aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h787
1 files changed, 787 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
new file mode 100644
index 000000000000..835f643cc1fb
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
@@ -0,0 +1,787 @@
+//===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements routines for translating from LLVM IR into SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SELECTIONDAGBUILDER_H
+#define SELECTIONDAGBUILDER_H
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <vector>
+
+namespace llvm {
+
+class AddrSpaceCastInst;
+class AliasAnalysis;
+class AllocaInst;
+class BasicBlock;
+class BitCastInst;
+class BranchInst;
+class CallInst;
+class DbgValueInst;
+class ExtractElementInst;
+class ExtractValueInst;
+class FCmpInst;
+class FPExtInst;
+class FPToSIInst;
+class FPToUIInst;
+class FPTruncInst;
+class Function;
+class FunctionLoweringInfo;
+class GetElementPtrInst;
+class GCFunctionInfo;
+class ICmpInst;
+class IntToPtrInst;
+class IndirectBrInst;
+class InvokeInst;
+class InsertElementInst;
+class InsertValueInst;
+class Instruction;
+class LoadInst;
+class MachineBasicBlock;
+class MachineInstr;
+class MachineRegisterInfo;
+class MDNode;
+class PHINode;
+class PtrToIntInst;
+class ReturnInst;
+class SDDbgValue;
+class SExtInst;
+class SelectInst;
+class ShuffleVectorInst;
+class SIToFPInst;
+class StoreInst;
+class SwitchInst;
+class DataLayout;
+class TargetLibraryInfo;
+class TargetLowering;
+class TruncInst;
+class UIToFPInst;
+class UnreachableInst;
+class VAArgInst;
+class ZExtInst;
+
+//===----------------------------------------------------------------------===//
+/// SelectionDAGBuilder - This is the common target-independent lowering
+/// implementation that is parameterized by a TargetLowering object.
+///
+class SelectionDAGBuilder {
+ /// CurInst - The current instruction being visited
+ const Instruction *CurInst;
+
+ DenseMap<const Value*, SDValue> NodeMap;
+
+ /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
+ /// to preserve debug information for incoming arguments.
+ DenseMap<const Value*, SDValue> UnusedArgNodeMap;
+
+ /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
+ class DanglingDebugInfo {
+ const DbgValueInst* DI;
+ DebugLoc dl;
+ unsigned SDNodeOrder;
+ public:
+ DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
+ DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
+ DI(di), dl(DL), SDNodeOrder(SDNO) { }
+ const DbgValueInst* getDI() { return DI; }
+ DebugLoc getdl() { return dl; }
+ unsigned getSDNodeOrder() { return SDNodeOrder; }
+ };
+
+ /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
+ /// yet seen the referent. We defer handling these until we do see it.
+ DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
+
+public:
+ /// PendingLoads - Loads are not emitted to the program immediately. We bunch
+ /// them up and then emit token factor nodes when possible. This allows us to
+ /// get simple disambiguation between loads without worrying about alias
+ /// analysis.
+ SmallVector<SDValue, 8> PendingLoads;
+private:
+
+ /// PendingExports - CopyToReg nodes that copy values to virtual registers
+ /// for export to other blocks need to be emitted before any terminator
+ /// instruction, but they have no other ordering requirements. We bunch them
+ /// up and the emit a single tokenfactor for them just before terminator
+ /// instructions.
+ SmallVector<SDValue, 8> PendingExports;
+
+ /// SDNodeOrder - A unique monotonically increasing number used to order the
+ /// SDNodes we create.
+ unsigned SDNodeOrder;
+
+ /// Case - A struct to record the Value for a switch case, and the
+ /// case's target basic block.
+ struct Case {
+ const Constant *Low;
+ const Constant *High;
+ MachineBasicBlock* BB;
+ uint32_t ExtraWeight;
+
+ Case() : Low(0), High(0), BB(0), ExtraWeight(0) { }
+ Case(const Constant *low, const Constant *high, MachineBasicBlock *bb,
+ uint32_t extraweight) : Low(low), High(high), BB(bb),
+ ExtraWeight(extraweight) { }
+
+ APInt size() const {
+ const APInt &rHigh = cast<ConstantInt>(High)->getValue();
+ const APInt &rLow = cast<ConstantInt>(Low)->getValue();
+ return (rHigh - rLow + 1ULL);
+ }
+ };
+
+ struct CaseBits {
+ uint64_t Mask;
+ MachineBasicBlock* BB;
+ unsigned Bits;
+ uint32_t ExtraWeight;
+
+ CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
+ uint32_t Weight):
+ Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { }
+ };
+
+ typedef std::vector<Case> CaseVector;
+ typedef std::vector<CaseBits> CaseBitsVector;
+ typedef CaseVector::iterator CaseItr;
+ typedef std::pair<CaseItr, CaseItr> CaseRange;
+
+ /// CaseRec - A struct with ctor used in lowering switches to a binary tree
+ /// of conditional branches.
+ struct CaseRec {
+ CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
+ CaseRange r) :
+ CaseBB(bb), LT(lt), GE(ge), Range(r) {}
+
+ /// CaseBB - The MBB in which to emit the compare and branch
+ MachineBasicBlock *CaseBB;
+ /// LT, GE - If nonzero, we know the current case value must be less-than or
+ /// greater-than-or-equal-to these Constants.
+ const Constant *LT;
+ const Constant *GE;
+ /// Range - A pair of iterators representing the range of case values to be
+ /// processed at this point in the binary search tree.
+ CaseRange Range;
+ };
+
+ typedef std::vector<CaseRec> CaseRecVector;
+
+ /// The comparison function for sorting the switch case values in the vector.
+ /// WARNING: Case ranges should be disjoint!
+ struct CaseCmp {
+ bool operator()(const Case &C1, const Case &C2) {
+ assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
+ const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
+ const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
+ return CI1->getValue().slt(CI2->getValue());
+ }
+ };
+
+ struct CaseBitsCmp {
+ bool operator()(const CaseBits &C1, const CaseBits &C2) {
+ return C1.Bits > C2.Bits;
+ }
+ };
+
+ size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
+
+ /// CaseBlock - This structure is used to communicate between
+ /// SelectionDAGBuilder and SDISel for the code generation of additional basic
+ /// blocks needed by multi-case switch statements.
+ struct CaseBlock {
+ CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
+ const Value *cmpmiddle,
+ MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
+ MachineBasicBlock *me,
+ uint32_t trueweight = 0, uint32_t falseweight = 0)
+ : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
+ TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
+ TrueWeight(trueweight), FalseWeight(falseweight) { }
+
+ // CC - the condition code to use for the case block's setcc node
+ ISD::CondCode CC;
+
+ // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
+ // Emit by default LHS op RHS. MHS is used for range comparisons:
+ // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
+ const Value *CmpLHS, *CmpMHS, *CmpRHS;
+
+ // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
+ MachineBasicBlock *TrueBB, *FalseBB;
+
+ // ThisBB - the block into which to emit the code for the setcc and branches
+ MachineBasicBlock *ThisBB;
+
+ // TrueWeight/FalseWeight - branch weights.
+ uint32_t TrueWeight, FalseWeight;
+ };
+
+ struct JumpTable {
+ JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
+ MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
+
+ /// Reg - the virtual register containing the index of the jump table entry
+ //. to jump to.
+ unsigned Reg;
+ /// JTI - the JumpTableIndex for this jump table in the function.
+ unsigned JTI;
+ /// MBB - the MBB into which to emit the code for the indirect jump.
+ MachineBasicBlock *MBB;
+ /// Default - the MBB of the default bb, which is a successor of the range
+ /// check MBB. This is when updating PHI nodes in successors.
+ MachineBasicBlock *Default;
+ };
+ struct JumpTableHeader {
+ JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
+ bool E = false):
+ First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
+ APInt First;
+ APInt Last;
+ const Value *SValue;
+ MachineBasicBlock *HeaderBB;
+ bool Emitted;
+ };
+ typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
+
+ struct BitTestCase {
+ BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
+ uint32_t Weight):
+ Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { }
+ uint64_t Mask;
+ MachineBasicBlock *ThisBB;
+ MachineBasicBlock *TargetBB;
+ uint32_t ExtraWeight;
+ };
+
+ typedef SmallVector<BitTestCase, 3> BitTestInfo;
+
+ struct BitTestBlock {
+ BitTestBlock(APInt F, APInt R, const Value* SV,
+ unsigned Rg, MVT RgVT, bool E,
+ MachineBasicBlock* P, MachineBasicBlock* D,
+ const BitTestInfo& C):
+ First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
+ Parent(P), Default(D), Cases(C) { }
+ APInt First;
+ APInt Range;
+ const Value *SValue;
+ unsigned Reg;
+ MVT RegVT;
+ bool Emitted;
+ MachineBasicBlock *Parent;
+ MachineBasicBlock *Default;
+ BitTestInfo Cases;
+ };
+
+ /// A class which encapsulates all of the information needed to generate a
+ /// stack protector check and signals to isel via its state being initialized
+ /// that a stack protector needs to be generated.
+ ///
+ /// *NOTE* The following is a high level documentation of SelectionDAG Stack
+ /// Protector Generation. The reason that it is placed here is for a lack of
+ /// other good places to stick it.
+ ///
+ /// High Level Overview of SelectionDAG Stack Protector Generation:
+ ///
+ /// Previously, generation of stack protectors was done exclusively in the
+ /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
+ /// splitting basic blocks at the IR level to create the success/failure basic
+ /// blocks in the tail of the basic block in question. As a result of this,
+ /// calls that would have qualified for the sibling call optimization were no
+ /// longer eligible for optimization since said calls were no longer right in
+ /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
+ /// instruction).
+ ///
+ /// Then it was noticed that since the sibling call optimization causes the
+ /// callee to reuse the caller's stack, if we could delay the generation of
+ /// the stack protector check until later in CodeGen after the sibling call
+ /// decision was made, we get both the tail call optimization and the stack
+ /// protector check!
+ ///
+ /// A few goals in solving this problem were:
+ ///
+ /// 1. Preserve the architecture independence of stack protector generation.
+ ///
+ /// 2. Preserve the normal IR level stack protector check for platforms like
+ /// OpenBSD for which we support platform specific stack protector
+ /// generation.
+ ///
+ /// The main problem that guided the present solution is that one can not
+ /// solve this problem in an architecture independent manner at the IR level
+ /// only. This is because:
+ ///
+ /// 1. The decision on whether or not to perform a sibling call on certain
+ /// platforms (for instance i386) requires lower level information
+ /// related to available registers that can not be known at the IR level.
+ ///
+ /// 2. Even if the previous point were not true, the decision on whether to
+ /// perform a tail call is done in LowerCallTo in SelectionDAG which
+ /// occurs after the Stack Protector Pass. As a result, one would need to
+ /// put the relevant callinst into the stack protector check success
+ /// basic block (where the return inst is placed) and then move it back
+ /// later at SelectionDAG/MI time before the stack protector check if the
+ /// tail call optimization failed. The MI level option was nixed
+ /// immediately since it would require platform specific pattern
+ /// matching. The SelectionDAG level option was nixed because
+ /// SelectionDAG only processes one IR level basic block at a time
+ /// implying one could not create a DAG Combine to move the callinst.
+ ///
+ /// To get around this problem a few things were realized:
+ ///
+ /// 1. While one can not handle multiple IR level basic blocks at the
+ /// SelectionDAG Level, one can generate multiple machine basic blocks
+ /// for one IR level basic block. This is how we handle bit tests and
+ /// switches.
+ ///
+ /// 2. At the MI level, tail calls are represented via a special return
+ /// MIInst called "tcreturn". Thus if we know the basic block in which we
+ /// wish to insert the stack protector check, we get the correct behavior
+ /// by always inserting the stack protector check right before the return
+ /// statement. This is a "magical transformation" since no matter where
+ /// the stack protector check intrinsic is, we always insert the stack
+ /// protector check code at the end of the BB.
+ ///
+ /// Given the aforementioned constraints, the following solution was devised:
+ ///
+ /// 1. On platforms that do not support SelectionDAG stack protector check
+ /// generation, allow for the normal IR level stack protector check
+ /// generation to continue.
+ ///
+ /// 2. On platforms that do support SelectionDAG stack protector check
+ /// generation:
+ ///
+ /// a. Use the IR level stack protector pass to decide if a stack
+ /// protector is required/which BB we insert the stack protector check
+ /// in by reusing the logic already therein. If we wish to generate a
+ /// stack protector check in a basic block, we place a special IR
+ /// intrinsic called llvm.stackprotectorcheck right before the BB's
+ /// returninst or if there is a callinst that could potentially be
+ /// sibling call optimized, before the call inst.
+ ///
+ /// b. Then when a BB with said intrinsic is processed, we codegen the BB
+ /// normally via SelectBasicBlock. In said process, when we visit the
+ /// stack protector check, we do not actually emit anything into the
+ /// BB. Instead, we just initialize the stack protector descriptor
+ /// class (which involves stashing information/creating the success
+ /// mbbb and the failure mbb if we have not created one for this
+ /// function yet) and export the guard variable that we are going to
+ /// compare.
+ ///
+ /// c. After we finish selecting the basic block, in FinishBasicBlock if
+ /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is
+ /// initialized, we first find a splice point in the parent basic block
+ /// before the terminator and then splice the terminator of said basic
+ /// block into the success basic block. Then we code-gen a new tail for
+ /// the parent basic block consisting of the two loads, the comparison,
+ /// and finally two branches to the success/failure basic blocks. We
+ /// conclude by code-gening the failure basic block if we have not
+ /// code-gened it already (all stack protector checks we generate in
+ /// the same function, use the same failure basic block).
+ class StackProtectorDescriptor {
+ public:
+ StackProtectorDescriptor() : ParentMBB(0), SuccessMBB(0), FailureMBB(0),
+ Guard(0) { }
+ ~StackProtectorDescriptor() { }
+
+ /// Returns true if all fields of the stack protector descriptor are
+ /// initialized implying that we should/are ready to emit a stack protector.
+ bool shouldEmitStackProtector() const {
+ return ParentMBB && SuccessMBB && FailureMBB && Guard;
+ }
+
+ /// Initialize the stack protector descriptor structure for a new basic
+ /// block.
+ void initialize(const BasicBlock *BB,
+ MachineBasicBlock *MBB,
+ const CallInst &StackProtCheckCall) {
+ // Make sure we are not initialized yet.
+ assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
+ "already initialized!");
+ ParentMBB = MBB;
+ SuccessMBB = AddSuccessorMBB(BB, MBB);
+ FailureMBB = AddSuccessorMBB(BB, MBB, FailureMBB);
+ if (!Guard)
+ Guard = StackProtCheckCall.getArgOperand(0);
+ }
+
+ /// Reset state that changes when we handle different basic blocks.
+ ///
+ /// This currently includes:
+ ///
+ /// 1. The specific basic block we are generating a
+ /// stack protector for (ParentMBB).
+ ///
+ /// 2. The successor machine basic block that will contain the tail of
+ /// parent mbb after we create the stack protector check (SuccessMBB). This
+ /// BB is visited only on stack protector check success.
+ void resetPerBBState() {
+ ParentMBB = 0;
+ SuccessMBB = 0;
+ }
+
+ /// Reset state that only changes when we switch functions.
+ ///
+ /// This currently includes:
+ ///
+ /// 1. FailureMBB since we reuse the failure code path for all stack
+ /// protector checks created in an individual function.
+ ///
+ /// 2.The guard variable since the guard variable we are checking against is
+ /// always the same.
+ void resetPerFunctionState() {
+ FailureMBB = 0;
+ Guard = 0;
+ }
+
+ MachineBasicBlock *getParentMBB() { return ParentMBB; }
+ MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
+ MachineBasicBlock *getFailureMBB() { return FailureMBB; }
+ const Value *getGuard() { return Guard; }
+
+ private:
+ /// The basic block for which we are generating the stack protector.
+ ///
+ /// As a result of stack protector generation, we will splice the
+ /// terminators of this basic block into the successor mbb SuccessMBB and
+ /// replace it with a compare/branch to the successor mbbs
+ /// SuccessMBB/FailureMBB depending on whether or not the stack protector
+ /// was violated.
+ MachineBasicBlock *ParentMBB;
+
+ /// A basic block visited on stack protector check success that contains the
+ /// terminators of ParentMBB.
+ MachineBasicBlock *SuccessMBB;
+
+ /// This basic block visited on stack protector check failure that will
+ /// contain a call to __stack_chk_fail().
+ MachineBasicBlock *FailureMBB;
+
+ /// The guard variable which we will compare against the stored value in the
+ /// stack protector stack slot.
+ const Value *Guard;
+
+ /// Add a successor machine basic block to ParentMBB. If the successor mbb
+ /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
+ /// block will be created.
+ MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
+ MachineBasicBlock *ParentMBB,
+ MachineBasicBlock *SuccMBB = 0);
+ };
+
+private:
+ const TargetMachine &TM;
+public:
+ SelectionDAG &DAG;
+ const DataLayout *TD;
+ AliasAnalysis *AA;
+ const TargetLibraryInfo *LibInfo;
+
+ /// SwitchCases - Vector of CaseBlock structures used to communicate
+ /// SwitchInst code generation information.
+ std::vector<CaseBlock> SwitchCases;
+ /// JTCases - Vector of JumpTable structures used to communicate
+ /// SwitchInst code generation information.
+ std::vector<JumpTableBlock> JTCases;
+ /// BitTestCases - Vector of BitTestBlock structures used to communicate
+ /// SwitchInst code generation information.
+ std::vector<BitTestBlock> BitTestCases;
+ /// A StackProtectorDescriptor structure used to communicate stack protector
+ /// information in between SelectBasicBlock and FinishBasicBlock.
+ StackProtectorDescriptor SPDescriptor;
+
+ // Emit PHI-node-operand constants only once even if used by multiple
+ // PHI nodes.
+ DenseMap<const Constant *, unsigned> ConstantsOut;
+
+ /// FuncInfo - Information about the function as a whole.
+ ///
+ FunctionLoweringInfo &FuncInfo;
+
+ /// OptLevel - What optimization level we're generating code for.
+ ///
+ CodeGenOpt::Level OptLevel;
+
+ /// GFI - Garbage collection metadata for the function.
+ GCFunctionInfo *GFI;
+
+ /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
+ DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
+
+ /// HasTailCall - This is set to true if a call in the current
+ /// block has been translated as a tail call. In this case,
+ /// no subsequent DAG nodes should be created.
+ ///
+ bool HasTailCall;
+
+ LLVMContext *Context;
+
+ SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
+ CodeGenOpt::Level ol)
+ : CurInst(NULL), SDNodeOrder(0), TM(dag.getTarget()),
+ DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
+ HasTailCall(false) {
+ }
+
+ void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
+ const TargetLibraryInfo *li);
+
+ /// clear - Clear out the current SelectionDAG and the associated
+ /// state and prepare this SelectionDAGBuilder object to be used
+ /// for a new block. This doesn't clear out information about
+ /// additional blocks that are needed to complete switch lowering
+ /// or PHI node updating; that information is cleared out as it is
+ /// consumed.
+ void clear();
+
+ /// clearDanglingDebugInfo - Clear the dangling debug information
+ /// map. This function is separated from the clear so that debug
+ /// information that is dangling in a basic block can be properly
+ /// resolved in a different basic block. This allows the
+ /// SelectionDAG to resolve dangling debug information attached
+ /// to PHI nodes.
+ void clearDanglingDebugInfo();
+
+ /// getRoot - Return the current virtual root of the Selection DAG,
+ /// flushing any PendingLoad items. This must be done before emitting
+ /// a store or any other node that may need to be ordered after any
+ /// prior load instructions.
+ ///
+ SDValue getRoot();
+
+ /// getControlRoot - Similar to getRoot, but instead of flushing all the
+ /// PendingLoad items, flush all the PendingExports items. It is necessary
+ /// to do this before emitting a terminator instruction.
+ ///
+ SDValue getControlRoot();
+
+ SDLoc getCurSDLoc() const {
+ return SDLoc(CurInst, SDNodeOrder);
+ }
+
+ DebugLoc getCurDebugLoc() const {
+ return CurInst ? CurInst->getDebugLoc() : DebugLoc();
+ }
+
+ unsigned getSDNodeOrder() const { return SDNodeOrder; }
+
+ void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
+
+ void visit(const Instruction &I);
+
+ void visit(unsigned Opcode, const User &I);
+
+ // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
+ // generate the debug data structures now that we've seen its definition.
+ void resolveDanglingDebugInfo(const Value *V, SDValue Val);
+ SDValue getValue(const Value *V);
+ SDValue getNonRegisterValue(const Value *V);
+ SDValue getValueImpl(const Value *V);
+
+ void setValue(const Value *V, SDValue NewN) {
+ SDValue &N = NodeMap[V];
+ assert(N.getNode() == 0 && "Already set a value for this node!");
+ N = NewN;
+ }
+
+ void setUnusedArgValue(const Value *V, SDValue NewN) {
+ SDValue &N = UnusedArgNodeMap[V];
+ assert(N.getNode() == 0 && "Already set a value for this node!");
+ N = NewN;
+ }
+
+ void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
+ MachineBasicBlock *SwitchBB, unsigned Opc);
+ void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ MachineBasicBlock *CurBB,
+ MachineBasicBlock *SwitchBB);
+ bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
+ bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
+ void CopyToExportRegsIfNeeded(const Value *V);
+ void ExportFromCurrentBlock(const Value *V);
+ void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
+ MachineBasicBlock *LandingPad = NULL);
+
+ std::pair<SDValue, SDValue> LowerCallOperands(const CallInst &CI,
+ unsigned ArgIdx,
+ unsigned NumArgs,
+ SDValue Callee,
+ bool useVoidTy = false);
+
+ /// UpdateSplitBlock - When an MBB was split during scheduling, update the
+ /// references that ned to refer to the last resulting block.
+ void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
+
+private:
+ // Terminator instructions.
+ void visitRet(const ReturnInst &I);
+ void visitBr(const BranchInst &I);
+ void visitSwitch(const SwitchInst &I);
+ void visitIndirectBr(const IndirectBrInst &I);
+ void visitUnreachable(const UnreachableInst &I) { /* noop */ }
+
+ // Helpers for visitSwitch
+ bool handleSmallSwitchRange(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock* Default,
+ MachineBasicBlock *SwitchBB);
+ bool handleJTSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock* Default,
+ MachineBasicBlock *SwitchBB);
+ bool handleBTSplitSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock* Default,
+ MachineBasicBlock *SwitchBB);
+ bool handleBitTestsSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock* Default,
+ MachineBasicBlock *SwitchBB);
+
+ uint32_t getEdgeWeight(const MachineBasicBlock *Src,
+ const MachineBasicBlock *Dst) const;
+ void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
+ uint32_t Weight = 0);
+public:
+ void visitSwitchCase(CaseBlock &CB,
+ MachineBasicBlock *SwitchBB);
+ void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
+ MachineBasicBlock *ParentBB);
+ void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
+ void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
+ void visitBitTestCase(BitTestBlock &BB,
+ MachineBasicBlock* NextMBB,
+ uint32_t BranchWeightToNext,
+ unsigned Reg,
+ BitTestCase &B,
+ MachineBasicBlock *SwitchBB);
+ void visitJumpTable(JumpTable &JT);
+ void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
+ MachineBasicBlock *SwitchBB);
+
+private:
+ // These all get lowered before this pass.
+ void visitInvoke(const InvokeInst &I);
+ void visitResume(const ResumeInst &I);
+
+ void visitBinary(const User &I, unsigned OpCode);
+ void visitShift(const User &I, unsigned Opcode);
+ void visitAdd(const User &I) { visitBinary(I, ISD::ADD); }
+ void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
+ void visitSub(const User &I) { visitBinary(I, ISD::SUB); }
+ void visitFSub(const User &I);
+ void visitMul(const User &I) { visitBinary(I, ISD::MUL); }
+ void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
+ void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
+ void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
+ void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
+ void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
+ void visitSDiv(const User &I);
+ void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
+ void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
+ void visitOr (const User &I) { visitBinary(I, ISD::OR); }
+ void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
+ void visitShl (const User &I) { visitShift(I, ISD::SHL); }
+ void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
+ void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
+ void visitICmp(const User &I);
+ void visitFCmp(const User &I);
+ // Visit the conversion instructions
+ void visitTrunc(const User &I);
+ void visitZExt(const User &I);
+ void visitSExt(const User &I);
+ void visitFPTrunc(const User &I);
+ void visitFPExt(const User &I);
+ void visitFPToUI(const User &I);
+ void visitFPToSI(const User &I);
+ void visitUIToFP(const User &I);
+ void visitSIToFP(const User &I);
+ void visitPtrToInt(const User &I);
+ void visitIntToPtr(const User &I);
+ void visitBitCast(const User &I);
+ void visitAddrSpaceCast(const User &I);
+
+ void visitExtractElement(const User &I);
+ void visitInsertElement(const User &I);
+ void visitShuffleVector(const User &I);
+
+ void visitExtractValue(const ExtractValueInst &I);
+ void visitInsertValue(const InsertValueInst &I);
+ void visitLandingPad(const LandingPadInst &I);
+
+ void visitGetElementPtr(const User &I);
+ void visitSelect(const User &I);
+
+ void visitAlloca(const AllocaInst &I);
+ void visitLoad(const LoadInst &I);
+ void visitStore(const StoreInst &I);
+ void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
+ void visitAtomicRMW(const AtomicRMWInst &I);
+ void visitFence(const FenceInst &I);
+ void visitPHI(const PHINode &I);
+ void visitCall(const CallInst &I);
+ bool visitMemCmpCall(const CallInst &I);
+ bool visitMemChrCall(const CallInst &I);
+ bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
+ bool visitStrCmpCall(const CallInst &I);
+ bool visitStrLenCall(const CallInst &I);
+ bool visitStrNLenCall(const CallInst &I);
+ bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
+ void visitAtomicLoad(const LoadInst &I);
+ void visitAtomicStore(const StoreInst &I);
+
+ void visitInlineAsm(ImmutableCallSite CS);
+ const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
+ void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
+
+ void visitVAStart(const CallInst &I);
+ void visitVAArg(const VAArgInst &I);
+ void visitVAEnd(const CallInst &I);
+ void visitVACopy(const CallInst &I);
+ void visitStackmap(const CallInst &I);
+ void visitPatchpoint(const CallInst &I);
+
+ void visitUserOp1(const Instruction &I) {
+ llvm_unreachable("UserOp1 should not exist at instruction selection time!");
+ }
+ void visitUserOp2(const Instruction &I) {
+ llvm_unreachable("UserOp2 should not exist at instruction selection time!");
+ }
+
+ void processIntegerCallValue(const Instruction &I,
+ SDValue Value, bool IsSigned);
+
+ void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
+
+ /// EmitFuncArgumentDbgValue - If V is an function argument then create
+ /// corresponding DBG_VALUE machine instruction for it now. At the end of
+ /// instruction selection, they will be inserted to the entry BB.
+ bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
+ int64_t Offset, const SDValue &N);
+};
+
+} // end namespace llvm
+
+#endif