r': return C_RegisterClass;
+ case 'm': // memory
+ case 'o': // offsetable
+ case 'V': // not offsetable
+ return C_Memory;
+ case 'i': // Simple Integer or Relocatable Constant
+ case 'n': // Simple Integer
+ case 'E': // Floating Point Constant
+ case 'F': // Floating Point Constant
+ case 's': // Relocatable Constant
+ case 'p': // Address.
+ case 'X': // Allow ANY value.
+ case 'I': // Target registers.
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ case '<':
+ case '>':
+ return C_Other;
+ }
+ }
+
+ if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
+ if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}"
+ return C_Memory;
+ return C_Register;
+ }
+ return C_Unknown;
+}
+
+/// LowerXConstraint - try to replace an X constraint, which matches anything,
+/// with another that has more specific requirements based on the type of the
+/// corresponding operand.
+const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
+ if (ConstraintVT.isInteger())
+ return "r";
+ if (ConstraintVT.isFloatingPoint())
+ return "f"; // works for many targets
+ return 0;
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+
+ if (Constraint.length() > 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'X': // Allows any operand; labels (basic block) use this.
+ if (Op.getOpcode() == ISD::BasicBlock) {
+ Ops.push_back(Op);
+ return;
+ }
+ // fall through
+ case 'i': // Simple Integer or Relocatable Constant
+ case 'n': // Simple Integer
+ case 's': { // Relocatable Constant
+ // These operands are interested in values of the form (GV+C), where C may
+ // be folded in as an offset of GV, or it may be explicitly added. Also, it
+ // is possible and fine if either GV or C are missing.
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
+
+ // If we have "(add GV, C)", pull out GV/C
+ if (Op.getOpcode() == ISD::ADD) {
+ C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
+ if (C == 0 || GA == 0) {
+ C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
+ GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
+ }
+ if (C == 0 || GA == 0)
+ C = 0, GA = 0;
+ }
+
+ // If we find a valid operand, map to the TargetXXX version so that the
+ // value itself doesn't get selected.
+ if (GA) { // Either &GV or &GV+C
+ if (ConstraintLetter != 'n') {
+ int64_t Offs = GA->getOffset();
+ if (C) Offs += C->getZExtValue();
+ Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
+ C ? SDLoc(C) : SDLoc(),
+ Op.getValueType(), Offs));
+ return;
+ }
+ }
+ if (C) { // just C, no GV.
+ // Simple constants are not allowed for 's'.
+ if (ConstraintLetter != 's') {
+ // gcc prints these as sign extended. Sign extend value to 64 bits
+ // now; without this it would get ZExt'd later in
+ // ScheduleDAGSDNodes::EmitNode, which is very generic.
+ Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
+ MVT::i64));
+ return;
+ }
+ }
+ break;
+ }
+ }
+}
+
+std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const {
+ if (Constraint.empty() || Constraint[0] != '{')
+ return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
+ assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
+
+ // Remove the braces from around the name.
+ StringRef RegName(Constraint.data()+1, Constraint.size()-2);
+
+ std::pair<unsigned, const TargetRegisterClass*> R =
+ std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
+
+ // Figure out which register class contains this reg.
+ const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
+ for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
+ E = RI->regclass_end(); RCI != E; ++RCI) {
+ const TargetRegisterClass *RC = *RCI;
+
+ // If none of the value types for this register class are valid, we
+ // can't use it. For example, 64-bit reg classes on 32-bit targets.
+ if (!isLegalRC(RC))
+ continue;
+
+ for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+ I != E; ++I) {
+ if (RegName.equals_lower(RI->getName(*I))) {
+ std::pair<unsigned, const TargetRegisterClass*> S =
+ std::make_pair(*I, RC);
+
+ // If this register class has the requested value type, return it,
+ // otherwise keep searching and return the first class found
+ // if no other is found which explicitly has the requested type.
+ if (RC->hasType(VT))
+ return S;
+ else if (!R.second)
+ R = S;
+ }
+ }
+ }
+
+ return R;
+}
+
+//===----------------------------------------------------------------------===//
+// Constraint Selection.
+
+/// isMatchingInputConstraint - Return true of this is an input operand that is
+/// a matching constraint like "4".
+bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
+ assert(!ConstraintCode.empty() && "No known constraint!");
+ return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
+}
+
+/// getMatchedOperand - If this is an input matching constraint, this method
+/// returns the output operand it matches.
+unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
+ assert(!ConstraintCode.empty() && "No known constraint!");
+ return atoi(ConstraintCode.c_str());
+}
+
+
+/// ParseConstraints - Split up the constraint string from the inline
+/// assembly value into the specific constraints and their prefixes,
+/// and also tie in the associated operand values.
+/// If this returns an empty vector, and if the constraint string itself
+/// isn't empty, there was an error parsing.
+TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
+ ImmutableCallSite CS) const {
+ /// ConstraintOperands - Information about all of the constraints.
+ AsmOperandInfoVector ConstraintOperands;
+ const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+ unsigned maCount = 0; // Largest number of multiple alternative constraints.
+
+ // Do a prepass over the constraints, canonicalizing them, and building up the
+ // ConstraintOperands list.
+ InlineAsm::ConstraintInfoVector
+ ConstraintInfos = IA->ParseConstraints();
+
+ unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
+ unsigned ResNo = 0; // ResNo - The result number of the next output.
+
+ for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+ ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
+ AsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+ // Update multiple alternative constraint count.
+ if (OpInfo.multipleAlternatives.size() > maCount)
+ maCount = OpInfo.multipleAlternatives.size();
+
+ OpInfo.ConstraintVT = MVT::Other;
+
+ // Compute the value type for each operand.
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ // Indirect outputs just consume an argument.
+ if (OpInfo.isIndirect) {
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ }
+
+ // The return value of the call is this value. As such, there is no
+ // corresponding argument.
+ assert(!CS.getType()->isVoidTy() &&
+ "Bad inline asm!");
+ if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
+ OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
+ } else {
+ assert(ResNo == 0 && "Asm only has one result!");
+ OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
+ }
+ ++ResNo;
+ break;
+ case InlineAsm::isInput:
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ case InlineAsm::isClobber:
+ // Nothing to do.
+ break;
+ }
+
+ if (OpInfo.CallOperandVal) {
+ llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
+ if (OpInfo.isIndirect) {
+ llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
+ if (!PtrTy)
+ report_fatal_error("Indirect operand for inline asm not a pointer!");
+ OpTy = PtrTy->getElementType();
+ }
+
+ // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
+ if (StructType *STy = dyn_cast<StructType>(OpTy))
+ if (STy->getNumElements() == 1)
+ OpTy = STy->getElementType(0);
+
+ // If OpTy is not a single value, it may be a struct/union that we
+ // can tile with integers.
+ if (!OpTy->isSingleValueType() && OpTy->isSized()) {
+ unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
+ switch (BitSize) {
+ default: break;
+ case 1:
+ case 8:
+ case 16:
+ case 32:
+ case 64:
+ case 128:
+ OpInfo.ConstraintVT =
+ MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
+ break;
+ }
+ } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
+ unsigned PtrSize
+ = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
+ OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
+ } else {
+ OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
+ }
+ }
+ }
+
+ // If we have multiple alternative constraints, select the best alternative.
+ if (ConstraintInfos.size()) {
+ if (maCount) {
+ unsigned bestMAIndex = 0;
+ int bestWeight = -1;
+ // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
+ int weight = -1;
+ unsigned maIndex;
+ // Compute the sums of the weights for each alternative, keeping track
+ // of the best (highest weight) one so far.
+ for (maIndex = 0; maIndex < maCount; ++maIndex) {
+ int weightSum = 0;
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
+ if (OpInfo.Type == InlineAsm::isClobber)
+ continue;
+
+ // If this is an output operand with a matching input operand,
+ // look up the matching input. If their types mismatch, e.g. one
+ // is an integer, the other is floating point, or their sizes are
+ // different, flag it as an maCantMatch.
+ if (OpInfo.hasMatchingInput()) {
+ AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (OpInfo.ConstraintVT.getSizeInBits() !=
+ Input.ConstraintVT.getSizeInBits())) {
+ weightSum = -1; // Can't match.
+ break;
+ }
+ }
+ }
+ weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
+ if (weight == -1) {
+ weightSum = -1;
+ break;
+ }
+ weightSum += weight;
+ }
+ // Update best.
+ if (weightSum > bestWeight) {
+ bestWeight = weightSum;
+ bestMAIndex = maIndex;
+ }
+ }
+
+ // Now select chosen alternative in each constraint.
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
+ if (cInfo.Type == InlineAsm::isClobber)
+ continue;
+ cInfo.selectAlternative(bestMAIndex);
+ }
+ }
+ }
+
+ // Check and hook up tied operands, choose constraint code to use.
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
+
+ // If this is an output operand with a matching input operand, look up the
+ // matching input. If their types mismatch, e.g. one is an integer, the
+ // other is floating point, or their sizes are different, flag it as an
+ // error.
+ if (OpInfo.hasMatchingInput()) {
+ AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ std::pair<unsigned, const TargetRegisterClass*> MatchRC =
+ getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+ std::pair<unsigned, const TargetRegisterClass*> InputRC =
+ getRegForInlineAsmConstraint(Input.ConstraintCode,
+ Input.ConstraintVT);
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (MatchRC.second != InputRC.second)) {
+ report_fatal_error("Unsupported asm: input constraint"
+ " with a matching output constraint of"
+ " incompatible type!");
+ }
+ }
+
+ }
+ }
+
+ return ConstraintOperands;
+}
+
+
+/// getConstraintGenerality - Return an integer indicating how general CT
+/// is.
+static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
+ switch (CT) {
+ case TargetLowering::C_Other:
+ case TargetLowering::C_Unknown:
+ return 0;
+ case TargetLowering::C_Register:
+ return 1;
+ case TargetLowering::C_RegisterClass:
+ return 2;
+ case TargetLowering::C_Memory:
+ return 3;
+ }
+ llvm_unreachable("Invalid constraint type");
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ TargetLowering::getMultipleConstraintMatchWeight(
+ AsmOperandInfo &info, int maIndex) const {
+ InlineAsm::ConstraintCodeVector *rCodes;
+ if (maIndex >= (int)info.multipleAlternatives.size())
+ rCodes = &info.Codes;
+ else
+ rCodes = &info.multipleAlternatives[maIndex].Codes;
+ ConstraintWeight BestWeight = CW_Invalid;
+
+ // Loop over the options, keeping track of the most general one.
+ for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
+ ConstraintWeight weight =
+ getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
+ if (weight > BestWeight)
+ BestWeight = weight;
+ }
+
+ return BestWeight;
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ TargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (CallOperandVal == NULL)
+ return CW_Default;
+ // Look at the constraint type.
+ switch (*constraint) {
+ case 'i': // immediate integer.
+ case 'n': // immediate integer with a known value.
+ if (isa<ConstantInt>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 's': // non-explicit intregal immediate.
+ if (isa<GlobalValue>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 'E': // immediate float if host format.
+ case 'F': // immediate float.
+ if (isa<ConstantFP>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case '<': // memory operand with autodecrement.
+ case '>': // memory operand with autoincrement.
+ case 'm': // memory operand.
+ case 'o': // offsettable memory operand
+ case 'V': // non-offsettable memory operand
+ weight = CW_Memory;
+ break;
+ case 'r': // general register.
+ case 'g': // general register, memory operand or immediate integer.
+ // note: Clang converts "g" to "imr".
+ if (CallOperandVal->getType()->isIntegerTy())
+ weight = CW_Register;
+ break;
+ case 'X': // any operand.
+ default:
+ weight = CW_Default;
+ break;
+ }
+ return weight;
+}
+
+/// ChooseConstraint - If there are multiple different constraints that we
+/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
+/// This is somewhat tricky: constraints fall into four classes:
+/// Other -> immediates and magic values
+/// Register -> one specific register
+/// RegisterClass -> a group of regs
+/// Memory -> memory
+/// Ideally, we would pick the most specific constraint possible: if we have
+/// something that fits into a register, we would pick it. The problem here
+/// is that if we have something that could either be in a register or in
+/// memory that use of the register could cause selection of *other*
+/// operands to fail: they might only succeed if we pick memory. Because of
+/// this the heuristic we use is:
+///
+/// 1) If there is an 'other' constraint, and if the operand is valid for
+/// that constraint, use it. This makes us take advantage of 'i'
+/// constraints when available.
+/// 2) Otherwise, pick the most general constraint present. This prefers
+/// 'm' over 'r', for example.
+///
+static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
+ const TargetLowering &TLI,
+ SDValue Op, SelectionDAG *DAG) {
+ assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
+ unsigned BestIdx = 0;
+ TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
+ int BestGenerality = -1;
+
+ // Loop over the options, keeping track of the most general one.
+ for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
+ TargetLowering::ConstraintType CType =
+ TLI.getConstraintType(OpInfo.Codes[i]);
+
+ // If this is an 'other' constraint, see if the operand is valid for it.
+ // For example, on X86 we might have an 'rI' constraint. If the operand
+ // is an integer in the range [0..31] we want to use I (saving a load
+ // of a register), otherwise we must use 'r'.
+ if (CType == TargetLowering::C_Other && Op.getNode()) {
+ assert(OpInfo.Codes[i].size() == 1 &&
+ "Unhandled multi-letter 'other' constraint");
+ std::vector<SDValue> ResultOps;
+ TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
+ ResultOps, *DAG);
+ if (!ResultOps.empty()) {
+ BestType = CType;
+ BestIdx = i;
+ break;
+ }
+ }
+
+ // Things with matching constraints can only be registers, per gcc
+ // documentation. This mainly affects "g" constraints.
+ if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
+ continue;
+
+ // This constraint letter is more general than the previous one, use it.
+ int Generality = getConstraintGenerality(CType);
+ if (Generality > BestGenerality) {
+ BestType = CType;
+ BestIdx = i;
+ BestGenerality = Generality;
+ }
+ }
+
+ OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
+ OpInfo.ConstraintType = BestType;
+}
+
+/// ComputeConstraintToUse - Determines the constraint code and constraint
+/// type to use for the specific AsmOperandInfo, setting
+/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
+void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
+ SDValue Op,
+ SelectionDAG *DAG) const {
+ assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
+
+ // Single-letter constraints ('r') are very common.
+ if (OpInfo.Codes.size() == 1) {
+ OpInfo.ConstraintCode = OpInfo.Codes[0];
+ OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
+ } else {
+ ChooseConstraint(OpInfo, *this, Op, DAG);
+ }
+
+ // 'X' matches anything.
+ if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
+ // Labels and constants are handled elsewhere ('X' is the only thing
+ // that matches labels). For Functions, the type here is the type of
+ // the result, which is not what we want to look at; leave them alone.
+ Value *v = OpInfo.CallOperandVal;
+ if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
+ OpInfo.CallOperandVal = v;
+ return;
+ }
+
+ // Otherwise, try to resolve it to something we know about by looking at
+ // the actual operand type.
+ if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
+ OpInfo.ConstraintCode = Repl;
+ OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
+ }
+ }
+}
+
+/// \brief Given an exact SDIV by a constant, create a multiplication
+/// with the multiplicative inverse of the constant.
+SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
+ SelectionDAG &DAG) const {
+ ConstantSDNode *C = cast<ConstantSDNode>(Op2);
+ APInt d = C->getAPIntValue();
+ assert(d != 0 && "Division by zero!");
+
+ // Shift the value upfront if it is even, so the LSB is one.
+ unsigned ShAmt = d.countTrailingZeros();
+ if (ShAmt) {
+ // TODO: For UDIV use SRL instead of SRA.
+ SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
+ Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
+ d = d.ashr(ShAmt);
+ }
+
+ // Calculate the multiplicative inverse, using Newton's method.
+ APInt t, xn = d;
+ while ((t = d*xn) != 1)
+ xn *= APInt(d.getBitWidth(), 2) - t;
+
+ Op2 = DAG.getConstant(xn, Op1.getValueType());
+ return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
+}
+
+/// \brief Given an ISD::SDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number. See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDValue TargetLowering::
+BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
+ std::vector<SDNode*> *Created) const {
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+
+ // Check to see if we can do this.
+ // FIXME: We should be more aggressive here.
+ if (!isTypeLegal(VT))
+ return SDValue();
+
+ APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
+ APInt::ms magics = d.magic();
+
+ // Multiply the numerator (operand 0) by the magic value
+ // FIXME: We should support doing a MUL in a wider type
+ SDValue Q;
+ if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
+ isOperationLegalOrCustom(ISD::MULHS, VT))
+ Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
+ DAG.getConstant(magics.m, VT));
+ else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
+ isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
+ Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
+ N->getOperand(0),
+ DAG.getConstant(magics.m, VT)).getNode(), 1);
+ else
+ return SDValue(); // No mulhs or equvialent
+ // If d > 0 and m < 0, add the numerator
+ if (d.isStrictlyPositive() && magics.m.isNegative()) {
+ Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
+ if (Created)
+ Created->push_back(Q.getNode());
+ }
+ // If d < 0 and m > 0, subtract the numerator.
+ if (d.isNegative() && magics.m.isStrictlyPositive()) {
+ Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
+ if (Created)
+ Created->push_back(Q.getNode());
+ }
+ // Shift right algebraic if shift value is nonzero
+ if (magics.s > 0) {
+ Q = DAG.getNode(ISD::SRA, dl, VT, Q,
+ DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
+ if (Created)
+ Created->push_back(Q.getNode());
+ }
+ // Extract the sign bit and add it to the quotient
+ SDValue T =
+ DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
+ getShiftAmountTy(Q.getValueType())));
+ if (Created)
+ Created->push_back(T.getNode());
+ return DAG.getNode(ISD::ADD, dl, VT, Q, T);
+}
+
+/// \brief Given an ISD::UDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number. See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDValue TargetLowering::
+BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
+ std::vector<SDNode*> *Created) const {
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+
+ // Check to see if we can do this.
+ // FIXME: We should be more aggressive here.
+ if (!isTypeLegal(VT))
+ return SDValue();
+
+ // FIXME: We should use a narrower constant when the upper
+ // bits are known to be zero.
+ const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
+ APInt::mu magics = N1C.magicu();
+
+ SDValue Q = N->getOperand(0);
+
+ // If the divisor is even, we can avoid using the expensive fixup by shifting
+ // the divided value upfront.
+ if (magics.a != 0 && !N1C[0]) {
+ unsigned Shift = N1C.countTrailingZeros();
+ Q = DAG.getNode(ISD::SRL, dl, VT, Q,
+ DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
+ if (Created)
+ Created->push_back(Q.getNode());
+
+ // Get magic number for the shifted divisor.
+ magics = N1C.lshr(Shift).magicu(Shift);
+ assert(magics.a == 0 && "Should use cheap fixup now");
+ }
+
+ // Multiply the numerator (operand 0) by the magic value
+ // FIXME: We should support doing a MUL in a wider type
+ if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
+ isOperationLegalOrCustom(ISD::MULHU, VT))
+ Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
+ else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
+ isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
+ Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
+ DAG.getConstant(magics.m, VT)).getNode(), 1);
+ else
+ return SDValue(); // No mulhu or equvialent
+ if (Created)
+ Created->push_back(Q.getNode());
+
+ if (magics.a == 0) {
+ assert(magics.s < N1C.getBitWidth() &&
+ "We shouldn't generate an undefined shift!");
+ return DAG.getNode(ISD::SRL, dl, VT, Q,
+ DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
+ } else {
+ SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
+ if (Created)
+ Created->push_back(NPQ.getNode());
+ NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
+ DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
+ if (Created)
+ Created->push_back(NPQ.getNode());
+ NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
+ if (Created)
+ Created->push_back(NPQ.getNode());
+ return DAG.getNode(ISD::SRL, dl, VT, NPQ,
+ DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
+ }
+}