diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp | 2665 |
1 files changed, 2665 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp new file mode 100644 index 000000000000..82b068d25c8e --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp @@ -0,0 +1,2665 @@ +//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the TargetLowering class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Target/TargetLowering.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include <cctype> +using namespace llvm; + +/// NOTE: The constructor takes ownership of TLOF. +TargetLowering::TargetLowering(const TargetMachine &tm, + const TargetLoweringObjectFile *tlof) + : TargetLoweringBase(tm, tlof) {} + +const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { + return NULL; +} + +/// Check whether a given call node is in tail position within its function. If +/// so, it sets Chain to the input chain of the tail call. +bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, + SDValue &Chain) const { + const Function *F = DAG.getMachineFunction().getFunction(); + + // Conservatively require the attributes of the call to match those of + // the return. Ignore noalias because it doesn't affect the call sequence. + AttributeSet CallerAttrs = F->getAttributes(); + if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) + .removeAttribute(Attribute::NoAlias).hasAttributes()) + return false; + + // It's not safe to eliminate the sign / zero extension of the return value. + if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || + CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) + return false; + + // Check if the only use is a function return node. + return isUsedByReturnOnly(Node, Chain); +} + +/// \brief Set CallLoweringInfo attribute flags based on a call instruction +/// and called function attributes. +void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, + unsigned AttrIdx) { + isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); + isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); + isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); + isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); + isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); + isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); + isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); + Alignment = CS->getParamAlignment(AttrIdx); +} + +/// Generate a libcall taking the given operands as arguments and returning a +/// result of type RetVT. +std::pair<SDValue, SDValue> +TargetLowering::makeLibCall(SelectionDAG &DAG, + RTLIB::Libcall LC, EVT RetVT, + const SDValue *Ops, unsigned NumOps, + bool isSigned, SDLoc dl, + bool doesNotReturn, + bool isReturnValueUsed) const { + TargetLowering::ArgListTy Args; + Args.reserve(NumOps); + + TargetLowering::ArgListEntry Entry; + for (unsigned i = 0; i != NumOps; ++i) { + Entry.Node = Ops[i]; + Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); + Entry.isSExt = isSigned; + Entry.isZExt = !isSigned; + Args.push_back(Entry); + } + SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); + + Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + TargetLowering:: + CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, + false, 0, getLibcallCallingConv(LC), + /*isTailCall=*/false, + doesNotReturn, isReturnValueUsed, Callee, Args, + DAG, dl); + return LowerCallTo(CLI); +} + + +/// SoftenSetCCOperands - Soften the operands of a comparison. This code is +/// shared among BR_CC, SELECT_CC, and SETCC handlers. +void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, + SDValue &NewLHS, SDValue &NewRHS, + ISD::CondCode &CCCode, + SDLoc dl) const { + assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) + && "Unsupported setcc type!"); + + // Expand into one or more soft-fp libcall(s). + RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; + switch (CCCode) { + case ISD::SETEQ: + case ISD::SETOEQ: + LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : + (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; + break; + case ISD::SETNE: + case ISD::SETUNE: + LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : + (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; + break; + case ISD::SETGE: + case ISD::SETOGE: + LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : + (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; + break; + case ISD::SETLT: + case ISD::SETOLT: + LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; + break; + case ISD::SETLE: + case ISD::SETOLE: + LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : + (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; + break; + case ISD::SETGT: + case ISD::SETOGT: + LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : + (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; + break; + case ISD::SETUO: + LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : + (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; + break; + case ISD::SETO: + LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : + (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; + break; + default: + LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : + (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; + switch (CCCode) { + case ISD::SETONE: + // SETONE = SETOLT | SETOGT + LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; + // Fallthrough + case ISD::SETUGT: + LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : + (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; + break; + case ISD::SETUGE: + LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : + (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; + break; + case ISD::SETULT: + LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; + break; + case ISD::SETULE: + LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : + (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; + break; + case ISD::SETUEQ: + LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : + (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; + break; + default: llvm_unreachable("Do not know how to soften this setcc!"); + } + } + + // Use the target specific return value for comparions lib calls. + EVT RetVT = getCmpLibcallReturnType(); + SDValue Ops[2] = { NewLHS, NewRHS }; + NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, + dl).first; + NewRHS = DAG.getConstant(0, RetVT); + CCCode = getCmpLibcallCC(LC1); + if (LC2 != RTLIB::UNKNOWN_LIBCALL) { + SDValue Tmp = DAG.getNode(ISD::SETCC, dl, + getSetCCResultType(*DAG.getContext(), RetVT), + NewLHS, NewRHS, DAG.getCondCode(CCCode)); + NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, + dl).first; + NewLHS = DAG.getNode(ISD::SETCC, dl, + getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, + NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); + NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); + NewRHS = SDValue(); + } +} + +/// getJumpTableEncoding - Return the entry encoding for a jump table in the +/// current function. The returned value is a member of the +/// MachineJumpTableInfo::JTEntryKind enum. +unsigned TargetLowering::getJumpTableEncoding() const { + // In non-pic modes, just use the address of a block. + if (getTargetMachine().getRelocationModel() != Reloc::PIC_) + return MachineJumpTableInfo::EK_BlockAddress; + + // In PIC mode, if the target supports a GPRel32 directive, use it. + if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) + return MachineJumpTableInfo::EK_GPRel32BlockAddress; + + // Otherwise, use a label difference. + return MachineJumpTableInfo::EK_LabelDifference32; +} + +SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const { + // If our PIC model is GP relative, use the global offset table as the base. + unsigned JTEncoding = getJumpTableEncoding(); + + if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || + (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) + return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); + + return Table; +} + +/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the +/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an +/// MCExpr. +const MCExpr * +TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, + unsigned JTI,MCContext &Ctx) const{ + // The normal PIC reloc base is the label at the start of the jump table. + return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); +} + +bool +TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + // Assume that everything is safe in static mode. + if (getTargetMachine().getRelocationModel() == Reloc::Static) + return true; + + // In dynamic-no-pic mode, assume that known defined values are safe. + if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && + GA && + !GA->getGlobal()->isDeclaration() && + !GA->getGlobal()->isWeakForLinker()) + return true; + + // Otherwise assume nothing is safe. + return false; +} + +//===----------------------------------------------------------------------===// +// Optimization Methods +//===----------------------------------------------------------------------===// + +/// ShrinkDemandedConstant - Check to see if the specified operand of the +/// specified instruction is a constant integer. If so, check to see if there +/// are any bits set in the constant that are not demanded. If so, shrink the +/// constant and return true. +bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, + const APInt &Demanded) { + SDLoc dl(Op); + + // FIXME: ISD::SELECT, ISD::SELECT_CC + switch (Op.getOpcode()) { + default: break; + case ISD::XOR: + case ISD::AND: + case ISD::OR: { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + if (!C) return false; + + if (Op.getOpcode() == ISD::XOR && + (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) + return false; + + // if we can expand it to have all bits set, do it + if (C->getAPIntValue().intersects(~Demanded)) { + EVT VT = Op.getValueType(); + SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), + DAG.getConstant(Demanded & + C->getAPIntValue(), + VT)); + return CombineTo(Op, New); + } + + break; + } + } + + return false; +} + +/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the +/// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening +/// cast, but it could be generalized for targets with other types of +/// implicit widening casts. +bool +TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, + unsigned BitWidth, + const APInt &Demanded, + SDLoc dl) { + assert(Op.getNumOperands() == 2 && + "ShrinkDemandedOp only supports binary operators!"); + assert(Op.getNode()->getNumValues() == 1 && + "ShrinkDemandedOp only supports nodes with one result!"); + + // Don't do this if the node has another user, which may require the + // full value. + if (!Op.getNode()->hasOneUse()) + return false; + + // Search for the smallest integer type with free casts to and from + // Op's type. For expedience, just check power-of-2 integer types. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); + unsigned SmallVTBits = DemandedSize; + if (!isPowerOf2_32(SmallVTBits)) + SmallVTBits = NextPowerOf2(SmallVTBits); + for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { + EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); + if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && + TLI.isZExtFree(SmallVT, Op.getValueType())) { + // We found a type with free casts. + SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, + DAG.getNode(ISD::TRUNCATE, dl, SmallVT, + Op.getNode()->getOperand(0)), + DAG.getNode(ISD::TRUNCATE, dl, SmallVT, + Op.getNode()->getOperand(1))); + bool NeedZext = DemandedSize > SmallVTBits; + SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, + dl, Op.getValueType(), X); + return CombineTo(Op, Z); + } + } + return false; +} + +/// SimplifyDemandedBits - Look at Op. At this point, we know that only the +/// DemandedMask bits of the result of Op are ever used downstream. If we can +/// use this information to simplify Op, create a new simplified DAG node and +/// return true, returning the original and new nodes in Old and New. Otherwise, +/// analyze the expression and return a mask of KnownOne and KnownZero bits for +/// the expression (used to simplify the caller). The KnownZero/One bits may +/// only be accurate for those bits in the DemandedMask. +bool TargetLowering::SimplifyDemandedBits(SDValue Op, + const APInt &DemandedMask, + APInt &KnownZero, + APInt &KnownOne, + TargetLoweringOpt &TLO, + unsigned Depth) const { + unsigned BitWidth = DemandedMask.getBitWidth(); + assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && + "Mask size mismatches value type size!"); + APInt NewMask = DemandedMask; + SDLoc dl(Op); + + // Don't know anything. + KnownZero = KnownOne = APInt(BitWidth, 0); + + // Other users may use these bits. + if (!Op.getNode()->hasOneUse()) { + if (Depth != 0) { + // If not at the root, Just compute the KnownZero/KnownOne bits to + // simplify things downstream. + TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); + return false; + } + // If this is the root being simplified, allow it to have multiple uses, + // just set the NewMask to all bits. + NewMask = APInt::getAllOnesValue(BitWidth); + } else if (DemandedMask == 0) { + // Not demanding any bits from Op. + if (Op.getOpcode() != ISD::UNDEF) + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); + return false; + } else if (Depth == 6) { // Limit search depth. + return false; + } + + APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; + switch (Op.getOpcode()) { + case ISD::Constant: + // We know all of the bits for a constant! + KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); + KnownZero = ~KnownOne; + return false; // Don't fall through, will infinitely loop. + case ISD::AND: + // If the RHS is a constant, check to see if the LHS would be zero without + // using the bits from the RHS. Below, we use knowledge about the RHS to + // simplify the LHS, here we're using information from the LHS to simplify + // the RHS. + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + APInt LHSZero, LHSOne; + // Do not increment Depth here; that can cause an infinite loop. + TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth); + // If the LHS already has zeros where RHSC does, this and is dead. + if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) + return TLO.CombineTo(Op, Op.getOperand(0)); + // If any of the set bits in the RHS are known zero on the LHS, shrink + // the constant. + if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) + return true; + } + + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, + KnownOne, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, + KnownZero2, KnownOne2, TLO, Depth+1)) + return true; + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known one on one side, return the other. + // These bits cannot contribute to the result of the 'and'. + if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) + return TLO.CombineTo(Op, Op.getOperand(0)); + if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) + return TLO.CombineTo(Op, Op.getOperand(1)); + // If all of the demanded bits in the inputs are known zeros, return zero. + if ((NewMask & (KnownZero|KnownZero2)) == NewMask) + return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); + // If the RHS is a constant, see if we can simplify it. + if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) + return true; + // If the operation can be done in a smaller type, do so. + if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) + return true; + + // Output known-1 bits are only known if set in both the LHS & RHS. + KnownOne &= KnownOne2; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + KnownZero |= KnownZero2; + break; + case ISD::OR: + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, + KnownOne, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, + KnownZero2, KnownOne2, TLO, Depth+1)) + return true; + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'or'. + if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) + return TLO.CombineTo(Op, Op.getOperand(0)); + if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) + return TLO.CombineTo(Op, Op.getOperand(1)); + // If all of the potentially set bits on one side are known to be set on + // the other side, just use the 'other' side. + if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) + return TLO.CombineTo(Op, Op.getOperand(0)); + if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) + return TLO.CombineTo(Op, Op.getOperand(1)); + // If the RHS is a constant, see if we can simplify it. + if (TLO.ShrinkDemandedConstant(Op, NewMask)) + return true; + // If the operation can be done in a smaller type, do so. + if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) + return true; + + // Output known-0 bits are only known if clear in both the LHS & RHS. + KnownZero &= KnownZero2; + // Output known-1 are known to be set if set in either the LHS | RHS. + KnownOne |= KnownOne2; + break; + case ISD::XOR: + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, + KnownOne, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, + KnownOne2, TLO, Depth+1)) + return true; + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'xor'. + if ((KnownZero & NewMask) == NewMask) + return TLO.CombineTo(Op, Op.getOperand(0)); + if ((KnownZero2 & NewMask) == NewMask) + return TLO.CombineTo(Op, Op.getOperand(1)); + // If the operation can be done in a smaller type, do so. + if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) + return true; + + // If all of the unknown bits are known to be zero on one side or the other + // (but not both) turn this into an *inclusive* or. + // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 + if ((NewMask & ~KnownZero & ~KnownZero2) == 0) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), + Op.getOperand(0), + Op.getOperand(1))); + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); + + // If all of the demanded bits on one side are known, and all of the set + // bits on that side are also known to be set on the other side, turn this + // into an AND, as we know the bits will be cleared. + // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 + // NB: it is okay if more bits are known than are requested + if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side + if (KnownOne == KnownOne2) { // set bits are the same on both sides + EVT VT = Op.getValueType(); + SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, + Op.getOperand(0), ANDC)); + } + } + + // If the RHS is a constant, see if we can simplify it. + // for XOR, we prefer to force bits to 1 if they will make a -1. + // if we can't force bits, try to shrink constant + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + APInt Expanded = C->getAPIntValue() | (~NewMask); + // if we can expand it to have all bits set, do it + if (Expanded.isAllOnesValue()) { + if (Expanded != C->getAPIntValue()) { + EVT VT = Op.getValueType(); + SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), + TLO.DAG.getConstant(Expanded, VT)); + return TLO.CombineTo(Op, New); + } + // if it already has all the bits set, nothing to change + // but don't shrink either! + } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { + return true; + } + } + + KnownZero = KnownZeroOut; + KnownOne = KnownOneOut; + break; + case ISD::SELECT: + if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, + KnownOne, TLO, Depth+1)) + return true; + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, + KnownOne2, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // If the operands are constants, see if we can simplify them. + if (TLO.ShrinkDemandedConstant(Op, NewMask)) + return true; + + // Only known if known in both the LHS and RHS. + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + break; + case ISD::SELECT_CC: + if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, + KnownOne, TLO, Depth+1)) + return true; + if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, + KnownOne2, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // If the operands are constants, see if we can simplify them. + if (TLO.ShrinkDemandedConstant(Op, NewMask)) + return true; + + // Only known if known in both the LHS and RHS. + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + break; + case ISD::SHL: + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + unsigned ShAmt = SA->getZExtValue(); + SDValue InOp = Op.getOperand(0); + + // If the shift count is an invalid immediate, don't do anything. + if (ShAmt >= BitWidth) + break; + + // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a + // single shift. We can do this if the bottom bits (which are shifted + // out) are never demanded. + if (InOp.getOpcode() == ISD::SRL && + isa<ConstantSDNode>(InOp.getOperand(1))) { + if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { + unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); + unsigned Opc = ISD::SHL; + int Diff = ShAmt-C1; + if (Diff < 0) { + Diff = -Diff; + Opc = ISD::SRL; + } + + SDValue NewSA = + TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); + EVT VT = Op.getValueType(); + return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, + InOp.getOperand(0), NewSA)); + } + } + + if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), + KnownZero, KnownOne, TLO, Depth+1)) + return true; + + // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits + // are not demanded. This will likely allow the anyext to be folded away. + if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { + SDValue InnerOp = InOp.getNode()->getOperand(0); + EVT InnerVT = InnerOp.getValueType(); + unsigned InnerBits = InnerVT.getSizeInBits(); + if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && + isTypeDesirableForOp(ISD::SHL, InnerVT)) { + EVT ShTy = getShiftAmountTy(InnerVT); + if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) + ShTy = InnerVT; + SDValue NarrowShl = + TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, + TLO.DAG.getConstant(ShAmt, ShTy)); + return + TLO.CombineTo(Op, + TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), + NarrowShl)); + } + // Repeat the SHL optimization above in cases where an extension + // intervenes: (shl (anyext (shr x, c1)), c2) to + // (shl (anyext x), c2-c1). This requires that the bottom c1 bits + // aren't demanded (as above) and that the shifted upper c1 bits of + // x aren't demanded. + if (InOp.hasOneUse() && + InnerOp.getOpcode() == ISD::SRL && + InnerOp.hasOneUse() && + isa<ConstantSDNode>(InnerOp.getOperand(1))) { + uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) + ->getZExtValue(); + if (InnerShAmt < ShAmt && + InnerShAmt < InnerBits && + NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && + NewMask.trunc(ShAmt) == 0) { + SDValue NewSA = + TLO.DAG.getConstant(ShAmt - InnerShAmt, + Op.getOperand(1).getValueType()); + EVT VT = Op.getValueType(); + SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, + InnerOp.getOperand(0)); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, + NewExt, NewSA)); + } + } + } + + KnownZero <<= SA->getZExtValue(); + KnownOne <<= SA->getZExtValue(); + // low bits known zero. + KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); + } + break; + case ISD::SRL: + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + EVT VT = Op.getValueType(); + unsigned ShAmt = SA->getZExtValue(); + unsigned VTSize = VT.getSizeInBits(); + SDValue InOp = Op.getOperand(0); + + // If the shift count is an invalid immediate, don't do anything. + if (ShAmt >= BitWidth) + break; + + // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a + // single shift. We can do this if the top bits (which are shifted out) + // are never demanded. + if (InOp.getOpcode() == ISD::SHL && + isa<ConstantSDNode>(InOp.getOperand(1))) { + if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { + unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); + unsigned Opc = ISD::SRL; + int Diff = ShAmt-C1; + if (Diff < 0) { + Diff = -Diff; + Opc = ISD::SHL; + } + + SDValue NewSA = + TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); + return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, + InOp.getOperand(0), NewSA)); + } + } + + // Compute the new bits that are at the top now. + if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), + KnownZero, KnownOne, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero = KnownZero.lshr(ShAmt); + KnownOne = KnownOne.lshr(ShAmt); + + APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); + KnownZero |= HighBits; // High bits known zero. + } + break; + case ISD::SRA: + // If this is an arithmetic shift right and only the low-bit is set, we can + // always convert this into a logical shr, even if the shift amount is + // variable. The low bit of the shift cannot be an input sign bit unless + // the shift amount is >= the size of the datatype, which is undefined. + if (NewMask == 1) + return TLO.CombineTo(Op, + TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), + Op.getOperand(0), Op.getOperand(1))); + + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + EVT VT = Op.getValueType(); + unsigned ShAmt = SA->getZExtValue(); + + // If the shift count is an invalid immediate, don't do anything. + if (ShAmt >= BitWidth) + break; + + APInt InDemandedMask = (NewMask << ShAmt); + + // If any of the demanded bits are produced by the sign extension, we also + // demand the input sign bit. + APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); + if (HighBits.intersects(NewMask)) + InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); + + if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, + KnownZero, KnownOne, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero = KnownZero.lshr(ShAmt); + KnownOne = KnownOne.lshr(ShAmt); + + // Handle the sign bit, adjusted to where it is now in the mask. + APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); + + // If the input sign bit is known to be zero, or if none of the top bits + // are demanded, turn this into an unsigned shift right. + if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, + Op.getOperand(0), + Op.getOperand(1))); + + int Log2 = NewMask.exactLogBase2(); + if (Log2 >= 0) { + // The bit must come from the sign. + SDValue NewSA = + TLO.DAG.getConstant(BitWidth - 1 - Log2, + Op.getOperand(1).getValueType()); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, + Op.getOperand(0), NewSA)); + } + + if (KnownOne.intersects(SignBit)) + // New bits are known one. + KnownOne |= HighBits; + } + break; + case ISD::SIGN_EXTEND_INREG: { + EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + + APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); + // If we only care about the highest bit, don't bother shifting right. + if (MsbMask == DemandedMask) { + unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); + SDValue InOp = Op.getOperand(0); + + // Compute the correct shift amount type, which must be getShiftAmountTy + // for scalar types after legalization. + EVT ShiftAmtTy = Op.getValueType(); + if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) + ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); + + SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, + Op.getValueType(), InOp, ShiftAmt)); + } + + // Sign extension. Compute the demanded bits in the result that are not + // present in the input. + APInt NewBits = + APInt::getHighBitsSet(BitWidth, + BitWidth - ExVT.getScalarType().getSizeInBits()); + + // If none of the extended bits are demanded, eliminate the sextinreg. + if ((NewBits & NewMask) == 0) + return TLO.CombineTo(Op, Op.getOperand(0)); + + APInt InSignBit = + APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); + APInt InputDemandedBits = + APInt::getLowBitsSet(BitWidth, + ExVT.getScalarType().getSizeInBits()) & + NewMask; + + // Since the sign extended bits are demanded, we know that the sign + // bit is demanded. + InputDemandedBits |= InSignBit; + + if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, + KnownZero, KnownOne, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + + // If the input sign bit is known zero, convert this into a zero extension. + if (KnownZero.intersects(InSignBit)) + return TLO.CombineTo(Op, + TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); + + if (KnownOne.intersects(InSignBit)) { // Input sign bit known set + KnownOne |= NewBits; + KnownZero &= ~NewBits; + } else { // Input sign bit unknown + KnownZero &= ~NewBits; + KnownOne &= ~NewBits; + } + break; + } + case ISD::ZERO_EXTEND: { + unsigned OperandBitWidth = + Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); + APInt InMask = NewMask.trunc(OperandBitWidth); + + // If none of the top bits are demanded, convert this into an any_extend. + APInt NewBits = + APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; + if (!NewBits.intersects(NewMask)) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, + Op.getValueType(), + Op.getOperand(0))); + + if (SimplifyDemandedBits(Op.getOperand(0), InMask, + KnownZero, KnownOne, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); + KnownZero |= NewBits; + break; + } + case ISD::SIGN_EXTEND: { + EVT InVT = Op.getOperand(0).getValueType(); + unsigned InBits = InVT.getScalarType().getSizeInBits(); + APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); + APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); + APInt NewBits = ~InMask & NewMask; + + // If none of the top bits are demanded, convert this into an any_extend. + if (NewBits == 0) + return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, + Op.getValueType(), + Op.getOperand(0))); + + // Since some of the sign extended bits are demanded, we know that the sign + // bit is demanded. + APInt InDemandedBits = InMask & NewMask; + InDemandedBits |= InSignBit; + InDemandedBits = InDemandedBits.trunc(InBits); + + if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, + KnownOne, TLO, Depth+1)) + return true; + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); + + // If the sign bit is known zero, convert this to a zero extend. + if (KnownZero.intersects(InSignBit)) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, + Op.getValueType(), + Op.getOperand(0))); + + // If the sign bit is known one, the top bits match. + if (KnownOne.intersects(InSignBit)) { + KnownOne |= NewBits; + assert((KnownZero & NewBits) == 0); + } else { // Otherwise, top bits aren't known. + assert((KnownOne & NewBits) == 0); + assert((KnownZero & NewBits) == 0); + } + break; + } + case ISD::ANY_EXTEND: { + unsigned OperandBitWidth = + Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); + APInt InMask = NewMask.trunc(OperandBitWidth); + if (SimplifyDemandedBits(Op.getOperand(0), InMask, + KnownZero, KnownOne, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); + break; + } + case ISD::TRUNCATE: { + // Simplify the input, using demanded bit information, and compute the known + // zero/one bits live out. + unsigned OperandBitWidth = + Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); + APInt TruncMask = NewMask.zext(OperandBitWidth); + if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, + KnownZero, KnownOne, TLO, Depth+1)) + return true; + KnownZero = KnownZero.trunc(BitWidth); + KnownOne = KnownOne.trunc(BitWidth); + + // If the input is only used by this truncate, see if we can shrink it based + // on the known demanded bits. + if (Op.getOperand(0).getNode()->hasOneUse()) { + SDValue In = Op.getOperand(0); + switch (In.getOpcode()) { + default: break; + case ISD::SRL: + // Shrink SRL by a constant if none of the high bits shifted in are + // demanded. + if (TLO.LegalTypes() && + !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) + // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is + // undesirable. + break; + ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); + if (!ShAmt) + break; + SDValue Shift = In.getOperand(1); + if (TLO.LegalTypes()) { + uint64_t ShVal = ShAmt->getZExtValue(); + Shift = + TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); + } + + APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, + OperandBitWidth - BitWidth); + HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); + + if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { + // None of the shifted in bits are needed. Add a truncate of the + // shift input, then shift it. + SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, + Op.getValueType(), + In.getOperand(0)); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, + Op.getValueType(), + NewTrunc, + Shift)); + } + break; + } + } + + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + break; + } + case ISD::AssertZext: { + // AssertZext demands all of the high bits, plus any of the low bits + // demanded by its users. + EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + APInt InMask = APInt::getLowBitsSet(BitWidth, + VT.getSizeInBits()); + if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, + KnownZero, KnownOne, TLO, Depth+1)) + return true; + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + + KnownZero |= ~InMask & NewMask; + break; + } + case ISD::BITCAST: + // If this is an FP->Int bitcast and if the sign bit is the only + // thing demanded, turn this into a FGETSIGN. + if (!TLO.LegalOperations() && + !Op.getValueType().isVector() && + !Op.getOperand(0).getValueType().isVector() && + NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && + Op.getOperand(0).getValueType().isFloatingPoint()) { + bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); + bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); + if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { + EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; + // Make a FGETSIGN + SHL to move the sign bit into the appropriate + // place. We expect the SHL to be eliminated by other optimizations. + SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); + unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); + if (!OpVTLegal && OpVTSizeInBits > 32) + Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); + unsigned ShVal = Op.getValueType().getSizeInBits()-1; + SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, + Op.getValueType(), + Sign, ShAmt)); + } + } + break; + case ISD::ADD: + case ISD::MUL: + case ISD::SUB: { + // Add, Sub, and Mul don't demand any bits in positions beyond that + // of the highest bit demanded of them. + APInt LoMask = APInt::getLowBitsSet(BitWidth, + BitWidth - NewMask.countLeadingZeros()); + if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, + KnownOne2, TLO, Depth+1)) + return true; + if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, + KnownOne2, TLO, Depth+1)) + return true; + // See if the operation should be performed at a smaller bit width. + if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) + return true; + } + // FALL THROUGH + default: + // Just use ComputeMaskedBits to compute output bits. + TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); + break; + } + + // If we know the value of all of the demanded bits, return this as a + // constant. + if ((NewMask & (KnownZero|KnownOne)) == NewMask) + return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); + + return false; +} + +/// computeMaskedBitsForTargetNode - Determine which of the bits specified +/// in Mask are known to be either zero or one and return them in the +/// KnownZero/KnownOne bitsets. +void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, + APInt &KnownZero, + APInt &KnownOne, + const SelectionDAG &DAG, + unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use MaskedValueIsZero if you don't know whether Op" + " is a target node!"); + KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); +} + +/// ComputeNumSignBitsForTargetNode - This method can be implemented by +/// targets that want to expose additional information about sign bits to the +/// DAG Combiner. +unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, + unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use ComputeNumSignBits if you don't know whether Op" + " is a target node!"); + return 1; +} + +/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly +/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to +/// determine which bit is set. +/// +static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { + // A left-shift of a constant one will have exactly one bit set, because + // shifting the bit off the end is undefined. + if (Val.getOpcode() == ISD::SHL) + if (ConstantSDNode *C = + dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) + if (C->getAPIntValue() == 1) + return true; + + // Similarly, a right-shift of a constant sign-bit will have exactly + // one bit set. + if (Val.getOpcode() == ISD::SRL) + if (ConstantSDNode *C = + dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) + if (C->getAPIntValue().isSignBit()) + return true; + + // More could be done here, though the above checks are enough + // to handle some common cases. + + // Fall back to ComputeMaskedBits to catch other known cases. + EVT OpVT = Val.getValueType(); + unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); + APInt KnownZero, KnownOne; + DAG.ComputeMaskedBits(Val, KnownZero, KnownOne); + return (KnownZero.countPopulation() == BitWidth - 1) && + (KnownOne.countPopulation() == 1); +} + +/// SimplifySetCC - Try to simplify a setcc built with the specified operands +/// and cc. If it is unable to simplify it, return a null SDValue. +SDValue +TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, bool foldBooleans, + DAGCombinerInfo &DCI, SDLoc dl) const { + SelectionDAG &DAG = DCI.DAG; + + // These setcc operations always fold. + switch (Cond) { + default: break; + case ISD::SETFALSE: + case ISD::SETFALSE2: return DAG.getConstant(0, VT); + case ISD::SETTRUE: + case ISD::SETTRUE2: { + TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector()); + return DAG.getConstant( + Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT); + } + } + + // Ensure that the constant occurs on the RHS, and fold constant + // comparisons. + ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); + if (isa<ConstantSDNode>(N0.getNode()) && + (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) + return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); + + if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { + const APInt &C1 = N1C->getAPIntValue(); + + // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an + // equality comparison, then we're just comparing whether X itself is + // zero. + if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && + N0.getOperand(0).getOpcode() == ISD::CTLZ && + N0.getOperand(1).getOpcode() == ISD::Constant) { + const APInt &ShAmt + = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { + if ((C1 == 0) == (Cond == ISD::SETEQ)) { + // (srl (ctlz x), 5) == 0 -> X != 0 + // (srl (ctlz x), 5) != 1 -> X != 0 + Cond = ISD::SETNE; + } else { + // (srl (ctlz x), 5) != 0 -> X == 0 + // (srl (ctlz x), 5) == 1 -> X == 0 + Cond = ISD::SETEQ; + } + SDValue Zero = DAG.getConstant(0, N0.getValueType()); + return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), + Zero, Cond); + } + } + + SDValue CTPOP = N0; + // Look through truncs that don't change the value of a ctpop. + if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) + CTPOP = N0.getOperand(0); + + if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && + (N0 == CTPOP || N0.getValueType().getSizeInBits() > + Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { + EVT CTVT = CTPOP.getValueType(); + SDValue CTOp = CTPOP.getOperand(0); + + // (ctpop x) u< 2 -> (x & x-1) == 0 + // (ctpop x) u> 1 -> (x & x-1) != 0 + if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ + SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, + DAG.getConstant(1, CTVT)); + SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); + ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; + return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); + } + + // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. + } + + // (zext x) == C --> x == (trunc C) + if (DCI.isBeforeLegalize() && N0->hasOneUse() && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + unsigned MinBits = N0.getValueSizeInBits(); + SDValue PreZExt; + if (N0->getOpcode() == ISD::ZERO_EXTEND) { + // ZExt + MinBits = N0->getOperand(0).getValueSizeInBits(); + PreZExt = N0->getOperand(0); + } else if (N0->getOpcode() == ISD::AND) { + // DAGCombine turns costly ZExts into ANDs + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) + if ((C->getAPIntValue()+1).isPowerOf2()) { + MinBits = C->getAPIntValue().countTrailingOnes(); + PreZExt = N0->getOperand(0); + } + } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { + // ZEXTLOAD + if (LN0->getExtensionType() == ISD::ZEXTLOAD) { + MinBits = LN0->getMemoryVT().getSizeInBits(); + PreZExt = N0; + } + } + + // Make sure we're not losing bits from the constant. + if (MinBits > 0 && + MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) { + EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); + if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { + // Will get folded away. + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); + SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); + return DAG.getSetCC(dl, VT, Trunc, C, Cond); + } + } + } + + // If the LHS is '(and load, const)', the RHS is 0, + // the test is for equality or unsigned, and all 1 bits of the const are + // in the same partial word, see if we can shorten the load. + if (DCI.isBeforeLegalize() && + !ISD::isSignedIntSetCC(Cond) && + N0.getOpcode() == ISD::AND && C1 == 0 && + N0.getNode()->hasOneUse() && + isa<LoadSDNode>(N0.getOperand(0)) && + N0.getOperand(0).getNode()->hasOneUse() && + isa<ConstantSDNode>(N0.getOperand(1))) { + LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); + APInt bestMask; + unsigned bestWidth = 0, bestOffset = 0; + if (!Lod->isVolatile() && Lod->isUnindexed()) { + unsigned origWidth = N0.getValueType().getSizeInBits(); + unsigned maskWidth = origWidth; + // We can narrow (e.g.) 16-bit extending loads on 32-bit target to + // 8 bits, but have to be careful... + if (Lod->getExtensionType() != ISD::NON_EXTLOAD) + origWidth = Lod->getMemoryVT().getSizeInBits(); + const APInt &Mask = + cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); + for (unsigned width = origWidth / 2; width>=8; width /= 2) { + APInt newMask = APInt::getLowBitsSet(maskWidth, width); + for (unsigned offset=0; offset<origWidth/width; offset++) { + if ((newMask & Mask) == Mask) { + if (!getDataLayout()->isLittleEndian()) + bestOffset = (origWidth/width - offset - 1) * (width/8); + else + bestOffset = (uint64_t)offset * (width/8); + bestMask = Mask.lshr(offset * (width/8) * 8); + bestWidth = width; + break; + } + newMask = newMask << width; + } + } + } + if (bestWidth) { + EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); + if (newVT.isRound()) { + EVT PtrType = Lod->getOperand(1).getValueType(); + SDValue Ptr = Lod->getBasePtr(); + if (bestOffset != 0) + Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), + DAG.getConstant(bestOffset, PtrType)); + unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); + SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, + Lod->getPointerInfo().getWithOffset(bestOffset), + false, false, false, NewAlign); + return DAG.getSetCC(dl, VT, + DAG.getNode(ISD::AND, dl, newVT, NewLoad, + DAG.getConstant(bestMask.trunc(bestWidth), + newVT)), + DAG.getConstant(0LL, newVT), Cond); + } + } + } + + // If the LHS is a ZERO_EXTEND, perform the comparison on the input. + if (N0.getOpcode() == ISD::ZERO_EXTEND) { + unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); + + // If the comparison constant has bits in the upper part, the + // zero-extended value could never match. + if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), + C1.getBitWidth() - InSize))) { + switch (Cond) { + case ISD::SETUGT: + case ISD::SETUGE: + case ISD::SETEQ: return DAG.getConstant(0, VT); + case ISD::SETULT: + case ISD::SETULE: + case ISD::SETNE: return DAG.getConstant(1, VT); + case ISD::SETGT: + case ISD::SETGE: + // True if the sign bit of C1 is set. + return DAG.getConstant(C1.isNegative(), VT); + case ISD::SETLT: + case ISD::SETLE: + // True if the sign bit of C1 isn't set. + return DAG.getConstant(C1.isNonNegative(), VT); + default: + break; + } + } + + // Otherwise, we can perform the comparison with the low bits. + switch (Cond) { + case ISD::SETEQ: + case ISD::SETNE: + case ISD::SETUGT: + case ISD::SETUGE: + case ISD::SETULT: + case ISD::SETULE: { + EVT newVT = N0.getOperand(0).getValueType(); + if (DCI.isBeforeLegalizeOps() || + (isOperationLegal(ISD::SETCC, newVT) && + getCondCodeAction(Cond, newVT.getSimpleVT())==Legal)) + return DAG.getSetCC(dl, VT, N0.getOperand(0), + DAG.getConstant(C1.trunc(InSize), newVT), + Cond); + break; + } + default: + break; // todo, be more careful with signed comparisons + } + } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); + unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); + EVT ExtDstTy = N0.getValueType(); + unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); + + // If the constant doesn't fit into the number of bits for the source of + // the sign extension, it is impossible for both sides to be equal. + if (C1.getMinSignedBits() > ExtSrcTyBits) + return DAG.getConstant(Cond == ISD::SETNE, VT); + + SDValue ZextOp; + EVT Op0Ty = N0.getOperand(0).getValueType(); + if (Op0Ty == ExtSrcTy) { + ZextOp = N0.getOperand(0); + } else { + APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); + ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), + DAG.getConstant(Imm, Op0Ty)); + } + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(ZextOp.getNode()); + // Otherwise, make this a use of a zext. + return DAG.getSetCC(dl, VT, ZextOp, + DAG.getConstant(C1 & APInt::getLowBitsSet( + ExtDstTyBits, + ExtSrcTyBits), + ExtDstTy), + Cond); + } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC + if (N0.getOpcode() == ISD::SETCC && + isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { + bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); + if (TrueWhenTrue) + return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); + // Invert the condition. + ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); + CC = ISD::getSetCCInverse(CC, + N0.getOperand(0).getValueType().isInteger()); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); + } + + if ((N0.getOpcode() == ISD::XOR || + (N0.getOpcode() == ISD::AND && + N0.getOperand(0).getOpcode() == ISD::XOR && + N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && + isa<ConstantSDNode>(N0.getOperand(1)) && + cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { + // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We + // can only do this if the top bits are known zero. + unsigned BitWidth = N0.getValueSizeInBits(); + if (DAG.MaskedValueIsZero(N0, + APInt::getHighBitsSet(BitWidth, + BitWidth-1))) { + // Okay, get the un-inverted input value. + SDValue Val; + if (N0.getOpcode() == ISD::XOR) + Val = N0.getOperand(0); + else { + assert(N0.getOpcode() == ISD::AND && + N0.getOperand(0).getOpcode() == ISD::XOR); + // ((X^1)&1)^1 -> X & 1 + Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), + N0.getOperand(0).getOperand(0), + N0.getOperand(1)); + } + + return DAG.getSetCC(dl, VT, Val, N1, + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + } + } else if (N1C->getAPIntValue() == 1 && + (VT == MVT::i1 || + getBooleanContents(false) == ZeroOrOneBooleanContent)) { + SDValue Op0 = N0; + if (Op0.getOpcode() == ISD::TRUNCATE) + Op0 = Op0.getOperand(0); + + if ((Op0.getOpcode() == ISD::XOR) && + Op0.getOperand(0).getOpcode() == ISD::SETCC && + Op0.getOperand(1).getOpcode() == ISD::SETCC) { + // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) + Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; + return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), + Cond); + } + if (Op0.getOpcode() == ISD::AND && + isa<ConstantSDNode>(Op0.getOperand(1)) && + cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { + // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. + if (Op0.getValueType().bitsGT(VT)) + Op0 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), + DAG.getConstant(1, VT)); + else if (Op0.getValueType().bitsLT(VT)) + Op0 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), + DAG.getConstant(1, VT)); + + return DAG.getSetCC(dl, VT, Op0, + DAG.getConstant(0, Op0.getValueType()), + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + } + if (Op0.getOpcode() == ISD::AssertZext && + cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) + return DAG.getSetCC(dl, VT, Op0, + DAG.getConstant(0, Op0.getValueType()), + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + } + } + + APInt MinVal, MaxVal; + unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); + if (ISD::isSignedIntSetCC(Cond)) { + MinVal = APInt::getSignedMinValue(OperandBitSize); + MaxVal = APInt::getSignedMaxValue(OperandBitSize); + } else { + MinVal = APInt::getMinValue(OperandBitSize); + MaxVal = APInt::getMaxValue(OperandBitSize); + } + + // Canonicalize GE/LE comparisons to use GT/LT comparisons. + if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { + if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true + // X >= C0 --> X > (C0-1) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(C1-1, N1.getValueType()), + (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); + } + + if (Cond == ISD::SETLE || Cond == ISD::SETULE) { + if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true + // X <= C0 --> X < (C0+1) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(C1+1, N1.getValueType()), + (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); + } + + if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) + return DAG.getConstant(0, VT); // X < MIN --> false + if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) + return DAG.getConstant(1, VT); // X >= MIN --> true + if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) + return DAG.getConstant(0, VT); // X > MAX --> false + if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) + return DAG.getConstant(1, VT); // X <= MAX --> true + + // Canonicalize setgt X, Min --> setne X, Min + if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); + // Canonicalize setlt X, Max --> setne X, Max + if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); + + // If we have setult X, 1, turn it into seteq X, 0 + if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(MinVal, N0.getValueType()), + ISD::SETEQ); + // If we have setugt X, Max-1, turn it into seteq X, Max + if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(MaxVal, N0.getValueType()), + ISD::SETEQ); + + // If we have "setcc X, C0", check to see if we can shrink the immediate + // by changing cc. + + // SETUGT X, SINTMAX -> SETLT X, 0 + if (Cond == ISD::SETUGT && + C1 == APInt::getSignedMaxValue(OperandBitSize)) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(0, N1.getValueType()), + ISD::SETLT); + + // SETULT X, SINTMIN -> SETGT X, -1 + if (Cond == ISD::SETULT && + C1 == APInt::getSignedMinValue(OperandBitSize)) { + SDValue ConstMinusOne = + DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), + N1.getValueType()); + return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); + } + + // Fold bit comparisons when we can. + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + (VT == N0.getValueType() || + (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && + N0.getOpcode() == ISD::AND) + if (ConstantSDNode *AndRHS = + dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + EVT ShiftTy = DCI.isBeforeLegalizeOps() ? + getPointerTy() : getShiftAmountTy(N0.getValueType()); + if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 + // Perform the xform if the AND RHS is a single bit. + if (AndRHS->getAPIntValue().isPowerOf2()) { + return DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, + DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); + } + } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { + // (X & 8) == 8 --> (X & 8) >> 3 + // Perform the xform if C1 is a single bit. + if (C1.isPowerOf2()) { + return DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, + DAG.getConstant(C1.logBase2(), ShiftTy))); + } + } + } + + if (C1.getMinSignedBits() <= 64 && + !isLegalICmpImmediate(C1.getSExtValue())) { + // (X & -256) == 256 -> (X >> 8) == 1 + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + N0.getOpcode() == ISD::AND && N0.hasOneUse()) { + if (ConstantSDNode *AndRHS = + dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + const APInt &AndRHSC = AndRHS->getAPIntValue(); + if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { + unsigned ShiftBits = AndRHSC.countTrailingZeros(); + EVT ShiftTy = DCI.isBeforeLegalizeOps() ? + getPointerTy() : getShiftAmountTy(N0.getValueType()); + EVT CmpTy = N0.getValueType(); + SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), + DAG.getConstant(ShiftBits, ShiftTy)); + SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); + return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); + } + } + } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || + Cond == ISD::SETULE || Cond == ISD::SETUGT) { + bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); + // X < 0x100000000 -> (X >> 32) < 1 + // X >= 0x100000000 -> (X >> 32) >= 1 + // X <= 0x0ffffffff -> (X >> 32) < 1 + // X > 0x0ffffffff -> (X >> 32) >= 1 + unsigned ShiftBits; + APInt NewC = C1; + ISD::CondCode NewCond = Cond; + if (AdjOne) { + ShiftBits = C1.countTrailingOnes(); + NewC = NewC + 1; + NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; + } else { + ShiftBits = C1.countTrailingZeros(); + } + NewC = NewC.lshr(ShiftBits); + if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { + EVT ShiftTy = DCI.isBeforeLegalizeOps() ? + getPointerTy() : getShiftAmountTy(N0.getValueType()); + EVT CmpTy = N0.getValueType(); + SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, + DAG.getConstant(ShiftBits, ShiftTy)); + SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); + return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); + } + } + } + } + + if (isa<ConstantFPSDNode>(N0.getNode())) { + // Constant fold or commute setcc. + SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); + if (O.getNode()) return O; + } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { + // If the RHS of an FP comparison is a constant, simplify it away in + // some cases. + if (CFP->getValueAPF().isNaN()) { + // If an operand is known to be a nan, we can fold it. + switch (ISD::getUnorderedFlavor(Cond)) { + default: llvm_unreachable("Unknown flavor!"); + case 0: // Known false. + return DAG.getConstant(0, VT); + case 1: // Known true. + return DAG.getConstant(1, VT); + case 2: // Undefined. + return DAG.getUNDEF(VT); + } + } + + // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the + // constant if knowing that the operand is non-nan is enough. We prefer to + // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to + // materialize 0.0. + if (Cond == ISD::SETO || Cond == ISD::SETUO) + return DAG.getSetCC(dl, VT, N0, N0, Cond); + + // If the condition is not legal, see if we can find an equivalent one + // which is legal. + if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { + // If the comparison was an awkward floating-point == or != and one of + // the comparison operands is infinity or negative infinity, convert the + // condition to a less-awkward <= or >=. + if (CFP->getValueAPF().isInfinity()) { + if (CFP->getValueAPF().isNegative()) { + if (Cond == ISD::SETOEQ && + isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); + if (Cond == ISD::SETUEQ && + isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); + if (Cond == ISD::SETUNE && + isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); + if (Cond == ISD::SETONE && + isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); + } else { + if (Cond == ISD::SETOEQ && + isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); + if (Cond == ISD::SETUEQ && + isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); + if (Cond == ISD::SETUNE && + isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); + if (Cond == ISD::SETONE && + isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); + } + } + } + } + + if (N0 == N1) { + // The sext(setcc()) => setcc() optimization relies on the appropriate + // constant being emitted. + uint64_t EqVal = 0; + switch (getBooleanContents(N0.getValueType().isVector())) { + case UndefinedBooleanContent: + case ZeroOrOneBooleanContent: + EqVal = ISD::isTrueWhenEqual(Cond); + break; + case ZeroOrNegativeOneBooleanContent: + EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; + break; + } + + // We can always fold X == X for integer setcc's. + if (N0.getValueType().isInteger()) { + return DAG.getConstant(EqVal, VT); + } + unsigned UOF = ISD::getUnorderedFlavor(Cond); + if (UOF == 2) // FP operators that are undefined on NaNs. + return DAG.getConstant(EqVal, VT); + if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) + return DAG.getConstant(EqVal, VT); + // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO + // if it is not already. + ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; + if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || + getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) + return DAG.getSetCC(dl, VT, N0, N1, NewCond); + } + + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + N0.getValueType().isInteger()) { + if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || + N0.getOpcode() == ISD::XOR) { + // Simplify (X+Y) == (X+Z) --> Y == Z + if (N0.getOpcode() == N1.getOpcode()) { + if (N0.getOperand(0) == N1.getOperand(0)) + return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); + if (N0.getOperand(1) == N1.getOperand(1)) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); + if (DAG.isCommutativeBinOp(N0.getOpcode())) { + // If X op Y == Y op X, try other combinations. + if (N0.getOperand(0) == N1.getOperand(1)) + return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), + Cond); + if (N0.getOperand(1) == N1.getOperand(0)) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), + Cond); + } + } + + // If RHS is a legal immediate value for a compare instruction, we need + // to be careful about increasing register pressure needlessly. + bool LegalRHSImm = false; + + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { + if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + // Turn (X+C1) == C2 --> X == C2-C1 + if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { + return DAG.getSetCC(dl, VT, N0.getOperand(0), + DAG.getConstant(RHSC->getAPIntValue()- + LHSR->getAPIntValue(), + N0.getValueType()), Cond); + } + + // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. + if (N0.getOpcode() == ISD::XOR) + // If we know that all of the inverted bits are zero, don't bother + // performing the inversion. + if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) + return + DAG.getSetCC(dl, VT, N0.getOperand(0), + DAG.getConstant(LHSR->getAPIntValue() ^ + RHSC->getAPIntValue(), + N0.getValueType()), + Cond); + } + + // Turn (C1-X) == C2 --> X == C1-C2 + if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { + if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { + return + DAG.getSetCC(dl, VT, N0.getOperand(1), + DAG.getConstant(SUBC->getAPIntValue() - + RHSC->getAPIntValue(), + N0.getValueType()), + Cond); + } + } + + // Could RHSC fold directly into a compare? + if (RHSC->getValueType(0).getSizeInBits() <= 64) + LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); + } + + // Simplify (X+Z) == X --> Z == 0 + // Don't do this if X is an immediate that can fold into a cmp + // instruction and X+Z has other uses. It could be an induction variable + // chain, and the transform would increase register pressure. + if (!LegalRHSImm || N0.getNode()->hasOneUse()) { + if (N0.getOperand(0) == N1) + return DAG.getSetCC(dl, VT, N0.getOperand(1), + DAG.getConstant(0, N0.getValueType()), Cond); + if (N0.getOperand(1) == N1) { + if (DAG.isCommutativeBinOp(N0.getOpcode())) + return DAG.getSetCC(dl, VT, N0.getOperand(0), + DAG.getConstant(0, N0.getValueType()), Cond); + if (N0.getNode()->hasOneUse()) { + assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); + // (Z-X) == X --> Z == X<<1 + SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, + DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(SH.getNode()); + return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); + } + } + } + } + + if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || + N1.getOpcode() == ISD::XOR) { + // Simplify X == (X+Z) --> Z == 0 + if (N1.getOperand(0) == N0) + return DAG.getSetCC(dl, VT, N1.getOperand(1), + DAG.getConstant(0, N1.getValueType()), Cond); + if (N1.getOperand(1) == N0) { + if (DAG.isCommutativeBinOp(N1.getOpcode())) + return DAG.getSetCC(dl, VT, N1.getOperand(0), + DAG.getConstant(0, N1.getValueType()), Cond); + if (N1.getNode()->hasOneUse()) { + assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); + // X == (Z-X) --> X<<1 == Z + SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, + DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(SH.getNode()); + return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); + } + } + } + + // Simplify x&y == y to x&y != 0 if y has exactly one bit set. + // Note that where y is variable and is known to have at most + // one bit set (for example, if it is z&1) we cannot do this; + // the expressions are not equivalent when y==0. + if (N0.getOpcode() == ISD::AND) + if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { + if (ValueHasExactlyOneBitSet(N1, DAG)) { + Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(Cond, N0.getSimpleValueType())) { + SDValue Zero = DAG.getConstant(0, N1.getValueType()); + return DAG.getSetCC(dl, VT, N0, Zero, Cond); + } + } + } + if (N1.getOpcode() == ISD::AND) + if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { + if (ValueHasExactlyOneBitSet(N0, DAG)) { + Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(Cond, N1.getSimpleValueType())) { + SDValue Zero = DAG.getConstant(0, N0.getValueType()); + return DAG.getSetCC(dl, VT, N1, Zero, Cond); + } + } + } + } + + // Fold away ALL boolean setcc's. + SDValue Temp; + if (N0.getValueType() == MVT::i1 && foldBooleans) { + switch (Cond) { + default: llvm_unreachable("Unknown integer setcc!"); + case ISD::SETEQ: // X == Y -> ~(X^Y) + Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); + N0 = DAG.getNOT(dl, Temp, MVT::i1); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETNE: // X != Y --> (X^Y) + N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); + break; + case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y + case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y + Temp = DAG.getNOT(dl, N0, MVT::i1); + N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X + case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X + Temp = DAG.getNOT(dl, N1, MVT::i1); + N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y + case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y + Temp = DAG.getNOT(dl, N0, MVT::i1); + N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X + case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X + Temp = DAG.getNOT(dl, N1, MVT::i1); + N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); + break; + } + if (VT != MVT::i1) { + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(N0.getNode()); + // FIXME: If running after legalize, we probably can't do this. + N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); + } + return N0; + } + + // Could not fold it. + return SDValue(); +} + +/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the +/// node is a GlobalAddress + offset. +bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, + int64_t &Offset) const { + if (isa<GlobalAddressSDNode>(N)) { + GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); + GA = GASD->getGlobal(); + Offset += GASD->getOffset(); + return true; + } + + if (N->getOpcode() == ISD::ADD) { + SDValue N1 = N->getOperand(0); + SDValue N2 = N->getOperand(1); + if (isGAPlusOffset(N1.getNode(), GA, Offset)) { + ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); + if (V) { + Offset += V->getSExtValue(); + return true; + } + } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { + ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); + if (V) { + Offset += V->getSExtValue(); + return true; + } + } + } + + return false; +} + + +SDValue TargetLowering:: +PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { + // Default implementation: no optimization. + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Inline Assembler Implementation Methods +//===----------------------------------------------------------------------===// + + +TargetLowering::ConstraintType +TargetLowering::getConstraintType(const std::string &Constraint) const { + unsigned S = Constraint.size(); + + if (S == 1) { + switch (Constraint[0]) { + default: break; + case 'r': return C_RegisterClass; + case 'm': // memory + case 'o': // offsetable + case 'V': // not offsetable + return C_Memory; + case 'i': // Simple Integer or Relocatable Constant + case 'n': // Simple Integer + case 'E': // Floating Point Constant + case 'F': // Floating Point Constant + case 's': // Relocatable Constant + case 'p': // Address. + case 'X': // Allow ANY value. + case 'I': // Target registers. + case 'J': + case 'K': + case 'L': + case 'M': + case 'N': + case 'O': + case 'P': + case '<': + case '>': + return C_Other; + } + } + + if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { + if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" + return C_Memory; + return C_Register; + } + return C_Unknown; +} + +/// LowerXConstraint - try to replace an X constraint, which matches anything, +/// with another that has more specific requirements based on the type of the +/// corresponding operand. +const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ + if (ConstraintVT.isInteger()) + return "r"; + if (ConstraintVT.isFloatingPoint()) + return "f"; // works for many targets + return 0; +} + +/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +/// vector. If it is invalid, don't add anything to Ops. +void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue> &Ops, + SelectionDAG &DAG) const { + + if (Constraint.length() > 1) return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: break; + case 'X': // Allows any operand; labels (basic block) use this. + if (Op.getOpcode() == ISD::BasicBlock) { + Ops.push_back(Op); + return; + } + // fall through + case 'i': // Simple Integer or Relocatable Constant + case 'n': // Simple Integer + case 's': { // Relocatable Constant + // These operands are interested in values of the form (GV+C), where C may + // be folded in as an offset of GV, or it may be explicitly added. Also, it + // is possible and fine if either GV or C are missing. + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); + GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); + + // If we have "(add GV, C)", pull out GV/C + if (Op.getOpcode() == ISD::ADD) { + C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); + if (C == 0 || GA == 0) { + C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); + GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); + } + if (C == 0 || GA == 0) + C = 0, GA = 0; + } + + // If we find a valid operand, map to the TargetXXX version so that the + // value itself doesn't get selected. + if (GA) { // Either &GV or &GV+C + if (ConstraintLetter != 'n') { + int64_t Offs = GA->getOffset(); + if (C) Offs += C->getZExtValue(); + Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), + C ? SDLoc(C) : SDLoc(), + Op.getValueType(), Offs)); + return; + } + } + if (C) { // just C, no GV. + // Simple constants are not allowed for 's'. + if (ConstraintLetter != 's') { + // gcc prints these as sign extended. Sign extend value to 64 bits + // now; without this it would get ZExt'd later in + // ScheduleDAGSDNodes::EmitNode, which is very generic. + Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), + MVT::i64)); + return; + } + } + break; + } + } +} + +std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: +getRegForInlineAsmConstraint(const std::string &Constraint, + MVT VT) const { + if (Constraint.empty() || Constraint[0] != '{') + return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); + assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); + + // Remove the braces from around the name. + StringRef RegName(Constraint.data()+1, Constraint.size()-2); + + std::pair<unsigned, const TargetRegisterClass*> R = + std::make_pair(0u, static_cast<const TargetRegisterClass*>(0)); + + // Figure out which register class contains this reg. + const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo(); + for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), + E = RI->regclass_end(); RCI != E; ++RCI) { + const TargetRegisterClass *RC = *RCI; + + // If none of the value types for this register class are valid, we + // can't use it. For example, 64-bit reg classes on 32-bit targets. + if (!isLegalRC(RC)) + continue; + + for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); + I != E; ++I) { + if (RegName.equals_lower(RI->getName(*I))) { + std::pair<unsigned, const TargetRegisterClass*> S = + std::make_pair(*I, RC); + + // If this register class has the requested value type, return it, + // otherwise keep searching and return the first class found + // if no other is found which explicitly has the requested type. + if (RC->hasType(VT)) + return S; + else if (!R.second) + R = S; + } + } + } + + return R; +} + +//===----------------------------------------------------------------------===// +// Constraint Selection. + +/// isMatchingInputConstraint - Return true of this is an input operand that is +/// a matching constraint like "4". +bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { + assert(!ConstraintCode.empty() && "No known constraint!"); + return isdigit(static_cast<unsigned char>(ConstraintCode[0])); +} + +/// getMatchedOperand - If this is an input matching constraint, this method +/// returns the output operand it matches. +unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { + assert(!ConstraintCode.empty() && "No known constraint!"); + return atoi(ConstraintCode.c_str()); +} + + +/// ParseConstraints - Split up the constraint string from the inline +/// assembly value into the specific constraints and their prefixes, +/// and also tie in the associated operand values. +/// If this returns an empty vector, and if the constraint string itself +/// isn't empty, there was an error parsing. +TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( + ImmutableCallSite CS) const { + /// ConstraintOperands - Information about all of the constraints. + AsmOperandInfoVector ConstraintOperands; + const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); + unsigned maCount = 0; // Largest number of multiple alternative constraints. + + // Do a prepass over the constraints, canonicalizing them, and building up the + // ConstraintOperands list. + InlineAsm::ConstraintInfoVector + ConstraintInfos = IA->ParseConstraints(); + + unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. + unsigned ResNo = 0; // ResNo - The result number of the next output. + + for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { + ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); + AsmOperandInfo &OpInfo = ConstraintOperands.back(); + + // Update multiple alternative constraint count. + if (OpInfo.multipleAlternatives.size() > maCount) + maCount = OpInfo.multipleAlternatives.size(); + + OpInfo.ConstraintVT = MVT::Other; + + // Compute the value type for each operand. + switch (OpInfo.Type) { + case InlineAsm::isOutput: + // Indirect outputs just consume an argument. + if (OpInfo.isIndirect) { + OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); + break; + } + + // The return value of the call is this value. As such, there is no + // corresponding argument. + assert(!CS.getType()->isVoidTy() && + "Bad inline asm!"); + if (StructType *STy = dyn_cast<StructType>(CS.getType())) { + OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); + } else { + assert(ResNo == 0 && "Asm only has one result!"); + OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); + } + ++ResNo; + break; + case InlineAsm::isInput: + OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); + break; + case InlineAsm::isClobber: + // Nothing to do. + break; + } + + if (OpInfo.CallOperandVal) { + llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); + if (OpInfo.isIndirect) { + llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); + if (!PtrTy) + report_fatal_error("Indirect operand for inline asm not a pointer!"); + OpTy = PtrTy->getElementType(); + } + + // Look for vector wrapped in a struct. e.g. { <16 x i8> }. + if (StructType *STy = dyn_cast<StructType>(OpTy)) + if (STy->getNumElements() == 1) + OpTy = STy->getElementType(0); + + // If OpTy is not a single value, it may be a struct/union that we + // can tile with integers. + if (!OpTy->isSingleValueType() && OpTy->isSized()) { + unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); + switch (BitSize) { + default: break; + case 1: + case 8: + case 16: + case 32: + case 64: + case 128: + OpInfo.ConstraintVT = + MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); + break; + } + } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { + unsigned PtrSize + = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); + OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); + } else { + OpInfo.ConstraintVT = MVT::getVT(OpTy, true); + } + } + } + + // If we have multiple alternative constraints, select the best alternative. + if (ConstraintInfos.size()) { + if (maCount) { + unsigned bestMAIndex = 0; + int bestWeight = -1; + // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. + int weight = -1; + unsigned maIndex; + // Compute the sums of the weights for each alternative, keeping track + // of the best (highest weight) one so far. + for (maIndex = 0; maIndex < maCount; ++maIndex) { + int weightSum = 0; + for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); + cIndex != eIndex; ++cIndex) { + AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; + if (OpInfo.Type == InlineAsm::isClobber) + continue; + + // If this is an output operand with a matching input operand, + // look up the matching input. If their types mismatch, e.g. one + // is an integer, the other is floating point, or their sizes are + // different, flag it as an maCantMatch. + if (OpInfo.hasMatchingInput()) { + AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; + if (OpInfo.ConstraintVT != Input.ConstraintVT) { + if ((OpInfo.ConstraintVT.isInteger() != + Input.ConstraintVT.isInteger()) || + (OpInfo.ConstraintVT.getSizeInBits() != + Input.ConstraintVT.getSizeInBits())) { + weightSum = -1; // Can't match. + break; + } + } + } + weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); + if (weight == -1) { + weightSum = -1; + break; + } + weightSum += weight; + } + // Update best. + if (weightSum > bestWeight) { + bestWeight = weightSum; + bestMAIndex = maIndex; + } + } + + // Now select chosen alternative in each constraint. + for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); + cIndex != eIndex; ++cIndex) { + AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; + if (cInfo.Type == InlineAsm::isClobber) + continue; + cInfo.selectAlternative(bestMAIndex); + } + } + } + + // Check and hook up tied operands, choose constraint code to use. + for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); + cIndex != eIndex; ++cIndex) { + AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; + + // If this is an output operand with a matching input operand, look up the + // matching input. If their types mismatch, e.g. one is an integer, the + // other is floating point, or their sizes are different, flag it as an + // error. + if (OpInfo.hasMatchingInput()) { + AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; + + if (OpInfo.ConstraintVT != Input.ConstraintVT) { + std::pair<unsigned, const TargetRegisterClass*> MatchRC = + getRegForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + std::pair<unsigned, const TargetRegisterClass*> InputRC = + getRegForInlineAsmConstraint(Input.ConstraintCode, + Input.ConstraintVT); + if ((OpInfo.ConstraintVT.isInteger() != + Input.ConstraintVT.isInteger()) || + (MatchRC.second != InputRC.second)) { + report_fatal_error("Unsupported asm: input constraint" + " with a matching output constraint of" + " incompatible type!"); + } + } + + } + } + + return ConstraintOperands; +} + + +/// getConstraintGenerality - Return an integer indicating how general CT +/// is. +static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { + switch (CT) { + case TargetLowering::C_Other: + case TargetLowering::C_Unknown: + return 0; + case TargetLowering::C_Register: + return 1; + case TargetLowering::C_RegisterClass: + return 2; + case TargetLowering::C_Memory: + return 3; + } + llvm_unreachable("Invalid constraint type"); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight + TargetLowering::getMultipleConstraintMatchWeight( + AsmOperandInfo &info, int maIndex) const { + InlineAsm::ConstraintCodeVector *rCodes; + if (maIndex >= (int)info.multipleAlternatives.size()) + rCodes = &info.Codes; + else + rCodes = &info.multipleAlternatives[maIndex].Codes; + ConstraintWeight BestWeight = CW_Invalid; + + // Loop over the options, keeping track of the most general one. + for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { + ConstraintWeight weight = + getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); + if (weight > BestWeight) + BestWeight = weight; + } + + return BestWeight; +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight + TargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (CallOperandVal == NULL) + return CW_Default; + // Look at the constraint type. + switch (*constraint) { + case 'i': // immediate integer. + case 'n': // immediate integer with a known value. + if (isa<ConstantInt>(CallOperandVal)) + weight = CW_Constant; + break; + case 's': // non-explicit intregal immediate. + if (isa<GlobalValue>(CallOperandVal)) + weight = CW_Constant; + break; + case 'E': // immediate float if host format. + case 'F': // immediate float. + if (isa<ConstantFP>(CallOperandVal)) + weight = CW_Constant; + break; + case '<': // memory operand with autodecrement. + case '>': // memory operand with autoincrement. + case 'm': // memory operand. + case 'o': // offsettable memory operand + case 'V': // non-offsettable memory operand + weight = CW_Memory; + break; + case 'r': // general register. + case 'g': // general register, memory operand or immediate integer. + // note: Clang converts "g" to "imr". + if (CallOperandVal->getType()->isIntegerTy()) + weight = CW_Register; + break; + case 'X': // any operand. + default: + weight = CW_Default; + break; + } + return weight; +} + +/// ChooseConstraint - If there are multiple different constraints that we +/// could pick for this operand (e.g. "imr") try to pick the 'best' one. +/// This is somewhat tricky: constraints fall into four classes: +/// Other -> immediates and magic values +/// Register -> one specific register +/// RegisterClass -> a group of regs +/// Memory -> memory +/// Ideally, we would pick the most specific constraint possible: if we have +/// something that fits into a register, we would pick it. The problem here +/// is that if we have something that could either be in a register or in +/// memory that use of the register could cause selection of *other* +/// operands to fail: they might only succeed if we pick memory. Because of +/// this the heuristic we use is: +/// +/// 1) If there is an 'other' constraint, and if the operand is valid for +/// that constraint, use it. This makes us take advantage of 'i' +/// constraints when available. +/// 2) Otherwise, pick the most general constraint present. This prefers +/// 'm' over 'r', for example. +/// +static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, + const TargetLowering &TLI, + SDValue Op, SelectionDAG *DAG) { + assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); + unsigned BestIdx = 0; + TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; + int BestGenerality = -1; + + // Loop over the options, keeping track of the most general one. + for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { + TargetLowering::ConstraintType CType = + TLI.getConstraintType(OpInfo.Codes[i]); + + // If this is an 'other' constraint, see if the operand is valid for it. + // For example, on X86 we might have an 'rI' constraint. If the operand + // is an integer in the range [0..31] we want to use I (saving a load + // of a register), otherwise we must use 'r'. + if (CType == TargetLowering::C_Other && Op.getNode()) { + assert(OpInfo.Codes[i].size() == 1 && + "Unhandled multi-letter 'other' constraint"); + std::vector<SDValue> ResultOps; + TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], + ResultOps, *DAG); + if (!ResultOps.empty()) { + BestType = CType; + BestIdx = i; + break; + } + } + + // Things with matching constraints can only be registers, per gcc + // documentation. This mainly affects "g" constraints. + if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) + continue; + + // This constraint letter is more general than the previous one, use it. + int Generality = getConstraintGenerality(CType); + if (Generality > BestGenerality) { + BestType = CType; + BestIdx = i; + BestGenerality = Generality; + } + } + + OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; + OpInfo.ConstraintType = BestType; +} + +/// ComputeConstraintToUse - Determines the constraint code and constraint +/// type to use for the specific AsmOperandInfo, setting +/// OpInfo.ConstraintCode and OpInfo.ConstraintType. +void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, + SDValue Op, + SelectionDAG *DAG) const { + assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); + + // Single-letter constraints ('r') are very common. + if (OpInfo.Codes.size() == 1) { + OpInfo.ConstraintCode = OpInfo.Codes[0]; + OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); + } else { + ChooseConstraint(OpInfo, *this, Op, DAG); + } + + // 'X' matches anything. + if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { + // Labels and constants are handled elsewhere ('X' is the only thing + // that matches labels). For Functions, the type here is the type of + // the result, which is not what we want to look at; leave them alone. + Value *v = OpInfo.CallOperandVal; + if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { + OpInfo.CallOperandVal = v; + return; + } + + // Otherwise, try to resolve it to something we know about by looking at + // the actual operand type. + if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { + OpInfo.ConstraintCode = Repl; + OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); + } + } +} + +/// \brief Given an exact SDIV by a constant, create a multiplication +/// with the multiplicative inverse of the constant. +SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, + SelectionDAG &DAG) const { + ConstantSDNode *C = cast<ConstantSDNode>(Op2); + APInt d = C->getAPIntValue(); + assert(d != 0 && "Division by zero!"); + + // Shift the value upfront if it is even, so the LSB is one. + unsigned ShAmt = d.countTrailingZeros(); + if (ShAmt) { + // TODO: For UDIV use SRL instead of SRA. + SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); + Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt); + d = d.ashr(ShAmt); + } + + // Calculate the multiplicative inverse, using Newton's method. + APInt t, xn = d; + while ((t = d*xn) != 1) + xn *= APInt(d.getBitWidth(), 2) - t; + + Op2 = DAG.getConstant(xn, Op1.getValueType()); + return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); +} + +/// \brief Given an ISD::SDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number. See: +/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> +SDValue TargetLowering:: +BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, + std::vector<SDNode*> *Created) const { + EVT VT = N->getValueType(0); + SDLoc dl(N); + + // Check to see if we can do this. + // FIXME: We should be more aggressive here. + if (!isTypeLegal(VT)) + return SDValue(); + + APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); + APInt::ms magics = d.magic(); + + // Multiply the numerator (operand 0) by the magic value + // FIXME: We should support doing a MUL in a wider type + SDValue Q; + if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : + isOperationLegalOrCustom(ISD::MULHS, VT)) + Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), + DAG.getConstant(magics.m, VT)); + else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : + isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) + Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), + N->getOperand(0), + DAG.getConstant(magics.m, VT)).getNode(), 1); + else + return SDValue(); // No mulhs or equvialent + // If d > 0 and m < 0, add the numerator + if (d.isStrictlyPositive() && magics.m.isNegative()) { + Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); + if (Created) + Created->push_back(Q.getNode()); + } + // If d < 0 and m > 0, subtract the numerator. + if (d.isNegative() && magics.m.isStrictlyPositive()) { + Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); + if (Created) + Created->push_back(Q.getNode()); + } + // Shift right algebraic if shift value is nonzero + if (magics.s > 0) { + Q = DAG.getNode(ISD::SRA, dl, VT, Q, + DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); + if (Created) + Created->push_back(Q.getNode()); + } + // Extract the sign bit and add it to the quotient + SDValue T = + DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, + getShiftAmountTy(Q.getValueType()))); + if (Created) + Created->push_back(T.getNode()); + return DAG.getNode(ISD::ADD, dl, VT, Q, T); +} + +/// \brief Given an ISD::UDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number. See: +/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> +SDValue TargetLowering:: +BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, + std::vector<SDNode*> *Created) const { + EVT VT = N->getValueType(0); + SDLoc dl(N); + + // Check to see if we can do this. + // FIXME: We should be more aggressive here. + if (!isTypeLegal(VT)) + return SDValue(); + + // FIXME: We should use a narrower constant when the upper + // bits are known to be zero. + const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); + APInt::mu magics = N1C.magicu(); + + SDValue Q = N->getOperand(0); + + // If the divisor is even, we can avoid using the expensive fixup by shifting + // the divided value upfront. + if (magics.a != 0 && !N1C[0]) { + unsigned Shift = N1C.countTrailingZeros(); + Q = DAG.getNode(ISD::SRL, dl, VT, Q, + DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); + if (Created) + Created->push_back(Q.getNode()); + + // Get magic number for the shifted divisor. + magics = N1C.lshr(Shift).magicu(Shift); + assert(magics.a == 0 && "Should use cheap fixup now"); + } + + // Multiply the numerator (operand 0) by the magic value + // FIXME: We should support doing a MUL in a wider type + if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : + isOperationLegalOrCustom(ISD::MULHU, VT)) + Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); + else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : + isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) + Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, + DAG.getConstant(magics.m, VT)).getNode(), 1); + else + return SDValue(); // No mulhu or equvialent + if (Created) + Created->push_back(Q.getNode()); + + if (magics.a == 0) { + assert(magics.s < N1C.getBitWidth() && + "We shouldn't generate an undefined shift!"); + return DAG.getNode(ISD::SRL, dl, VT, Q, + DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); + } else { + SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); + if (Created) + Created->push_back(NPQ.getNode()); + NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, + DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); + if (Created) + Created->push_back(NPQ.getNode()); + NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); + if (Created) + Created->push_back(NPQ.getNode()); + return DAG.getNode(ISD::SRL, dl, VT, NPQ, + DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); + } +} |