diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp | 7526 |
1 files changed, 7526 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp new file mode 100644 index 000000000000..2b2713d248e5 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp @@ -0,0 +1,7526 @@ +//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements routines for translating from LLVM IR into SelectionDAG IR. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "isel" +#include "SelectionDAGBuilder.h" +#include "SDNodeDbgValue.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/GCMetadata.h" +#include "llvm/CodeGen/GCStrategy.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/DebugInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetFrameLowering.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetLibraryInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Target/TargetSelectionDAGInfo.h" +#include <algorithm> +using namespace llvm; + +/// LimitFloatPrecision - Generate low-precision inline sequences for +/// some float libcalls (6, 8 or 12 bits). +static unsigned LimitFloatPrecision; + +static cl::opt<unsigned, true> +LimitFPPrecision("limit-float-precision", + cl::desc("Generate low-precision inline sequences " + "for some float libcalls"), + cl::location(LimitFloatPrecision), + cl::init(0)); + +// Limit the width of DAG chains. This is important in general to prevent +// prevent DAG-based analysis from blowing up. For example, alias analysis and +// load clustering may not complete in reasonable time. It is difficult to +// recognize and avoid this situation within each individual analysis, and +// future analyses are likely to have the same behavior. Limiting DAG width is +// the safe approach, and will be especially important with global DAGs. +// +// MaxParallelChains default is arbitrarily high to avoid affecting +// optimization, but could be lowered to improve compile time. Any ld-ld-st-st +// sequence over this should have been converted to llvm.memcpy by the +// frontend. It easy to induce this behavior with .ll code such as: +// %buffer = alloca [4096 x i8] +// %data = load [4096 x i8]* %argPtr +// store [4096 x i8] %data, [4096 x i8]* %buffer +static const unsigned MaxParallelChains = 64; + +static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, + const SDValue *Parts, unsigned NumParts, + MVT PartVT, EVT ValueVT, const Value *V); + +/// getCopyFromParts - Create a value that contains the specified legal parts +/// combined into the value they represent. If the parts combine to a type +/// larger then ValueVT then AssertOp can be used to specify whether the extra +/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT +/// (ISD::AssertSext). +static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, + const SDValue *Parts, + unsigned NumParts, MVT PartVT, EVT ValueVT, + const Value *V, + ISD::NodeType AssertOp = ISD::DELETED_NODE) { + if (ValueVT.isVector()) + return getCopyFromPartsVector(DAG, DL, Parts, NumParts, + PartVT, ValueVT, V); + + assert(NumParts > 0 && "No parts to assemble!"); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Val = Parts[0]; + + if (NumParts > 1) { + // Assemble the value from multiple parts. + if (ValueVT.isInteger()) { + unsigned PartBits = PartVT.getSizeInBits(); + unsigned ValueBits = ValueVT.getSizeInBits(); + + // Assemble the power of 2 part. + unsigned RoundParts = NumParts & (NumParts - 1) ? + 1 << Log2_32(NumParts) : NumParts; + unsigned RoundBits = PartBits * RoundParts; + EVT RoundVT = RoundBits == ValueBits ? + ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); + SDValue Lo, Hi; + + EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); + + if (RoundParts > 2) { + Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, + PartVT, HalfVT, V); + Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, + RoundParts / 2, PartVT, HalfVT, V); + } else { + Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); + Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); + } + + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + + Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); + + if (RoundParts < NumParts) { + // Assemble the trailing non-power-of-2 part. + unsigned OddParts = NumParts - RoundParts; + EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); + Hi = getCopyFromParts(DAG, DL, + Parts + RoundParts, OddParts, PartVT, OddVT, V); + + // Combine the round and odd parts. + Lo = Val; + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); + Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, + DAG.getConstant(Lo.getValueType().getSizeInBits(), + TLI.getPointerTy())); + Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); + Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); + } + } else if (PartVT.isFloatingPoint()) { + // FP split into multiple FP parts (for ppcf128) + assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && + "Unexpected split"); + SDValue Lo, Hi; + Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); + Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); + } else { + // FP split into integer parts (soft fp) + assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && + !PartVT.isVector() && "Unexpected split"); + EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); + Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); + } + } + + // There is now one part, held in Val. Correct it to match ValueVT. + EVT PartEVT = Val.getValueType(); + + if (PartEVT == ValueVT) + return Val; + + if (PartEVT.isInteger() && ValueVT.isInteger()) { + if (ValueVT.bitsLT(PartEVT)) { + // For a truncate, see if we have any information to + // indicate whether the truncated bits will always be + // zero or sign-extension. + if (AssertOp != ISD::DELETED_NODE) + Val = DAG.getNode(AssertOp, DL, PartEVT, Val, + DAG.getValueType(ValueVT)); + return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); + } + return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); + } + + if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { + // FP_ROUND's are always exact here. + if (ValueVT.bitsLT(Val.getValueType())) + return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, + DAG.getTargetConstant(1, TLI.getPointerTy())); + + return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); + } + + if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) + return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); + + llvm_unreachable("Unknown mismatch!"); +} + +/// getCopyFromPartsVector - Create a value that contains the specified legal +/// parts combined into the value they represent. If the parts combine to a +/// type larger then ValueVT then AssertOp can be used to specify whether the +/// extra bits are known to be zero (ISD::AssertZext) or sign extended from +/// ValueVT (ISD::AssertSext). +static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, + const SDValue *Parts, unsigned NumParts, + MVT PartVT, EVT ValueVT, const Value *V) { + assert(ValueVT.isVector() && "Not a vector value"); + assert(NumParts > 0 && "No parts to assemble!"); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Val = Parts[0]; + + // Handle a multi-element vector. + if (NumParts > 1) { + EVT IntermediateVT; + MVT RegisterVT; + unsigned NumIntermediates; + unsigned NumRegs = + TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, + NumIntermediates, RegisterVT); + assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); + NumParts = NumRegs; // Silence a compiler warning. + assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); + assert(RegisterVT == Parts[0].getSimpleValueType() && + "Part type doesn't match part!"); + + // Assemble the parts into intermediate operands. + SmallVector<SDValue, 8> Ops(NumIntermediates); + if (NumIntermediates == NumParts) { + // If the register was not expanded, truncate or copy the value, + // as appropriate. + for (unsigned i = 0; i != NumParts; ++i) + Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, + PartVT, IntermediateVT, V); + } else if (NumParts > 0) { + // If the intermediate type was expanded, build the intermediate + // operands from the parts. + assert(NumParts % NumIntermediates == 0 && + "Must expand into a divisible number of parts!"); + unsigned Factor = NumParts / NumIntermediates; + for (unsigned i = 0; i != NumIntermediates; ++i) + Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, + PartVT, IntermediateVT, V); + } + + // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the + // intermediate operands. + Val = DAG.getNode(IntermediateVT.isVector() ? + ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, + ValueVT, &Ops[0], NumIntermediates); + } + + // There is now one part, held in Val. Correct it to match ValueVT. + EVT PartEVT = Val.getValueType(); + + if (PartEVT == ValueVT) + return Val; + + if (PartEVT.isVector()) { + // If the element type of the source/dest vectors are the same, but the + // parts vector has more elements than the value vector, then we have a + // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the + // elements we want. + if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { + assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && + "Cannot narrow, it would be a lossy transformation"); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, + DAG.getConstant(0, TLI.getVectorIdxTy())); + } + + // Vector/Vector bitcast. + if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) + return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); + + assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && + "Cannot handle this kind of promotion"); + // Promoted vector extract + bool Smaller = ValueVT.bitsLE(PartEVT); + return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), + DL, ValueVT, Val); + + } + + // Trivial bitcast if the types are the same size and the destination + // vector type is legal. + if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && + TLI.isTypeLegal(ValueVT)) + return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); + + // Handle cases such as i8 -> <1 x i1> + if (ValueVT.getVectorNumElements() != 1) { + LLVMContext &Ctx = *DAG.getContext(); + Twine ErrMsg("non-trivial scalar-to-vector conversion"); + if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { + if (const CallInst *CI = dyn_cast<CallInst>(I)) + if (isa<InlineAsm>(CI->getCalledValue())) + ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; + Ctx.emitError(I, ErrMsg); + } else { + Ctx.emitError(ErrMsg); + } + return DAG.getUNDEF(ValueVT); + } + + if (ValueVT.getVectorNumElements() == 1 && + ValueVT.getVectorElementType() != PartEVT) { + bool Smaller = ValueVT.bitsLE(PartEVT); + Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), + DL, ValueVT.getScalarType(), Val); + } + + return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); +} + +static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, + SDValue Val, SDValue *Parts, unsigned NumParts, + MVT PartVT, const Value *V); + +/// getCopyToParts - Create a series of nodes that contain the specified value +/// split into legal parts. If the parts contain more bits than Val, then, for +/// integers, ExtendKind can be used to specify how to generate the extra bits. +static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, + SDValue Val, SDValue *Parts, unsigned NumParts, + MVT PartVT, const Value *V, + ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { + EVT ValueVT = Val.getValueType(); + + // Handle the vector case separately. + if (ValueVT.isVector()) + return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned PartBits = PartVT.getSizeInBits(); + unsigned OrigNumParts = NumParts; + assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); + + if (NumParts == 0) + return; + + assert(!ValueVT.isVector() && "Vector case handled elsewhere"); + EVT PartEVT = PartVT; + if (PartEVT == ValueVT) { + assert(NumParts == 1 && "No-op copy with multiple parts!"); + Parts[0] = Val; + return; + } + + if (NumParts * PartBits > ValueVT.getSizeInBits()) { + // If the parts cover more bits than the value has, promote the value. + if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { + assert(NumParts == 1 && "Do not know what to promote to!"); + Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); + } else { + assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && + ValueVT.isInteger() && + "Unknown mismatch!"); + ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); + if (PartVT == MVT::x86mmx) + Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); + } + } else if (PartBits == ValueVT.getSizeInBits()) { + // Different types of the same size. + assert(NumParts == 1 && PartEVT != ValueVT); + Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); + } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { + // If the parts cover less bits than value has, truncate the value. + assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && + ValueVT.isInteger() && + "Unknown mismatch!"); + ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); + if (PartVT == MVT::x86mmx) + Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); + } + + // The value may have changed - recompute ValueVT. + ValueVT = Val.getValueType(); + assert(NumParts * PartBits == ValueVT.getSizeInBits() && + "Failed to tile the value with PartVT!"); + + if (NumParts == 1) { + if (PartEVT != ValueVT) { + LLVMContext &Ctx = *DAG.getContext(); + Twine ErrMsg("scalar-to-vector conversion failed"); + if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { + if (const CallInst *CI = dyn_cast<CallInst>(I)) + if (isa<InlineAsm>(CI->getCalledValue())) + ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; + Ctx.emitError(I, ErrMsg); + } else { + Ctx.emitError(ErrMsg); + } + } + + Parts[0] = Val; + return; + } + + // Expand the value into multiple parts. + if (NumParts & (NumParts - 1)) { + // The number of parts is not a power of 2. Split off and copy the tail. + assert(PartVT.isInteger() && ValueVT.isInteger() && + "Do not know what to expand to!"); + unsigned RoundParts = 1 << Log2_32(NumParts); + unsigned RoundBits = RoundParts * PartBits; + unsigned OddParts = NumParts - RoundParts; + SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, + DAG.getIntPtrConstant(RoundBits)); + getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); + + if (TLI.isBigEndian()) + // The odd parts were reversed by getCopyToParts - unreverse them. + std::reverse(Parts + RoundParts, Parts + NumParts); + + NumParts = RoundParts; + ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); + } + + // The number of parts is a power of 2. Repeatedly bisect the value using + // EXTRACT_ELEMENT. + Parts[0] = DAG.getNode(ISD::BITCAST, DL, + EVT::getIntegerVT(*DAG.getContext(), + ValueVT.getSizeInBits()), + Val); + + for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { + for (unsigned i = 0; i < NumParts; i += StepSize) { + unsigned ThisBits = StepSize * PartBits / 2; + EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); + SDValue &Part0 = Parts[i]; + SDValue &Part1 = Parts[i+StepSize/2]; + + Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, + ThisVT, Part0, DAG.getIntPtrConstant(1)); + Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, + ThisVT, Part0, DAG.getIntPtrConstant(0)); + + if (ThisBits == PartBits && ThisVT != PartVT) { + Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); + Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); + } + } + } + + if (TLI.isBigEndian()) + std::reverse(Parts, Parts + OrigNumParts); +} + + +/// getCopyToPartsVector - Create a series of nodes that contain the specified +/// value split into legal parts. +static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, + SDValue Val, SDValue *Parts, unsigned NumParts, + MVT PartVT, const Value *V) { + EVT ValueVT = Val.getValueType(); + assert(ValueVT.isVector() && "Not a vector"); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + if (NumParts == 1) { + EVT PartEVT = PartVT; + if (PartEVT == ValueVT) { + // Nothing to do. + } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { + // Bitconvert vector->vector case. + Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); + } else if (PartVT.isVector() && + PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && + PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { + EVT ElementVT = PartVT.getVectorElementType(); + // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in + // undef elements. + SmallVector<SDValue, 16> Ops; + for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) + Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, + ElementVT, Val, DAG.getConstant(i, + TLI.getVectorIdxTy()))); + + for (unsigned i = ValueVT.getVectorNumElements(), + e = PartVT.getVectorNumElements(); i != e; ++i) + Ops.push_back(DAG.getUNDEF(ElementVT)); + + Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); + + // FIXME: Use CONCAT for 2x -> 4x. + + //SDValue UndefElts = DAG.getUNDEF(VectorTy); + //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); + } else if (PartVT.isVector() && + PartEVT.getVectorElementType().bitsGE( + ValueVT.getVectorElementType()) && + PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { + + // Promoted vector extract + bool Smaller = PartEVT.bitsLE(ValueVT); + Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), + DL, PartVT, Val); + } else{ + // Vector -> scalar conversion. + assert(ValueVT.getVectorNumElements() == 1 && + "Only trivial vector-to-scalar conversions should get here!"); + Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, + PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); + + bool Smaller = ValueVT.bitsLE(PartVT); + Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), + DL, PartVT, Val); + } + + Parts[0] = Val; + return; + } + + // Handle a multi-element vector. + EVT IntermediateVT; + MVT RegisterVT; + unsigned NumIntermediates; + unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, + IntermediateVT, + NumIntermediates, RegisterVT); + unsigned NumElements = ValueVT.getVectorNumElements(); + + assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); + NumParts = NumRegs; // Silence a compiler warning. + assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); + + // Split the vector into intermediate operands. + SmallVector<SDValue, 8> Ops(NumIntermediates); + for (unsigned i = 0; i != NumIntermediates; ++i) { + if (IntermediateVT.isVector()) + Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, + IntermediateVT, Val, + DAG.getConstant(i * (NumElements / NumIntermediates), + TLI.getVectorIdxTy())); + else + Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, + IntermediateVT, Val, + DAG.getConstant(i, TLI.getVectorIdxTy())); + } + + // Split the intermediate operands into legal parts. + if (NumParts == NumIntermediates) { + // If the register was not expanded, promote or copy the value, + // as appropriate. + for (unsigned i = 0; i != NumParts; ++i) + getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); + } else if (NumParts > 0) { + // If the intermediate type was expanded, split each the value into + // legal parts. + assert(NumParts % NumIntermediates == 0 && + "Must expand into a divisible number of parts!"); + unsigned Factor = NumParts / NumIntermediates; + for (unsigned i = 0; i != NumIntermediates; ++i) + getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); + } +} + +namespace { + /// RegsForValue - This struct represents the registers (physical or virtual) + /// that a particular set of values is assigned, and the type information + /// about the value. The most common situation is to represent one value at a + /// time, but struct or array values are handled element-wise as multiple + /// values. The splitting of aggregates is performed recursively, so that we + /// never have aggregate-typed registers. The values at this point do not + /// necessarily have legal types, so each value may require one or more + /// registers of some legal type. + /// + struct RegsForValue { + /// ValueVTs - The value types of the values, which may not be legal, and + /// may need be promoted or synthesized from one or more registers. + /// + SmallVector<EVT, 4> ValueVTs; + + /// RegVTs - The value types of the registers. This is the same size as + /// ValueVTs and it records, for each value, what the type of the assigned + /// register or registers are. (Individual values are never synthesized + /// from more than one type of register.) + /// + /// With virtual registers, the contents of RegVTs is redundant with TLI's + /// getRegisterType member function, however when with physical registers + /// it is necessary to have a separate record of the types. + /// + SmallVector<MVT, 4> RegVTs; + + /// Regs - This list holds the registers assigned to the values. + /// Each legal or promoted value requires one register, and each + /// expanded value requires multiple registers. + /// + SmallVector<unsigned, 4> Regs; + + RegsForValue() {} + + RegsForValue(const SmallVector<unsigned, 4> ®s, + MVT regvt, EVT valuevt) + : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} + + RegsForValue(LLVMContext &Context, const TargetLowering &tli, + unsigned Reg, Type *Ty) { + ComputeValueVTs(tli, Ty, ValueVTs); + + for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { + EVT ValueVT = ValueVTs[Value]; + unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); + MVT RegisterVT = tli.getRegisterType(Context, ValueVT); + for (unsigned i = 0; i != NumRegs; ++i) + Regs.push_back(Reg + i); + RegVTs.push_back(RegisterVT); + Reg += NumRegs; + } + } + + /// areValueTypesLegal - Return true if types of all the values are legal. + bool areValueTypesLegal(const TargetLowering &TLI) { + for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { + MVT RegisterVT = RegVTs[Value]; + if (!TLI.isTypeLegal(RegisterVT)) + return false; + } + return true; + } + + /// append - Add the specified values to this one. + void append(const RegsForValue &RHS) { + ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); + RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); + Regs.append(RHS.Regs.begin(), RHS.Regs.end()); + } + + /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from + /// this value and returns the result as a ValueVTs value. This uses + /// Chain/Flag as the input and updates them for the output Chain/Flag. + /// If the Flag pointer is NULL, no flag is used. + SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, + SDLoc dl, + SDValue &Chain, SDValue *Flag, + const Value *V = 0) const; + + /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the + /// specified value into the registers specified by this object. This uses + /// Chain/Flag as the input and updates them for the output Chain/Flag. + /// If the Flag pointer is NULL, no flag is used. + void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, + SDValue &Chain, SDValue *Flag, const Value *V) const; + + /// AddInlineAsmOperands - Add this value to the specified inlineasm node + /// operand list. This adds the code marker, matching input operand index + /// (if applicable), and includes the number of values added into it. + void AddInlineAsmOperands(unsigned Kind, + bool HasMatching, unsigned MatchingIdx, + SelectionDAG &DAG, + std::vector<SDValue> &Ops) const; + }; +} + +/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from +/// this value and returns the result as a ValueVT value. This uses +/// Chain/Flag as the input and updates them for the output Chain/Flag. +/// If the Flag pointer is NULL, no flag is used. +SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, + FunctionLoweringInfo &FuncInfo, + SDLoc dl, + SDValue &Chain, SDValue *Flag, + const Value *V) const { + // A Value with type {} or [0 x %t] needs no registers. + if (ValueVTs.empty()) + return SDValue(); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // Assemble the legal parts into the final values. + SmallVector<SDValue, 4> Values(ValueVTs.size()); + SmallVector<SDValue, 8> Parts; + for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { + // Copy the legal parts from the registers. + EVT ValueVT = ValueVTs[Value]; + unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); + MVT RegisterVT = RegVTs[Value]; + + Parts.resize(NumRegs); + for (unsigned i = 0; i != NumRegs; ++i) { + SDValue P; + if (Flag == 0) { + P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); + } else { + P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); + *Flag = P.getValue(2); + } + + Chain = P.getValue(1); + Parts[i] = P; + + // If the source register was virtual and if we know something about it, + // add an assert node. + if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || + !RegisterVT.isInteger() || RegisterVT.isVector()) + continue; + + const FunctionLoweringInfo::LiveOutInfo *LOI = + FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); + if (!LOI) + continue; + + unsigned RegSize = RegisterVT.getSizeInBits(); + unsigned NumSignBits = LOI->NumSignBits; + unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); + + if (NumZeroBits == RegSize) { + // The current value is a zero. + // Explicitly express that as it would be easier for + // optimizations to kick in. + Parts[i] = DAG.getConstant(0, RegisterVT); + continue; + } + + // FIXME: We capture more information than the dag can represent. For + // now, just use the tightest assertzext/assertsext possible. + bool isSExt = true; + EVT FromVT(MVT::Other); + if (NumSignBits == RegSize) + isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 + else if (NumZeroBits >= RegSize-1) + isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 + else if (NumSignBits > RegSize-8) + isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 + else if (NumZeroBits >= RegSize-8) + isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 + else if (NumSignBits > RegSize-16) + isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 + else if (NumZeroBits >= RegSize-16) + isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 + else if (NumSignBits > RegSize-32) + isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 + else if (NumZeroBits >= RegSize-32) + isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 + else + continue; + + // Add an assertion node. + assert(FromVT != MVT::Other); + Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, + RegisterVT, P, DAG.getValueType(FromVT)); + } + + Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), + NumRegs, RegisterVT, ValueVT, V); + Part += NumRegs; + Parts.clear(); + } + + return DAG.getNode(ISD::MERGE_VALUES, dl, + DAG.getVTList(&ValueVTs[0], ValueVTs.size()), + &Values[0], ValueVTs.size()); +} + +/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the +/// specified value into the registers specified by this object. This uses +/// Chain/Flag as the input and updates them for the output Chain/Flag. +/// If the Flag pointer is NULL, no flag is used. +void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, + SDValue &Chain, SDValue *Flag, + const Value *V) const { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // Get the list of the values's legal parts. + unsigned NumRegs = Regs.size(); + SmallVector<SDValue, 8> Parts(NumRegs); + for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { + EVT ValueVT = ValueVTs[Value]; + unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); + MVT RegisterVT = RegVTs[Value]; + ISD::NodeType ExtendKind = + TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; + + getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), + &Parts[Part], NumParts, RegisterVT, V, ExtendKind); + Part += NumParts; + } + + // Copy the parts into the registers. + SmallVector<SDValue, 8> Chains(NumRegs); + for (unsigned i = 0; i != NumRegs; ++i) { + SDValue Part; + if (Flag == 0) { + Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); + } else { + Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); + *Flag = Part.getValue(1); + } + + Chains[i] = Part.getValue(0); + } + + if (NumRegs == 1 || Flag) + // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is + // flagged to it. That is the CopyToReg nodes and the user are considered + // a single scheduling unit. If we create a TokenFactor and return it as + // chain, then the TokenFactor is both a predecessor (operand) of the + // user as well as a successor (the TF operands are flagged to the user). + // c1, f1 = CopyToReg + // c2, f2 = CopyToReg + // c3 = TokenFactor c1, c2 + // ... + // = op c3, ..., f2 + Chain = Chains[NumRegs-1]; + else + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); +} + +/// AddInlineAsmOperands - Add this value to the specified inlineasm node +/// operand list. This adds the code marker and includes the number of +/// values added into it. +void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, + unsigned MatchingIdx, + SelectionDAG &DAG, + std::vector<SDValue> &Ops) const { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); + if (HasMatching) + Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); + else if (!Regs.empty() && + TargetRegisterInfo::isVirtualRegister(Regs.front())) { + // Put the register class of the virtual registers in the flag word. That + // way, later passes can recompute register class constraints for inline + // assembly as well as normal instructions. + // Don't do this for tied operands that can use the regclass information + // from the def. + const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); + const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); + Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); + } + + SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); + Ops.push_back(Res); + + for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { + unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); + MVT RegisterVT = RegVTs[Value]; + for (unsigned i = 0; i != NumRegs; ++i) { + assert(Reg < Regs.size() && "Mismatch in # registers expected"); + Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); + } + } +} + +void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, + const TargetLibraryInfo *li) { + AA = &aa; + GFI = gfi; + LibInfo = li; + TD = DAG.getTarget().getDataLayout(); + Context = DAG.getContext(); + LPadToCallSiteMap.clear(); +} + +/// clear - Clear out the current SelectionDAG and the associated +/// state and prepare this SelectionDAGBuilder object to be used +/// for a new block. This doesn't clear out information about +/// additional blocks that are needed to complete switch lowering +/// or PHI node updating; that information is cleared out as it is +/// consumed. +void SelectionDAGBuilder::clear() { + NodeMap.clear(); + UnusedArgNodeMap.clear(); + PendingLoads.clear(); + PendingExports.clear(); + CurInst = NULL; + HasTailCall = false; +} + +/// clearDanglingDebugInfo - Clear the dangling debug information +/// map. This function is separated from the clear so that debug +/// information that is dangling in a basic block can be properly +/// resolved in a different basic block. This allows the +/// SelectionDAG to resolve dangling debug information attached +/// to PHI nodes. +void SelectionDAGBuilder::clearDanglingDebugInfo() { + DanglingDebugInfoMap.clear(); +} + +/// getRoot - Return the current virtual root of the Selection DAG, +/// flushing any PendingLoad items. This must be done before emitting +/// a store or any other node that may need to be ordered after any +/// prior load instructions. +/// +SDValue SelectionDAGBuilder::getRoot() { + if (PendingLoads.empty()) + return DAG.getRoot(); + + if (PendingLoads.size() == 1) { + SDValue Root = PendingLoads[0]; + DAG.setRoot(Root); + PendingLoads.clear(); + return Root; + } + + // Otherwise, we have to make a token factor node. + SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, + &PendingLoads[0], PendingLoads.size()); + PendingLoads.clear(); + DAG.setRoot(Root); + return Root; +} + +/// getControlRoot - Similar to getRoot, but instead of flushing all the +/// PendingLoad items, flush all the PendingExports items. It is necessary +/// to do this before emitting a terminator instruction. +/// +SDValue SelectionDAGBuilder::getControlRoot() { + SDValue Root = DAG.getRoot(); + + if (PendingExports.empty()) + return Root; + + // Turn all of the CopyToReg chains into one factored node. + if (Root.getOpcode() != ISD::EntryToken) { + unsigned i = 0, e = PendingExports.size(); + for (; i != e; ++i) { + assert(PendingExports[i].getNode()->getNumOperands() > 1); + if (PendingExports[i].getNode()->getOperand(0) == Root) + break; // Don't add the root if we already indirectly depend on it. + } + + if (i == e) + PendingExports.push_back(Root); + } + + Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, + &PendingExports[0], + PendingExports.size()); + PendingExports.clear(); + DAG.setRoot(Root); + return Root; +} + +void SelectionDAGBuilder::visit(const Instruction &I) { + // Set up outgoing PHI node register values before emitting the terminator. + if (isa<TerminatorInst>(&I)) + HandlePHINodesInSuccessorBlocks(I.getParent()); + + ++SDNodeOrder; + + CurInst = &I; + + visit(I.getOpcode(), I); + + if (!isa<TerminatorInst>(&I) && !HasTailCall) + CopyToExportRegsIfNeeded(&I); + + CurInst = NULL; +} + +void SelectionDAGBuilder::visitPHI(const PHINode &) { + llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); +} + +void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { + // Note: this doesn't use InstVisitor, because it has to work with + // ConstantExpr's in addition to instructions. + switch (Opcode) { + default: llvm_unreachable("Unknown instruction type encountered!"); + // Build the switch statement using the Instruction.def file. +#define HANDLE_INST(NUM, OPCODE, CLASS) \ + case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; +#include "llvm/IR/Instruction.def" + } +} + +// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, +// generate the debug data structures now that we've seen its definition. +void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, + SDValue Val) { + DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; + if (DDI.getDI()) { + const DbgValueInst *DI = DDI.getDI(); + DebugLoc dl = DDI.getdl(); + unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); + MDNode *Variable = DI->getVariable(); + uint64_t Offset = DI->getOffset(); + SDDbgValue *SDV; + if (Val.getNode()) { + if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { + SDV = DAG.getDbgValue(Variable, Val.getNode(), + Val.getResNo(), Offset, dl, DbgSDNodeOrder); + DAG.AddDbgValue(SDV, Val.getNode(), false); + } + } else + DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); + DanglingDebugInfoMap[V] = DanglingDebugInfo(); + } +} + +/// getValue - Return an SDValue for the given Value. +SDValue SelectionDAGBuilder::getValue(const Value *V) { + // If we already have an SDValue for this value, use it. It's important + // to do this first, so that we don't create a CopyFromReg if we already + // have a regular SDValue. + SDValue &N = NodeMap[V]; + if (N.getNode()) return N; + + // If there's a virtual register allocated and initialized for this + // value, use it. + DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); + if (It != FuncInfo.ValueMap.end()) { + unsigned InReg = It->second; + RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), + InReg, V->getType()); + SDValue Chain = DAG.getEntryNode(); + N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); + resolveDanglingDebugInfo(V, N); + return N; + } + + // Otherwise create a new SDValue and remember it. + SDValue Val = getValueImpl(V); + NodeMap[V] = Val; + resolveDanglingDebugInfo(V, Val); + return Val; +} + +/// getNonRegisterValue - Return an SDValue for the given Value, but +/// don't look in FuncInfo.ValueMap for a virtual register. +SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { + // If we already have an SDValue for this value, use it. + SDValue &N = NodeMap[V]; + if (N.getNode()) return N; + + // Otherwise create a new SDValue and remember it. + SDValue Val = getValueImpl(V); + NodeMap[V] = Val; + resolveDanglingDebugInfo(V, Val); + return Val; +} + +/// getValueImpl - Helper function for getValue and getNonRegisterValue. +/// Create an SDValue for the given value. +SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { + const TargetLowering *TLI = TM.getTargetLowering(); + + if (const Constant *C = dyn_cast<Constant>(V)) { + EVT VT = TLI->getValueType(V->getType(), true); + + if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) + return DAG.getConstant(*CI, VT); + + if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) + return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); + + if (isa<ConstantPointerNull>(C)) { + unsigned AS = V->getType()->getPointerAddressSpace(); + return DAG.getConstant(0, TLI->getPointerTy(AS)); + } + + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) + return DAG.getConstantFP(*CFP, VT); + + if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) + return DAG.getUNDEF(VT); + + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + visit(CE->getOpcode(), *CE); + SDValue N1 = NodeMap[V]; + assert(N1.getNode() && "visit didn't populate the NodeMap!"); + return N1; + } + + if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { + SmallVector<SDValue, 4> Constants; + for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); + OI != OE; ++OI) { + SDNode *Val = getValue(*OI).getNode(); + // If the operand is an empty aggregate, there are no values. + if (!Val) continue; + // Add each leaf value from the operand to the Constants list + // to form a flattened list of all the values. + for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) + Constants.push_back(SDValue(Val, i)); + } + + return DAG.getMergeValues(&Constants[0], Constants.size(), + getCurSDLoc()); + } + + if (const ConstantDataSequential *CDS = + dyn_cast<ConstantDataSequential>(C)) { + SmallVector<SDValue, 4> Ops; + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); + // Add each leaf value from the operand to the Constants list + // to form a flattened list of all the values. + for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) + Ops.push_back(SDValue(Val, i)); + } + + if (isa<ArrayType>(CDS->getType())) + return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); + return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), + VT, &Ops[0], Ops.size()); + } + + if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { + assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && + "Unknown struct or array constant!"); + + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(*TLI, C->getType(), ValueVTs); + unsigned NumElts = ValueVTs.size(); + if (NumElts == 0) + return SDValue(); // empty struct + SmallVector<SDValue, 4> Constants(NumElts); + for (unsigned i = 0; i != NumElts; ++i) { + EVT EltVT = ValueVTs[i]; + if (isa<UndefValue>(C)) + Constants[i] = DAG.getUNDEF(EltVT); + else if (EltVT.isFloatingPoint()) + Constants[i] = DAG.getConstantFP(0, EltVT); + else + Constants[i] = DAG.getConstant(0, EltVT); + } + + return DAG.getMergeValues(&Constants[0], NumElts, + getCurSDLoc()); + } + + if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) + return DAG.getBlockAddress(BA, VT); + + VectorType *VecTy = cast<VectorType>(V->getType()); + unsigned NumElements = VecTy->getNumElements(); + + // Now that we know the number and type of the elements, get that number of + // elements into the Ops array based on what kind of constant it is. + SmallVector<SDValue, 16> Ops; + if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { + for (unsigned i = 0; i != NumElements; ++i) + Ops.push_back(getValue(CV->getOperand(i))); + } else { + assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); + EVT EltVT = TLI->getValueType(VecTy->getElementType()); + + SDValue Op; + if (EltVT.isFloatingPoint()) + Op = DAG.getConstantFP(0, EltVT); + else + Op = DAG.getConstant(0, EltVT); + Ops.assign(NumElements, Op); + } + + // Create a BUILD_VECTOR node. + return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), + VT, &Ops[0], Ops.size()); + } + + // If this is a static alloca, generate it as the frameindex instead of + // computation. + if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { + DenseMap<const AllocaInst*, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(AI); + if (SI != FuncInfo.StaticAllocaMap.end()) + return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); + } + + // If this is an instruction which fast-isel has deferred, select it now. + if (const Instruction *Inst = dyn_cast<Instruction>(V)) { + unsigned InReg = FuncInfo.InitializeRegForValue(Inst); + RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); + SDValue Chain = DAG.getEntryNode(); + return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); + } + + llvm_unreachable("Can't get register for value!"); +} + +void SelectionDAGBuilder::visitRet(const ReturnInst &I) { + const TargetLowering *TLI = TM.getTargetLowering(); + SDValue Chain = getControlRoot(); + SmallVector<ISD::OutputArg, 8> Outs; + SmallVector<SDValue, 8> OutVals; + + if (!FuncInfo.CanLowerReturn) { + unsigned DemoteReg = FuncInfo.DemoteRegister; + const Function *F = I.getParent()->getParent(); + + // Emit a store of the return value through the virtual register. + // Leave Outs empty so that LowerReturn won't try to load return + // registers the usual way. + SmallVector<EVT, 1> PtrValueVTs; + ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), + PtrValueVTs); + + SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); + SDValue RetOp = getValue(I.getOperand(0)); + + SmallVector<EVT, 4> ValueVTs; + SmallVector<uint64_t, 4> Offsets; + ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + + SmallVector<SDValue, 4> Chains(NumValues); + for (unsigned i = 0; i != NumValues; ++i) { + SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), + RetPtr.getValueType(), RetPtr, + DAG.getIntPtrConstant(Offsets[i])); + Chains[i] = + DAG.getStore(Chain, getCurSDLoc(), + SDValue(RetOp.getNode(), RetOp.getResNo() + i), + // FIXME: better loc info would be nice. + Add, MachinePointerInfo(), false, false, 0); + } + + Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), + MVT::Other, &Chains[0], NumValues); + } else if (I.getNumOperands() != 0) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (NumValues) { + SDValue RetOp = getValue(I.getOperand(0)); + for (unsigned j = 0, f = NumValues; j != f; ++j) { + EVT VT = ValueVTs[j]; + + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + const Function *F = I.getParent()->getParent(); + if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, + Attribute::SExt)) + ExtendKind = ISD::SIGN_EXTEND; + else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, + Attribute::ZExt)) + ExtendKind = ISD::ZERO_EXTEND; + + if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) + VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); + + unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); + MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); + SmallVector<SDValue, 4> Parts(NumParts); + getCopyToParts(DAG, getCurSDLoc(), + SDValue(RetOp.getNode(), RetOp.getResNo() + j), + &Parts[0], NumParts, PartVT, &I, ExtendKind); + + // 'inreg' on function refers to return value + ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); + if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, + Attribute::InReg)) + Flags.setInReg(); + + // Propagate extension type if any + if (ExtendKind == ISD::SIGN_EXTEND) + Flags.setSExt(); + else if (ExtendKind == ISD::ZERO_EXTEND) + Flags.setZExt(); + + for (unsigned i = 0; i < NumParts; ++i) { + Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), + VT, /*isfixed=*/true, 0, 0)); + OutVals.push_back(Parts[i]); + } + } + } + } + + bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); + CallingConv::ID CallConv = + DAG.getMachineFunction().getFunction()->getCallingConv(); + Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, + Outs, OutVals, getCurSDLoc(), + DAG); + + // Verify that the target's LowerReturn behaved as expected. + assert(Chain.getNode() && Chain.getValueType() == MVT::Other && + "LowerReturn didn't return a valid chain!"); + + // Update the DAG with the new chain value resulting from return lowering. + DAG.setRoot(Chain); +} + +/// CopyToExportRegsIfNeeded - If the given value has virtual registers +/// created for it, emit nodes to copy the value into the virtual +/// registers. +void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { + // Skip empty types + if (V->getType()->isEmptyTy()) + return; + + DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); + if (VMI != FuncInfo.ValueMap.end()) { + assert(!V->use_empty() && "Unused value assigned virtual registers!"); + CopyValueToVirtualRegister(V, VMI->second); + } +} + +/// ExportFromCurrentBlock - If this condition isn't known to be exported from +/// the current basic block, add it to ValueMap now so that we'll get a +/// CopyTo/FromReg. +void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { + // No need to export constants. + if (!isa<Instruction>(V) && !isa<Argument>(V)) return; + + // Already exported? + if (FuncInfo.isExportedInst(V)) return; + + unsigned Reg = FuncInfo.InitializeRegForValue(V); + CopyValueToVirtualRegister(V, Reg); +} + +bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, + const BasicBlock *FromBB) { + // The operands of the setcc have to be in this block. We don't know + // how to export them from some other block. + if (const Instruction *VI = dyn_cast<Instruction>(V)) { + // Can export from current BB. + if (VI->getParent() == FromBB) + return true; + + // Is already exported, noop. + return FuncInfo.isExportedInst(V); + } + + // If this is an argument, we can export it if the BB is the entry block or + // if it is already exported. + if (isa<Argument>(V)) { + if (FromBB == &FromBB->getParent()->getEntryBlock()) + return true; + + // Otherwise, can only export this if it is already exported. + return FuncInfo.isExportedInst(V); + } + + // Otherwise, constants can always be exported. + return true; +} + +/// Return branch probability calculated by BranchProbabilityInfo for IR blocks. +uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, + const MachineBasicBlock *Dst) const { + BranchProbabilityInfo *BPI = FuncInfo.BPI; + if (!BPI) + return 0; + const BasicBlock *SrcBB = Src->getBasicBlock(); + const BasicBlock *DstBB = Dst->getBasicBlock(); + return BPI->getEdgeWeight(SrcBB, DstBB); +} + +void SelectionDAGBuilder:: +addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, + uint32_t Weight /* = 0 */) { + if (!Weight) + Weight = getEdgeWeight(Src, Dst); + Src->addSuccessor(Dst, Weight); +} + + +static bool InBlock(const Value *V, const BasicBlock *BB) { + if (const Instruction *I = dyn_cast<Instruction>(V)) + return I->getParent() == BB; + return true; +} + +/// EmitBranchForMergedCondition - Helper method for FindMergedConditions. +/// This function emits a branch and is used at the leaves of an OR or an +/// AND operator tree. +/// +void +SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + MachineBasicBlock *CurBB, + MachineBasicBlock *SwitchBB) { + const BasicBlock *BB = CurBB->getBasicBlock(); + + // If the leaf of the tree is a comparison, merge the condition into + // the caseblock. + if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { + // The operands of the cmp have to be in this block. We don't know + // how to export them from some other block. If this is the first block + // of the sequence, no exporting is needed. + if (CurBB == SwitchBB || + (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && + isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { + ISD::CondCode Condition; + if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { + Condition = getICmpCondCode(IC->getPredicate()); + } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { + Condition = getFCmpCondCode(FC->getPredicate()); + if (TM.Options.NoNaNsFPMath) + Condition = getFCmpCodeWithoutNaN(Condition); + } else { + Condition = ISD::SETEQ; // silence warning. + llvm_unreachable("Unknown compare instruction"); + } + + CaseBlock CB(Condition, BOp->getOperand(0), + BOp->getOperand(1), NULL, TBB, FBB, CurBB); + SwitchCases.push_back(CB); + return; + } + } + + // Create a CaseBlock record representing this branch. + CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), + NULL, TBB, FBB, CurBB); + SwitchCases.push_back(CB); +} + +/// FindMergedConditions - If Cond is an expression like +void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + MachineBasicBlock *CurBB, + MachineBasicBlock *SwitchBB, + unsigned Opc) { + // If this node is not part of the or/and tree, emit it as a branch. + const Instruction *BOp = dyn_cast<Instruction>(Cond); + if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || + (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || + BOp->getParent() != CurBB->getBasicBlock() || + !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || + !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { + EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); + return; + } + + // Create TmpBB after CurBB. + MachineFunction::iterator BBI = CurBB; + MachineFunction &MF = DAG.getMachineFunction(); + MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); + CurBB->getParent()->insert(++BBI, TmpBB); + + if (Opc == Instruction::Or) { + // Codegen X | Y as: + // jmp_if_X TBB + // jmp TmpBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + + // Emit the LHS condition. + FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); + + // Emit the RHS condition into TmpBB. + FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); + } else { + assert(Opc == Instruction::And && "Unknown merge op!"); + // Codegen X & Y as: + // jmp_if_X TmpBB + // jmp FBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + // This requires creation of TmpBB after CurBB. + + // Emit the LHS condition. + FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); + + // Emit the RHS condition into TmpBB. + FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); + } +} + +/// If the set of cases should be emitted as a series of branches, return true. +/// If we should emit this as a bunch of and/or'd together conditions, return +/// false. +bool +SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { + if (Cases.size() != 2) return true; + + // If this is two comparisons of the same values or'd or and'd together, they + // will get folded into a single comparison, so don't emit two blocks. + if ((Cases[0].CmpLHS == Cases[1].CmpLHS && + Cases[0].CmpRHS == Cases[1].CmpRHS) || + (Cases[0].CmpRHS == Cases[1].CmpLHS && + Cases[0].CmpLHS == Cases[1].CmpRHS)) { + return false; + } + + // Handle: (X != null) | (Y != null) --> (X|Y) != 0 + // Handle: (X == null) & (Y == null) --> (X|Y) == 0 + if (Cases[0].CmpRHS == Cases[1].CmpRHS && + Cases[0].CC == Cases[1].CC && + isa<Constant>(Cases[0].CmpRHS) && + cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { + if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) + return false; + if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) + return false; + } + + return true; +} + +void SelectionDAGBuilder::visitBr(const BranchInst &I) { + MachineBasicBlock *BrMBB = FuncInfo.MBB; + + // Update machine-CFG edges. + MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = BrMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + if (I.isUnconditional()) { + // Update machine-CFG edges. + BrMBB->addSuccessor(Succ0MBB); + + // If this is not a fall-through branch, emit the branch. + if (Succ0MBB != NextBlock) + DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), + MVT::Other, getControlRoot(), + DAG.getBasicBlock(Succ0MBB))); + + return; + } + + // If this condition is one of the special cases we handle, do special stuff + // now. + const Value *CondVal = I.getCondition(); + MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; + + // If this is a series of conditions that are or'd or and'd together, emit + // this as a sequence of branches instead of setcc's with and/or operations. + // As long as jumps are not expensive, this should improve performance. + // For example, instead of something like: + // cmp A, B + // C = seteq + // cmp D, E + // F = setle + // or C, F + // jnz foo + // Emit: + // cmp A, B + // je foo + // cmp D, E + // jle foo + // + if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { + if (!TM.getTargetLowering()->isJumpExpensive() && + BOp->hasOneUse() && + (BOp->getOpcode() == Instruction::And || + BOp->getOpcode() == Instruction::Or)) { + FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, + BOp->getOpcode()); + // If the compares in later blocks need to use values not currently + // exported from this block, export them now. This block should always + // be the first entry. + assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); + + // Allow some cases to be rejected. + if (ShouldEmitAsBranches(SwitchCases)) { + for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { + ExportFromCurrentBlock(SwitchCases[i].CmpLHS); + ExportFromCurrentBlock(SwitchCases[i].CmpRHS); + } + + // Emit the branch for this block. + visitSwitchCase(SwitchCases[0], BrMBB); + SwitchCases.erase(SwitchCases.begin()); + return; + } + + // Okay, we decided not to do this, remove any inserted MBB's and clear + // SwitchCases. + for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) + FuncInfo.MF->erase(SwitchCases[i].ThisBB); + + SwitchCases.clear(); + } + } + + // Create a CaseBlock record representing this branch. + CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), + NULL, Succ0MBB, Succ1MBB, BrMBB); + + // Use visitSwitchCase to actually insert the fast branch sequence for this + // cond branch. + visitSwitchCase(CB, BrMBB); +} + +/// visitSwitchCase - Emits the necessary code to represent a single node in +/// the binary search tree resulting from lowering a switch instruction. +void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, + MachineBasicBlock *SwitchBB) { + SDValue Cond; + SDValue CondLHS = getValue(CB.CmpLHS); + SDLoc dl = getCurSDLoc(); + + // Build the setcc now. + if (CB.CmpMHS == NULL) { + // Fold "(X == true)" to X and "(X == false)" to !X to + // handle common cases produced by branch lowering. + if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && + CB.CC == ISD::SETEQ) + Cond = CondLHS; + else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && + CB.CC == ISD::SETEQ) { + SDValue True = DAG.getConstant(1, CondLHS.getValueType()); + Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); + } else + Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); + } else { + assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); + + const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); + const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); + + SDValue CmpOp = getValue(CB.CmpMHS); + EVT VT = CmpOp.getValueType(); + + if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { + Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), + ISD::SETLE); + } else { + SDValue SUB = DAG.getNode(ISD::SUB, dl, + VT, CmpOp, DAG.getConstant(Low, VT)); + Cond = DAG.getSetCC(dl, MVT::i1, SUB, + DAG.getConstant(High-Low, VT), ISD::SETULE); + } + } + + // Update successor info + addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); + // TrueBB and FalseBB are always different unless the incoming IR is + // degenerate. This only happens when running llc on weird IR. + if (CB.TrueBB != CB.FalseBB) + addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = SwitchBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + // If the lhs block is the next block, invert the condition so that we can + // fall through to the lhs instead of the rhs block. + if (CB.TrueBB == NextBlock) { + std::swap(CB.TrueBB, CB.FalseBB); + SDValue True = DAG.getConstant(1, Cond.getValueType()); + Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); + } + + SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, + MVT::Other, getControlRoot(), Cond, + DAG.getBasicBlock(CB.TrueBB)); + + // Insert the false branch. Do this even if it's a fall through branch, + // this makes it easier to do DAG optimizations which require inverting + // the branch condition. + BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, + DAG.getBasicBlock(CB.FalseBB)); + + DAG.setRoot(BrCond); +} + +/// visitJumpTable - Emit JumpTable node in the current MBB +void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { + // Emit the code for the jump table + assert(JT.Reg != -1U && "Should lower JT Header first!"); + EVT PTy = TM.getTargetLowering()->getPointerTy(); + SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), + JT.Reg, PTy); + SDValue Table = DAG.getJumpTable(JT.JTI, PTy); + SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), + MVT::Other, Index.getValue(1), + Table, Index); + DAG.setRoot(BrJumpTable); +} + +/// visitJumpTableHeader - This function emits necessary code to produce index +/// in the JumpTable from switch case. +void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, + JumpTableHeader &JTH, + MachineBasicBlock *SwitchBB) { + // Subtract the lowest switch case value from the value being switched on and + // conditional branch to default mbb if the result is greater than the + // difference between smallest and largest cases. + SDValue SwitchOp = getValue(JTH.SValue); + EVT VT = SwitchOp.getValueType(); + SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, + DAG.getConstant(JTH.First, VT)); + + // The SDNode we just created, which holds the value being switched on minus + // the smallest case value, needs to be copied to a virtual register so it + // can be used as an index into the jump table in a subsequent basic block. + // This value may be smaller or larger than the target's pointer type, and + // therefore require extension or truncating. + const TargetLowering *TLI = TM.getTargetLowering(); + SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); + + unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); + SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), + JumpTableReg, SwitchOp); + JT.Reg = JumpTableReg; + + // Emit the range check for the jump table, and branch to the default block + // for the switch statement if the value being switched on exceeds the largest + // case in the switch. + SDValue CMP = DAG.getSetCC(getCurSDLoc(), + TLI->getSetCCResultType(*DAG.getContext(), + Sub.getValueType()), + Sub, + DAG.getConstant(JTH.Last - JTH.First,VT), + ISD::SETUGT); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = SwitchBB; + + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), + MVT::Other, CopyTo, CMP, + DAG.getBasicBlock(JT.Default)); + + if (JT.MBB != NextBlock) + BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, + DAG.getBasicBlock(JT.MBB)); + + DAG.setRoot(BrCond); +} + +/// Codegen a new tail for a stack protector check ParentMBB which has had its +/// tail spliced into a stack protector check success bb. +/// +/// For a high level explanation of how this fits into the stack protector +/// generation see the comment on the declaration of class +/// StackProtectorDescriptor. +void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, + MachineBasicBlock *ParentBB) { + + // First create the loads to the guard/stack slot for the comparison. + const TargetLowering *TLI = TM.getTargetLowering(); + EVT PtrTy = TLI->getPointerTy(); + + MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); + int FI = MFI->getStackProtectorIndex(); + + const Value *IRGuard = SPD.getGuard(); + SDValue GuardPtr = getValue(IRGuard); + SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); + + unsigned Align = + TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); + SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), + GuardPtr, MachinePointerInfo(IRGuard, 0), + true, false, false, Align); + + SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), + StackSlotPtr, + MachinePointerInfo::getFixedStack(FI), + true, false, false, Align); + + // Perform the comparison via a subtract/getsetcc. + EVT VT = Guard.getValueType(); + SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); + + SDValue Cmp = DAG.getSetCC(getCurSDLoc(), + TLI->getSetCCResultType(*DAG.getContext(), + Sub.getValueType()), + Sub, DAG.getConstant(0, VT), + ISD::SETNE); + + // If the sub is not 0, then we know the guard/stackslot do not equal, so + // branch to failure MBB. + SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), + MVT::Other, StackSlot.getOperand(0), + Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); + // Otherwise branch to success MBB. + SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), + MVT::Other, BrCond, + DAG.getBasicBlock(SPD.getSuccessMBB())); + + DAG.setRoot(Br); +} + +/// Codegen the failure basic block for a stack protector check. +/// +/// A failure stack protector machine basic block consists simply of a call to +/// __stack_chk_fail(). +/// +/// For a high level explanation of how this fits into the stack protector +/// generation see the comment on the declaration of class +/// StackProtectorDescriptor. +void +SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { + const TargetLowering *TLI = TM.getTargetLowering(); + SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, + MVT::isVoid, 0, 0, false, getCurSDLoc(), + false, false).second; + DAG.setRoot(Chain); +} + +/// visitBitTestHeader - This function emits necessary code to produce value +/// suitable for "bit tests" +void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, + MachineBasicBlock *SwitchBB) { + // Subtract the minimum value + SDValue SwitchOp = getValue(B.SValue); + EVT VT = SwitchOp.getValueType(); + SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, + DAG.getConstant(B.First, VT)); + + // Check range + const TargetLowering *TLI = TM.getTargetLowering(); + SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), + TLI->getSetCCResultType(*DAG.getContext(), + Sub.getValueType()), + Sub, DAG.getConstant(B.Range, VT), + ISD::SETUGT); + + // Determine the type of the test operands. + bool UsePtrType = false; + if (!TLI->isTypeLegal(VT)) + UsePtrType = true; + else { + for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) + if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { + // Switch table case range are encoded into series of masks. + // Just use pointer type, it's guaranteed to fit. + UsePtrType = true; + break; + } + } + if (UsePtrType) { + VT = TLI->getPointerTy(); + Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); + } + + B.RegVT = VT.getSimpleVT(); + B.Reg = FuncInfo.CreateReg(B.RegVT); + SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), + B.Reg, Sub); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = SwitchBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + MachineBasicBlock* MBB = B.Cases[0].ThisBB; + + addSuccessorWithWeight(SwitchBB, B.Default); + addSuccessorWithWeight(SwitchBB, MBB); + + SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), + MVT::Other, CopyTo, RangeCmp, + DAG.getBasicBlock(B.Default)); + + if (MBB != NextBlock) + BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, + DAG.getBasicBlock(MBB)); + + DAG.setRoot(BrRange); +} + +/// visitBitTestCase - this function produces one "bit test" +void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, + MachineBasicBlock* NextMBB, + uint32_t BranchWeightToNext, + unsigned Reg, + BitTestCase &B, + MachineBasicBlock *SwitchBB) { + MVT VT = BB.RegVT; + SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), + Reg, VT); + SDValue Cmp; + unsigned PopCount = CountPopulation_64(B.Mask); + const TargetLowering *TLI = TM.getTargetLowering(); + if (PopCount == 1) { + // Testing for a single bit; just compare the shift count with what it + // would need to be to shift a 1 bit in that position. + Cmp = DAG.getSetCC(getCurSDLoc(), + TLI->getSetCCResultType(*DAG.getContext(), VT), + ShiftOp, + DAG.getConstant(countTrailingZeros(B.Mask), VT), + ISD::SETEQ); + } else if (PopCount == BB.Range) { + // There is only one zero bit in the range, test for it directly. + Cmp = DAG.getSetCC(getCurSDLoc(), + TLI->getSetCCResultType(*DAG.getContext(), VT), + ShiftOp, + DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), + ISD::SETNE); + } else { + // Make desired shift + SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, + DAG.getConstant(1, VT), ShiftOp); + + // Emit bit tests and jumps + SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), + VT, SwitchVal, DAG.getConstant(B.Mask, VT)); + Cmp = DAG.getSetCC(getCurSDLoc(), + TLI->getSetCCResultType(*DAG.getContext(), VT), + AndOp, DAG.getConstant(0, VT), + ISD::SETNE); + } + + // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. + addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); + // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. + addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); + + SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), + MVT::Other, getControlRoot(), + Cmp, DAG.getBasicBlock(B.TargetBB)); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = SwitchBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + if (NextMBB != NextBlock) + BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, + DAG.getBasicBlock(NextMBB)); + + DAG.setRoot(BrAnd); +} + +void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { + MachineBasicBlock *InvokeMBB = FuncInfo.MBB; + + // Retrieve successors. + MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; + MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; + + const Value *Callee(I.getCalledValue()); + const Function *Fn = dyn_cast<Function>(Callee); + if (isa<InlineAsm>(Callee)) + visitInlineAsm(&I); + else if (Fn && Fn->isIntrinsic()) { + assert(Fn->getIntrinsicID() == Intrinsic::donothing); + // Ignore invokes to @llvm.donothing: jump directly to the next BB. + } else + LowerCallTo(&I, getValue(Callee), false, LandingPad); + + // If the value of the invoke is used outside of its defining block, make it + // available as a virtual register. + CopyToExportRegsIfNeeded(&I); + + // Update successor info + addSuccessorWithWeight(InvokeMBB, Return); + addSuccessorWithWeight(InvokeMBB, LandingPad); + + // Drop into normal successor. + DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), + MVT::Other, getControlRoot(), + DAG.getBasicBlock(Return))); +} + +void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { + llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); +} + +void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { + assert(FuncInfo.MBB->isLandingPad() && + "Call to landingpad not in landing pad!"); + + MachineBasicBlock *MBB = FuncInfo.MBB; + MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); + AddLandingPadInfo(LP, MMI, MBB); + + // If there aren't registers to copy the values into (e.g., during SjLj + // exceptions), then don't bother to create these DAG nodes. + const TargetLowering *TLI = TM.getTargetLowering(); + if (TLI->getExceptionPointerRegister() == 0 && + TLI->getExceptionSelectorRegister() == 0) + return; + + SmallVector<EVT, 2> ValueVTs; + ComputeValueVTs(*TLI, LP.getType(), ValueVTs); + assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); + + // Get the two live-in registers as SDValues. The physregs have already been + // copied into virtual registers. + SDValue Ops[2]; + Ops[0] = DAG.getZExtOrTrunc( + DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), + FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), + getCurSDLoc(), ValueVTs[0]); + Ops[1] = DAG.getZExtOrTrunc( + DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), + FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), + getCurSDLoc(), ValueVTs[1]); + + // Merge into one. + SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), + DAG.getVTList(&ValueVTs[0], ValueVTs.size()), + &Ops[0], 2); + setValue(&LP, Res); +} + +/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for +/// small case ranges). +bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, + CaseRecVector& WorkList, + const Value* SV, + MachineBasicBlock *Default, + MachineBasicBlock *SwitchBB) { + // Size is the number of Cases represented by this range. + size_t Size = CR.Range.second - CR.Range.first; + if (Size > 3) + return false; + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CR.CaseBB; + + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + BranchProbabilityInfo *BPI = FuncInfo.BPI; + // If any two of the cases has the same destination, and if one value + // is the same as the other, but has one bit unset that the other has set, + // use bit manipulation to do two compares at once. For example: + // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" + // TODO: This could be extended to merge any 2 cases in switches with 3 cases. + // TODO: Handle cases where CR.CaseBB != SwitchBB. + if (Size == 2 && CR.CaseBB == SwitchBB) { + Case &Small = *CR.Range.first; + Case &Big = *(CR.Range.second-1); + + if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { + const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); + const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); + + // Check that there is only one bit different. + if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && + (SmallValue | BigValue) == BigValue) { + // Isolate the common bit. + APInt CommonBit = BigValue & ~SmallValue; + assert((SmallValue | CommonBit) == BigValue && + CommonBit.countPopulation() == 1 && "Not a common bit?"); + + SDValue CondLHS = getValue(SV); + EVT VT = CondLHS.getValueType(); + SDLoc DL = getCurSDLoc(); + + SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, + DAG.getConstant(CommonBit, VT)); + SDValue Cond = DAG.getSetCC(DL, MVT::i1, + Or, DAG.getConstant(BigValue, VT), + ISD::SETEQ); + + // Update successor info. + // Both Small and Big will jump to Small.BB, so we sum up the weights. + addSuccessorWithWeight(SwitchBB, Small.BB, + Small.ExtraWeight + Big.ExtraWeight); + addSuccessorWithWeight(SwitchBB, Default, + // The default destination is the first successor in IR. + BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); + + // Insert the true branch. + SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, + getControlRoot(), Cond, + DAG.getBasicBlock(Small.BB)); + + // Insert the false branch. + BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, + DAG.getBasicBlock(Default)); + + DAG.setRoot(BrCond); + return true; + } + } + } + + // Order cases by weight so the most likely case will be checked first. + uint32_t UnhandledWeights = 0; + if (BPI) { + for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { + uint32_t IWeight = I->ExtraWeight; + UnhandledWeights += IWeight; + for (CaseItr J = CR.Range.first; J < I; ++J) { + uint32_t JWeight = J->ExtraWeight; + if (IWeight > JWeight) + std::swap(*I, *J); + } + } + } + // Rearrange the case blocks so that the last one falls through if possible. + Case &BackCase = *(CR.Range.second-1); + if (Size > 1 && + NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { + // The last case block won't fall through into 'NextBlock' if we emit the + // branches in this order. See if rearranging a case value would help. + // We start at the bottom as it's the case with the least weight. + for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) + if (I->BB == NextBlock) { + std::swap(*I, BackCase); + break; + } + } + + // Create a CaseBlock record representing a conditional branch to + // the Case's target mbb if the value being switched on SV is equal + // to C. + MachineBasicBlock *CurBlock = CR.CaseBB; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { + MachineBasicBlock *FallThrough; + if (I != E-1) { + FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); + CurMF->insert(BBI, FallThrough); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } else { + // If the last case doesn't match, go to the default block. + FallThrough = Default; + } + + const Value *RHS, *LHS, *MHS; + ISD::CondCode CC; + if (I->High == I->Low) { + // This is just small small case range :) containing exactly 1 case + CC = ISD::SETEQ; + LHS = SV; RHS = I->High; MHS = NULL; + } else { + CC = ISD::SETLE; + LHS = I->Low; MHS = SV; RHS = I->High; + } + + // The false weight should be sum of all un-handled cases. + UnhandledWeights -= I->ExtraWeight; + CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, + /* me */ CurBlock, + /* trueweight */ I->ExtraWeight, + /* falseweight */ UnhandledWeights); + + // If emitting the first comparison, just call visitSwitchCase to emit the + // code into the current block. Otherwise, push the CaseBlock onto the + // vector to be later processed by SDISel, and insert the node's MBB + // before the next MBB. + if (CurBlock == SwitchBB) + visitSwitchCase(CB, SwitchBB); + else + SwitchCases.push_back(CB); + + CurBlock = FallThrough; + } + + return true; +} + +static inline bool areJTsAllowed(const TargetLowering &TLI) { + return TLI.supportJumpTables() && + (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || + TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); +} + +static APInt ComputeRange(const APInt &First, const APInt &Last) { + uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; + APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); + return (LastExt - FirstExt + 1ULL); +} + +/// handleJTSwitchCase - Emit jumptable for current switch case range +bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, + CaseRecVector &WorkList, + const Value *SV, + MachineBasicBlock *Default, + MachineBasicBlock *SwitchBB) { + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + + const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); + const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); + + APInt TSize(First.getBitWidth(), 0); + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) + TSize += I->size(); + + const TargetLowering *TLI = TM.getTargetLowering(); + if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) + return false; + + APInt Range = ComputeRange(First, Last); + // The density is TSize / Range. Require at least 40%. + // It should not be possible for IntTSize to saturate for sane code, but make + // sure we handle Range saturation correctly. + uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); + uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); + if (IntTSize * 10 < IntRange * 4) + return false; + + DEBUG(dbgs() << "Lowering jump table\n" + << "First entry: " << First << ". Last entry: " << Last << '\n' + << "Range: " << Range << ". Size: " << TSize << ".\n\n"); + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + // Create a new basic block to hold the code for loading the address + // of the jump table, and jumping to it. Update successor information; + // we will either branch to the default case for the switch, or the jump + // table. + MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, JumpTableBB); + + addSuccessorWithWeight(CR.CaseBB, Default); + addSuccessorWithWeight(CR.CaseBB, JumpTableBB); + + // Build a vector of destination BBs, corresponding to each target + // of the jump table. If the value of the jump table slot corresponds to + // a case statement, push the case's BB onto the vector, otherwise, push + // the default BB. + std::vector<MachineBasicBlock*> DestBBs; + APInt TEI = First; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { + const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); + const APInt &High = cast<ConstantInt>(I->High)->getValue(); + + if (Low.sle(TEI) && TEI.sle(High)) { + DestBBs.push_back(I->BB); + if (TEI==High) + ++I; + } else { + DestBBs.push_back(Default); + } + } + + // Calculate weight for each unique destination in CR. + DenseMap<MachineBasicBlock*, uint32_t> DestWeights; + if (FuncInfo.BPI) + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { + DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = + DestWeights.find(I->BB); + if (Itr != DestWeights.end()) + Itr->second += I->ExtraWeight; + else + DestWeights[I->BB] = I->ExtraWeight; + } + + // Update successor info. Add one edge to each unique successor. + BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); + for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), + E = DestBBs.end(); I != E; ++I) { + if (!SuccsHandled[(*I)->getNumber()]) { + SuccsHandled[(*I)->getNumber()] = true; + DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = + DestWeights.find(*I); + addSuccessorWithWeight(JumpTableBB, *I, + Itr != DestWeights.end() ? Itr->second : 0); + } + } + + // Create a jump table index for this jump table. + unsigned JTEncoding = TLI->getJumpTableEncoding(); + unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) + ->createJumpTableIndex(DestBBs); + + // Set the jump table information so that we can codegen it as a second + // MachineBasicBlock + JumpTable JT(-1U, JTI, JumpTableBB, Default); + JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); + if (CR.CaseBB == SwitchBB) + visitJumpTableHeader(JT, JTH, SwitchBB); + + JTCases.push_back(JumpTableBlock(JTH, JT)); + return true; +} + +/// handleBTSplitSwitchCase - emit comparison and split binary search tree into +/// 2 subtrees. +bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + const Value* SV, + MachineBasicBlock* Default, + MachineBasicBlock* SwitchBB) { + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + // Size is the number of Cases represented by this range. + unsigned Size = CR.Range.second - CR.Range.first; + + const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); + const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); + double FMetric = 0; + CaseItr Pivot = CR.Range.first + Size/2; + + // Select optimal pivot, maximizing sum density of LHS and RHS. This will + // (heuristically) allow us to emit JumpTable's later. + APInt TSize(First.getBitWidth(), 0); + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) + TSize += I->size(); + + APInt LSize = FrontCase.size(); + APInt RSize = TSize-LSize; + DEBUG(dbgs() << "Selecting best pivot: \n" + << "First: " << First << ", Last: " << Last <<'\n' + << "LSize: " << LSize << ", RSize: " << RSize << '\n'); + for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; + J!=E; ++I, ++J) { + const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); + const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); + APInt Range = ComputeRange(LEnd, RBegin); + assert((Range - 2ULL).isNonNegative() && + "Invalid case distance"); + // Use volatile double here to avoid excess precision issues on some hosts, + // e.g. that use 80-bit X87 registers. + volatile double LDensity = + (double)LSize.roundToDouble() / + (LEnd - First + 1ULL).roundToDouble(); + volatile double RDensity = + (double)RSize.roundToDouble() / + (Last - RBegin + 1ULL).roundToDouble(); + double Metric = Range.logBase2()*(LDensity+RDensity); + // Should always split in some non-trivial place + DEBUG(dbgs() <<"=>Step\n" + << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' + << "LDensity: " << LDensity + << ", RDensity: " << RDensity << '\n' + << "Metric: " << Metric << '\n'); + if (FMetric < Metric) { + Pivot = J; + FMetric = Metric; + DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); + } + + LSize += J->size(); + RSize -= J->size(); + } + + const TargetLowering *TLI = TM.getTargetLowering(); + if (areJTsAllowed(*TLI)) { + // If our case is dense we *really* should handle it earlier! + assert((FMetric > 0) && "Should handle dense range earlier!"); + } else { + Pivot = CR.Range.first + Size/2; + } + + CaseRange LHSR(CR.Range.first, Pivot); + CaseRange RHSR(Pivot, CR.Range.second); + const Constant *C = Pivot->Low; + MachineBasicBlock *FalseBB = 0, *TrueBB = 0; + + // We know that we branch to the LHS if the Value being switched on is + // less than the Pivot value, C. We use this to optimize our binary + // tree a bit, by recognizing that if SV is greater than or equal to the + // LHS's Case Value, and that Case Value is exactly one less than the + // Pivot's Value, then we can branch directly to the LHS's Target, + // rather than creating a leaf node for it. + if ((LHSR.second - LHSR.first) == 1 && + LHSR.first->High == CR.GE && + cast<ConstantInt>(C)->getValue() == + (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { + TrueBB = LHSR.first->BB; + } else { + TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, TrueBB); + WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } + + // Similar to the optimization above, if the Value being switched on is + // known to be less than the Constant CR.LT, and the current Case Value + // is CR.LT - 1, then we can branch directly to the target block for + // the current Case Value, rather than emitting a RHS leaf node for it. + if ((RHSR.second - RHSR.first) == 1 && CR.LT && + cast<ConstantInt>(RHSR.first->Low)->getValue() == + (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { + FalseBB = RHSR.first->BB; + } else { + FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, FalseBB); + WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } + + // Create a CaseBlock record representing a conditional branch to + // the LHS node if the value being switched on SV is less than C. + // Otherwise, branch to LHS. + CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); + + if (CR.CaseBB == SwitchBB) + visitSwitchCase(CB, SwitchBB); + else + SwitchCases.push_back(CB); + + return true; +} + +/// handleBitTestsSwitchCase - if current case range has few destination and +/// range span less, than machine word bitwidth, encode case range into series +/// of masks and emit bit tests with these masks. +bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + const Value* SV, + MachineBasicBlock* Default, + MachineBasicBlock* SwitchBB) { + const TargetLowering *TLI = TM.getTargetLowering(); + EVT PTy = TLI->getPointerTy(); + unsigned IntPtrBits = PTy.getSizeInBits(); + + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // If target does not have legal shift left, do not emit bit tests at all. + if (!TLI->isOperationLegal(ISD::SHL, PTy)) + return false; + + size_t numCmps = 0; + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) { + // Single case counts one, case range - two. + numCmps += (I->Low == I->High ? 1 : 2); + } + + // Count unique destinations + SmallSet<MachineBasicBlock*, 4> Dests; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { + Dests.insert(I->BB); + if (Dests.size() > 3) + // Don't bother the code below, if there are too much unique destinations + return false; + } + DEBUG(dbgs() << "Total number of unique destinations: " + << Dests.size() << '\n' + << "Total number of comparisons: " << numCmps << '\n'); + + // Compute span of values. + const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); + const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); + APInt cmpRange = maxValue - minValue; + + DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' + << "Low bound: " << minValue << '\n' + << "High bound: " << maxValue << '\n'); + + if (cmpRange.uge(IntPtrBits) || + (!(Dests.size() == 1 && numCmps >= 3) && + !(Dests.size() == 2 && numCmps >= 5) && + !(Dests.size() >= 3 && numCmps >= 6))) + return false; + + DEBUG(dbgs() << "Emitting bit tests\n"); + APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); + + // Optimize the case where all the case values fit in a + // word without having to subtract minValue. In this case, + // we can optimize away the subtraction. + if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { + cmpRange = maxValue; + } else { + lowBound = minValue; + } + + CaseBitsVector CasesBits; + unsigned i, count = 0; + + for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { + MachineBasicBlock* Dest = I->BB; + for (i = 0; i < count; ++i) + if (Dest == CasesBits[i].BB) + break; + + if (i == count) { + assert((count < 3) && "Too much destinations to test!"); + CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); + count++; + } + + const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); + const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); + + uint64_t lo = (lowValue - lowBound).getZExtValue(); + uint64_t hi = (highValue - lowBound).getZExtValue(); + CasesBits[i].ExtraWeight += I->ExtraWeight; + + for (uint64_t j = lo; j <= hi; j++) { + CasesBits[i].Mask |= 1ULL << j; + CasesBits[i].Bits++; + } + + } + std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); + + BitTestInfo BTC; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + DEBUG(dbgs() << "Cases:\n"); + for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { + DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask + << ", Bits: " << CasesBits[i].Bits + << ", BB: " << CasesBits[i].BB << '\n'); + + MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, CaseBB); + BTC.push_back(BitTestCase(CasesBits[i].Mask, + CaseBB, + CasesBits[i].BB, CasesBits[i].ExtraWeight)); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } + + BitTestBlock BTB(lowBound, cmpRange, SV, + -1U, MVT::Other, (CR.CaseBB == SwitchBB), + CR.CaseBB, Default, BTC); + + if (CR.CaseBB == SwitchBB) + visitBitTestHeader(BTB, SwitchBB); + + BitTestCases.push_back(BTB); + + return true; +} + +/// Clusterify - Transform simple list of Cases into list of CaseRange's +size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, + const SwitchInst& SI) { + size_t numCmps = 0; + + BranchProbabilityInfo *BPI = FuncInfo.BPI; + // Start with "simple" cases + for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); + i != e; ++i) { + const BasicBlock *SuccBB = i.getCaseSuccessor(); + MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; + + uint32_t ExtraWeight = + BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; + + Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), + SMBB, ExtraWeight)); + } + std::sort(Cases.begin(), Cases.end(), CaseCmp()); + + // Merge case into clusters + if (Cases.size() >= 2) + // Must recompute end() each iteration because it may be + // invalidated by erase if we hold on to it + for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); + J != Cases.end(); ) { + const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); + const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); + MachineBasicBlock* nextBB = J->BB; + MachineBasicBlock* currentBB = I->BB; + + // If the two neighboring cases go to the same destination, merge them + // into a single case. + if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { + I->High = J->High; + I->ExtraWeight += J->ExtraWeight; + J = Cases.erase(J); + } else { + I = J++; + } + } + + for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { + if (I->Low != I->High) + // A range counts double, since it requires two compares. + ++numCmps; + } + + return numCmps; +} + +void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, + MachineBasicBlock *Last) { + // Update JTCases. + for (unsigned i = 0, e = JTCases.size(); i != e; ++i) + if (JTCases[i].first.HeaderBB == First) + JTCases[i].first.HeaderBB = Last; + + // Update BitTestCases. + for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) + if (BitTestCases[i].Parent == First) + BitTestCases[i].Parent = Last; +} + +void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { + MachineBasicBlock *SwitchMBB = FuncInfo.MBB; + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; + + // If there is only the default destination, branch to it if it is not the + // next basic block. Otherwise, just fall through. + if (!SI.getNumCases()) { + // Update machine-CFG edges. + + // If this is not a fall-through branch, emit the branch. + SwitchMBB->addSuccessor(Default); + if (Default != NextBlock) + DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), + MVT::Other, getControlRoot(), + DAG.getBasicBlock(Default))); + + return; + } + + // If there are any non-default case statements, create a vector of Cases + // representing each one, and sort the vector so that we can efficiently + // create a binary search tree from them. + CaseVector Cases; + size_t numCmps = Clusterify(Cases, SI); + DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() + << ". Total compares: " << numCmps << '\n'); + (void)numCmps; + + // Get the Value to be switched on and default basic blocks, which will be + // inserted into CaseBlock records, representing basic blocks in the binary + // search tree. + const Value *SV = SI.getCondition(); + + // Push the initial CaseRec onto the worklist + CaseRecVector WorkList; + WorkList.push_back(CaseRec(SwitchMBB,0,0, + CaseRange(Cases.begin(),Cases.end()))); + + while (!WorkList.empty()) { + // Grab a record representing a case range to process off the worklist + CaseRec CR = WorkList.back(); + WorkList.pop_back(); + + if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) + continue; + + // If the range has few cases (two or less) emit a series of specific + // tests. + if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) + continue; + + // If the switch has more than N blocks, and is at least 40% dense, and the + // target supports indirect branches, then emit a jump table rather than + // lowering the switch to a binary tree of conditional branches. + // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). + if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) + continue; + + // Emit binary tree. We need to pick a pivot, and push left and right ranges + // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. + handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); + } +} + +void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { + MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; + + // Update machine-CFG edges with unique successors. + SmallSet<BasicBlock*, 32> Done; + for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { + BasicBlock *BB = I.getSuccessor(i); + bool Inserted = Done.insert(BB); + if (!Inserted) + continue; + + MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; + addSuccessorWithWeight(IndirectBrMBB, Succ); + } + + DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), + MVT::Other, getControlRoot(), + getValue(I.getAddress()))); +} + +void SelectionDAGBuilder::visitFSub(const User &I) { + // -0.0 - X --> fneg + Type *Ty = I.getType(); + if (isa<Constant>(I.getOperand(0)) && + I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { + SDValue Op2 = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), + Op2.getValueType(), Op2)); + return; + } + + visitBinary(I, ISD::FSUB); +} + +void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), + Op1.getValueType(), Op1, Op2)); +} + +void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + + EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); + + // Coerce the shift amount to the right type if we can. + if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { + unsigned ShiftSize = ShiftTy.getSizeInBits(); + unsigned Op2Size = Op2.getValueType().getSizeInBits(); + SDLoc DL = getCurSDLoc(); + + // If the operand is smaller than the shift count type, promote it. + if (ShiftSize > Op2Size) + Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); + + // If the operand is larger than the shift count type but the shift + // count type has enough bits to represent any shift value, truncate + // it now. This is a common case and it exposes the truncate to + // optimization early. + else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) + Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); + // Otherwise we'll need to temporarily settle for some other convenient + // type. Type legalization will make adjustments once the shiftee is split. + else + Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); + } + + setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), + Op1.getValueType(), Op1, Op2)); +} + +void SelectionDAGBuilder::visitSDiv(const User &I) { + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + + // Turn exact SDivs into multiplications. + // FIXME: This should be in DAGCombiner, but it doesn't have access to the + // exact bit. + if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && + !isa<ConstantSDNode>(Op1) && + isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) + setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, + getCurSDLoc(), DAG)); + else + setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), + Op1, Op2)); +} + +void SelectionDAGBuilder::visitICmp(const User &I) { + ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; + if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) + predicate = IC->getPredicate(); + else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) + predicate = ICmpInst::Predicate(IC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Opcode = getICmpCondCode(predicate); + + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); +} + +void SelectionDAGBuilder::visitFCmp(const User &I) { + FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; + if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) + predicate = FC->getPredicate(); + else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) + predicate = FCmpInst::Predicate(FC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Condition = getFCmpCondCode(predicate); + if (TM.Options.NoNaNsFPMath) + Condition = getFCmpCodeWithoutNaN(Condition); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); +} + +void SelectionDAGBuilder::visitSelect(const User &I) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) return; + + SmallVector<SDValue, 4> Values(NumValues); + SDValue Cond = getValue(I.getOperand(0)); + SDValue TrueVal = getValue(I.getOperand(1)); + SDValue FalseVal = getValue(I.getOperand(2)); + ISD::NodeType OpCode = Cond.getValueType().isVector() ? + ISD::VSELECT : ISD::SELECT; + + for (unsigned i = 0; i != NumValues; ++i) + Values[i] = DAG.getNode(OpCode, getCurSDLoc(), + TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), + Cond, + SDValue(TrueVal.getNode(), + TrueVal.getResNo() + i), + SDValue(FalseVal.getNode(), + FalseVal.getResNo() + i)); + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), + DAG.getVTList(&ValueVTs[0], NumValues), + &Values[0], NumValues)); +} + +void SelectionDAGBuilder::visitTrunc(const User &I) { + // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitZExt(const User &I) { + // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). + // ZExt also can't be a cast to bool for same reason. So, nothing much to do + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitSExt(const User &I) { + // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). + // SExt also can't be a cast to bool for same reason. So, nothing much to do + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitFPTrunc(const User &I) { + // FPTrunc is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + const TargetLowering *TLI = TM.getTargetLowering(); + EVT DestVT = TLI->getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), + DestVT, N, + DAG.getTargetConstant(0, TLI->getPointerTy()))); +} + +void SelectionDAGBuilder::visitFPExt(const User &I) { + // FPExt is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitFPToUI(const User &I) { + // FPToUI is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitFPToSI(const User &I) { + // FPToSI is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitUIToFP(const User &I) { + // UIToFP is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitSIToFP(const User &I) { + // SIToFP is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitPtrToInt(const User &I) { + // What to do depends on the size of the integer and the size of the pointer. + // We can either truncate, zero extend, or no-op, accordingly. + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); +} + +void SelectionDAGBuilder::visitIntToPtr(const User &I) { + // What to do depends on the size of the integer and the size of the pointer. + // We can either truncate, zero extend, or no-op, accordingly. + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); +} + +void SelectionDAGBuilder::visitBitCast(const User &I) { + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + + // BitCast assures us that source and destination are the same size so this is + // either a BITCAST or a no-op. + if (DestVT != N.getValueType()) + setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), + DestVT, N)); // convert types. + else + setValue(&I, N); // noop cast. +} + +void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + const Value *SV = I.getOperand(0); + SDValue N = getValue(SV); + EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); + + unsigned SrcAS = SV->getType()->getPointerAddressSpace(); + unsigned DestAS = I.getType()->getPointerAddressSpace(); + + if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) + N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); + + setValue(&I, N); +} + +void SelectionDAGBuilder::visitInsertElement(const User &I) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue InVec = getValue(I.getOperand(0)); + SDValue InVal = getValue(I.getOperand(1)); + SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), + getCurSDLoc(), TLI.getVectorIdxTy()); + setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), + TM.getTargetLowering()->getValueType(I.getType()), + InVec, InVal, InIdx)); +} + +void SelectionDAGBuilder::visitExtractElement(const User &I) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue InVec = getValue(I.getOperand(0)); + SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), + getCurSDLoc(), TLI.getVectorIdxTy()); + setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), + TM.getTargetLowering()->getValueType(I.getType()), + InVec, InIdx)); +} + +// Utility for visitShuffleVector - Return true if every element in Mask, +// beginning from position Pos and ending in Pos+Size, falls within the +// specified sequential range [L, L+Pos). or is undef. +static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, + unsigned Pos, unsigned Size, int Low) { + for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) + if (Mask[i] >= 0 && Mask[i] != Low) + return false; + return true; +} + +void SelectionDAGBuilder::visitShuffleVector(const User &I) { + SDValue Src1 = getValue(I.getOperand(0)); + SDValue Src2 = getValue(I.getOperand(1)); + + SmallVector<int, 8> Mask; + ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); + unsigned MaskNumElts = Mask.size(); + + const TargetLowering *TLI = TM.getTargetLowering(); + EVT VT = TLI->getValueType(I.getType()); + EVT SrcVT = Src1.getValueType(); + unsigned SrcNumElts = SrcVT.getVectorNumElements(); + + if (SrcNumElts == MaskNumElts) { + setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, + &Mask[0])); + return; + } + + // Normalize the shuffle vector since mask and vector length don't match. + if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { + // Mask is longer than the source vectors and is a multiple of the source + // vectors. We can use concatenate vector to make the mask and vectors + // lengths match. + if (SrcNumElts*2 == MaskNumElts) { + // First check for Src1 in low and Src2 in high + if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && + isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { + // The shuffle is concatenating two vectors together. + setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), + VT, Src1, Src2)); + return; + } + // Then check for Src2 in low and Src1 in high + if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && + isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { + // The shuffle is concatenating two vectors together. + setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), + VT, Src2, Src1)); + return; + } + } + + // Pad both vectors with undefs to make them the same length as the mask. + unsigned NumConcat = MaskNumElts / SrcNumElts; + bool Src1U = Src1.getOpcode() == ISD::UNDEF; + bool Src2U = Src2.getOpcode() == ISD::UNDEF; + SDValue UndefVal = DAG.getUNDEF(SrcVT); + + SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); + SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); + MOps1[0] = Src1; + MOps2[0] = Src2; + + Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, + getCurSDLoc(), VT, + &MOps1[0], NumConcat); + Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, + getCurSDLoc(), VT, + &MOps2[0], NumConcat); + + // Readjust mask for new input vector length. + SmallVector<int, 8> MappedOps; + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + if (Idx >= (int)SrcNumElts) + Idx -= SrcNumElts - MaskNumElts; + MappedOps.push_back(Idx); + } + + setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, + &MappedOps[0])); + return; + } + + if (SrcNumElts > MaskNumElts) { + // Analyze the access pattern of the vector to see if we can extract + // two subvectors and do the shuffle. The analysis is done by calculating + // the range of elements the mask access on both vectors. + int MinRange[2] = { static_cast<int>(SrcNumElts), + static_cast<int>(SrcNumElts)}; + int MaxRange[2] = {-1, -1}; + + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + unsigned Input = 0; + if (Idx < 0) + continue; + + if (Idx >= (int)SrcNumElts) { + Input = 1; + Idx -= SrcNumElts; + } + if (Idx > MaxRange[Input]) + MaxRange[Input] = Idx; + if (Idx < MinRange[Input]) + MinRange[Input] = Idx; + } + + // Check if the access is smaller than the vector size and can we find + // a reasonable extract index. + int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not + // Extract. + int StartIdx[2]; // StartIdx to extract from + for (unsigned Input = 0; Input < 2; ++Input) { + if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { + RangeUse[Input] = 0; // Unused + StartIdx[Input] = 0; + continue; + } + + // Find a good start index that is a multiple of the mask length. Then + // see if the rest of the elements are in range. + StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; + if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && + StartIdx[Input] + MaskNumElts <= SrcNumElts) + RangeUse[Input] = 1; // Extract from a multiple of the mask length. + } + + if (RangeUse[0] == 0 && RangeUse[1] == 0) { + setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. + return; + } + if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { + // Extract appropriate subvector and generate a vector shuffle + for (unsigned Input = 0; Input < 2; ++Input) { + SDValue &Src = Input == 0 ? Src1 : Src2; + if (RangeUse[Input] == 0) + Src = DAG.getUNDEF(VT); + else + Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, + Src, DAG.getConstant(StartIdx[Input], + TLI->getVectorIdxTy())); + } + + // Calculate new mask. + SmallVector<int, 8> MappedOps; + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + if (Idx >= 0) { + if (Idx < (int)SrcNumElts) + Idx -= StartIdx[0]; + else + Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; + } + MappedOps.push_back(Idx); + } + + setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, + &MappedOps[0])); + return; + } + } + + // We can't use either concat vectors or extract subvectors so fall back to + // replacing the shuffle with extract and build vector. + // to insert and build vector. + EVT EltVT = VT.getVectorElementType(); + EVT IdxVT = TLI->getVectorIdxTy(); + SmallVector<SDValue,8> Ops; + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + SDValue Res; + + if (Idx < 0) { + Res = DAG.getUNDEF(EltVT); + } else { + SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; + if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; + + Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), + EltVT, Src, DAG.getConstant(Idx, IdxVT)); + } + + Ops.push_back(Res); + } + + setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), + VT, &Ops[0], Ops.size())); +} + +void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { + const Value *Op0 = I.getOperand(0); + const Value *Op1 = I.getOperand(1); + Type *AggTy = I.getType(); + Type *ValTy = Op1->getType(); + bool IntoUndef = isa<UndefValue>(Op0); + bool FromUndef = isa<UndefValue>(Op1); + + unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); + + const TargetLowering *TLI = TM.getTargetLowering(); + SmallVector<EVT, 4> AggValueVTs; + ComputeValueVTs(*TLI, AggTy, AggValueVTs); + SmallVector<EVT, 4> ValValueVTs; + ComputeValueVTs(*TLI, ValTy, ValValueVTs); + + unsigned NumAggValues = AggValueVTs.size(); + unsigned NumValValues = ValValueVTs.size(); + SmallVector<SDValue, 4> Values(NumAggValues); + + SDValue Agg = getValue(Op0); + unsigned i = 0; + // Copy the beginning value(s) from the original aggregate. + for (; i != LinearIndex; ++i) + Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + // Copy values from the inserted value(s). + if (NumValValues) { + SDValue Val = getValue(Op1); + for (; i != LinearIndex + NumValValues; ++i) + Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : + SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); + } + // Copy remaining value(s) from the original aggregate. + for (; i != NumAggValues; ++i) + Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), + DAG.getVTList(&AggValueVTs[0], NumAggValues), + &Values[0], NumAggValues)); +} + +void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { + const Value *Op0 = I.getOperand(0); + Type *AggTy = Op0->getType(); + Type *ValTy = I.getType(); + bool OutOfUndef = isa<UndefValue>(Op0); + + unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); + + const TargetLowering *TLI = TM.getTargetLowering(); + SmallVector<EVT, 4> ValValueVTs; + ComputeValueVTs(*TLI, ValTy, ValValueVTs); + + unsigned NumValValues = ValValueVTs.size(); + + // Ignore a extractvalue that produces an empty object + if (!NumValValues) { + setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); + return; + } + + SmallVector<SDValue, 4> Values(NumValValues); + + SDValue Agg = getValue(Op0); + // Copy out the selected value(s). + for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) + Values[i - LinearIndex] = + OutOfUndef ? + DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), + DAG.getVTList(&ValValueVTs[0], NumValValues), + &Values[0], NumValValues)); +} + +void SelectionDAGBuilder::visitGetElementPtr(const User &I) { + Value *Op0 = I.getOperand(0); + // Note that the pointer operand may be a vector of pointers. Take the scalar + // element which holds a pointer. + Type *Ty = Op0->getType()->getScalarType(); + unsigned AS = Ty->getPointerAddressSpace(); + SDValue N = getValue(Op0); + + for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); + OI != E; ++OI) { + const Value *Idx = *OI; + if (StructType *StTy = dyn_cast<StructType>(Ty)) { + unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); + if (Field) { + // N = N + Offset + uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); + N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, + DAG.getConstant(Offset, N.getValueType())); + } + + Ty = StTy->getElementType(Field); + } else { + Ty = cast<SequentialType>(Ty)->getElementType(); + + // If this is a constant subscript, handle it quickly. + const TargetLowering *TLI = TM.getTargetLowering(); + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { + if (CI->isZero()) continue; + uint64_t Offs = + TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); + SDValue OffsVal; + EVT PTy = TLI->getPointerTy(AS); + unsigned PtrBits = PTy.getSizeInBits(); + if (PtrBits < 64) + OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, + DAG.getConstant(Offs, MVT::i64)); + else + OffsVal = DAG.getConstant(Offs, PTy); + + N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, + OffsVal); + continue; + } + + // N = N + Idx * ElementSize; + APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), + TD->getTypeAllocSize(Ty)); + SDValue IdxN = getValue(Idx); + + // If the index is smaller or larger than intptr_t, truncate or extend + // it. + IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); + + // If this is a multiply by a power of two, turn it into a shl + // immediately. This is a very common case. + if (ElementSize != 1) { + if (ElementSize.isPowerOf2()) { + unsigned Amt = ElementSize.logBase2(); + IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), + N.getValueType(), IdxN, + DAG.getConstant(Amt, IdxN.getValueType())); + } else { + SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); + IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), + N.getValueType(), IdxN, Scale); + } + } + + N = DAG.getNode(ISD::ADD, getCurSDLoc(), + N.getValueType(), N, IdxN); + } + } + + setValue(&I, N); +} + +void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { + // If this is a fixed sized alloca in the entry block of the function, + // allocate it statically on the stack. + if (FuncInfo.StaticAllocaMap.count(&I)) + return; // getValue will auto-populate this. + + Type *Ty = I.getAllocatedType(); + const TargetLowering *TLI = TM.getTargetLowering(); + uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); + unsigned Align = + std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), + I.getAlignment()); + + SDValue AllocSize = getValue(I.getArraySize()); + + EVT IntPtr = TLI->getPointerTy(); + if (AllocSize.getValueType() != IntPtr) + AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); + + AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, + AllocSize, + DAG.getConstant(TySize, IntPtr)); + + // Handle alignment. If the requested alignment is less than or equal to + // the stack alignment, ignore it. If the size is greater than or equal to + // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. + unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); + if (Align <= StackAlign) + Align = 0; + + // Round the size of the allocation up to the stack alignment size + // by add SA-1 to the size. + AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), + AllocSize.getValueType(), AllocSize, + DAG.getIntPtrConstant(StackAlign-1)); + + // Mask out the low bits for alignment purposes. + AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), + AllocSize.getValueType(), AllocSize, + DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); + + SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; + SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); + SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), + VTs, Ops, 3); + setValue(&I, DSA); + DAG.setRoot(DSA.getValue(1)); + + // Inform the Frame Information that we have just allocated a variable-sized + // object. + FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); +} + +void SelectionDAGBuilder::visitLoad(const LoadInst &I) { + if (I.isAtomic()) + return visitAtomicLoad(I); + + const Value *SV = I.getOperand(0); + SDValue Ptr = getValue(SV); + + Type *Ty = I.getType(); + + bool isVolatile = I.isVolatile(); + bool isNonTemporal = I.getMetadata("nontemporal") != 0; + bool isInvariant = I.getMetadata("invariant.load") != 0; + unsigned Alignment = I.getAlignment(); + const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); + const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); + + SmallVector<EVT, 4> ValueVTs; + SmallVector<uint64_t, 4> Offsets; + ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) + return; + + SDValue Root; + bool ConstantMemory = false; + if (I.isVolatile() || NumValues > MaxParallelChains) + // Serialize volatile loads with other side effects. + Root = getRoot(); + else if (AA->pointsToConstantMemory( + AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { + // Do not serialize (non-volatile) loads of constant memory with anything. + Root = DAG.getEntryNode(); + ConstantMemory = true; + } else { + // Do not serialize non-volatile loads against each other. + Root = DAG.getRoot(); + } + + SmallVector<SDValue, 4> Values(NumValues); + SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), + NumValues)); + EVT PtrVT = Ptr.getValueType(); + unsigned ChainI = 0; + for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { + // Serializing loads here may result in excessive register pressure, and + // TokenFactor places arbitrary choke points on the scheduler. SD scheduling + // could recover a bit by hoisting nodes upward in the chain by recognizing + // they are side-effect free or do not alias. The optimizer should really + // avoid this case by converting large object/array copies to llvm.memcpy + // (MaxParallelChains should always remain as failsafe). + if (ChainI == MaxParallelChains) { + assert(PendingLoads.empty() && "PendingLoads must be serialized first"); + SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), + MVT::Other, &Chains[0], ChainI); + Root = Chain; + ChainI = 0; + } + SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), + PtrVT, Ptr, + DAG.getConstant(Offsets[i], PtrVT)); + SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, + A, MachinePointerInfo(SV, Offsets[i]), isVolatile, + isNonTemporal, isInvariant, Alignment, TBAAInfo, + Ranges); + + Values[i] = L; + Chains[ChainI] = L.getValue(1); + } + + if (!ConstantMemory) { + SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), + MVT::Other, &Chains[0], ChainI); + if (isVolatile) + DAG.setRoot(Chain); + else + PendingLoads.push_back(Chain); + } + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), + DAG.getVTList(&ValueVTs[0], NumValues), + &Values[0], NumValues)); +} + +void SelectionDAGBuilder::visitStore(const StoreInst &I) { + if (I.isAtomic()) + return visitAtomicStore(I); + + const Value *SrcV = I.getOperand(0); + const Value *PtrV = I.getOperand(1); + + SmallVector<EVT, 4> ValueVTs; + SmallVector<uint64_t, 4> Offsets; + ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) + return; + + // Get the lowered operands. Note that we do this after + // checking if NumResults is zero, because with zero results + // the operands won't have values in the map. + SDValue Src = getValue(SrcV); + SDValue Ptr = getValue(PtrV); + + SDValue Root = getRoot(); + SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), + NumValues)); + EVT PtrVT = Ptr.getValueType(); + bool isVolatile = I.isVolatile(); + bool isNonTemporal = I.getMetadata("nontemporal") != 0; + unsigned Alignment = I.getAlignment(); + const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); + + unsigned ChainI = 0; + for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { + // See visitLoad comments. + if (ChainI == MaxParallelChains) { + SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), + MVT::Other, &Chains[0], ChainI); + Root = Chain; + ChainI = 0; + } + SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, + DAG.getConstant(Offsets[i], PtrVT)); + SDValue St = DAG.getStore(Root, getCurSDLoc(), + SDValue(Src.getNode(), Src.getResNo() + i), + Add, MachinePointerInfo(PtrV, Offsets[i]), + isVolatile, isNonTemporal, Alignment, TBAAInfo); + Chains[ChainI] = St; + } + + SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), + MVT::Other, &Chains[0], ChainI); + DAG.setRoot(StoreNode); +} + +static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, + SynchronizationScope Scope, + bool Before, SDLoc dl, + SelectionDAG &DAG, + const TargetLowering &TLI) { + // Fence, if necessary + if (Before) { + if (Order == AcquireRelease || Order == SequentiallyConsistent) + Order = Release; + else if (Order == Acquire || Order == Monotonic) + return Chain; + } else { + if (Order == AcquireRelease) + Order = Acquire; + else if (Order == Release || Order == Monotonic) + return Chain; + } + SDValue Ops[3]; + Ops[0] = Chain; + Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); + Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); + return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); +} + +void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { + SDLoc dl = getCurSDLoc(); + AtomicOrdering Order = I.getOrdering(); + SynchronizationScope Scope = I.getSynchScope(); + + SDValue InChain = getRoot(); + + const TargetLowering *TLI = TM.getTargetLowering(); + if (TLI->getInsertFencesForAtomic()) + InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, + DAG, *TLI); + + SDValue L = + DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, + getValue(I.getCompareOperand()).getSimpleValueType(), + InChain, + getValue(I.getPointerOperand()), + getValue(I.getCompareOperand()), + getValue(I.getNewValOperand()), + MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, + TLI->getInsertFencesForAtomic() ? Monotonic : Order, + Scope); + + SDValue OutChain = L.getValue(1); + + if (TLI->getInsertFencesForAtomic()) + OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, + DAG, *TLI); + + setValue(&I, L); + DAG.setRoot(OutChain); +} + +void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { + SDLoc dl = getCurSDLoc(); + ISD::NodeType NT; + switch (I.getOperation()) { + default: llvm_unreachable("Unknown atomicrmw operation"); + case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; + case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; + case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; + case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; + case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; + case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; + case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; + case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; + case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; + case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; + case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; + } + AtomicOrdering Order = I.getOrdering(); + SynchronizationScope Scope = I.getSynchScope(); + + SDValue InChain = getRoot(); + + const TargetLowering *TLI = TM.getTargetLowering(); + if (TLI->getInsertFencesForAtomic()) + InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, + DAG, *TLI); + + SDValue L = + DAG.getAtomic(NT, dl, + getValue(I.getValOperand()).getSimpleValueType(), + InChain, + getValue(I.getPointerOperand()), + getValue(I.getValOperand()), + I.getPointerOperand(), 0 /* Alignment */, + TLI->getInsertFencesForAtomic() ? Monotonic : Order, + Scope); + + SDValue OutChain = L.getValue(1); + + if (TLI->getInsertFencesForAtomic()) + OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, + DAG, *TLI); + + setValue(&I, L); + DAG.setRoot(OutChain); +} + +void SelectionDAGBuilder::visitFence(const FenceInst &I) { + SDLoc dl = getCurSDLoc(); + const TargetLowering *TLI = TM.getTargetLowering(); + SDValue Ops[3]; + Ops[0] = getRoot(); + Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); + Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); + DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); +} + +void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { + SDLoc dl = getCurSDLoc(); + AtomicOrdering Order = I.getOrdering(); + SynchronizationScope Scope = I.getSynchScope(); + + SDValue InChain = getRoot(); + + const TargetLowering *TLI = TM.getTargetLowering(); + EVT VT = TLI->getValueType(I.getType()); + + if (I.getAlignment() < VT.getSizeInBits() / 8) + report_fatal_error("Cannot generate unaligned atomic load"); + + SDValue L = + DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, + getValue(I.getPointerOperand()), + I.getPointerOperand(), I.getAlignment(), + TLI->getInsertFencesForAtomic() ? Monotonic : Order, + Scope); + + SDValue OutChain = L.getValue(1); + + if (TLI->getInsertFencesForAtomic()) + OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, + DAG, *TLI); + + setValue(&I, L); + DAG.setRoot(OutChain); +} + +void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { + SDLoc dl = getCurSDLoc(); + + AtomicOrdering Order = I.getOrdering(); + SynchronizationScope Scope = I.getSynchScope(); + + SDValue InChain = getRoot(); + + const TargetLowering *TLI = TM.getTargetLowering(); + EVT VT = TLI->getValueType(I.getValueOperand()->getType()); + + if (I.getAlignment() < VT.getSizeInBits() / 8) + report_fatal_error("Cannot generate unaligned atomic store"); + + if (TLI->getInsertFencesForAtomic()) + InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, + DAG, *TLI); + + SDValue OutChain = + DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, + InChain, + getValue(I.getPointerOperand()), + getValue(I.getValueOperand()), + I.getPointerOperand(), I.getAlignment(), + TLI->getInsertFencesForAtomic() ? Monotonic : Order, + Scope); + + if (TLI->getInsertFencesForAtomic()) + OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, + DAG, *TLI); + + DAG.setRoot(OutChain); +} + +/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC +/// node. +void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, + unsigned Intrinsic) { + bool HasChain = !I.doesNotAccessMemory(); + bool OnlyLoad = HasChain && I.onlyReadsMemory(); + + // Build the operand list. + SmallVector<SDValue, 8> Ops; + if (HasChain) { // If this intrinsic has side-effects, chainify it. + if (OnlyLoad) { + // We don't need to serialize loads against other loads. + Ops.push_back(DAG.getRoot()); + } else { + Ops.push_back(getRoot()); + } + } + + // Info is set by getTgtMemInstrinsic + TargetLowering::IntrinsicInfo Info; + const TargetLowering *TLI = TM.getTargetLowering(); + bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); + + // Add the intrinsic ID as an integer operand if it's not a target intrinsic. + if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || + Info.opc == ISD::INTRINSIC_W_CHAIN) + Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); + + // Add all operands of the call to the operand list. + for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { + SDValue Op = getValue(I.getArgOperand(i)); + Ops.push_back(Op); + } + + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(*TLI, I.getType(), ValueVTs); + + if (HasChain) + ValueVTs.push_back(MVT::Other); + + SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); + + // Create the node. + SDValue Result; + if (IsTgtIntrinsic) { + // This is target intrinsic that touches memory + Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), + VTs, &Ops[0], Ops.size(), + Info.memVT, + MachinePointerInfo(Info.ptrVal, Info.offset), + Info.align, Info.vol, + Info.readMem, Info.writeMem); + } else if (!HasChain) { + Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), + VTs, &Ops[0], Ops.size()); + } else if (!I.getType()->isVoidTy()) { + Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), + VTs, &Ops[0], Ops.size()); + } else { + Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), + VTs, &Ops[0], Ops.size()); + } + + if (HasChain) { + SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); + if (OnlyLoad) + PendingLoads.push_back(Chain); + else + DAG.setRoot(Chain); + } + + if (!I.getType()->isVoidTy()) { + if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { + EVT VT = TLI->getValueType(PTy); + Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); + } + + setValue(&I, Result); + } +} + +/// GetSignificand - Get the significand and build it into a floating-point +/// number with exponent of 1: +/// +/// Op = (Op & 0x007fffff) | 0x3f800000; +/// +/// where Op is the hexadecimal representation of floating point value. +static SDValue +GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { + SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, + DAG.getConstant(0x007fffff, MVT::i32)); + SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, + DAG.getConstant(0x3f800000, MVT::i32)); + return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); +} + +/// GetExponent - Get the exponent: +/// +/// (float)(int)(((Op & 0x7f800000) >> 23) - 127); +/// +/// where Op is the hexadecimal representation of floating point value. +static SDValue +GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, + SDLoc dl) { + SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, + DAG.getConstant(0x7f800000, MVT::i32)); + SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, + DAG.getConstant(23, TLI.getPointerTy())); + SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, + DAG.getConstant(127, MVT::i32)); + return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); +} + +/// getF32Constant - Get 32-bit floating point constant. +static SDValue +getF32Constant(SelectionDAG &DAG, unsigned Flt) { + return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), + MVT::f32); +} + +/// expandExp - Lower an exp intrinsic. Handles the special sequences for +/// limited-precision mode. +static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, + const TargetLowering &TLI) { + if (Op.getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + + // Put the exponent in the right bit position for later addition to the + // final result: + // + // #define LOG2OFe 1.4426950f + // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, + getF32Constant(DAG, 0x3fb8aa3b)); + SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); + + // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; + SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); + SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); + + // IntegerPartOfX <<= 23; + IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, + DAG.getConstant(23, TLI.getPointerTy())); + + SDValue TwoToFracPartOfX; + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // TwoToFractionalPartOfX = + // 0.997535578f + + // (0.735607626f + 0.252464424f * x) * x; + // + // error 0.0144103317, which is 6 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3e814304)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f3c50c8)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f7f5e7e)); + } else if (LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // TwoToFractionalPartOfX = + // 0.999892986f + + // (0.696457318f + + // (0.224338339f + 0.792043434e-1f * x) * x) * x; + // + // 0.000107046256 error, which is 13 to 14 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3da235e3)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3e65b8f3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f324b07)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3f7ff8fd)); + } else { // LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // TwoToFractionalPartOfX = + // 0.999999982f + + // (0.693148872f + + // (0.240227044f + + // (0.554906021e-1f + + // (0.961591928e-2f + + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; + // + // error 2.47208000*10^(-7), which is better than 18 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3924b03e)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3ab24b87)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3c1d8c17)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3d634a1d)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3e75fe14)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, + getF32Constant(DAG, 0x3f317234)); + SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); + TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, + getF32Constant(DAG, 0x3f800000)); + } + + // Add the exponent into the result in integer domain. + SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); + return DAG.getNode(ISD::BITCAST, dl, MVT::f32, + DAG.getNode(ISD::ADD, dl, MVT::i32, + t13, IntegerPartOfX)); + } + + // No special expansion. + return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); +} + +/// expandLog - Lower a log intrinsic. Handles the special sequences for +/// limited-precision mode. +static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, + const TargetLowering &TLI) { + if (Op.getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); + + // Scale the exponent by log(2) [0.69314718f]. + SDValue Exp = GetExponent(DAG, Op1, TLI, dl); + SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, + getF32Constant(DAG, 0x3f317218)); + + // Get the significand and build it into a floating-point number with + // exponent of 1. + SDValue X = GetSignificand(DAG, Op1, dl); + + SDValue LogOfMantissa; + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // LogofMantissa = + // -1.1609546f + + // (1.4034025f - 0.23903021f * x) * x; + // + // error 0.0034276066, which is better than 8 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbe74c456)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3fb3a2b1)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f949a29)); + } else if (LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // LogOfMantissa = + // -1.7417939f + + // (2.8212026f + + // (-1.4699568f + + // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; + // + // error 0.000061011436, which is 14 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbd67b6d6)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3ee4f4b8)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3fbc278b)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x40348e95)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3fdef31a)); + } else { // LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // LogOfMantissa = + // -2.1072184f + + // (4.2372794f + + // (-3.7029485f + + // (2.2781945f + + // (-0.87823314f + + // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; + // + // error 0.0000023660568, which is better than 18 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbc91e5ac)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3e4350aa)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f60d3e3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x4011cdf0)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x406cfd1c)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x408797cb)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, + getF32Constant(DAG, 0x4006dcab)); + } + + return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); + } + + // No special expansion. + return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); +} + +/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for +/// limited-precision mode. +static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, + const TargetLowering &TLI) { + if (Op.getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); + + // Get the exponent. + SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); + + // Get the significand and build it into a floating-point number with + // exponent of 1. + SDValue X = GetSignificand(DAG, Op1, dl); + + // Different possible minimax approximations of significand in + // floating-point for various degrees of accuracy over [1,2]. + SDValue Log2ofMantissa; + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; + // + // error 0.0049451742, which is more than 7 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbeb08fe0)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x40019463)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3fd6633d)); + } else if (LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // Log2ofMantissa = + // -2.51285454f + + // (4.07009056f + + // (-2.12067489f + + // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; + // + // error 0.0000876136000, which is better than 13 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbda7262e)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3f25280b)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x4007b923)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x40823e2f)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x4020d29c)); + } else { // LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // Log2ofMantissa = + // -3.0400495f + + // (6.1129976f + + // (-5.3420409f + + // (3.2865683f + + // (-1.2669343f + + // (0.27515199f - + // 0.25691327e-1f * x) * x) * x) * x) * x) * x; + // + // error 0.0000018516, which is better than 18 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbcd2769e)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3e8ce0b9)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3fa22ae7)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x40525723)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x40aaf200)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x40c39dad)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, + getF32Constant(DAG, 0x4042902c)); + } + + return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); + } + + // No special expansion. + return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); +} + +/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for +/// limited-precision mode. +static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, + const TargetLowering &TLI) { + if (Op.getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); + + // Scale the exponent by log10(2) [0.30102999f]. + SDValue Exp = GetExponent(DAG, Op1, TLI, dl); + SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, + getF32Constant(DAG, 0x3e9a209a)); + + // Get the significand and build it into a floating-point number with + // exponent of 1. + SDValue X = GetSignificand(DAG, Op1, dl); + + SDValue Log10ofMantissa; + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // Log10ofMantissa = + // -0.50419619f + + // (0.60948995f - 0.10380950f * x) * x; + // + // error 0.0014886165, which is 6 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbdd49a13)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3f1c0789)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f011300)); + } else if (LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // Log10ofMantissa = + // -0.64831180f + + // (0.91751397f + + // (-0.31664806f + 0.47637168e-1f * x) * x) * x; + // + // error 0.00019228036, which is better than 12 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3d431f31)); + SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3ea21fb2)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f6ae232)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f25f7c3)); + } else { // LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // Log10ofMantissa = + // -0.84299375f + + // (1.5327582f + + // (-1.0688956f + + // (0.49102474f + + // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; + // + // error 0.0000037995730, which is better than 18 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3c5d51ce)); + SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3e00685a)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3efb6798)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f88d192)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3fc4316c)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3f57ce70)); + } + + return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); + } + + // No special expansion. + return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); +} + +/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for +/// limited-precision mode. +static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, + const TargetLowering &TLI) { + if (Op.getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); + + // FractionalPartOfX = x - (float)IntegerPartOfX; + SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); + SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); + + // IntegerPartOfX <<= 23; + IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, + DAG.getConstant(23, TLI.getPointerTy())); + + SDValue TwoToFractionalPartOfX; + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // TwoToFractionalPartOfX = + // 0.997535578f + + // (0.735607626f + 0.252464424f * x) * x; + // + // error 0.0144103317, which is 6 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3e814304)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f3c50c8)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f7f5e7e)); + } else if (LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // TwoToFractionalPartOfX = + // 0.999892986f + + // (0.696457318f + + // (0.224338339f + 0.792043434e-1f * x) * x) * x; + // + // error 0.000107046256, which is 13 to 14 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3da235e3)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3e65b8f3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f324b07)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3f7ff8fd)); + } else { // LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // TwoToFractionalPartOfX = + // 0.999999982f + + // (0.693148872f + + // (0.240227044f + + // (0.554906021e-1f + + // (0.961591928e-2f + + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; + // error 2.47208000*10^(-7), which is better than 18 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3924b03e)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3ab24b87)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3c1d8c17)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3d634a1d)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3e75fe14)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, + getF32Constant(DAG, 0x3f317234)); + SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); + TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, + getF32Constant(DAG, 0x3f800000)); + } + + // Add the exponent into the result in integer domain. + SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, + TwoToFractionalPartOfX); + return DAG.getNode(ISD::BITCAST, dl, MVT::f32, + DAG.getNode(ISD::ADD, dl, MVT::i32, + t13, IntegerPartOfX)); + } + + // No special expansion. + return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); +} + +/// visitPow - Lower a pow intrinsic. Handles the special sequences for +/// limited-precision mode with x == 10.0f. +static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, + SelectionDAG &DAG, const TargetLowering &TLI) { + bool IsExp10 = false; + if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { + APFloat Ten(10.0f); + IsExp10 = LHSC->isExactlyValue(Ten); + } + } + + if (IsExp10) { + // Put the exponent in the right bit position for later addition to the + // final result: + // + // #define LOG2OF10 3.3219281f + // IntegerPartOfX = (int32_t)(x * LOG2OF10); + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, + getF32Constant(DAG, 0x40549a78)); + SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); + + // FractionalPartOfX = x - (float)IntegerPartOfX; + SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); + SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); + + // IntegerPartOfX <<= 23; + IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, + DAG.getConstant(23, TLI.getPointerTy())); + + SDValue TwoToFractionalPartOfX; + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // twoToFractionalPartOfX = + // 0.997535578f + + // (0.735607626f + 0.252464424f * x) * x; + // + // error 0.0144103317, which is 6 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3e814304)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f3c50c8)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f7f5e7e)); + } else if (LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // TwoToFractionalPartOfX = + // 0.999892986f + + // (0.696457318f + + // (0.224338339f + 0.792043434e-1f * x) * x) * x; + // + // error 0.000107046256, which is 13 to 14 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3da235e3)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3e65b8f3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f324b07)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3f7ff8fd)); + } else { // LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // TwoToFractionalPartOfX = + // 0.999999982f + + // (0.693148872f + + // (0.240227044f + + // (0.554906021e-1f + + // (0.961591928e-2f + + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; + // error 2.47208000*10^(-7), which is better than 18 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3924b03e)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3ab24b87)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3c1d8c17)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3d634a1d)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3e75fe14)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, + getF32Constant(DAG, 0x3f317234)); + SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); + TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, + getF32Constant(DAG, 0x3f800000)); + } + + SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); + return DAG.getNode(ISD::BITCAST, dl, MVT::f32, + DAG.getNode(ISD::ADD, dl, MVT::i32, + t13, IntegerPartOfX)); + } + + // No special expansion. + return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); +} + + +/// ExpandPowI - Expand a llvm.powi intrinsic. +static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, + SelectionDAG &DAG) { + // If RHS is a constant, we can expand this out to a multiplication tree, + // otherwise we end up lowering to a call to __powidf2 (for example). When + // optimizing for size, we only want to do this if the expansion would produce + // a small number of multiplies, otherwise we do the full expansion. + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { + // Get the exponent as a positive value. + unsigned Val = RHSC->getSExtValue(); + if ((int)Val < 0) Val = -Val; + + // powi(x, 0) -> 1.0 + if (Val == 0) + return DAG.getConstantFP(1.0, LHS.getValueType()); + + const Function *F = DAG.getMachineFunction().getFunction(); + if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, + Attribute::OptimizeForSize) || + // If optimizing for size, don't insert too many multiplies. This + // inserts up to 5 multiplies. + CountPopulation_32(Val)+Log2_32(Val) < 7) { + // We use the simple binary decomposition method to generate the multiply + // sequence. There are more optimal ways to do this (for example, + // powi(x,15) generates one more multiply than it should), but this has + // the benefit of being both really simple and much better than a libcall. + SDValue Res; // Logically starts equal to 1.0 + SDValue CurSquare = LHS; + while (Val) { + if (Val & 1) { + if (Res.getNode()) + Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); + else + Res = CurSquare; // 1.0*CurSquare. + } + + CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), + CurSquare, CurSquare); + Val >>= 1; + } + + // If the original was negative, invert the result, producing 1/(x*x*x). + if (RHSC->getSExtValue() < 0) + Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), + DAG.getConstantFP(1.0, LHS.getValueType()), Res); + return Res; + } + } + + // Otherwise, expand to a libcall. + return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); +} + +// getTruncatedArgReg - Find underlying register used for an truncated +// argument. +static unsigned getTruncatedArgReg(const SDValue &N) { + if (N.getOpcode() != ISD::TRUNCATE) + return 0; + + const SDValue &Ext = N.getOperand(0); + if (Ext.getOpcode() == ISD::AssertZext || + Ext.getOpcode() == ISD::AssertSext) { + const SDValue &CFR = Ext.getOperand(0); + if (CFR.getOpcode() == ISD::CopyFromReg) + return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); + if (CFR.getOpcode() == ISD::TRUNCATE) + return getTruncatedArgReg(CFR); + } + return 0; +} + +/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function +/// argument, create the corresponding DBG_VALUE machine instruction for it now. +/// At the end of instruction selection, they will be inserted to the entry BB. +bool +SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, + int64_t Offset, + const SDValue &N) { + const Argument *Arg = dyn_cast<Argument>(V); + if (!Arg) + return false; + + MachineFunction &MF = DAG.getMachineFunction(); + const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); + + // Ignore inlined function arguments here. + DIVariable DV(Variable); + if (DV.isInlinedFnArgument(MF.getFunction())) + return false; + + Optional<MachineOperand> Op; + // Some arguments' frame index is recorded during argument lowering. + if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) + Op = MachineOperand::CreateFI(FI); + + if (!Op && N.getNode()) { + unsigned Reg; + if (N.getOpcode() == ISD::CopyFromReg) + Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); + else + Reg = getTruncatedArgReg(N); + if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + unsigned PR = RegInfo.getLiveInPhysReg(Reg); + if (PR) + Reg = PR; + } + if (Reg) + Op = MachineOperand::CreateReg(Reg, false); + } + + if (!Op) { + // Check if ValueMap has reg number. + DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); + if (VMI != FuncInfo.ValueMap.end()) + Op = MachineOperand::CreateReg(VMI->second, false); + } + + if (!Op && N.getNode()) + // Check if frame index is available. + if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) + if (FrameIndexSDNode *FINode = + dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) + Op = MachineOperand::CreateFI(FINode->getIndex()); + + if (!Op) + return false; + + // FIXME: This does not handle register-indirect values at offset 0. + bool IsIndirect = Offset != 0; + if (Op->isReg()) + FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), + TII->get(TargetOpcode::DBG_VALUE), + IsIndirect, + Op->getReg(), Offset, Variable)); + else + FuncInfo.ArgDbgValues.push_back( + BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) + .addOperand(*Op).addImm(Offset).addMetadata(Variable)); + + return true; +} + +// VisualStudio defines setjmp as _setjmp +#if defined(_MSC_VER) && defined(setjmp) && \ + !defined(setjmp_undefined_for_msvc) +# pragma push_macro("setjmp") +# undef setjmp +# define setjmp_undefined_for_msvc +#endif + +/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If +/// we want to emit this as a call to a named external function, return the name +/// otherwise lower it and return null. +const char * +SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { + const TargetLowering *TLI = TM.getTargetLowering(); + SDLoc sdl = getCurSDLoc(); + DebugLoc dl = getCurDebugLoc(); + SDValue Res; + + switch (Intrinsic) { + default: + // By default, turn this into a target intrinsic node. + visitTargetIntrinsic(I, Intrinsic); + return 0; + case Intrinsic::vastart: visitVAStart(I); return 0; + case Intrinsic::vaend: visitVAEnd(I); return 0; + case Intrinsic::vacopy: visitVACopy(I); return 0; + case Intrinsic::returnaddress: + setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), + getValue(I.getArgOperand(0)))); + return 0; + case Intrinsic::frameaddress: + setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), + getValue(I.getArgOperand(0)))); + return 0; + case Intrinsic::setjmp: + return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; + case Intrinsic::longjmp: + return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; + case Intrinsic::memcpy: { + // Assert for address < 256 since we support only user defined address + // spaces. + assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() + < 256 && + cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() + < 256 && + "Unknown address space"); + SDValue Op1 = getValue(I.getArgOperand(0)); + SDValue Op2 = getValue(I.getArgOperand(1)); + SDValue Op3 = getValue(I.getArgOperand(2)); + unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); + if (!Align) + Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. + bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); + DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, + MachinePointerInfo(I.getArgOperand(0)), + MachinePointerInfo(I.getArgOperand(1)))); + return 0; + } + case Intrinsic::memset: { + // Assert for address < 256 since we support only user defined address + // spaces. + assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() + < 256 && + "Unknown address space"); + SDValue Op1 = getValue(I.getArgOperand(0)); + SDValue Op2 = getValue(I.getArgOperand(1)); + SDValue Op3 = getValue(I.getArgOperand(2)); + unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); + if (!Align) + Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. + bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); + DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, + MachinePointerInfo(I.getArgOperand(0)))); + return 0; + } + case Intrinsic::memmove: { + // Assert for address < 256 since we support only user defined address + // spaces. + assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() + < 256 && + cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() + < 256 && + "Unknown address space"); + SDValue Op1 = getValue(I.getArgOperand(0)); + SDValue Op2 = getValue(I.getArgOperand(1)); + SDValue Op3 = getValue(I.getArgOperand(2)); + unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); + if (!Align) + Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. + bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); + DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, + MachinePointerInfo(I.getArgOperand(0)), + MachinePointerInfo(I.getArgOperand(1)))); + return 0; + } + case Intrinsic::dbg_declare: { + const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); + MDNode *Variable = DI.getVariable(); + const Value *Address = DI.getAddress(); + DIVariable DIVar(Variable); + assert((!DIVar || DIVar.isVariable()) && + "Variable in DbgDeclareInst should be either null or a DIVariable."); + if (!Address || !DIVar) { + DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); + return 0; + } + + // Check if address has undef value. + if (isa<UndefValue>(Address) || + (Address->use_empty() && !isa<Argument>(Address))) { + DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); + return 0; + } + + SDValue &N = NodeMap[Address]; + if (!N.getNode() && isa<Argument>(Address)) + // Check unused arguments map. + N = UnusedArgNodeMap[Address]; + SDDbgValue *SDV; + if (N.getNode()) { + if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) + Address = BCI->getOperand(0); + // Parameters are handled specially. + bool isParameter = + (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || + isa<Argument>(Address)); + + const AllocaInst *AI = dyn_cast<AllocaInst>(Address); + + if (isParameter && !AI) { + FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); + if (FINode) + // Byval parameter. We have a frame index at this point. + SDV = DAG.getDbgValue(Variable, FINode->getIndex(), + 0, dl, SDNodeOrder); + else { + // Address is an argument, so try to emit its dbg value using + // virtual register info from the FuncInfo.ValueMap. + EmitFuncArgumentDbgValue(Address, Variable, 0, N); + return 0; + } + } else if (AI) + SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), + 0, dl, SDNodeOrder); + else { + // Can't do anything with other non-AI cases yet. + DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); + DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); + DEBUG(Address->dump()); + return 0; + } + DAG.AddDbgValue(SDV, N.getNode(), isParameter); + } else { + // If Address is an argument then try to emit its dbg value using + // virtual register info from the FuncInfo.ValueMap. + if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { + // If variable is pinned by a alloca in dominating bb then + // use StaticAllocaMap. + if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { + if (AI->getParent() != DI.getParent()) { + DenseMap<const AllocaInst*, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(AI); + if (SI != FuncInfo.StaticAllocaMap.end()) { + SDV = DAG.getDbgValue(Variable, SI->second, + 0, dl, SDNodeOrder); + DAG.AddDbgValue(SDV, 0, false); + return 0; + } + } + } + DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); + } + } + return 0; + } + case Intrinsic::dbg_value: { + const DbgValueInst &DI = cast<DbgValueInst>(I); + DIVariable DIVar(DI.getVariable()); + assert((!DIVar || DIVar.isVariable()) && + "Variable in DbgValueInst should be either null or a DIVariable."); + if (!DIVar) + return 0; + + MDNode *Variable = DI.getVariable(); + uint64_t Offset = DI.getOffset(); + const Value *V = DI.getValue(); + if (!V) + return 0; + + SDDbgValue *SDV; + if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { + SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); + DAG.AddDbgValue(SDV, 0, false); + } else { + // Do not use getValue() in here; we don't want to generate code at + // this point if it hasn't been done yet. + SDValue N = NodeMap[V]; + if (!N.getNode() && isa<Argument>(V)) + // Check unused arguments map. + N = UnusedArgNodeMap[V]; + if (N.getNode()) { + if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { + SDV = DAG.getDbgValue(Variable, N.getNode(), + N.getResNo(), Offset, dl, SDNodeOrder); + DAG.AddDbgValue(SDV, N.getNode(), false); + } + } else if (!V->use_empty() ) { + // Do not call getValue(V) yet, as we don't want to generate code. + // Remember it for later. + DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); + DanglingDebugInfoMap[V] = DDI; + } else { + // We may expand this to cover more cases. One case where we have no + // data available is an unreferenced parameter. + DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); + } + } + + // Build a debug info table entry. + if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) + V = BCI->getOperand(0); + const AllocaInst *AI = dyn_cast<AllocaInst>(V); + // Don't handle byval struct arguments or VLAs, for example. + if (!AI) { + DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); + DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); + return 0; + } + DenseMap<const AllocaInst*, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(AI); + if (SI == FuncInfo.StaticAllocaMap.end()) + return 0; // VLAs. + int FI = SI->second; + + MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); + if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) + MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); + return 0; + } + + case Intrinsic::eh_typeid_for: { + // Find the type id for the given typeinfo. + GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); + unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); + Res = DAG.getConstant(TypeID, MVT::i32); + setValue(&I, Res); + return 0; + } + + case Intrinsic::eh_return_i32: + case Intrinsic::eh_return_i64: + DAG.getMachineFunction().getMMI().setCallsEHReturn(true); + DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, + MVT::Other, + getControlRoot(), + getValue(I.getArgOperand(0)), + getValue(I.getArgOperand(1)))); + return 0; + case Intrinsic::eh_unwind_init: + DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); + return 0; + case Intrinsic::eh_dwarf_cfa: { + SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, + TLI->getPointerTy()); + SDValue Offset = DAG.getNode(ISD::ADD, sdl, + CfaArg.getValueType(), + DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, + CfaArg.getValueType()), + CfaArg); + SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, + TLI->getPointerTy(), + DAG.getConstant(0, TLI->getPointerTy())); + setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), + FA, Offset)); + return 0; + } + case Intrinsic::eh_sjlj_callsite: { + MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); + ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); + assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); + assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); + + MMI.setCurrentCallSite(CI->getZExtValue()); + return 0; + } + case Intrinsic::eh_sjlj_functioncontext: { + // Get and store the index of the function context. + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + AllocaInst *FnCtx = + cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); + int FI = FuncInfo.StaticAllocaMap[FnCtx]; + MFI->setFunctionContextIndex(FI); + return 0; + } + case Intrinsic::eh_sjlj_setjmp: { + SDValue Ops[2]; + Ops[0] = getRoot(); + Ops[1] = getValue(I.getArgOperand(0)); + SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, + DAG.getVTList(MVT::i32, MVT::Other), + Ops, 2); + setValue(&I, Op.getValue(0)); + DAG.setRoot(Op.getValue(1)); + return 0; + } + case Intrinsic::eh_sjlj_longjmp: { + DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, + getRoot(), getValue(I.getArgOperand(0)))); + return 0; + } + + case Intrinsic::x86_mmx_pslli_w: + case Intrinsic::x86_mmx_pslli_d: + case Intrinsic::x86_mmx_pslli_q: + case Intrinsic::x86_mmx_psrli_w: + case Intrinsic::x86_mmx_psrli_d: + case Intrinsic::x86_mmx_psrli_q: + case Intrinsic::x86_mmx_psrai_w: + case Intrinsic::x86_mmx_psrai_d: { + SDValue ShAmt = getValue(I.getArgOperand(1)); + if (isa<ConstantSDNode>(ShAmt)) { + visitTargetIntrinsic(I, Intrinsic); + return 0; + } + unsigned NewIntrinsic = 0; + EVT ShAmtVT = MVT::v2i32; + switch (Intrinsic) { + case Intrinsic::x86_mmx_pslli_w: + NewIntrinsic = Intrinsic::x86_mmx_psll_w; + break; + case Intrinsic::x86_mmx_pslli_d: + NewIntrinsic = Intrinsic::x86_mmx_psll_d; + break; + case Intrinsic::x86_mmx_pslli_q: + NewIntrinsic = Intrinsic::x86_mmx_psll_q; + break; + case Intrinsic::x86_mmx_psrli_w: + NewIntrinsic = Intrinsic::x86_mmx_psrl_w; + break; + case Intrinsic::x86_mmx_psrli_d: + NewIntrinsic = Intrinsic::x86_mmx_psrl_d; + break; + case Intrinsic::x86_mmx_psrli_q: + NewIntrinsic = Intrinsic::x86_mmx_psrl_q; + break; + case Intrinsic::x86_mmx_psrai_w: + NewIntrinsic = Intrinsic::x86_mmx_psra_w; + break; + case Intrinsic::x86_mmx_psrai_d: + NewIntrinsic = Intrinsic::x86_mmx_psra_d; + break; + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + } + + // The vector shift intrinsics with scalars uses 32b shift amounts but + // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits + // to be zero. + // We must do this early because v2i32 is not a legal type. + SDValue ShOps[2]; + ShOps[0] = ShAmt; + ShOps[1] = DAG.getConstant(0, MVT::i32); + ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); + EVT DestVT = TLI->getValueType(I.getType()); + ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); + Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, + DAG.getConstant(NewIntrinsic, MVT::i32), + getValue(I.getArgOperand(0)), ShAmt); + setValue(&I, Res); + return 0; + } + case Intrinsic::x86_avx_vinsertf128_pd_256: + case Intrinsic::x86_avx_vinsertf128_ps_256: + case Intrinsic::x86_avx_vinsertf128_si_256: + case Intrinsic::x86_avx2_vinserti128: { + EVT DestVT = TLI->getValueType(I.getType()); + EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); + uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * + ElVT.getVectorNumElements(); + Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, + getValue(I.getArgOperand(0)), + getValue(I.getArgOperand(1)), + DAG.getConstant(Idx, TLI->getVectorIdxTy())); + setValue(&I, Res); + return 0; + } + case Intrinsic::x86_avx_vextractf128_pd_256: + case Intrinsic::x86_avx_vextractf128_ps_256: + case Intrinsic::x86_avx_vextractf128_si_256: + case Intrinsic::x86_avx2_vextracti128: { + EVT DestVT = TLI->getValueType(I.getType()); + uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * + DestVT.getVectorNumElements(); + Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, + getValue(I.getArgOperand(0)), + DAG.getConstant(Idx, TLI->getVectorIdxTy())); + setValue(&I, Res); + return 0; + } + case Intrinsic::convertff: + case Intrinsic::convertfsi: + case Intrinsic::convertfui: + case Intrinsic::convertsif: + case Intrinsic::convertuif: + case Intrinsic::convertss: + case Intrinsic::convertsu: + case Intrinsic::convertus: + case Intrinsic::convertuu: { + ISD::CvtCode Code = ISD::CVT_INVALID; + switch (Intrinsic) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::convertff: Code = ISD::CVT_FF; break; + case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; + case Intrinsic::convertfui: Code = ISD::CVT_FU; break; + case Intrinsic::convertsif: Code = ISD::CVT_SF; break; + case Intrinsic::convertuif: Code = ISD::CVT_UF; break; + case Intrinsic::convertss: Code = ISD::CVT_SS; break; + case Intrinsic::convertsu: Code = ISD::CVT_SU; break; + case Intrinsic::convertus: Code = ISD::CVT_US; break; + case Intrinsic::convertuu: Code = ISD::CVT_UU; break; + } + EVT DestVT = TLI->getValueType(I.getType()); + const Value *Op1 = I.getArgOperand(0); + Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), + DAG.getValueType(DestVT), + DAG.getValueType(getValue(Op1).getValueType()), + getValue(I.getArgOperand(1)), + getValue(I.getArgOperand(2)), + Code); + setValue(&I, Res); + return 0; + } + case Intrinsic::powi: + setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), + getValue(I.getArgOperand(1)), DAG)); + return 0; + case Intrinsic::log: + setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); + return 0; + case Intrinsic::log2: + setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); + return 0; + case Intrinsic::log10: + setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); + return 0; + case Intrinsic::exp: + setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); + return 0; + case Intrinsic::exp2: + setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); + return 0; + case Intrinsic::pow: + setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), + getValue(I.getArgOperand(1)), DAG, *TLI)); + return 0; + case Intrinsic::sqrt: + case Intrinsic::fabs: + case Intrinsic::sin: + case Intrinsic::cos: + case Intrinsic::floor: + case Intrinsic::ceil: + case Intrinsic::trunc: + case Intrinsic::rint: + case Intrinsic::nearbyint: + case Intrinsic::round: { + unsigned Opcode; + switch (Intrinsic) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; + case Intrinsic::fabs: Opcode = ISD::FABS; break; + case Intrinsic::sin: Opcode = ISD::FSIN; break; + case Intrinsic::cos: Opcode = ISD::FCOS; break; + case Intrinsic::floor: Opcode = ISD::FFLOOR; break; + case Intrinsic::ceil: Opcode = ISD::FCEIL; break; + case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; + case Intrinsic::rint: Opcode = ISD::FRINT; break; + case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; + case Intrinsic::round: Opcode = ISD::FROUND; break; + } + + setValue(&I, DAG.getNode(Opcode, sdl, + getValue(I.getArgOperand(0)).getValueType(), + getValue(I.getArgOperand(0)))); + return 0; + } + case Intrinsic::copysign: + setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, + getValue(I.getArgOperand(0)).getValueType(), + getValue(I.getArgOperand(0)), + getValue(I.getArgOperand(1)))); + return 0; + case Intrinsic::fma: + setValue(&I, DAG.getNode(ISD::FMA, sdl, + getValue(I.getArgOperand(0)).getValueType(), + getValue(I.getArgOperand(0)), + getValue(I.getArgOperand(1)), + getValue(I.getArgOperand(2)))); + return 0; + case Intrinsic::fmuladd: { + EVT VT = TLI->getValueType(I.getType()); + if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && + TLI->isFMAFasterThanFMulAndFAdd(VT)) { + setValue(&I, DAG.getNode(ISD::FMA, sdl, + getValue(I.getArgOperand(0)).getValueType(), + getValue(I.getArgOperand(0)), + getValue(I.getArgOperand(1)), + getValue(I.getArgOperand(2)))); + } else { + SDValue Mul = DAG.getNode(ISD::FMUL, sdl, + getValue(I.getArgOperand(0)).getValueType(), + getValue(I.getArgOperand(0)), + getValue(I.getArgOperand(1))); + SDValue Add = DAG.getNode(ISD::FADD, sdl, + getValue(I.getArgOperand(0)).getValueType(), + Mul, + getValue(I.getArgOperand(2))); + setValue(&I, Add); + } + return 0; + } + case Intrinsic::convert_to_fp16: + setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, + MVT::i16, getValue(I.getArgOperand(0)))); + return 0; + case Intrinsic::convert_from_fp16: + setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, + MVT::f32, getValue(I.getArgOperand(0)))); + return 0; + case Intrinsic::pcmarker: { + SDValue Tmp = getValue(I.getArgOperand(0)); + DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); + return 0; + } + case Intrinsic::readcyclecounter: { + SDValue Op = getRoot(); + Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, + DAG.getVTList(MVT::i64, MVT::Other), + &Op, 1); + setValue(&I, Res); + DAG.setRoot(Res.getValue(1)); + return 0; + } + case Intrinsic::bswap: + setValue(&I, DAG.getNode(ISD::BSWAP, sdl, + getValue(I.getArgOperand(0)).getValueType(), + getValue(I.getArgOperand(0)))); + return 0; + case Intrinsic::cttz: { + SDValue Arg = getValue(I.getArgOperand(0)); + ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); + EVT Ty = Arg.getValueType(); + setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, + sdl, Ty, Arg)); + return 0; + } + case Intrinsic::ctlz: { + SDValue Arg = getValue(I.getArgOperand(0)); + ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); + EVT Ty = Arg.getValueType(); + setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, + sdl, Ty, Arg)); + return 0; + } + case Intrinsic::ctpop: { + SDValue Arg = getValue(I.getArgOperand(0)); + EVT Ty = Arg.getValueType(); + setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); + return 0; + } + case Intrinsic::stacksave: { + SDValue Op = getRoot(); + Res = DAG.getNode(ISD::STACKSAVE, sdl, + DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); + setValue(&I, Res); + DAG.setRoot(Res.getValue(1)); + return 0; + } + case Intrinsic::stackrestore: { + Res = getValue(I.getArgOperand(0)); + DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); + return 0; + } + case Intrinsic::stackprotector: { + // Emit code into the DAG to store the stack guard onto the stack. + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + EVT PtrTy = TLI->getPointerTy(); + + SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. + AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); + + int FI = FuncInfo.StaticAllocaMap[Slot]; + MFI->setStackProtectorIndex(FI); + + SDValue FIN = DAG.getFrameIndex(FI, PtrTy); + + // Store the stack protector onto the stack. + Res = DAG.getStore(getRoot(), sdl, Src, FIN, + MachinePointerInfo::getFixedStack(FI), + true, false, 0); + setValue(&I, Res); + DAG.setRoot(Res); + return 0; + } + case Intrinsic::objectsize: { + // If we don't know by now, we're never going to know. + ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); + + assert(CI && "Non-constant type in __builtin_object_size?"); + + SDValue Arg = getValue(I.getCalledValue()); + EVT Ty = Arg.getValueType(); + + if (CI->isZero()) + Res = DAG.getConstant(-1ULL, Ty); + else + Res = DAG.getConstant(0, Ty); + + setValue(&I, Res); + return 0; + } + case Intrinsic::annotation: + case Intrinsic::ptr_annotation: + // Drop the intrinsic, but forward the value + setValue(&I, getValue(I.getOperand(0))); + return 0; + case Intrinsic::var_annotation: + // Discard annotate attributes + return 0; + + case Intrinsic::init_trampoline: { + const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); + + SDValue Ops[6]; + Ops[0] = getRoot(); + Ops[1] = getValue(I.getArgOperand(0)); + Ops[2] = getValue(I.getArgOperand(1)); + Ops[3] = getValue(I.getArgOperand(2)); + Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); + Ops[5] = DAG.getSrcValue(F); + + Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); + + DAG.setRoot(Res); + return 0; + } + case Intrinsic::adjust_trampoline: { + setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, + TLI->getPointerTy(), + getValue(I.getArgOperand(0)))); + return 0; + } + case Intrinsic::gcroot: + if (GFI) { + const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); + const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); + + FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); + GFI->addStackRoot(FI->getIndex(), TypeMap); + } + return 0; + case Intrinsic::gcread: + case Intrinsic::gcwrite: + llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); + case Intrinsic::flt_rounds: + setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); + return 0; + + case Intrinsic::expect: { + // Just replace __builtin_expect(exp, c) with EXP. + setValue(&I, getValue(I.getArgOperand(0))); + return 0; + } + + case Intrinsic::debugtrap: + case Intrinsic::trap: { + StringRef TrapFuncName = TM.Options.getTrapFunctionName(); + if (TrapFuncName.empty()) { + ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? + ISD::TRAP : ISD::DEBUGTRAP; + DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); + return 0; + } + TargetLowering::ArgListTy Args; + TargetLowering:: + CallLoweringInfo CLI(getRoot(), I.getType(), + false, false, false, false, 0, CallingConv::C, + /*isTailCall=*/false, + /*doesNotRet=*/false, /*isReturnValueUsed=*/true, + DAG.getExternalSymbol(TrapFuncName.data(), + TLI->getPointerTy()), + Args, DAG, sdl); + std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); + DAG.setRoot(Result.second); + return 0; + } + + case Intrinsic::uadd_with_overflow: + case Intrinsic::sadd_with_overflow: + case Intrinsic::usub_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::umul_with_overflow: + case Intrinsic::smul_with_overflow: { + ISD::NodeType Op; + switch (Intrinsic) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; + case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; + case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; + case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; + case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; + case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; + } + SDValue Op1 = getValue(I.getArgOperand(0)); + SDValue Op2 = getValue(I.getArgOperand(1)); + + SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); + setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); + return 0; + } + case Intrinsic::prefetch: { + SDValue Ops[5]; + unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); + Ops[0] = getRoot(); + Ops[1] = getValue(I.getArgOperand(0)); + Ops[2] = getValue(I.getArgOperand(1)); + Ops[3] = getValue(I.getArgOperand(2)); + Ops[4] = getValue(I.getArgOperand(3)); + DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, + DAG.getVTList(MVT::Other), + &Ops[0], 5, + EVT::getIntegerVT(*Context, 8), + MachinePointerInfo(I.getArgOperand(0)), + 0, /* align */ + false, /* volatile */ + rw==0, /* read */ + rw==1)); /* write */ + return 0; + } + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: { + bool IsStart = (Intrinsic == Intrinsic::lifetime_start); + // Stack coloring is not enabled in O0, discard region information. + if (TM.getOptLevel() == CodeGenOpt::None) + return 0; + + SmallVector<Value *, 4> Allocas; + GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); + + for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), + E = Allocas.end(); Object != E; ++Object) { + AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); + + // Could not find an Alloca. + if (!LifetimeObject) + continue; + + int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; + + SDValue Ops[2]; + Ops[0] = getRoot(); + Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); + unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); + + Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); + DAG.setRoot(Res); + } + return 0; + } + case Intrinsic::invariant_start: + // Discard region information. + setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); + return 0; + case Intrinsic::invariant_end: + // Discard region information. + return 0; + case Intrinsic::stackprotectorcheck: { + // Do not actually emit anything for this basic block. Instead we initialize + // the stack protector descriptor and export the guard variable so we can + // access it in FinishBasicBlock. + const BasicBlock *BB = I.getParent(); + SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); + ExportFromCurrentBlock(SPDescriptor.getGuard()); + + // Flush our exports since we are going to process a terminator. + (void)getControlRoot(); + return 0; + } + case Intrinsic::donothing: + // ignore + return 0; + case Intrinsic::experimental_stackmap: { + visitStackmap(I); + return 0; + } + case Intrinsic::experimental_patchpoint_void: + case Intrinsic::experimental_patchpoint_i64: { + visitPatchpoint(I); + return 0; + } + } +} + +void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, + bool isTailCall, + MachineBasicBlock *LandingPad) { + PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); + FunctionType *FTy = cast<FunctionType>(PT->getElementType()); + Type *RetTy = FTy->getReturnType(); + MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); + MCSymbol *BeginLabel = 0; + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Args.reserve(CS.arg_size()); + + // Check whether the function can return without sret-demotion. + SmallVector<ISD::OutputArg, 4> Outs; + const TargetLowering *TLI = TM.getTargetLowering(); + GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); + + bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), + DAG.getMachineFunction(), + FTy->isVarArg(), Outs, + FTy->getContext()); + + SDValue DemoteStackSlot; + int DemoteStackIdx = -100; + + if (!CanLowerReturn) { + uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( + FTy->getReturnType()); + unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( + FTy->getReturnType()); + MachineFunction &MF = DAG.getMachineFunction(); + DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); + Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); + + DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); + Entry.Node = DemoteStackSlot; + Entry.Ty = StackSlotPtrType; + Entry.isSExt = false; + Entry.isZExt = false; + Entry.isInReg = false; + Entry.isSRet = true; + Entry.isNest = false; + Entry.isByVal = false; + Entry.isReturned = false; + Entry.Alignment = Align; + Args.push_back(Entry); + RetTy = Type::getVoidTy(FTy->getContext()); + } + + for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); + i != e; ++i) { + const Value *V = *i; + + // Skip empty types + if (V->getType()->isEmptyTy()) + continue; + + SDValue ArgNode = getValue(V); + Entry.Node = ArgNode; Entry.Ty = V->getType(); + + // Skip the first return-type Attribute to get to params. + Entry.setAttributes(&CS, i - CS.arg_begin() + 1); + Args.push_back(Entry); + } + + if (LandingPad) { + // Insert a label before the invoke call to mark the try range. This can be + // used to detect deletion of the invoke via the MachineModuleInfo. + BeginLabel = MMI.getContext().CreateTempSymbol(); + + // For SjLj, keep track of which landing pads go with which invokes + // so as to maintain the ordering of pads in the LSDA. + unsigned CallSiteIndex = MMI.getCurrentCallSite(); + if (CallSiteIndex) { + MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); + LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); + + // Now that the call site is handled, stop tracking it. + MMI.setCurrentCallSite(0); + } + + // Both PendingLoads and PendingExports must be flushed here; + // this call might not return. + (void)getRoot(); + DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); + } + + // Check if target-independent constraints permit a tail call here. + // Target-dependent constraints are checked within TLI->LowerCallTo. + if (isTailCall && !isInTailCallPosition(CS, *TLI)) + isTailCall = false; + + TargetLowering:: + CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, + getCurSDLoc(), CS); + std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); + assert((isTailCall || Result.second.getNode()) && + "Non-null chain expected with non-tail call!"); + assert((Result.second.getNode() || !Result.first.getNode()) && + "Null value expected with tail call!"); + if (Result.first.getNode()) { + setValue(CS.getInstruction(), Result.first); + } else if (!CanLowerReturn && Result.second.getNode()) { + // The instruction result is the result of loading from the + // hidden sret parameter. + SmallVector<EVT, 1> PVTs; + Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); + + ComputeValueVTs(*TLI, PtrRetTy, PVTs); + assert(PVTs.size() == 1 && "Pointers should fit in one register"); + EVT PtrVT = PVTs[0]; + + SmallVector<EVT, 4> RetTys; + SmallVector<uint64_t, 4> Offsets; + RetTy = FTy->getReturnType(); + ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); + + unsigned NumValues = RetTys.size(); + SmallVector<SDValue, 4> Values(NumValues); + SmallVector<SDValue, 4> Chains(NumValues); + + for (unsigned i = 0; i < NumValues; ++i) { + SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, + DemoteStackSlot, + DAG.getConstant(Offsets[i], PtrVT)); + SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, + MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), + false, false, false, 1); + Values[i] = L; + Chains[i] = L.getValue(1); + } + + SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), + MVT::Other, &Chains[0], NumValues); + PendingLoads.push_back(Chain); + + setValue(CS.getInstruction(), + DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), + DAG.getVTList(&RetTys[0], RetTys.size()), + &Values[0], Values.size())); + } + + if (!Result.second.getNode()) { + // As a special case, a null chain means that a tail call has been emitted + // and the DAG root is already updated. + HasTailCall = true; + + // Since there's no actual continuation from this block, nothing can be + // relying on us setting vregs for them. + PendingExports.clear(); + } else { + DAG.setRoot(Result.second); + } + + if (LandingPad) { + // Insert a label at the end of the invoke call to mark the try range. This + // can be used to detect deletion of the invoke via the MachineModuleInfo. + MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); + DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); + + // Inform MachineModuleInfo of range. + MMI.addInvoke(LandingPad, BeginLabel, EndLabel); + } +} + +/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the +/// value is equal or not-equal to zero. +static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { + for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); + UI != E; ++UI) { + if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) + if (IC->isEquality()) + if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) + if (C->isNullValue()) + continue; + // Unknown instruction. + return false; + } + return true; +} + +static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, + Type *LoadTy, + SelectionDAGBuilder &Builder) { + + // Check to see if this load can be trivially constant folded, e.g. if the + // input is from a string literal. + if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { + // Cast pointer to the type we really want to load. + LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), + PointerType::getUnqual(LoadTy)); + + if (const Constant *LoadCst = + ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), + Builder.TD)) + return Builder.getValue(LoadCst); + } + + // Otherwise, we have to emit the load. If the pointer is to unfoldable but + // still constant memory, the input chain can be the entry node. + SDValue Root; + bool ConstantMemory = false; + + // Do not serialize (non-volatile) loads of constant memory with anything. + if (Builder.AA->pointsToConstantMemory(PtrVal)) { + Root = Builder.DAG.getEntryNode(); + ConstantMemory = true; + } else { + // Do not serialize non-volatile loads against each other. + Root = Builder.DAG.getRoot(); + } + + SDValue Ptr = Builder.getValue(PtrVal); + SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, + Ptr, MachinePointerInfo(PtrVal), + false /*volatile*/, + false /*nontemporal*/, + false /*isinvariant*/, 1 /* align=1 */); + + if (!ConstantMemory) + Builder.PendingLoads.push_back(LoadVal.getValue(1)); + return LoadVal; +} + +/// processIntegerCallValue - Record the value for an instruction that +/// produces an integer result, converting the type where necessary. +void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, + SDValue Value, + bool IsSigned) { + EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); + if (IsSigned) + Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); + else + Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); + setValue(&I, Value); +} + +/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. +/// If so, return true and lower it, otherwise return false and it will be +/// lowered like a normal call. +bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { + // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) + if (I.getNumArgOperands() != 3) + return false; + + const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); + if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || + !I.getArgOperand(2)->getType()->isIntegerTy() || + !I.getType()->isIntegerTy()) + return false; + + const Value *Size = I.getArgOperand(2); + const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); + if (CSize && CSize->getZExtValue() == 0) { + EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); + setValue(&I, DAG.getConstant(0, CallVT)); + return true; + } + + const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); + std::pair<SDValue, SDValue> Res = + TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), + getValue(LHS), getValue(RHS), getValue(Size), + MachinePointerInfo(LHS), + MachinePointerInfo(RHS)); + if (Res.first.getNode()) { + processIntegerCallValue(I, Res.first, true); + PendingLoads.push_back(Res.second); + return true; + } + + // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 + // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 + if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { + bool ActuallyDoIt = true; + MVT LoadVT; + Type *LoadTy; + switch (CSize->getZExtValue()) { + default: + LoadVT = MVT::Other; + LoadTy = 0; + ActuallyDoIt = false; + break; + case 2: + LoadVT = MVT::i16; + LoadTy = Type::getInt16Ty(CSize->getContext()); + break; + case 4: + LoadVT = MVT::i32; + LoadTy = Type::getInt32Ty(CSize->getContext()); + break; + case 8: + LoadVT = MVT::i64; + LoadTy = Type::getInt64Ty(CSize->getContext()); + break; + /* + case 16: + LoadVT = MVT::v4i32; + LoadTy = Type::getInt32Ty(CSize->getContext()); + LoadTy = VectorType::get(LoadTy, 4); + break; + */ + } + + // This turns into unaligned loads. We only do this if the target natively + // supports the MVT we'll be loading or if it is small enough (<= 4) that + // we'll only produce a small number of byte loads. + + // Require that we can find a legal MVT, and only do this if the target + // supports unaligned loads of that type. Expanding into byte loads would + // bloat the code. + const TargetLowering *TLI = TM.getTargetLowering(); + if (ActuallyDoIt && CSize->getZExtValue() > 4) { + // TODO: Handle 5 byte compare as 4-byte + 1 byte. + // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. + if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT)) + ActuallyDoIt = false; + } + + if (ActuallyDoIt) { + SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); + SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); + + SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, + ISD::SETNE); + processIntegerCallValue(I, Res, false); + return true; + } + } + + + return false; +} + +/// visitMemChrCall -- See if we can lower a memchr call into an optimized +/// form. If so, return true and lower it, otherwise return false and it +/// will be lowered like a normal call. +bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { + // Verify that the prototype makes sense. void *memchr(void *, int, size_t) + if (I.getNumArgOperands() != 3) + return false; + + const Value *Src = I.getArgOperand(0); + const Value *Char = I.getArgOperand(1); + const Value *Length = I.getArgOperand(2); + if (!Src->getType()->isPointerTy() || + !Char->getType()->isIntegerTy() || + !Length->getType()->isIntegerTy() || + !I.getType()->isPointerTy()) + return false; + + const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); + std::pair<SDValue, SDValue> Res = + TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), + getValue(Src), getValue(Char), getValue(Length), + MachinePointerInfo(Src)); + if (Res.first.getNode()) { + setValue(&I, Res.first); + PendingLoads.push_back(Res.second); + return true; + } + + return false; +} + +/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an +/// optimized form. If so, return true and lower it, otherwise return false +/// and it will be lowered like a normal call. +bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { + // Verify that the prototype makes sense. char *strcpy(char *, char *) + if (I.getNumArgOperands() != 2) + return false; + + const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); + if (!Arg0->getType()->isPointerTy() || + !Arg1->getType()->isPointerTy() || + !I.getType()->isPointerTy()) + return false; + + const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); + std::pair<SDValue, SDValue> Res = + TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), + getValue(Arg0), getValue(Arg1), + MachinePointerInfo(Arg0), + MachinePointerInfo(Arg1), isStpcpy); + if (Res.first.getNode()) { + setValue(&I, Res.first); + DAG.setRoot(Res.second); + return true; + } + + return false; +} + +/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. +/// If so, return true and lower it, otherwise return false and it will be +/// lowered like a normal call. +bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { + // Verify that the prototype makes sense. int strcmp(void*,void*) + if (I.getNumArgOperands() != 2) + return false; + + const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); + if (!Arg0->getType()->isPointerTy() || + !Arg1->getType()->isPointerTy() || + !I.getType()->isIntegerTy()) + return false; + + const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); + std::pair<SDValue, SDValue> Res = + TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), + getValue(Arg0), getValue(Arg1), + MachinePointerInfo(Arg0), + MachinePointerInfo(Arg1)); + if (Res.first.getNode()) { + processIntegerCallValue(I, Res.first, true); + PendingLoads.push_back(Res.second); + return true; + } + + return false; +} + +/// visitStrLenCall -- See if we can lower a strlen call into an optimized +/// form. If so, return true and lower it, otherwise return false and it +/// will be lowered like a normal call. +bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { + // Verify that the prototype makes sense. size_t strlen(char *) + if (I.getNumArgOperands() != 1) + return false; + + const Value *Arg0 = I.getArgOperand(0); + if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) + return false; + + const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); + std::pair<SDValue, SDValue> Res = + TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), + getValue(Arg0), MachinePointerInfo(Arg0)); + if (Res.first.getNode()) { + processIntegerCallValue(I, Res.first, false); + PendingLoads.push_back(Res.second); + return true; + } + + return false; +} + +/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized +/// form. If so, return true and lower it, otherwise return false and it +/// will be lowered like a normal call. +bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { + // Verify that the prototype makes sense. size_t strnlen(char *, size_t) + if (I.getNumArgOperands() != 2) + return false; + + const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); + if (!Arg0->getType()->isPointerTy() || + !Arg1->getType()->isIntegerTy() || + !I.getType()->isIntegerTy()) + return false; + + const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); + std::pair<SDValue, SDValue> Res = + TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), + getValue(Arg0), getValue(Arg1), + MachinePointerInfo(Arg0)); + if (Res.first.getNode()) { + processIntegerCallValue(I, Res.first, false); + PendingLoads.push_back(Res.second); + return true; + } + + return false; +} + +/// visitUnaryFloatCall - If a call instruction is a unary floating-point +/// operation (as expected), translate it to an SDNode with the specified opcode +/// and return true. +bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, + unsigned Opcode) { + // Sanity check that it really is a unary floating-point call. + if (I.getNumArgOperands() != 1 || + !I.getArgOperand(0)->getType()->isFloatingPointTy() || + I.getType() != I.getArgOperand(0)->getType() || + !I.onlyReadsMemory()) + return false; + + SDValue Tmp = getValue(I.getArgOperand(0)); + setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); + return true; +} + +void SelectionDAGBuilder::visitCall(const CallInst &I) { + // Handle inline assembly differently. + if (isa<InlineAsm>(I.getCalledValue())) { + visitInlineAsm(&I); + return; + } + + MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); + ComputeUsesVAFloatArgument(I, &MMI); + + const char *RenameFn = 0; + if (Function *F = I.getCalledFunction()) { + if (F->isDeclaration()) { + if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { + if (unsigned IID = II->getIntrinsicID(F)) { + RenameFn = visitIntrinsicCall(I, IID); + if (!RenameFn) + return; + } + } + if (unsigned IID = F->getIntrinsicID()) { + RenameFn = visitIntrinsicCall(I, IID); + if (!RenameFn) + return; + } + } + + // Check for well-known libc/libm calls. If the function is internal, it + // can't be a library call. + LibFunc::Func Func; + if (!F->hasLocalLinkage() && F->hasName() && + LibInfo->getLibFunc(F->getName(), Func) && + LibInfo->hasOptimizedCodeGen(Func)) { + switch (Func) { + default: break; + case LibFunc::copysign: + case LibFunc::copysignf: + case LibFunc::copysignl: + if (I.getNumArgOperands() == 2 && // Basic sanity checks. + I.getArgOperand(0)->getType()->isFloatingPointTy() && + I.getType() == I.getArgOperand(0)->getType() && + I.getType() == I.getArgOperand(1)->getType() && + I.onlyReadsMemory()) { + SDValue LHS = getValue(I.getArgOperand(0)); + SDValue RHS = getValue(I.getArgOperand(1)); + setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), + LHS.getValueType(), LHS, RHS)); + return; + } + break; + case LibFunc::fabs: + case LibFunc::fabsf: + case LibFunc::fabsl: + if (visitUnaryFloatCall(I, ISD::FABS)) + return; + break; + case LibFunc::sin: + case LibFunc::sinf: + case LibFunc::sinl: + if (visitUnaryFloatCall(I, ISD::FSIN)) + return; + break; + case LibFunc::cos: + case LibFunc::cosf: + case LibFunc::cosl: + if (visitUnaryFloatCall(I, ISD::FCOS)) + return; + break; + case LibFunc::sqrt: + case LibFunc::sqrtf: + case LibFunc::sqrtl: + case LibFunc::sqrt_finite: + case LibFunc::sqrtf_finite: + case LibFunc::sqrtl_finite: + if (visitUnaryFloatCall(I, ISD::FSQRT)) + return; + break; + case LibFunc::floor: + case LibFunc::floorf: + case LibFunc::floorl: + if (visitUnaryFloatCall(I, ISD::FFLOOR)) + return; + break; + case LibFunc::nearbyint: + case LibFunc::nearbyintf: + case LibFunc::nearbyintl: + if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) + return; + break; + case LibFunc::ceil: + case LibFunc::ceilf: + case LibFunc::ceill: + if (visitUnaryFloatCall(I, ISD::FCEIL)) + return; + break; + case LibFunc::rint: + case LibFunc::rintf: + case LibFunc::rintl: + if (visitUnaryFloatCall(I, ISD::FRINT)) + return; + break; + case LibFunc::round: + case LibFunc::roundf: + case LibFunc::roundl: + if (visitUnaryFloatCall(I, ISD::FROUND)) + return; + break; + case LibFunc::trunc: + case LibFunc::truncf: + case LibFunc::truncl: + if (visitUnaryFloatCall(I, ISD::FTRUNC)) + return; + break; + case LibFunc::log2: + case LibFunc::log2f: + case LibFunc::log2l: + if (visitUnaryFloatCall(I, ISD::FLOG2)) + return; + break; + case LibFunc::exp2: + case LibFunc::exp2f: + case LibFunc::exp2l: + if (visitUnaryFloatCall(I, ISD::FEXP2)) + return; + break; + case LibFunc::memcmp: + if (visitMemCmpCall(I)) + return; + break; + case LibFunc::memchr: + if (visitMemChrCall(I)) + return; + break; + case LibFunc::strcpy: + if (visitStrCpyCall(I, false)) + return; + break; + case LibFunc::stpcpy: + if (visitStrCpyCall(I, true)) + return; + break; + case LibFunc::strcmp: + if (visitStrCmpCall(I)) + return; + break; + case LibFunc::strlen: + if (visitStrLenCall(I)) + return; + break; + case LibFunc::strnlen: + if (visitStrNLenCall(I)) + return; + break; + } + } + } + + SDValue Callee; + if (!RenameFn) + Callee = getValue(I.getCalledValue()); + else + Callee = DAG.getExternalSymbol(RenameFn, + TM.getTargetLowering()->getPointerTy()); + + // Check if we can potentially perform a tail call. More detailed checking is + // be done within LowerCallTo, after more information about the call is known. + LowerCallTo(&I, Callee, I.isTailCall()); +} + +namespace { + +/// AsmOperandInfo - This contains information for each constraint that we are +/// lowering. +class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { +public: + /// CallOperand - If this is the result output operand or a clobber + /// this is null, otherwise it is the incoming operand to the CallInst. + /// This gets modified as the asm is processed. + SDValue CallOperand; + + /// AssignedRegs - If this is a register or register class operand, this + /// contains the set of register corresponding to the operand. + RegsForValue AssignedRegs; + + explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) + : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { + } + + /// getCallOperandValEVT - Return the EVT of the Value* that this operand + /// corresponds to. If there is no Value* for this operand, it returns + /// MVT::Other. + EVT getCallOperandValEVT(LLVMContext &Context, + const TargetLowering &TLI, + const DataLayout *TD) const { + if (CallOperandVal == 0) return MVT::Other; + + if (isa<BasicBlock>(CallOperandVal)) + return TLI.getPointerTy(); + + llvm::Type *OpTy = CallOperandVal->getType(); + + // FIXME: code duplicated from TargetLowering::ParseConstraints(). + // If this is an indirect operand, the operand is a pointer to the + // accessed type. + if (isIndirect) { + llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); + if (!PtrTy) + report_fatal_error("Indirect operand for inline asm not a pointer!"); + OpTy = PtrTy->getElementType(); + } + + // Look for vector wrapped in a struct. e.g. { <16 x i8> }. + if (StructType *STy = dyn_cast<StructType>(OpTy)) + if (STy->getNumElements() == 1) + OpTy = STy->getElementType(0); + + // If OpTy is not a single value, it may be a struct/union that we + // can tile with integers. + if (!OpTy->isSingleValueType() && OpTy->isSized()) { + unsigned BitSize = TD->getTypeSizeInBits(OpTy); + switch (BitSize) { + default: break; + case 1: + case 8: + case 16: + case 32: + case 64: + case 128: + OpTy = IntegerType::get(Context, BitSize); + break; + } + } + + return TLI.getValueType(OpTy, true); + } +}; + +typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; + +} // end anonymous namespace + +/// GetRegistersForValue - Assign registers (virtual or physical) for the +/// specified operand. We prefer to assign virtual registers, to allow the +/// register allocator to handle the assignment process. However, if the asm +/// uses features that we can't model on machineinstrs, we have SDISel do the +/// allocation. This produces generally horrible, but correct, code. +/// +/// OpInfo describes the operand. +/// +static void GetRegistersForValue(SelectionDAG &DAG, + const TargetLowering &TLI, + SDLoc DL, + SDISelAsmOperandInfo &OpInfo) { + LLVMContext &Context = *DAG.getContext(); + + MachineFunction &MF = DAG.getMachineFunction(); + SmallVector<unsigned, 4> Regs; + + // If this is a constraint for a single physreg, or a constraint for a + // register class, find it. + std::pair<unsigned, const TargetRegisterClass*> PhysReg = + TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + + unsigned NumRegs = 1; + if (OpInfo.ConstraintVT != MVT::Other) { + // If this is a FP input in an integer register (or visa versa) insert a bit + // cast of the input value. More generally, handle any case where the input + // value disagrees with the register class we plan to stick this in. + if (OpInfo.Type == InlineAsm::isInput && + PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { + // Try to convert to the first EVT that the reg class contains. If the + // types are identical size, use a bitcast to convert (e.g. two differing + // vector types). + MVT RegVT = *PhysReg.second->vt_begin(); + if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { + OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, + RegVT, OpInfo.CallOperand); + OpInfo.ConstraintVT = RegVT; + } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { + // If the input is a FP value and we want it in FP registers, do a + // bitcast to the corresponding integer type. This turns an f64 value + // into i64, which can be passed with two i32 values on a 32-bit + // machine. + RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); + OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, + RegVT, OpInfo.CallOperand); + OpInfo.ConstraintVT = RegVT; + } + } + + NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); + } + + MVT RegVT; + EVT ValueVT = OpInfo.ConstraintVT; + + // If this is a constraint for a specific physical register, like {r17}, + // assign it now. + if (unsigned AssignedReg = PhysReg.first) { + const TargetRegisterClass *RC = PhysReg.second; + if (OpInfo.ConstraintVT == MVT::Other) + ValueVT = *RC->vt_begin(); + + // Get the actual register value type. This is important, because the user + // may have asked for (e.g.) the AX register in i32 type. We need to + // remember that AX is actually i16 to get the right extension. + RegVT = *RC->vt_begin(); + + // This is a explicit reference to a physical register. + Regs.push_back(AssignedReg); + + // If this is an expanded reference, add the rest of the regs to Regs. + if (NumRegs != 1) { + TargetRegisterClass::iterator I = RC->begin(); + for (; *I != AssignedReg; ++I) + assert(I != RC->end() && "Didn't find reg!"); + + // Already added the first reg. + --NumRegs; ++I; + for (; NumRegs; --NumRegs, ++I) { + assert(I != RC->end() && "Ran out of registers to allocate!"); + Regs.push_back(*I); + } + } + + OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); + return; + } + + // Otherwise, if this was a reference to an LLVM register class, create vregs + // for this reference. + if (const TargetRegisterClass *RC = PhysReg.second) { + RegVT = *RC->vt_begin(); + if (OpInfo.ConstraintVT == MVT::Other) + ValueVT = RegVT; + + // Create the appropriate number of virtual registers. + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + for (; NumRegs; --NumRegs) + Regs.push_back(RegInfo.createVirtualRegister(RC)); + + OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); + return; + } + + // Otherwise, we couldn't allocate enough registers for this. +} + +/// visitInlineAsm - Handle a call to an InlineAsm object. +/// +void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { + const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); + + /// ConstraintOperands - Information about all of the constraints. + SDISelAsmOperandInfoVector ConstraintOperands; + + const TargetLowering *TLI = TM.getTargetLowering(); + TargetLowering::AsmOperandInfoVector + TargetConstraints = TLI->ParseConstraints(CS); + + bool hasMemory = false; + + unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. + unsigned ResNo = 0; // ResNo - The result number of the next output. + for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { + ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); + SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); + + MVT OpVT = MVT::Other; + + // Compute the value type for each operand. + switch (OpInfo.Type) { + case InlineAsm::isOutput: + // Indirect outputs just consume an argument. + if (OpInfo.isIndirect) { + OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); + break; + } + + // The return value of the call is this value. As such, there is no + // corresponding argument. + assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); + if (StructType *STy = dyn_cast<StructType>(CS.getType())) { + OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); + } else { + assert(ResNo == 0 && "Asm only has one result!"); + OpVT = TLI->getSimpleValueType(CS.getType()); + } + ++ResNo; + break; + case InlineAsm::isInput: + OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); + break; + case InlineAsm::isClobber: + // Nothing to do. + break; + } + + // If this is an input or an indirect output, process the call argument. + // BasicBlocks are labels, currently appearing only in asm's. + if (OpInfo.CallOperandVal) { + if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { + OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); + } else { + OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); + } + + OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD). + getSimpleVT(); + } + + OpInfo.ConstraintVT = OpVT; + + // Indirect operand accesses access memory. + if (OpInfo.isIndirect) + hasMemory = true; + else { + for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { + TargetLowering::ConstraintType + CType = TLI->getConstraintType(OpInfo.Codes[j]); + if (CType == TargetLowering::C_Memory) { + hasMemory = true; + break; + } + } + } + } + + SDValue Chain, Flag; + + // We won't need to flush pending loads if this asm doesn't touch + // memory and is nonvolatile. + if (hasMemory || IA->hasSideEffects()) + Chain = getRoot(); + else + Chain = DAG.getRoot(); + + // Second pass over the constraints: compute which constraint option to use + // and assign registers to constraints that want a specific physreg. + for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + // If this is an output operand with a matching input operand, look up the + // matching input. If their types mismatch, e.g. one is an integer, the + // other is floating point, or their sizes are different, flag it as an + // error. + if (OpInfo.hasMatchingInput()) { + SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; + + if (OpInfo.ConstraintVT != Input.ConstraintVT) { + std::pair<unsigned, const TargetRegisterClass*> MatchRC = + TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + std::pair<unsigned, const TargetRegisterClass*> InputRC = + TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, + Input.ConstraintVT); + if ((OpInfo.ConstraintVT.isInteger() != + Input.ConstraintVT.isInteger()) || + (MatchRC.second != InputRC.second)) { + report_fatal_error("Unsupported asm: input constraint" + " with a matching output constraint of" + " incompatible type!"); + } + Input.ConstraintVT = OpInfo.ConstraintVT; + } + } + + // Compute the constraint code and ConstraintType to use. + TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); + + if (OpInfo.ConstraintType == TargetLowering::C_Memory && + OpInfo.Type == InlineAsm::isClobber) + continue; + + // If this is a memory input, and if the operand is not indirect, do what we + // need to to provide an address for the memory input. + if (OpInfo.ConstraintType == TargetLowering::C_Memory && + !OpInfo.isIndirect) { + assert((OpInfo.isMultipleAlternative || + (OpInfo.Type == InlineAsm::isInput)) && + "Can only indirectify direct input operands!"); + + // Memory operands really want the address of the value. If we don't have + // an indirect input, put it in the constpool if we can, otherwise spill + // it to a stack slot. + // TODO: This isn't quite right. We need to handle these according to + // the addressing mode that the constraint wants. Also, this may take + // an additional register for the computation and we don't want that + // either. + + // If the operand is a float, integer, or vector constant, spill to a + // constant pool entry to get its address. + const Value *OpVal = OpInfo.CallOperandVal; + if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || + isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { + OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), + TLI->getPointerTy()); + } else { + // Otherwise, create a stack slot and emit a store to it before the + // asm. + Type *Ty = OpVal->getType(); + uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); + unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); + Chain = DAG.getStore(Chain, getCurSDLoc(), + OpInfo.CallOperand, StackSlot, + MachinePointerInfo::getFixedStack(SSFI), + false, false, 0); + OpInfo.CallOperand = StackSlot; + } + + // There is no longer a Value* corresponding to this operand. + OpInfo.CallOperandVal = 0; + + // It is now an indirect operand. + OpInfo.isIndirect = true; + } + + // If this constraint is for a specific register, allocate it before + // anything else. + if (OpInfo.ConstraintType == TargetLowering::C_Register) + GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); + } + + // Second pass - Loop over all of the operands, assigning virtual or physregs + // to register class operands. + for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + // C_Register operands have already been allocated, Other/Memory don't need + // to be. + if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) + GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); + } + + // AsmNodeOperands - The operands for the ISD::INLINEASM node. + std::vector<SDValue> AsmNodeOperands; + AsmNodeOperands.push_back(SDValue()); // reserve space for input chain + AsmNodeOperands.push_back( + DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), + TLI->getPointerTy())); + + // If we have a !srcloc metadata node associated with it, we want to attach + // this to the ultimately generated inline asm machineinstr. To do this, we + // pass in the third operand as this (potentially null) inline asm MDNode. + const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); + AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); + + // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore + // bits as operand 3. + unsigned ExtraInfo = 0; + if (IA->hasSideEffects()) + ExtraInfo |= InlineAsm::Extra_HasSideEffects; + if (IA->isAlignStack()) + ExtraInfo |= InlineAsm::Extra_IsAlignStack; + // Set the asm dialect. + ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; + + // Determine if this InlineAsm MayLoad or MayStore based on the constraints. + for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { + TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; + + // Compute the constraint code and ConstraintType to use. + TLI->ComputeConstraintToUse(OpInfo, SDValue()); + + // Ideally, we would only check against memory constraints. However, the + // meaning of an other constraint can be target-specific and we can't easily + // reason about it. Therefore, be conservative and set MayLoad/MayStore + // for other constriants as well. + if (OpInfo.ConstraintType == TargetLowering::C_Memory || + OpInfo.ConstraintType == TargetLowering::C_Other) { + if (OpInfo.Type == InlineAsm::isInput) + ExtraInfo |= InlineAsm::Extra_MayLoad; + else if (OpInfo.Type == InlineAsm::isOutput) + ExtraInfo |= InlineAsm::Extra_MayStore; + else if (OpInfo.Type == InlineAsm::isClobber) + ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); + } + } + + AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, + TLI->getPointerTy())); + + // Loop over all of the inputs, copying the operand values into the + // appropriate registers and processing the output regs. + RegsForValue RetValRegs; + + // IndirectStoresToEmit - The set of stores to emit after the inline asm node. + std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; + + for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + switch (OpInfo.Type) { + case InlineAsm::isOutput: { + if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && + OpInfo.ConstraintType != TargetLowering::C_Register) { + // Memory output, or 'other' output (e.g. 'X' constraint). + assert(OpInfo.isIndirect && "Memory output must be indirect operand"); + + // Add information to the INLINEASM node to know about this output. + unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); + AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, + TLI->getPointerTy())); + AsmNodeOperands.push_back(OpInfo.CallOperand); + break; + } + + // Otherwise, this is a register or register class output. + + // Copy the output from the appropriate register. Find a register that + // we can use. + if (OpInfo.AssignedRegs.Regs.empty()) { + LLVMContext &Ctx = *DAG.getContext(); + Ctx.emitError(CS.getInstruction(), + "couldn't allocate output register for constraint '" + + Twine(OpInfo.ConstraintCode) + "'"); + return; + } + + // If this is an indirect operand, store through the pointer after the + // asm. + if (OpInfo.isIndirect) { + IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, + OpInfo.CallOperandVal)); + } else { + // This is the result value of the call. + assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); + // Concatenate this output onto the outputs list. + RetValRegs.append(OpInfo.AssignedRegs); + } + + // Add information to the INLINEASM node to know that this register is + // set. + OpInfo.AssignedRegs + .AddInlineAsmOperands(OpInfo.isEarlyClobber + ? InlineAsm::Kind_RegDefEarlyClobber + : InlineAsm::Kind_RegDef, + false, 0, DAG, AsmNodeOperands); + break; + } + case InlineAsm::isInput: { + SDValue InOperandVal = OpInfo.CallOperand; + + if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? + // If this is required to match an output register we have already set, + // just use its register. + unsigned OperandNo = OpInfo.getMatchedOperand(); + + // Scan until we find the definition we already emitted of this operand. + // When we find it, create a RegsForValue operand. + unsigned CurOp = InlineAsm::Op_FirstOperand; + for (; OperandNo; --OperandNo) { + // Advance to the next operand. + unsigned OpFlag = + cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); + assert((InlineAsm::isRegDefKind(OpFlag) || + InlineAsm::isRegDefEarlyClobberKind(OpFlag) || + InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); + CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; + } + + unsigned OpFlag = + cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); + if (InlineAsm::isRegDefKind(OpFlag) || + InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { + // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. + if (OpInfo.isIndirect) { + // This happens on gcc/testsuite/gcc.dg/pr8788-1.c + LLVMContext &Ctx = *DAG.getContext(); + Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" + " don't know how to handle tied " + "indirect register inputs"); + return; + } + + RegsForValue MatchedRegs; + MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); + MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); + MatchedRegs.RegVTs.push_back(RegVT); + MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); + for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); + i != e; ++i) { + if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) + MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); + else { + LLVMContext &Ctx = *DAG.getContext(); + Ctx.emitError(CS.getInstruction(), + "inline asm error: This value" + " type register class is not natively supported!"); + return; + } + } + // Use the produced MatchedRegs object to + MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), + Chain, &Flag, CS.getInstruction()); + MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, + true, OpInfo.getMatchedOperand(), + DAG, AsmNodeOperands); + break; + } + + assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); + assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && + "Unexpected number of operands"); + // Add information to the INLINEASM node to know about this input. + // See InlineAsm.h isUseOperandTiedToDef. + OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, + OpInfo.getMatchedOperand()); + AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, + TLI->getPointerTy())); + AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); + break; + } + + // Treat indirect 'X' constraint as memory. + if (OpInfo.ConstraintType == TargetLowering::C_Other && + OpInfo.isIndirect) + OpInfo.ConstraintType = TargetLowering::C_Memory; + + if (OpInfo.ConstraintType == TargetLowering::C_Other) { + std::vector<SDValue> Ops; + TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, + Ops, DAG); + if (Ops.empty()) { + LLVMContext &Ctx = *DAG.getContext(); + Ctx.emitError(CS.getInstruction(), + "invalid operand for inline asm constraint '" + + Twine(OpInfo.ConstraintCode) + "'"); + return; + } + + // Add information to the INLINEASM node to know about this input. + unsigned ResOpType = + InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI->getPointerTy())); + AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); + break; + } + + if (OpInfo.ConstraintType == TargetLowering::C_Memory) { + assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); + assert(InOperandVal.getValueType() == TLI->getPointerTy() && + "Memory operands expect pointer values"); + + // Add information to the INLINEASM node to know about this input. + unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI->getPointerTy())); + AsmNodeOperands.push_back(InOperandVal); + break; + } + + assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || + OpInfo.ConstraintType == TargetLowering::C_Register) && + "Unknown constraint type!"); + + // TODO: Support this. + if (OpInfo.isIndirect) { + LLVMContext &Ctx = *DAG.getContext(); + Ctx.emitError(CS.getInstruction(), + "Don't know how to handle indirect register inputs yet " + "for constraint '" + + Twine(OpInfo.ConstraintCode) + "'"); + return; + } + + // Copy the input into the appropriate registers. + if (OpInfo.AssignedRegs.Regs.empty()) { + LLVMContext &Ctx = *DAG.getContext(); + Ctx.emitError(CS.getInstruction(), + "couldn't allocate input reg for constraint '" + + Twine(OpInfo.ConstraintCode) + "'"); + return; + } + + OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), + Chain, &Flag, CS.getInstruction()); + + OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, + DAG, AsmNodeOperands); + break; + } + case InlineAsm::isClobber: { + // Add the clobbered value to the operand list, so that the register + // allocator is aware that the physreg got clobbered. + if (!OpInfo.AssignedRegs.Regs.empty()) + OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, + false, 0, DAG, + AsmNodeOperands); + break; + } + } + } + + // Finish up input operands. Set the input chain and add the flag last. + AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; + if (Flag.getNode()) AsmNodeOperands.push_back(Flag); + + Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), + DAG.getVTList(MVT::Other, MVT::Glue), + &AsmNodeOperands[0], AsmNodeOperands.size()); + Flag = Chain.getValue(1); + + // If this asm returns a register value, copy the result from that register + // and set it as the value of the call. + if (!RetValRegs.Regs.empty()) { + SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), + Chain, &Flag, CS.getInstruction()); + + // FIXME: Why don't we do this for inline asms with MRVs? + if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { + EVT ResultType = TLI->getValueType(CS.getType()); + + // If any of the results of the inline asm is a vector, it may have the + // wrong width/num elts. This can happen for register classes that can + // contain multiple different value types. The preg or vreg allocated may + // not have the same VT as was expected. Convert it to the right type + // with bit_convert. + if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { + Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), + ResultType, Val); + + } else if (ResultType != Val.getValueType() && + ResultType.isInteger() && Val.getValueType().isInteger()) { + // If a result value was tied to an input value, the computed result may + // have a wider width than the expected result. Extract the relevant + // portion. + Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); + } + + assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); + } + + setValue(CS.getInstruction(), Val); + // Don't need to use this as a chain in this case. + if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) + return; + } + + std::vector<std::pair<SDValue, const Value *> > StoresToEmit; + + // Process indirect outputs, first output all of the flagged copies out of + // physregs. + for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { + RegsForValue &OutRegs = IndirectStoresToEmit[i].first; + const Value *Ptr = IndirectStoresToEmit[i].second; + SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), + Chain, &Flag, IA); + StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); + } + + // Emit the non-flagged stores from the physregs. + SmallVector<SDValue, 8> OutChains; + for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { + SDValue Val = DAG.getStore(Chain, getCurSDLoc(), + StoresToEmit[i].first, + getValue(StoresToEmit[i].second), + MachinePointerInfo(StoresToEmit[i].second), + false, false, 0); + OutChains.push_back(Val); + } + + if (!OutChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, + &OutChains[0], OutChains.size()); + + DAG.setRoot(Chain); +} + +void SelectionDAGBuilder::visitVAStart(const CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), + MVT::Other, getRoot(), + getValue(I.getArgOperand(0)), + DAG.getSrcValue(I.getArgOperand(0)))); +} + +void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { + const TargetLowering *TLI = TM.getTargetLowering(); + const DataLayout &TD = *TLI->getDataLayout(); + SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), + getRoot(), getValue(I.getOperand(0)), + DAG.getSrcValue(I.getOperand(0)), + TD.getABITypeAlignment(I.getType())); + setValue(&I, V); + DAG.setRoot(V.getValue(1)); +} + +void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), + MVT::Other, getRoot(), + getValue(I.getArgOperand(0)), + DAG.getSrcValue(I.getArgOperand(0)))); +} + +void SelectionDAGBuilder::visitVACopy(const CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), + MVT::Other, getRoot(), + getValue(I.getArgOperand(0)), + getValue(I.getArgOperand(1)), + DAG.getSrcValue(I.getArgOperand(0)), + DAG.getSrcValue(I.getArgOperand(1)))); +} + +/// \brief Lower an argument list according to the target calling convention. +/// +/// \return A tuple of <return-value, token-chain> +/// +/// This is a helper for lowering intrinsics that follow a target calling +/// convention or require stack pointer adjustment. Only a subset of the +/// intrinsic's operands need to participate in the calling convention. +std::pair<SDValue, SDValue> +SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, + unsigned NumArgs, SDValue Callee, + bool useVoidTy) { + TargetLowering::ArgListTy Args; + Args.reserve(NumArgs); + + // Populate the argument list. + // Attributes for args start at offset 1, after the return attribute. + ImmutableCallSite CS(&CI); + for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; + ArgI != ArgE; ++ArgI) { + const Value *V = CI.getOperand(ArgI); + + assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); + + TargetLowering::ArgListEntry Entry; + Entry.Node = getValue(V); + Entry.Ty = V->getType(); + Entry.setAttributes(&CS, AttrI); + Args.push_back(Entry); + } + + Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); + TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, + /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, + CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, + /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); + + const TargetLowering *TLI = TM.getTargetLowering(); + return TLI->LowerCallTo(CLI); +} + +/// \brief Lower llvm.experimental.stackmap directly to its target opcode. +void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { + // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, + // [live variables...]) + + assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); + + SDValue Callee = getValue(CI.getCalledValue()); + + // Lower into a call sequence with no args and no return value. + std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee); + // Set the root to the target-lowered call chain. + SDValue Chain = Result.second; + DAG.setRoot(Chain); + + /// Get a call instruction from the call sequence chain. + /// Tail calls are not allowed. + SDNode *CallEnd = Chain.getNode(); + assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && + "Expected a callseq node."); + SDNode *Call = CallEnd->getOperand(0).getNode(); + bool hasGlue = Call->getGluedNode(); + + // Replace the target specific call node with the stackmap intrinsic. + SmallVector<SDValue, 8> Ops; + + // Add the <id> and <numShadowBytes> constants. + for (unsigned i = 0; i < 2; ++i) { + SDValue tmp = getValue(CI.getOperand(i)); + Ops.push_back(DAG.getTargetConstant( + cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32)); + } + // Push live variables for the stack map. + for (unsigned i = 2, e = CI.getNumArgOperands(); i != e; ++i) + Ops.push_back(getValue(CI.getArgOperand(i))); + + // Push the chain (this is originally the first operand of the call, but + // becomes now the last or second to last operand). + Ops.push_back(*(Call->op_begin())); + + // Push the glue flag (last operand). + if (hasGlue) + Ops.push_back(*(Call->op_end()-1)); + + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + // Replace the target specific call node with a STACKMAP node. + MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(), + NodeTys, Ops); + + // StackMap generates no value, so nothing goes in the NodeMap. + + // Fixup the consumers of the intrinsic. The chain and glue may be used in the + // call sequence. + DAG.ReplaceAllUsesWith(Call, MN); + + DAG.DeleteNode(Call); +} + +/// \brief Lower llvm.experimental.patchpoint directly to its target opcode. +void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { + // void|i64 @llvm.experimental.patchpoint.void|i64(i32 <id>, + // i32 <numBytes>, + // i8* <target>, + // i32 <numArgs>, + // [Args...], + // [live variables...]) + + CallingConv::ID CC = CI.getCallingConv(); + bool isAnyRegCC = CC == CallingConv::AnyReg; + bool hasDef = !CI.getType()->isVoidTy(); + SDValue Callee = getValue(CI.getOperand(2)); // <target> + + // Get the real number of arguments participating in the call <numArgs> + unsigned NumArgs = + cast<ConstantSDNode>(getValue(CI.getArgOperand(3)))->getZExtValue(); + + // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> + assert(CI.getNumArgOperands() >= NumArgs + 4 && + "Not enough arguments provided to the patchpoint intrinsic"); + + // For AnyRegCC the arguments are lowered later on manually. + unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; + std::pair<SDValue, SDValue> Result = + LowerCallOperands(CI, 4, NumCallArgs, Callee, isAnyRegCC); + + // Set the root to the target-lowered call chain. + SDValue Chain = Result.second; + DAG.setRoot(Chain); + + SDNode *CallEnd = Chain.getNode(); + if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) + CallEnd = CallEnd->getOperand(0).getNode(); + + /// Get a call instruction from the call sequence chain. + /// Tail calls are not allowed. + assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && + "Expected a callseq node."); + SDNode *Call = CallEnd->getOperand(0).getNode(); + bool hasGlue = Call->getGluedNode(); + + // Replace the target specific call node with the patchable intrinsic. + SmallVector<SDValue, 8> Ops; + + // Add the <id> and <numNopBytes> constants. + for (unsigned i = 0; i < 2; ++i) { + SDValue tmp = getValue(CI.getOperand(i)); + Ops.push_back(DAG.getTargetConstant( + cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32)); + } + // Assume that the Callee is a constant address. + Ops.push_back( + DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), + /*isTarget=*/true)); + + // Adjust <numArgs> to account for any arguments that have been passed on the + // stack instead. + // Call Node: Chain, Target, {Args}, RegMask, [Glue] + unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); + NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; + Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); + + // Add the calling convention + Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); + + // Add the arguments we omitted previously. The register allocator should + // place these in any free register. + if (isAnyRegCC) + for (unsigned i = 4, e = NumArgs + 4; i != e; ++i) + Ops.push_back(getValue(CI.getArgOperand(i))); + + // Push the arguments from the call instruction. + SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; + for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) + Ops.push_back(*i); + + // Push live variables for the stack map. + for (unsigned i = NumArgs + 4, e = CI.getNumArgOperands(); i != e; ++i) { + SDValue OpVal = getValue(CI.getArgOperand(i)); + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { + Ops.push_back( + DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); + Ops.push_back( + DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); + } else + Ops.push_back(OpVal); + } + + // Push the register mask info. + if (hasGlue) + Ops.push_back(*(Call->op_end()-2)); + else + Ops.push_back(*(Call->op_end()-1)); + + // Push the chain (this is originally the first operand of the call, but + // becomes now the last or second to last operand). + Ops.push_back(*(Call->op_begin())); + + // Push the glue flag (last operand). + if (hasGlue) + Ops.push_back(*(Call->op_end()-1)); + + SDVTList NodeTys; + if (isAnyRegCC && hasDef) { + // Create the return types based on the intrinsic definition + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SmallVector<EVT, 3> ValueVTs; + ComputeValueVTs(TLI, CI.getType(), ValueVTs); + assert(ValueVTs.size() == 1 && "Expected only one return value type."); + + // There is always a chain and a glue type at the end + ValueVTs.push_back(MVT::Other); + ValueVTs.push_back(MVT::Glue); + NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); + } else + NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + // Replace the target specific call node with a PATCHPOINT node. + MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, + getCurSDLoc(), NodeTys, Ops); + + // Update the NodeMap. + if (hasDef) { + if (isAnyRegCC) + setValue(&CI, SDValue(MN, 0)); + else + setValue(&CI, Result.first); + } + + // Fixup the consumers of the intrinsic. The chain and glue may be used in the + // call sequence. Furthermore the location of the chain and glue can change + // when the AnyReg calling convention is used and the intrinsic returns a + // value. + if (isAnyRegCC && hasDef) { + SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; + SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; + DAG.ReplaceAllUsesOfValuesWith(From, To, 2); + } else + DAG.ReplaceAllUsesWith(Call, MN); + DAG.DeleteNode(Call); +} + +/// TargetLowering::LowerCallTo - This is the default LowerCallTo +/// implementation, which just calls LowerCall. +/// FIXME: When all targets are +/// migrated to using LowerCall, this hook should be integrated into SDISel. +std::pair<SDValue, SDValue> +TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { + // Handle the incoming return values from the call. + CLI.Ins.clear(); + SmallVector<EVT, 4> RetTys; + ComputeValueVTs(*this, CLI.RetTy, RetTys); + for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { + EVT VT = RetTys[I]; + MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); + unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); + for (unsigned i = 0; i != NumRegs; ++i) { + ISD::InputArg MyFlags; + MyFlags.VT = RegisterVT; + MyFlags.ArgVT = VT; + MyFlags.Used = CLI.IsReturnValueUsed; + if (CLI.RetSExt) + MyFlags.Flags.setSExt(); + if (CLI.RetZExt) + MyFlags.Flags.setZExt(); + if (CLI.IsInReg) + MyFlags.Flags.setInReg(); + CLI.Ins.push_back(MyFlags); + } + } + + // Handle all of the outgoing arguments. + CLI.Outs.clear(); + CLI.OutVals.clear(); + ArgListTy &Args = CLI.Args; + for (unsigned i = 0, e = Args.size(); i != e; ++i) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(*this, Args[i].Ty, ValueVTs); + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + EVT VT = ValueVTs[Value]; + Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); + SDValue Op = SDValue(Args[i].Node.getNode(), + Args[i].Node.getResNo() + Value); + ISD::ArgFlagsTy Flags; + unsigned OriginalAlignment = + getDataLayout()->getABITypeAlignment(ArgTy); + + if (Args[i].isZExt) + Flags.setZExt(); + if (Args[i].isSExt) + Flags.setSExt(); + if (Args[i].isInReg) + Flags.setInReg(); + if (Args[i].isSRet) + Flags.setSRet(); + if (Args[i].isByVal) { + Flags.setByVal(); + PointerType *Ty = cast<PointerType>(Args[i].Ty); + Type *ElementTy = Ty->getElementType(); + Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); + // For ByVal, alignment should come from FE. BE will guess if this + // info is not there but there are cases it cannot get right. + unsigned FrameAlign; + if (Args[i].Alignment) + FrameAlign = Args[i].Alignment; + else + FrameAlign = getByValTypeAlignment(ElementTy); + Flags.setByValAlign(FrameAlign); + } + if (Args[i].isNest) + Flags.setNest(); + Flags.setOrigAlign(OriginalAlignment); + + MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); + unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); + SmallVector<SDValue, 4> Parts(NumParts); + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + if (Args[i].isSExt) + ExtendKind = ISD::SIGN_EXTEND; + else if (Args[i].isZExt) + ExtendKind = ISD::ZERO_EXTEND; + + // Conservatively only handle 'returned' on non-vectors for now + if (Args[i].isReturned && !Op.getValueType().isVector()) { + assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && + "unexpected use of 'returned'"); + // Before passing 'returned' to the target lowering code, ensure that + // either the register MVT and the actual EVT are the same size or that + // the return value and argument are extended in the same way; in these + // cases it's safe to pass the argument register value unchanged as the + // return register value (although it's at the target's option whether + // to do so) + // TODO: allow code generation to take advantage of partially preserved + // registers rather than clobbering the entire register when the + // parameter extension method is not compatible with the return + // extension method + if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || + (ExtendKind != ISD::ANY_EXTEND && + CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) + Flags.setReturned(); + } + + getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, + PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); + + for (unsigned j = 0; j != NumParts; ++j) { + // if it isn't first piece, alignment must be 1 + ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, + i < CLI.NumFixedArgs, + i, j*Parts[j].getValueType().getStoreSize()); + if (NumParts > 1 && j == 0) + MyFlags.Flags.setSplit(); + else if (j != 0) + MyFlags.Flags.setOrigAlign(1); + + CLI.Outs.push_back(MyFlags); + CLI.OutVals.push_back(Parts[j]); + } + } + } + + SmallVector<SDValue, 4> InVals; + CLI.Chain = LowerCall(CLI, InVals); + + // Verify that the target's LowerCall behaved as expected. + assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && + "LowerCall didn't return a valid chain!"); + assert((!CLI.IsTailCall || InVals.empty()) && + "LowerCall emitted a return value for a tail call!"); + assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && + "LowerCall didn't emit the correct number of values!"); + + // For a tail call, the return value is merely live-out and there aren't + // any nodes in the DAG representing it. Return a special value to + // indicate that a tail call has been emitted and no more Instructions + // should be processed in the current block. + if (CLI.IsTailCall) { + CLI.DAG.setRoot(CLI.Chain); + return std::make_pair(SDValue(), SDValue()); + } + + DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { + assert(InVals[i].getNode() && + "LowerCall emitted a null value!"); + assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && + "LowerCall emitted a value with the wrong type!"); + }); + + // Collect the legal value parts into potentially illegal values + // that correspond to the original function's return values. + ISD::NodeType AssertOp = ISD::DELETED_NODE; + if (CLI.RetSExt) + AssertOp = ISD::AssertSext; + else if (CLI.RetZExt) + AssertOp = ISD::AssertZext; + SmallVector<SDValue, 4> ReturnValues; + unsigned CurReg = 0; + for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { + EVT VT = RetTys[I]; + MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); + unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); + + ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], + NumRegs, RegisterVT, VT, NULL, + AssertOp)); + CurReg += NumRegs; + } + + // For a function returning void, there is no return value. We can't create + // such a node, so we just return a null return value in that case. In + // that case, nothing will actually look at the value. + if (ReturnValues.empty()) + return std::make_pair(SDValue(), CLI.Chain); + + SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, + CLI.DAG.getVTList(&RetTys[0], RetTys.size()), + &ReturnValues[0], ReturnValues.size()); + return std::make_pair(Res, CLI.Chain); +} + +void TargetLowering::LowerOperationWrapper(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + SDValue Res = LowerOperation(SDValue(N, 0), DAG); + if (Res.getNode()) + Results.push_back(Res); +} + +SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + llvm_unreachable("LowerOperation not implemented for this target!"); +} + +void +SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { + SDValue Op = getNonRegisterValue(V); + assert((Op.getOpcode() != ISD::CopyFromReg || + cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && + "Copy from a reg to the same reg!"); + assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); + + const TargetLowering *TLI = TM.getTargetLowering(); + RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); + SDValue Chain = DAG.getEntryNode(); + RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); + PendingExports.push_back(Chain); +} + +#include "llvm/CodeGen/SelectionDAGISel.h" + +/// isOnlyUsedInEntryBlock - If the specified argument is only used in the +/// entry block, return true. This includes arguments used by switches, since +/// the switch may expand into multiple basic blocks. +static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { + // With FastISel active, we may be splitting blocks, so force creation + // of virtual registers for all non-dead arguments. + if (FastISel) + return A->use_empty(); + + const BasicBlock *Entry = A->getParent()->begin(); + for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); + UI != E; ++UI) { + const User *U = *UI; + if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) + return false; // Use not in entry block. + } + return true; +} + +void SelectionDAGISel::LowerArguments(const Function &F) { + SelectionDAG &DAG = SDB->DAG; + SDLoc dl = SDB->getCurSDLoc(); + const TargetLowering *TLI = getTargetLowering(); + const DataLayout *TD = TLI->getDataLayout(); + SmallVector<ISD::InputArg, 16> Ins; + + if (!FuncInfo->CanLowerReturn) { + // Put in an sret pointer parameter before all the other parameters. + SmallVector<EVT, 1> ValueVTs; + ComputeValueVTs(*getTargetLowering(), + PointerType::getUnqual(F.getReturnType()), ValueVTs); + + // NOTE: Assuming that a pointer will never break down to more than one VT + // or one register. + ISD::ArgFlagsTy Flags; + Flags.setSRet(); + MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); + ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); + Ins.push_back(RetArg); + } + + // Set up the incoming argument description vector. + unsigned Idx = 1; + for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I, ++Idx) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(*TLI, I->getType(), ValueVTs); + bool isArgValueUsed = !I->use_empty(); + unsigned PartBase = 0; + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + EVT VT = ValueVTs[Value]; + Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); + ISD::ArgFlagsTy Flags; + unsigned OriginalAlignment = + TD->getABITypeAlignment(ArgTy); + + if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) + Flags.setZExt(); + if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) + Flags.setSExt(); + if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) + Flags.setInReg(); + if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) + Flags.setSRet(); + if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) { + Flags.setByVal(); + PointerType *Ty = cast<PointerType>(I->getType()); + Type *ElementTy = Ty->getElementType(); + Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); + // For ByVal, alignment should be passed from FE. BE will guess if + // this info is not there but there are cases it cannot get right. + unsigned FrameAlign; + if (F.getParamAlignment(Idx)) + FrameAlign = F.getParamAlignment(Idx); + else + FrameAlign = TLI->getByValTypeAlignment(ElementTy); + Flags.setByValAlign(FrameAlign); + } + if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) + Flags.setNest(); + Flags.setOrigAlign(OriginalAlignment); + + MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); + unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); + for (unsigned i = 0; i != NumRegs; ++i) { + ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, + Idx-1, PartBase+i*RegisterVT.getStoreSize()); + if (NumRegs > 1 && i == 0) + MyFlags.Flags.setSplit(); + // if it isn't first piece, alignment must be 1 + else if (i > 0) + MyFlags.Flags.setOrigAlign(1); + Ins.push_back(MyFlags); + } + PartBase += VT.getStoreSize(); + } + } + + // Call the target to set up the argument values. + SmallVector<SDValue, 8> InVals; + SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), + F.isVarArg(), Ins, + dl, DAG, InVals); + + // Verify that the target's LowerFormalArguments behaved as expected. + assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && + "LowerFormalArguments didn't return a valid chain!"); + assert(InVals.size() == Ins.size() && + "LowerFormalArguments didn't emit the correct number of values!"); + DEBUG({ + for (unsigned i = 0, e = Ins.size(); i != e; ++i) { + assert(InVals[i].getNode() && + "LowerFormalArguments emitted a null value!"); + assert(EVT(Ins[i].VT) == InVals[i].getValueType() && + "LowerFormalArguments emitted a value with the wrong type!"); + } + }); + + // Update the DAG with the new chain value resulting from argument lowering. + DAG.setRoot(NewRoot); + + // Set up the argument values. + unsigned i = 0; + Idx = 1; + if (!FuncInfo->CanLowerReturn) { + // Create a virtual register for the sret pointer, and put in a copy + // from the sret argument into it. + SmallVector<EVT, 1> ValueVTs; + ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); + MVT VT = ValueVTs[0].getSimpleVT(); + MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); + ISD::NodeType AssertOp = ISD::DELETED_NODE; + SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, + RegVT, VT, NULL, AssertOp); + + MachineFunction& MF = SDB->DAG.getMachineFunction(); + MachineRegisterInfo& RegInfo = MF.getRegInfo(); + unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); + FuncInfo->DemoteRegister = SRetReg; + NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), + SRetReg, ArgValue); + DAG.setRoot(NewRoot); + + // i indexes lowered arguments. Bump it past the hidden sret argument. + // Idx indexes LLVM arguments. Don't touch it. + ++i; + } + + for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; + ++I, ++Idx) { + SmallVector<SDValue, 4> ArgValues; + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(*TLI, I->getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + + // If this argument is unused then remember its value. It is used to generate + // debugging information. + if (I->use_empty() && NumValues) { + SDB->setUnusedArgValue(I, InVals[i]); + + // Also remember any frame index for use in FastISel. + if (FrameIndexSDNode *FI = + dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) + FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); + } + + for (unsigned Val = 0; Val != NumValues; ++Val) { + EVT VT = ValueVTs[Val]; + MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); + unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); + + if (!I->use_empty()) { + ISD::NodeType AssertOp = ISD::DELETED_NODE; + if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) + AssertOp = ISD::AssertSext; + else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) + AssertOp = ISD::AssertZext; + + ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], + NumParts, PartVT, VT, + NULL, AssertOp)); + } + + i += NumParts; + } + + // We don't need to do anything else for unused arguments. + if (ArgValues.empty()) + continue; + + // Note down frame index. + if (FrameIndexSDNode *FI = + dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) + FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); + + SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, + SDB->getCurSDLoc()); + + SDB->setValue(I, Res); + if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { + if (LoadSDNode *LNode = + dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) + if (FrameIndexSDNode *FI = + dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) + FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); + } + + // If this argument is live outside of the entry block, insert a copy from + // wherever we got it to the vreg that other BB's will reference it as. + if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { + // If we can, though, try to skip creating an unnecessary vreg. + // FIXME: This isn't very clean... it would be nice to make this more + // general. It's also subtly incompatible with the hacks FastISel + // uses with vregs. + unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + FuncInfo->ValueMap[I] = Reg; + continue; + } + } + if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { + FuncInfo->InitializeRegForValue(I); + SDB->CopyToExportRegsIfNeeded(I); + } + } + + assert(i == InVals.size() && "Argument register count mismatch!"); + + // Finally, if the target has anything special to do, allow it to do so. + // FIXME: this should insert code into the DAG! + EmitFunctionEntryCode(); +} + +/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to +/// ensure constants are generated when needed. Remember the virtual registers +/// that need to be added to the Machine PHI nodes as input. We cannot just +/// directly add them, because expansion might result in multiple MBB's for one +/// BB. As such, the start of the BB might correspond to a different MBB than +/// the end. +/// +void +SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { + const TerminatorInst *TI = LLVMBB->getTerminator(); + + SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; + + // Check successor nodes' PHI nodes that expect a constant to be available + // from this block. + for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { + const BasicBlock *SuccBB = TI->getSuccessor(succ); + if (!isa<PHINode>(SuccBB->begin())) continue; + MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; + + // If this terminator has multiple identical successors (common for + // switches), only handle each succ once. + if (!SuccsHandled.insert(SuccMBB)) continue; + + MachineBasicBlock::iterator MBBI = SuccMBB->begin(); + + // At this point we know that there is a 1-1 correspondence between LLVM PHI + // nodes and Machine PHI nodes, but the incoming operands have not been + // emitted yet. + for (BasicBlock::const_iterator I = SuccBB->begin(); + const PHINode *PN = dyn_cast<PHINode>(I); ++I) { + // Ignore dead phi's. + if (PN->use_empty()) continue; + + // Skip empty types + if (PN->getType()->isEmptyTy()) + continue; + + unsigned Reg; + const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); + + if (const Constant *C = dyn_cast<Constant>(PHIOp)) { + unsigned &RegOut = ConstantsOut[C]; + if (RegOut == 0) { + RegOut = FuncInfo.CreateRegs(C->getType()); + CopyValueToVirtualRegister(C, RegOut); + } + Reg = RegOut; + } else { + DenseMap<const Value *, unsigned>::iterator I = + FuncInfo.ValueMap.find(PHIOp); + if (I != FuncInfo.ValueMap.end()) + Reg = I->second; + else { + assert(isa<AllocaInst>(PHIOp) && + FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && + "Didn't codegen value into a register!??"); + Reg = FuncInfo.CreateRegs(PHIOp->getType()); + CopyValueToVirtualRegister(PHIOp, Reg); + } + } + + // Remember that this register needs to added to the machine PHI node as + // the input for this MBB. + SmallVector<EVT, 4> ValueVTs; + const TargetLowering *TLI = TM.getTargetLowering(); + ComputeValueVTs(*TLI, PN->getType(), ValueVTs); + for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { + EVT VT = ValueVTs[vti]; + unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); + for (unsigned i = 0, e = NumRegisters; i != e; ++i) + FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); + Reg += NumRegisters; + } + } + } + + ConstantsOut.clear(); +} + +/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB +/// is 0. +MachineBasicBlock * +SelectionDAGBuilder::StackProtectorDescriptor:: +AddSuccessorMBB(const BasicBlock *BB, + MachineBasicBlock *ParentMBB, + MachineBasicBlock *SuccMBB) { + // If SuccBB has not been created yet, create it. + if (!SuccMBB) { + MachineFunction *MF = ParentMBB->getParent(); + MachineFunction::iterator BBI = ParentMBB; + SuccMBB = MF->CreateMachineBasicBlock(BB); + MF->insert(++BBI, SuccMBB); + } + // Add it as a successor of ParentMBB. + ParentMBB->addSuccessor(SuccMBB); + return SuccMBB; +} |