aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp7526
1 files changed, 7526 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
new file mode 100644
index 000000000000..2b2713d248e5
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -0,0 +1,7526 @@
+//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements routines for translating from LLVM IR into SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "isel"
+#include "SelectionDAGBuilder.h"
+#include "SDNodeDbgValue.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+#include <algorithm>
+using namespace llvm;
+
+/// LimitFloatPrecision - Generate low-precision inline sequences for
+/// some float libcalls (6, 8 or 12 bits).
+static unsigned LimitFloatPrecision;
+
+static cl::opt<unsigned, true>
+LimitFPPrecision("limit-float-precision",
+ cl::desc("Generate low-precision inline sequences "
+ "for some float libcalls"),
+ cl::location(LimitFloatPrecision),
+ cl::init(0));
+
+// Limit the width of DAG chains. This is important in general to prevent
+// prevent DAG-based analysis from blowing up. For example, alias analysis and
+// load clustering may not complete in reasonable time. It is difficult to
+// recognize and avoid this situation within each individual analysis, and
+// future analyses are likely to have the same behavior. Limiting DAG width is
+// the safe approach, and will be especially important with global DAGs.
+//
+// MaxParallelChains default is arbitrarily high to avoid affecting
+// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
+// sequence over this should have been converted to llvm.memcpy by the
+// frontend. It easy to induce this behavior with .ll code such as:
+// %buffer = alloca [4096 x i8]
+// %data = load [4096 x i8]* %argPtr
+// store [4096 x i8] %data, [4096 x i8]* %buffer
+static const unsigned MaxParallelChains = 64;
+
+static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
+ const SDValue *Parts, unsigned NumParts,
+ MVT PartVT, EVT ValueVT, const Value *V);
+
+/// getCopyFromParts - Create a value that contains the specified legal parts
+/// combined into the value they represent. If the parts combine to a type
+/// larger then ValueVT then AssertOp can be used to specify whether the extra
+/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
+/// (ISD::AssertSext).
+static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
+ const SDValue *Parts,
+ unsigned NumParts, MVT PartVT, EVT ValueVT,
+ const Value *V,
+ ISD::NodeType AssertOp = ISD::DELETED_NODE) {
+ if (ValueVT.isVector())
+ return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
+ PartVT, ValueVT, V);
+
+ assert(NumParts > 0 && "No parts to assemble!");
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Val = Parts[0];
+
+ if (NumParts > 1) {
+ // Assemble the value from multiple parts.
+ if (ValueVT.isInteger()) {
+ unsigned PartBits = PartVT.getSizeInBits();
+ unsigned ValueBits = ValueVT.getSizeInBits();
+
+ // Assemble the power of 2 part.
+ unsigned RoundParts = NumParts & (NumParts - 1) ?
+ 1 << Log2_32(NumParts) : NumParts;
+ unsigned RoundBits = PartBits * RoundParts;
+ EVT RoundVT = RoundBits == ValueBits ?
+ ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
+ SDValue Lo, Hi;
+
+ EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
+
+ if (RoundParts > 2) {
+ Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
+ PartVT, HalfVT, V);
+ Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
+ RoundParts / 2, PartVT, HalfVT, V);
+ } else {
+ Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
+ Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
+ }
+
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+
+ Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
+
+ if (RoundParts < NumParts) {
+ // Assemble the trailing non-power-of-2 part.
+ unsigned OddParts = NumParts - RoundParts;
+ EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
+ Hi = getCopyFromParts(DAG, DL,
+ Parts + RoundParts, OddParts, PartVT, OddVT, V);
+
+ // Combine the round and odd parts.
+ Lo = Val;
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
+ Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
+ DAG.getConstant(Lo.getValueType().getSizeInBits(),
+ TLI.getPointerTy()));
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
+ Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
+ }
+ } else if (PartVT.isFloatingPoint()) {
+ // FP split into multiple FP parts (for ppcf128)
+ assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
+ "Unexpected split");
+ SDValue Lo, Hi;
+ Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
+ Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
+ } else {
+ // FP split into integer parts (soft fp)
+ assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
+ !PartVT.isVector() && "Unexpected split");
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
+ Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
+ }
+ }
+
+ // There is now one part, held in Val. Correct it to match ValueVT.
+ EVT PartEVT = Val.getValueType();
+
+ if (PartEVT == ValueVT)
+ return Val;
+
+ if (PartEVT.isInteger() && ValueVT.isInteger()) {
+ if (ValueVT.bitsLT(PartEVT)) {
+ // For a truncate, see if we have any information to
+ // indicate whether the truncated bits will always be
+ // zero or sign-extension.
+ if (AssertOp != ISD::DELETED_NODE)
+ Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
+ DAG.getValueType(ValueVT));
+ return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
+ }
+ return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
+ }
+
+ if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+ // FP_ROUND's are always exact here.
+ if (ValueVT.bitsLT(Val.getValueType()))
+ return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
+ DAG.getTargetConstant(1, TLI.getPointerTy()));
+
+ return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
+ }
+
+ if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
+ return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
+
+ llvm_unreachable("Unknown mismatch!");
+}
+
+/// getCopyFromPartsVector - Create a value that contains the specified legal
+/// parts combined into the value they represent. If the parts combine to a
+/// type larger then ValueVT then AssertOp can be used to specify whether the
+/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
+/// ValueVT (ISD::AssertSext).
+static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
+ const SDValue *Parts, unsigned NumParts,
+ MVT PartVT, EVT ValueVT, const Value *V) {
+ assert(ValueVT.isVector() && "Not a vector value");
+ assert(NumParts > 0 && "No parts to assemble!");
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Val = Parts[0];
+
+ // Handle a multi-element vector.
+ if (NumParts > 1) {
+ EVT IntermediateVT;
+ MVT RegisterVT;
+ unsigned NumIntermediates;
+ unsigned NumRegs =
+ TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
+ NumIntermediates, RegisterVT);
+ assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
+ NumParts = NumRegs; // Silence a compiler warning.
+ assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
+ assert(RegisterVT == Parts[0].getSimpleValueType() &&
+ "Part type doesn't match part!");
+
+ // Assemble the parts into intermediate operands.
+ SmallVector<SDValue, 8> Ops(NumIntermediates);
+ if (NumIntermediates == NumParts) {
+ // If the register was not expanded, truncate or copy the value,
+ // as appropriate.
+ for (unsigned i = 0; i != NumParts; ++i)
+ Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
+ PartVT, IntermediateVT, V);
+ } else if (NumParts > 0) {
+ // If the intermediate type was expanded, build the intermediate
+ // operands from the parts.
+ assert(NumParts % NumIntermediates == 0 &&
+ "Must expand into a divisible number of parts!");
+ unsigned Factor = NumParts / NumIntermediates;
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
+ PartVT, IntermediateVT, V);
+ }
+
+ // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
+ // intermediate operands.
+ Val = DAG.getNode(IntermediateVT.isVector() ?
+ ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
+ ValueVT, &Ops[0], NumIntermediates);
+ }
+
+ // There is now one part, held in Val. Correct it to match ValueVT.
+ EVT PartEVT = Val.getValueType();
+
+ if (PartEVT == ValueVT)
+ return Val;
+
+ if (PartEVT.isVector()) {
+ // If the element type of the source/dest vectors are the same, but the
+ // parts vector has more elements than the value vector, then we have a
+ // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
+ // elements we want.
+ if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
+ assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
+ "Cannot narrow, it would be a lossy transformation");
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ }
+
+ // Vector/Vector bitcast.
+ if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
+ return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
+
+ assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
+ "Cannot handle this kind of promotion");
+ // Promoted vector extract
+ bool Smaller = ValueVT.bitsLE(PartEVT);
+ return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
+ DL, ValueVT, Val);
+
+ }
+
+ // Trivial bitcast if the types are the same size and the destination
+ // vector type is legal.
+ if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
+ TLI.isTypeLegal(ValueVT))
+ return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
+
+ // Handle cases such as i8 -> <1 x i1>
+ if (ValueVT.getVectorNumElements() != 1) {
+ LLVMContext &Ctx = *DAG.getContext();
+ Twine ErrMsg("non-trivial scalar-to-vector conversion");
+ if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (isa<InlineAsm>(CI->getCalledValue()))
+ ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
+ Ctx.emitError(I, ErrMsg);
+ } else {
+ Ctx.emitError(ErrMsg);
+ }
+ return DAG.getUNDEF(ValueVT);
+ }
+
+ if (ValueVT.getVectorNumElements() == 1 &&
+ ValueVT.getVectorElementType() != PartEVT) {
+ bool Smaller = ValueVT.bitsLE(PartEVT);
+ Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
+ DL, ValueVT.getScalarType(), Val);
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
+}
+
+static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
+ SDValue Val, SDValue *Parts, unsigned NumParts,
+ MVT PartVT, const Value *V);
+
+/// getCopyToParts - Create a series of nodes that contain the specified value
+/// split into legal parts. If the parts contain more bits than Val, then, for
+/// integers, ExtendKind can be used to specify how to generate the extra bits.
+static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
+ SDValue Val, SDValue *Parts, unsigned NumParts,
+ MVT PartVT, const Value *V,
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
+ EVT ValueVT = Val.getValueType();
+
+ // Handle the vector case separately.
+ if (ValueVT.isVector())
+ return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned PartBits = PartVT.getSizeInBits();
+ unsigned OrigNumParts = NumParts;
+ assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
+
+ if (NumParts == 0)
+ return;
+
+ assert(!ValueVT.isVector() && "Vector case handled elsewhere");
+ EVT PartEVT = PartVT;
+ if (PartEVT == ValueVT) {
+ assert(NumParts == 1 && "No-op copy with multiple parts!");
+ Parts[0] = Val;
+ return;
+ }
+
+ if (NumParts * PartBits > ValueVT.getSizeInBits()) {
+ // If the parts cover more bits than the value has, promote the value.
+ if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+ assert(NumParts == 1 && "Do not know what to promote to!");
+ Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
+ } else {
+ assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
+ ValueVT.isInteger() &&
+ "Unknown mismatch!");
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
+ if (PartVT == MVT::x86mmx)
+ Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
+ }
+ } else if (PartBits == ValueVT.getSizeInBits()) {
+ // Different types of the same size.
+ assert(NumParts == 1 && PartEVT != ValueVT);
+ Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
+ } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
+ // If the parts cover less bits than value has, truncate the value.
+ assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
+ ValueVT.isInteger() &&
+ "Unknown mismatch!");
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
+ if (PartVT == MVT::x86mmx)
+ Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
+ }
+
+ // The value may have changed - recompute ValueVT.
+ ValueVT = Val.getValueType();
+ assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
+ "Failed to tile the value with PartVT!");
+
+ if (NumParts == 1) {
+ if (PartEVT != ValueVT) {
+ LLVMContext &Ctx = *DAG.getContext();
+ Twine ErrMsg("scalar-to-vector conversion failed");
+ if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (isa<InlineAsm>(CI->getCalledValue()))
+ ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
+ Ctx.emitError(I, ErrMsg);
+ } else {
+ Ctx.emitError(ErrMsg);
+ }
+ }
+
+ Parts[0] = Val;
+ return;
+ }
+
+ // Expand the value into multiple parts.
+ if (NumParts & (NumParts - 1)) {
+ // The number of parts is not a power of 2. Split off and copy the tail.
+ assert(PartVT.isInteger() && ValueVT.isInteger() &&
+ "Do not know what to expand to!");
+ unsigned RoundParts = 1 << Log2_32(NumParts);
+ unsigned RoundBits = RoundParts * PartBits;
+ unsigned OddParts = NumParts - RoundParts;
+ SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
+ DAG.getIntPtrConstant(RoundBits));
+ getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
+
+ if (TLI.isBigEndian())
+ // The odd parts were reversed by getCopyToParts - unreverse them.
+ std::reverse(Parts + RoundParts, Parts + NumParts);
+
+ NumParts = RoundParts;
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
+ }
+
+ // The number of parts is a power of 2. Repeatedly bisect the value using
+ // EXTRACT_ELEMENT.
+ Parts[0] = DAG.getNode(ISD::BITCAST, DL,
+ EVT::getIntegerVT(*DAG.getContext(),
+ ValueVT.getSizeInBits()),
+ Val);
+
+ for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
+ for (unsigned i = 0; i < NumParts; i += StepSize) {
+ unsigned ThisBits = StepSize * PartBits / 2;
+ EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
+ SDValue &Part0 = Parts[i];
+ SDValue &Part1 = Parts[i+StepSize/2];
+
+ Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
+ ThisVT, Part0, DAG.getIntPtrConstant(1));
+ Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
+ ThisVT, Part0, DAG.getIntPtrConstant(0));
+
+ if (ThisBits == PartBits && ThisVT != PartVT) {
+ Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
+ Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
+ }
+ }
+ }
+
+ if (TLI.isBigEndian())
+ std::reverse(Parts, Parts + OrigNumParts);
+}
+
+
+/// getCopyToPartsVector - Create a series of nodes that contain the specified
+/// value split into legal parts.
+static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
+ SDValue Val, SDValue *Parts, unsigned NumParts,
+ MVT PartVT, const Value *V) {
+ EVT ValueVT = Val.getValueType();
+ assert(ValueVT.isVector() && "Not a vector");
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ if (NumParts == 1) {
+ EVT PartEVT = PartVT;
+ if (PartEVT == ValueVT) {
+ // Nothing to do.
+ } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
+ // Bitconvert vector->vector case.
+ Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
+ } else if (PartVT.isVector() &&
+ PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
+ PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
+ EVT ElementVT = PartVT.getVectorElementType();
+ // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
+ // undef elements.
+ SmallVector<SDValue, 16> Ops;
+ for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
+ ElementVT, Val, DAG.getConstant(i,
+ TLI.getVectorIdxTy())));
+
+ for (unsigned i = ValueVT.getVectorNumElements(),
+ e = PartVT.getVectorNumElements(); i != e; ++i)
+ Ops.push_back(DAG.getUNDEF(ElementVT));
+
+ Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
+
+ // FIXME: Use CONCAT for 2x -> 4x.
+
+ //SDValue UndefElts = DAG.getUNDEF(VectorTy);
+ //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
+ } else if (PartVT.isVector() &&
+ PartEVT.getVectorElementType().bitsGE(
+ ValueVT.getVectorElementType()) &&
+ PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
+
+ // Promoted vector extract
+ bool Smaller = PartEVT.bitsLE(ValueVT);
+ Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
+ DL, PartVT, Val);
+ } else{
+ // Vector -> scalar conversion.
+ assert(ValueVT.getVectorNumElements() == 1 &&
+ "Only trivial vector-to-scalar conversions should get here!");
+ Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
+ PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
+
+ bool Smaller = ValueVT.bitsLE(PartVT);
+ Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
+ DL, PartVT, Val);
+ }
+
+ Parts[0] = Val;
+ return;
+ }
+
+ // Handle a multi-element vector.
+ EVT IntermediateVT;
+ MVT RegisterVT;
+ unsigned NumIntermediates;
+ unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
+ IntermediateVT,
+ NumIntermediates, RegisterVT);
+ unsigned NumElements = ValueVT.getVectorNumElements();
+
+ assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
+ NumParts = NumRegs; // Silence a compiler warning.
+ assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
+
+ // Split the vector into intermediate operands.
+ SmallVector<SDValue, 8> Ops(NumIntermediates);
+ for (unsigned i = 0; i != NumIntermediates; ++i) {
+ if (IntermediateVT.isVector())
+ Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
+ IntermediateVT, Val,
+ DAG.getConstant(i * (NumElements / NumIntermediates),
+ TLI.getVectorIdxTy()));
+ else
+ Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
+ IntermediateVT, Val,
+ DAG.getConstant(i, TLI.getVectorIdxTy()));
+ }
+
+ // Split the intermediate operands into legal parts.
+ if (NumParts == NumIntermediates) {
+ // If the register was not expanded, promote or copy the value,
+ // as appropriate.
+ for (unsigned i = 0; i != NumParts; ++i)
+ getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
+ } else if (NumParts > 0) {
+ // If the intermediate type was expanded, split each the value into
+ // legal parts.
+ assert(NumParts % NumIntermediates == 0 &&
+ "Must expand into a divisible number of parts!");
+ unsigned Factor = NumParts / NumIntermediates;
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
+ }
+}
+
+namespace {
+ /// RegsForValue - This struct represents the registers (physical or virtual)
+ /// that a particular set of values is assigned, and the type information
+ /// about the value. The most common situation is to represent one value at a
+ /// time, but struct or array values are handled element-wise as multiple
+ /// values. The splitting of aggregates is performed recursively, so that we
+ /// never have aggregate-typed registers. The values at this point do not
+ /// necessarily have legal types, so each value may require one or more
+ /// registers of some legal type.
+ ///
+ struct RegsForValue {
+ /// ValueVTs - The value types of the values, which may not be legal, and
+ /// may need be promoted or synthesized from one or more registers.
+ ///
+ SmallVector<EVT, 4> ValueVTs;
+
+ /// RegVTs - The value types of the registers. This is the same size as
+ /// ValueVTs and it records, for each value, what the type of the assigned
+ /// register or registers are. (Individual values are never synthesized
+ /// from more than one type of register.)
+ ///
+ /// With virtual registers, the contents of RegVTs is redundant with TLI's
+ /// getRegisterType member function, however when with physical registers
+ /// it is necessary to have a separate record of the types.
+ ///
+ SmallVector<MVT, 4> RegVTs;
+
+ /// Regs - This list holds the registers assigned to the values.
+ /// Each legal or promoted value requires one register, and each
+ /// expanded value requires multiple registers.
+ ///
+ SmallVector<unsigned, 4> Regs;
+
+ RegsForValue() {}
+
+ RegsForValue(const SmallVector<unsigned, 4> &regs,
+ MVT regvt, EVT valuevt)
+ : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
+
+ RegsForValue(LLVMContext &Context, const TargetLowering &tli,
+ unsigned Reg, Type *Ty) {
+ ComputeValueVTs(tli, Ty, ValueVTs);
+
+ for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
+ MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
+ for (unsigned i = 0; i != NumRegs; ++i)
+ Regs.push_back(Reg + i);
+ RegVTs.push_back(RegisterVT);
+ Reg += NumRegs;
+ }
+ }
+
+ /// areValueTypesLegal - Return true if types of all the values are legal.
+ bool areValueTypesLegal(const TargetLowering &TLI) {
+ for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ MVT RegisterVT = RegVTs[Value];
+ if (!TLI.isTypeLegal(RegisterVT))
+ return false;
+ }
+ return true;
+ }
+
+ /// append - Add the specified values to this one.
+ void append(const RegsForValue &RHS) {
+ ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
+ RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
+ Regs.append(RHS.Regs.begin(), RHS.Regs.end());
+ }
+
+ /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
+ /// this value and returns the result as a ValueVTs value. This uses
+ /// Chain/Flag as the input and updates them for the output Chain/Flag.
+ /// If the Flag pointer is NULL, no flag is used.
+ SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
+ SDLoc dl,
+ SDValue &Chain, SDValue *Flag,
+ const Value *V = 0) const;
+
+ /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
+ /// specified value into the registers specified by this object. This uses
+ /// Chain/Flag as the input and updates them for the output Chain/Flag.
+ /// If the Flag pointer is NULL, no flag is used.
+ void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
+ SDValue &Chain, SDValue *Flag, const Value *V) const;
+
+ /// AddInlineAsmOperands - Add this value to the specified inlineasm node
+ /// operand list. This adds the code marker, matching input operand index
+ /// (if applicable), and includes the number of values added into it.
+ void AddInlineAsmOperands(unsigned Kind,
+ bool HasMatching, unsigned MatchingIdx,
+ SelectionDAG &DAG,
+ std::vector<SDValue> &Ops) const;
+ };
+}
+
+/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
+/// this value and returns the result as a ValueVT value. This uses
+/// Chain/Flag as the input and updates them for the output Chain/Flag.
+/// If the Flag pointer is NULL, no flag is used.
+SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
+ FunctionLoweringInfo &FuncInfo,
+ SDLoc dl,
+ SDValue &Chain, SDValue *Flag,
+ const Value *V) const {
+ // A Value with type {} or [0 x %t] needs no registers.
+ if (ValueVTs.empty())
+ return SDValue();
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // Assemble the legal parts into the final values.
+ SmallVector<SDValue, 4> Values(ValueVTs.size());
+ SmallVector<SDValue, 8> Parts;
+ for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ // Copy the legal parts from the registers.
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
+ MVT RegisterVT = RegVTs[Value];
+
+ Parts.resize(NumRegs);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ SDValue P;
+ if (Flag == 0) {
+ P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
+ } else {
+ P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
+ *Flag = P.getValue(2);
+ }
+
+ Chain = P.getValue(1);
+ Parts[i] = P;
+
+ // If the source register was virtual and if we know something about it,
+ // add an assert node.
+ if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
+ !RegisterVT.isInteger() || RegisterVT.isVector())
+ continue;
+
+ const FunctionLoweringInfo::LiveOutInfo *LOI =
+ FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
+ if (!LOI)
+ continue;
+
+ unsigned RegSize = RegisterVT.getSizeInBits();
+ unsigned NumSignBits = LOI->NumSignBits;
+ unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
+
+ if (NumZeroBits == RegSize) {
+ // The current value is a zero.
+ // Explicitly express that as it would be easier for
+ // optimizations to kick in.
+ Parts[i] = DAG.getConstant(0, RegisterVT);
+ continue;
+ }
+
+ // FIXME: We capture more information than the dag can represent. For
+ // now, just use the tightest assertzext/assertsext possible.
+ bool isSExt = true;
+ EVT FromVT(MVT::Other);
+ if (NumSignBits == RegSize)
+ isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
+ else if (NumZeroBits >= RegSize-1)
+ isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
+ else if (NumSignBits > RegSize-8)
+ isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
+ else if (NumZeroBits >= RegSize-8)
+ isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
+ else if (NumSignBits > RegSize-16)
+ isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
+ else if (NumZeroBits >= RegSize-16)
+ isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
+ else if (NumSignBits > RegSize-32)
+ isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
+ else if (NumZeroBits >= RegSize-32)
+ isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
+ else
+ continue;
+
+ // Add an assertion node.
+ assert(FromVT != MVT::Other);
+ Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
+ RegisterVT, P, DAG.getValueType(FromVT));
+ }
+
+ Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
+ NumRegs, RegisterVT, ValueVT, V);
+ Part += NumRegs;
+ Parts.clear();
+ }
+
+ return DAG.getNode(ISD::MERGE_VALUES, dl,
+ DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
+ &Values[0], ValueVTs.size());
+}
+
+/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
+/// specified value into the registers specified by this object. This uses
+/// Chain/Flag as the input and updates them for the output Chain/Flag.
+/// If the Flag pointer is NULL, no flag is used.
+void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
+ SDValue &Chain, SDValue *Flag,
+ const Value *V) const {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // Get the list of the values's legal parts.
+ unsigned NumRegs = Regs.size();
+ SmallVector<SDValue, 8> Parts(NumRegs);
+ for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
+ MVT RegisterVT = RegVTs[Value];
+ ISD::NodeType ExtendKind =
+ TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
+
+ getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
+ &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
+ Part += NumParts;
+ }
+
+ // Copy the parts into the registers.
+ SmallVector<SDValue, 8> Chains(NumRegs);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ SDValue Part;
+ if (Flag == 0) {
+ Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
+ } else {
+ Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
+ *Flag = Part.getValue(1);
+ }
+
+ Chains[i] = Part.getValue(0);
+ }
+
+ if (NumRegs == 1 || Flag)
+ // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
+ // flagged to it. That is the CopyToReg nodes and the user are considered
+ // a single scheduling unit. If we create a TokenFactor and return it as
+ // chain, then the TokenFactor is both a predecessor (operand) of the
+ // user as well as a successor (the TF operands are flagged to the user).
+ // c1, f1 = CopyToReg
+ // c2, f2 = CopyToReg
+ // c3 = TokenFactor c1, c2
+ // ...
+ // = op c3, ..., f2
+ Chain = Chains[NumRegs-1];
+ else
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
+}
+
+/// AddInlineAsmOperands - Add this value to the specified inlineasm node
+/// operand list. This adds the code marker and includes the number of
+/// values added into it.
+void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
+ unsigned MatchingIdx,
+ SelectionDAG &DAG,
+ std::vector<SDValue> &Ops) const {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
+ if (HasMatching)
+ Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
+ else if (!Regs.empty() &&
+ TargetRegisterInfo::isVirtualRegister(Regs.front())) {
+ // Put the register class of the virtual registers in the flag word. That
+ // way, later passes can recompute register class constraints for inline
+ // assembly as well as normal instructions.
+ // Don't do this for tied operands that can use the regclass information
+ // from the def.
+ const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
+ const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
+ Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
+ }
+
+ SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
+ Ops.push_back(Res);
+
+ for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
+ MVT RegisterVT = RegVTs[Value];
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ assert(Reg < Regs.size() && "Mismatch in # registers expected");
+ Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
+ }
+ }
+}
+
+void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
+ const TargetLibraryInfo *li) {
+ AA = &aa;
+ GFI = gfi;
+ LibInfo = li;
+ TD = DAG.getTarget().getDataLayout();
+ Context = DAG.getContext();
+ LPadToCallSiteMap.clear();
+}
+
+/// clear - Clear out the current SelectionDAG and the associated
+/// state and prepare this SelectionDAGBuilder object to be used
+/// for a new block. This doesn't clear out information about
+/// additional blocks that are needed to complete switch lowering
+/// or PHI node updating; that information is cleared out as it is
+/// consumed.
+void SelectionDAGBuilder::clear() {
+ NodeMap.clear();
+ UnusedArgNodeMap.clear();
+ PendingLoads.clear();
+ PendingExports.clear();
+ CurInst = NULL;
+ HasTailCall = false;
+}
+
+/// clearDanglingDebugInfo - Clear the dangling debug information
+/// map. This function is separated from the clear so that debug
+/// information that is dangling in a basic block can be properly
+/// resolved in a different basic block. This allows the
+/// SelectionDAG to resolve dangling debug information attached
+/// to PHI nodes.
+void SelectionDAGBuilder::clearDanglingDebugInfo() {
+ DanglingDebugInfoMap.clear();
+}
+
+/// getRoot - Return the current virtual root of the Selection DAG,
+/// flushing any PendingLoad items. This must be done before emitting
+/// a store or any other node that may need to be ordered after any
+/// prior load instructions.
+///
+SDValue SelectionDAGBuilder::getRoot() {
+ if (PendingLoads.empty())
+ return DAG.getRoot();
+
+ if (PendingLoads.size() == 1) {
+ SDValue Root = PendingLoads[0];
+ DAG.setRoot(Root);
+ PendingLoads.clear();
+ return Root;
+ }
+
+ // Otherwise, we have to make a token factor node.
+ SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
+ &PendingLoads[0], PendingLoads.size());
+ PendingLoads.clear();
+ DAG.setRoot(Root);
+ return Root;
+}
+
+/// getControlRoot - Similar to getRoot, but instead of flushing all the
+/// PendingLoad items, flush all the PendingExports items. It is necessary
+/// to do this before emitting a terminator instruction.
+///
+SDValue SelectionDAGBuilder::getControlRoot() {
+ SDValue Root = DAG.getRoot();
+
+ if (PendingExports.empty())
+ return Root;
+
+ // Turn all of the CopyToReg chains into one factored node.
+ if (Root.getOpcode() != ISD::EntryToken) {
+ unsigned i = 0, e = PendingExports.size();
+ for (; i != e; ++i) {
+ assert(PendingExports[i].getNode()->getNumOperands() > 1);
+ if (PendingExports[i].getNode()->getOperand(0) == Root)
+ break; // Don't add the root if we already indirectly depend on it.
+ }
+
+ if (i == e)
+ PendingExports.push_back(Root);
+ }
+
+ Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
+ &PendingExports[0],
+ PendingExports.size());
+ PendingExports.clear();
+ DAG.setRoot(Root);
+ return Root;
+}
+
+void SelectionDAGBuilder::visit(const Instruction &I) {
+ // Set up outgoing PHI node register values before emitting the terminator.
+ if (isa<TerminatorInst>(&I))
+ HandlePHINodesInSuccessorBlocks(I.getParent());
+
+ ++SDNodeOrder;
+
+ CurInst = &I;
+
+ visit(I.getOpcode(), I);
+
+ if (!isa<TerminatorInst>(&I) && !HasTailCall)
+ CopyToExportRegsIfNeeded(&I);
+
+ CurInst = NULL;
+}
+
+void SelectionDAGBuilder::visitPHI(const PHINode &) {
+ llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
+}
+
+void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
+ // Note: this doesn't use InstVisitor, because it has to work with
+ // ConstantExpr's in addition to instructions.
+ switch (Opcode) {
+ default: llvm_unreachable("Unknown instruction type encountered!");
+ // Build the switch statement using the Instruction.def file.
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
+#include "llvm/IR/Instruction.def"
+ }
+}
+
+// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
+// generate the debug data structures now that we've seen its definition.
+void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
+ SDValue Val) {
+ DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
+ if (DDI.getDI()) {
+ const DbgValueInst *DI = DDI.getDI();
+ DebugLoc dl = DDI.getdl();
+ unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
+ MDNode *Variable = DI->getVariable();
+ uint64_t Offset = DI->getOffset();
+ SDDbgValue *SDV;
+ if (Val.getNode()) {
+ if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
+ SDV = DAG.getDbgValue(Variable, Val.getNode(),
+ Val.getResNo(), Offset, dl, DbgSDNodeOrder);
+ DAG.AddDbgValue(SDV, Val.getNode(), false);
+ }
+ } else
+ DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
+ DanglingDebugInfoMap[V] = DanglingDebugInfo();
+ }
+}
+
+/// getValue - Return an SDValue for the given Value.
+SDValue SelectionDAGBuilder::getValue(const Value *V) {
+ // If we already have an SDValue for this value, use it. It's important
+ // to do this first, so that we don't create a CopyFromReg if we already
+ // have a regular SDValue.
+ SDValue &N = NodeMap[V];
+ if (N.getNode()) return N;
+
+ // If there's a virtual register allocated and initialized for this
+ // value, use it.
+ DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
+ if (It != FuncInfo.ValueMap.end()) {
+ unsigned InReg = It->second;
+ RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
+ InReg, V->getType());
+ SDValue Chain = DAG.getEntryNode();
+ N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
+ resolveDanglingDebugInfo(V, N);
+ return N;
+ }
+
+ // Otherwise create a new SDValue and remember it.
+ SDValue Val = getValueImpl(V);
+ NodeMap[V] = Val;
+ resolveDanglingDebugInfo(V, Val);
+ return Val;
+}
+
+/// getNonRegisterValue - Return an SDValue for the given Value, but
+/// don't look in FuncInfo.ValueMap for a virtual register.
+SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
+ // If we already have an SDValue for this value, use it.
+ SDValue &N = NodeMap[V];
+ if (N.getNode()) return N;
+
+ // Otherwise create a new SDValue and remember it.
+ SDValue Val = getValueImpl(V);
+ NodeMap[V] = Val;
+ resolveDanglingDebugInfo(V, Val);
+ return Val;
+}
+
+/// getValueImpl - Helper function for getValue and getNonRegisterValue.
+/// Create an SDValue for the given value.
+SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
+ const TargetLowering *TLI = TM.getTargetLowering();
+
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ EVT VT = TLI->getValueType(V->getType(), true);
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ return DAG.getConstant(*CI, VT);
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
+
+ if (isa<ConstantPointerNull>(C)) {
+ unsigned AS = V->getType()->getPointerAddressSpace();
+ return DAG.getConstant(0, TLI->getPointerTy(AS));
+ }
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return DAG.getConstantFP(*CFP, VT);
+
+ if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
+ return DAG.getUNDEF(VT);
+
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ visit(CE->getOpcode(), *CE);
+ SDValue N1 = NodeMap[V];
+ assert(N1.getNode() && "visit didn't populate the NodeMap!");
+ return N1;
+ }
+
+ if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
+ SmallVector<SDValue, 4> Constants;
+ for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
+ OI != OE; ++OI) {
+ SDNode *Val = getValue(*OI).getNode();
+ // If the operand is an empty aggregate, there are no values.
+ if (!Val) continue;
+ // Add each leaf value from the operand to the Constants list
+ // to form a flattened list of all the values.
+ for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
+ Constants.push_back(SDValue(Val, i));
+ }
+
+ return DAG.getMergeValues(&Constants[0], Constants.size(),
+ getCurSDLoc());
+ }
+
+ if (const ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(C)) {
+ SmallVector<SDValue, 4> Ops;
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
+ // Add each leaf value from the operand to the Constants list
+ // to form a flattened list of all the values.
+ for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
+ Ops.push_back(SDValue(Val, i));
+ }
+
+ if (isa<ArrayType>(CDS->getType()))
+ return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
+ return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
+ VT, &Ops[0], Ops.size());
+ }
+
+ if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
+ assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
+ "Unknown struct or array constant!");
+
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(*TLI, C->getType(), ValueVTs);
+ unsigned NumElts = ValueVTs.size();
+ if (NumElts == 0)
+ return SDValue(); // empty struct
+ SmallVector<SDValue, 4> Constants(NumElts);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ EVT EltVT = ValueVTs[i];
+ if (isa<UndefValue>(C))
+ Constants[i] = DAG.getUNDEF(EltVT);
+ else if (EltVT.isFloatingPoint())
+ Constants[i] = DAG.getConstantFP(0, EltVT);
+ else
+ Constants[i] = DAG.getConstant(0, EltVT);
+ }
+
+ return DAG.getMergeValues(&Constants[0], NumElts,
+ getCurSDLoc());
+ }
+
+ if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
+ return DAG.getBlockAddress(BA, VT);
+
+ VectorType *VecTy = cast<VectorType>(V->getType());
+ unsigned NumElements = VecTy->getNumElements();
+
+ // Now that we know the number and type of the elements, get that number of
+ // elements into the Ops array based on what kind of constant it is.
+ SmallVector<SDValue, 16> Ops;
+ if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
+ for (unsigned i = 0; i != NumElements; ++i)
+ Ops.push_back(getValue(CV->getOperand(i)));
+ } else {
+ assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
+ EVT EltVT = TLI->getValueType(VecTy->getElementType());
+
+ SDValue Op;
+ if (EltVT.isFloatingPoint())
+ Op = DAG.getConstantFP(0, EltVT);
+ else
+ Op = DAG.getConstant(0, EltVT);
+ Ops.assign(NumElements, Op);
+ }
+
+ // Create a BUILD_VECTOR node.
+ return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
+ VT, &Ops[0], Ops.size());
+ }
+
+ // If this is a static alloca, generate it as the frameindex instead of
+ // computation.
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end())
+ return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
+ }
+
+ // If this is an instruction which fast-isel has deferred, select it now.
+ if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
+ unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
+ RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
+ SDValue Chain = DAG.getEntryNode();
+ return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
+ }
+
+ llvm_unreachable("Can't get register for value!");
+}
+
+void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
+ const TargetLowering *TLI = TM.getTargetLowering();
+ SDValue Chain = getControlRoot();
+ SmallVector<ISD::OutputArg, 8> Outs;
+ SmallVector<SDValue, 8> OutVals;
+
+ if (!FuncInfo.CanLowerReturn) {
+ unsigned DemoteReg = FuncInfo.DemoteRegister;
+ const Function *F = I.getParent()->getParent();
+
+ // Emit a store of the return value through the virtual register.
+ // Leave Outs empty so that LowerReturn won't try to load return
+ // registers the usual way.
+ SmallVector<EVT, 1> PtrValueVTs;
+ ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
+ PtrValueVTs);
+
+ SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
+ SDValue RetOp = getValue(I.getOperand(0));
+
+ SmallVector<EVT, 4> ValueVTs;
+ SmallVector<uint64_t, 4> Offsets;
+ ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
+ unsigned NumValues = ValueVTs.size();
+
+ SmallVector<SDValue, 4> Chains(NumValues);
+ for (unsigned i = 0; i != NumValues; ++i) {
+ SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
+ RetPtr.getValueType(), RetPtr,
+ DAG.getIntPtrConstant(Offsets[i]));
+ Chains[i] =
+ DAG.getStore(Chain, getCurSDLoc(),
+ SDValue(RetOp.getNode(), RetOp.getResNo() + i),
+ // FIXME: better loc info would be nice.
+ Add, MachinePointerInfo(), false, false, 0);
+ }
+
+ Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
+ MVT::Other, &Chains[0], NumValues);
+ } else if (I.getNumOperands() != 0) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues) {
+ SDValue RetOp = getValue(I.getOperand(0));
+ for (unsigned j = 0, f = NumValues; j != f; ++j) {
+ EVT VT = ValueVTs[j];
+
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ const Function *F = I.getParent()->getParent();
+ if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
+ Attribute::SExt))
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
+ Attribute::ZExt))
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
+ VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
+
+ unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
+ MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
+ SmallVector<SDValue, 4> Parts(NumParts);
+ getCopyToParts(DAG, getCurSDLoc(),
+ SDValue(RetOp.getNode(), RetOp.getResNo() + j),
+ &Parts[0], NumParts, PartVT, &I, ExtendKind);
+
+ // 'inreg' on function refers to return value
+ ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+ if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
+ Attribute::InReg))
+ Flags.setInReg();
+
+ // Propagate extension type if any
+ if (ExtendKind == ISD::SIGN_EXTEND)
+ Flags.setSExt();
+ else if (ExtendKind == ISD::ZERO_EXTEND)
+ Flags.setZExt();
+
+ for (unsigned i = 0; i < NumParts; ++i) {
+ Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
+ VT, /*isfixed=*/true, 0, 0));
+ OutVals.push_back(Parts[i]);
+ }
+ }
+ }
+ }
+
+ bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
+ CallingConv::ID CallConv =
+ DAG.getMachineFunction().getFunction()->getCallingConv();
+ Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
+ Outs, OutVals, getCurSDLoc(),
+ DAG);
+
+ // Verify that the target's LowerReturn behaved as expected.
+ assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
+ "LowerReturn didn't return a valid chain!");
+
+ // Update the DAG with the new chain value resulting from return lowering.
+ DAG.setRoot(Chain);
+}
+
+/// CopyToExportRegsIfNeeded - If the given value has virtual registers
+/// created for it, emit nodes to copy the value into the virtual
+/// registers.
+void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
+ // Skip empty types
+ if (V->getType()->isEmptyTy())
+ return;
+
+ DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
+ if (VMI != FuncInfo.ValueMap.end()) {
+ assert(!V->use_empty() && "Unused value assigned virtual registers!");
+ CopyValueToVirtualRegister(V, VMI->second);
+ }
+}
+
+/// ExportFromCurrentBlock - If this condition isn't known to be exported from
+/// the current basic block, add it to ValueMap now so that we'll get a
+/// CopyTo/FromReg.
+void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
+ // No need to export constants.
+ if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
+
+ // Already exported?
+ if (FuncInfo.isExportedInst(V)) return;
+
+ unsigned Reg = FuncInfo.InitializeRegForValue(V);
+ CopyValueToVirtualRegister(V, Reg);
+}
+
+bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
+ const BasicBlock *FromBB) {
+ // The operands of the setcc have to be in this block. We don't know
+ // how to export them from some other block.
+ if (const Instruction *VI = dyn_cast<Instruction>(V)) {
+ // Can export from current BB.
+ if (VI->getParent() == FromBB)
+ return true;
+
+ // Is already exported, noop.
+ return FuncInfo.isExportedInst(V);
+ }
+
+ // If this is an argument, we can export it if the BB is the entry block or
+ // if it is already exported.
+ if (isa<Argument>(V)) {
+ if (FromBB == &FromBB->getParent()->getEntryBlock())
+ return true;
+
+ // Otherwise, can only export this if it is already exported.
+ return FuncInfo.isExportedInst(V);
+ }
+
+ // Otherwise, constants can always be exported.
+ return true;
+}
+
+/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
+uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
+ const MachineBasicBlock *Dst) const {
+ BranchProbabilityInfo *BPI = FuncInfo.BPI;
+ if (!BPI)
+ return 0;
+ const BasicBlock *SrcBB = Src->getBasicBlock();
+ const BasicBlock *DstBB = Dst->getBasicBlock();
+ return BPI->getEdgeWeight(SrcBB, DstBB);
+}
+
+void SelectionDAGBuilder::
+addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
+ uint32_t Weight /* = 0 */) {
+ if (!Weight)
+ Weight = getEdgeWeight(Src, Dst);
+ Src->addSuccessor(Dst, Weight);
+}
+
+
+static bool InBlock(const Value *V, const BasicBlock *BB) {
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ return I->getParent() == BB;
+ return true;
+}
+
+/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
+/// This function emits a branch and is used at the leaves of an OR or an
+/// AND operator tree.
+///
+void
+SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ MachineBasicBlock *CurBB,
+ MachineBasicBlock *SwitchBB) {
+ const BasicBlock *BB = CurBB->getBasicBlock();
+
+ // If the leaf of the tree is a comparison, merge the condition into
+ // the caseblock.
+ if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
+ // The operands of the cmp have to be in this block. We don't know
+ // how to export them from some other block. If this is the first block
+ // of the sequence, no exporting is needed.
+ if (CurBB == SwitchBB ||
+ (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
+ isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
+ ISD::CondCode Condition;
+ if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
+ Condition = getICmpCondCode(IC->getPredicate());
+ } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
+ Condition = getFCmpCondCode(FC->getPredicate());
+ if (TM.Options.NoNaNsFPMath)
+ Condition = getFCmpCodeWithoutNaN(Condition);
+ } else {
+ Condition = ISD::SETEQ; // silence warning.
+ llvm_unreachable("Unknown compare instruction");
+ }
+
+ CaseBlock CB(Condition, BOp->getOperand(0),
+ BOp->getOperand(1), NULL, TBB, FBB, CurBB);
+ SwitchCases.push_back(CB);
+ return;
+ }
+ }
+
+ // Create a CaseBlock record representing this branch.
+ CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
+ NULL, TBB, FBB, CurBB);
+ SwitchCases.push_back(CB);
+}
+
+/// FindMergedConditions - If Cond is an expression like
+void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ MachineBasicBlock *CurBB,
+ MachineBasicBlock *SwitchBB,
+ unsigned Opc) {
+ // If this node is not part of the or/and tree, emit it as a branch.
+ const Instruction *BOp = dyn_cast<Instruction>(Cond);
+ if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
+ (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
+ BOp->getParent() != CurBB->getBasicBlock() ||
+ !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
+ !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
+ EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
+ return;
+ }
+
+ // Create TmpBB after CurBB.
+ MachineFunction::iterator BBI = CurBB;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
+ CurBB->getParent()->insert(++BBI, TmpBB);
+
+ if (Opc == Instruction::Or) {
+ // Codegen X | Y as:
+ // jmp_if_X TBB
+ // jmp TmpBB
+ // TmpBB:
+ // jmp_if_Y TBB
+ // jmp FBB
+ //
+
+ // Emit the LHS condition.
+ FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
+
+ // Emit the RHS condition into TmpBB.
+ FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
+ } else {
+ assert(Opc == Instruction::And && "Unknown merge op!");
+ // Codegen X & Y as:
+ // jmp_if_X TmpBB
+ // jmp FBB
+ // TmpBB:
+ // jmp_if_Y TBB
+ // jmp FBB
+ //
+ // This requires creation of TmpBB after CurBB.
+
+ // Emit the LHS condition.
+ FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
+
+ // Emit the RHS condition into TmpBB.
+ FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
+ }
+}
+
+/// If the set of cases should be emitted as a series of branches, return true.
+/// If we should emit this as a bunch of and/or'd together conditions, return
+/// false.
+bool
+SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
+ if (Cases.size() != 2) return true;
+
+ // If this is two comparisons of the same values or'd or and'd together, they
+ // will get folded into a single comparison, so don't emit two blocks.
+ if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
+ Cases[0].CmpRHS == Cases[1].CmpRHS) ||
+ (Cases[0].CmpRHS == Cases[1].CmpLHS &&
+ Cases[0].CmpLHS == Cases[1].CmpRHS)) {
+ return false;
+ }
+
+ // Handle: (X != null) | (Y != null) --> (X|Y) != 0
+ // Handle: (X == null) & (Y == null) --> (X|Y) == 0
+ if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
+ Cases[0].CC == Cases[1].CC &&
+ isa<Constant>(Cases[0].CmpRHS) &&
+ cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
+ if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
+ return false;
+ if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
+ return false;
+ }
+
+ return true;
+}
+
+void SelectionDAGBuilder::visitBr(const BranchInst &I) {
+ MachineBasicBlock *BrMBB = FuncInfo.MBB;
+
+ // Update machine-CFG edges.
+ MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = BrMBB;
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ if (I.isUnconditional()) {
+ // Update machine-CFG edges.
+ BrMBB->addSuccessor(Succ0MBB);
+
+ // If this is not a fall-through branch, emit the branch.
+ if (Succ0MBB != NextBlock)
+ DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
+ MVT::Other, getControlRoot(),
+ DAG.getBasicBlock(Succ0MBB)));
+
+ return;
+ }
+
+ // If this condition is one of the special cases we handle, do special stuff
+ // now.
+ const Value *CondVal = I.getCondition();
+ MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
+
+ // If this is a series of conditions that are or'd or and'd together, emit
+ // this as a sequence of branches instead of setcc's with and/or operations.
+ // As long as jumps are not expensive, this should improve performance.
+ // For example, instead of something like:
+ // cmp A, B
+ // C = seteq
+ // cmp D, E
+ // F = setle
+ // or C, F
+ // jnz foo
+ // Emit:
+ // cmp A, B
+ // je foo
+ // cmp D, E
+ // jle foo
+ //
+ if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
+ if (!TM.getTargetLowering()->isJumpExpensive() &&
+ BOp->hasOneUse() &&
+ (BOp->getOpcode() == Instruction::And ||
+ BOp->getOpcode() == Instruction::Or)) {
+ FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
+ BOp->getOpcode());
+ // If the compares in later blocks need to use values not currently
+ // exported from this block, export them now. This block should always
+ // be the first entry.
+ assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
+
+ // Allow some cases to be rejected.
+ if (ShouldEmitAsBranches(SwitchCases)) {
+ for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
+ ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
+ ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
+ }
+
+ // Emit the branch for this block.
+ visitSwitchCase(SwitchCases[0], BrMBB);
+ SwitchCases.erase(SwitchCases.begin());
+ return;
+ }
+
+ // Okay, we decided not to do this, remove any inserted MBB's and clear
+ // SwitchCases.
+ for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
+ FuncInfo.MF->erase(SwitchCases[i].ThisBB);
+
+ SwitchCases.clear();
+ }
+ }
+
+ // Create a CaseBlock record representing this branch.
+ CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
+ NULL, Succ0MBB, Succ1MBB, BrMBB);
+
+ // Use visitSwitchCase to actually insert the fast branch sequence for this
+ // cond branch.
+ visitSwitchCase(CB, BrMBB);
+}
+
+/// visitSwitchCase - Emits the necessary code to represent a single node in
+/// the binary search tree resulting from lowering a switch instruction.
+void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
+ MachineBasicBlock *SwitchBB) {
+ SDValue Cond;
+ SDValue CondLHS = getValue(CB.CmpLHS);
+ SDLoc dl = getCurSDLoc();
+
+ // Build the setcc now.
+ if (CB.CmpMHS == NULL) {
+ // Fold "(X == true)" to X and "(X == false)" to !X to
+ // handle common cases produced by branch lowering.
+ if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
+ CB.CC == ISD::SETEQ)
+ Cond = CondLHS;
+ else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
+ CB.CC == ISD::SETEQ) {
+ SDValue True = DAG.getConstant(1, CondLHS.getValueType());
+ Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
+ } else
+ Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
+ } else {
+ assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
+
+ const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
+ const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
+
+ SDValue CmpOp = getValue(CB.CmpMHS);
+ EVT VT = CmpOp.getValueType();
+
+ if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
+ Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
+ ISD::SETLE);
+ } else {
+ SDValue SUB = DAG.getNode(ISD::SUB, dl,
+ VT, CmpOp, DAG.getConstant(Low, VT));
+ Cond = DAG.getSetCC(dl, MVT::i1, SUB,
+ DAG.getConstant(High-Low, VT), ISD::SETULE);
+ }
+ }
+
+ // Update successor info
+ addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
+ // TrueBB and FalseBB are always different unless the incoming IR is
+ // degenerate. This only happens when running llc on weird IR.
+ if (CB.TrueBB != CB.FalseBB)
+ addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = SwitchBB;
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ // If the lhs block is the next block, invert the condition so that we can
+ // fall through to the lhs instead of the rhs block.
+ if (CB.TrueBB == NextBlock) {
+ std::swap(CB.TrueBB, CB.FalseBB);
+ SDValue True = DAG.getConstant(1, Cond.getValueType());
+ Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
+ }
+
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
+ MVT::Other, getControlRoot(), Cond,
+ DAG.getBasicBlock(CB.TrueBB));
+
+ // Insert the false branch. Do this even if it's a fall through branch,
+ // this makes it easier to do DAG optimizations which require inverting
+ // the branch condition.
+ BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
+ DAG.getBasicBlock(CB.FalseBB));
+
+ DAG.setRoot(BrCond);
+}
+
+/// visitJumpTable - Emit JumpTable node in the current MBB
+void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
+ // Emit the code for the jump table
+ assert(JT.Reg != -1U && "Should lower JT Header first!");
+ EVT PTy = TM.getTargetLowering()->getPointerTy();
+ SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
+ JT.Reg, PTy);
+ SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
+ SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
+ MVT::Other, Index.getValue(1),
+ Table, Index);
+ DAG.setRoot(BrJumpTable);
+}
+
+/// visitJumpTableHeader - This function emits necessary code to produce index
+/// in the JumpTable from switch case.
+void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
+ JumpTableHeader &JTH,
+ MachineBasicBlock *SwitchBB) {
+ // Subtract the lowest switch case value from the value being switched on and
+ // conditional branch to default mbb if the result is greater than the
+ // difference between smallest and largest cases.
+ SDValue SwitchOp = getValue(JTH.SValue);
+ EVT VT = SwitchOp.getValueType();
+ SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
+ DAG.getConstant(JTH.First, VT));
+
+ // The SDNode we just created, which holds the value being switched on minus
+ // the smallest case value, needs to be copied to a virtual register so it
+ // can be used as an index into the jump table in a subsequent basic block.
+ // This value may be smaller or larger than the target's pointer type, and
+ // therefore require extension or truncating.
+ const TargetLowering *TLI = TM.getTargetLowering();
+ SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
+
+ unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
+ SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
+ JumpTableReg, SwitchOp);
+ JT.Reg = JumpTableReg;
+
+ // Emit the range check for the jump table, and branch to the default block
+ // for the switch statement if the value being switched on exceeds the largest
+ // case in the switch.
+ SDValue CMP = DAG.getSetCC(getCurSDLoc(),
+ TLI->getSetCCResultType(*DAG.getContext(),
+ Sub.getValueType()),
+ Sub,
+ DAG.getConstant(JTH.Last - JTH.First,VT),
+ ISD::SETUGT);
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = SwitchBB;
+
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
+ MVT::Other, CopyTo, CMP,
+ DAG.getBasicBlock(JT.Default));
+
+ if (JT.MBB != NextBlock)
+ BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
+ DAG.getBasicBlock(JT.MBB));
+
+ DAG.setRoot(BrCond);
+}
+
+/// Codegen a new tail for a stack protector check ParentMBB which has had its
+/// tail spliced into a stack protector check success bb.
+///
+/// For a high level explanation of how this fits into the stack protector
+/// generation see the comment on the declaration of class
+/// StackProtectorDescriptor.
+void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
+ MachineBasicBlock *ParentBB) {
+
+ // First create the loads to the guard/stack slot for the comparison.
+ const TargetLowering *TLI = TM.getTargetLowering();
+ EVT PtrTy = TLI->getPointerTy();
+
+ MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
+ int FI = MFI->getStackProtectorIndex();
+
+ const Value *IRGuard = SPD.getGuard();
+ SDValue GuardPtr = getValue(IRGuard);
+ SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
+
+ unsigned Align =
+ TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
+ SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
+ GuardPtr, MachinePointerInfo(IRGuard, 0),
+ true, false, false, Align);
+
+ SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
+ StackSlotPtr,
+ MachinePointerInfo::getFixedStack(FI),
+ true, false, false, Align);
+
+ // Perform the comparison via a subtract/getsetcc.
+ EVT VT = Guard.getValueType();
+ SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
+
+ SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
+ TLI->getSetCCResultType(*DAG.getContext(),
+ Sub.getValueType()),
+ Sub, DAG.getConstant(0, VT),
+ ISD::SETNE);
+
+ // If the sub is not 0, then we know the guard/stackslot do not equal, so
+ // branch to failure MBB.
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
+ MVT::Other, StackSlot.getOperand(0),
+ Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
+ // Otherwise branch to success MBB.
+ SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
+ MVT::Other, BrCond,
+ DAG.getBasicBlock(SPD.getSuccessMBB()));
+
+ DAG.setRoot(Br);
+}
+
+/// Codegen the failure basic block for a stack protector check.
+///
+/// A failure stack protector machine basic block consists simply of a call to
+/// __stack_chk_fail().
+///
+/// For a high level explanation of how this fits into the stack protector
+/// generation see the comment on the declaration of class
+/// StackProtectorDescriptor.
+void
+SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
+ const TargetLowering *TLI = TM.getTargetLowering();
+ SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
+ MVT::isVoid, 0, 0, false, getCurSDLoc(),
+ false, false).second;
+ DAG.setRoot(Chain);
+}
+
+/// visitBitTestHeader - This function emits necessary code to produce value
+/// suitable for "bit tests"
+void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
+ MachineBasicBlock *SwitchBB) {
+ // Subtract the minimum value
+ SDValue SwitchOp = getValue(B.SValue);
+ EVT VT = SwitchOp.getValueType();
+ SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
+ DAG.getConstant(B.First, VT));
+
+ // Check range
+ const TargetLowering *TLI = TM.getTargetLowering();
+ SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
+ TLI->getSetCCResultType(*DAG.getContext(),
+ Sub.getValueType()),
+ Sub, DAG.getConstant(B.Range, VT),
+ ISD::SETUGT);
+
+ // Determine the type of the test operands.
+ bool UsePtrType = false;
+ if (!TLI->isTypeLegal(VT))
+ UsePtrType = true;
+ else {
+ for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
+ if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
+ // Switch table case range are encoded into series of masks.
+ // Just use pointer type, it's guaranteed to fit.
+ UsePtrType = true;
+ break;
+ }
+ }
+ if (UsePtrType) {
+ VT = TLI->getPointerTy();
+ Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
+ }
+
+ B.RegVT = VT.getSimpleVT();
+ B.Reg = FuncInfo.CreateReg(B.RegVT);
+ SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
+ B.Reg, Sub);
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = SwitchBB;
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ MachineBasicBlock* MBB = B.Cases[0].ThisBB;
+
+ addSuccessorWithWeight(SwitchBB, B.Default);
+ addSuccessorWithWeight(SwitchBB, MBB);
+
+ SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
+ MVT::Other, CopyTo, RangeCmp,
+ DAG.getBasicBlock(B.Default));
+
+ if (MBB != NextBlock)
+ BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
+ DAG.getBasicBlock(MBB));
+
+ DAG.setRoot(BrRange);
+}
+
+/// visitBitTestCase - this function produces one "bit test"
+void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
+ MachineBasicBlock* NextMBB,
+ uint32_t BranchWeightToNext,
+ unsigned Reg,
+ BitTestCase &B,
+ MachineBasicBlock *SwitchBB) {
+ MVT VT = BB.RegVT;
+ SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
+ Reg, VT);
+ SDValue Cmp;
+ unsigned PopCount = CountPopulation_64(B.Mask);
+ const TargetLowering *TLI = TM.getTargetLowering();
+ if (PopCount == 1) {
+ // Testing for a single bit; just compare the shift count with what it
+ // would need to be to shift a 1 bit in that position.
+ Cmp = DAG.getSetCC(getCurSDLoc(),
+ TLI->getSetCCResultType(*DAG.getContext(), VT),
+ ShiftOp,
+ DAG.getConstant(countTrailingZeros(B.Mask), VT),
+ ISD::SETEQ);
+ } else if (PopCount == BB.Range) {
+ // There is only one zero bit in the range, test for it directly.
+ Cmp = DAG.getSetCC(getCurSDLoc(),
+ TLI->getSetCCResultType(*DAG.getContext(), VT),
+ ShiftOp,
+ DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
+ ISD::SETNE);
+ } else {
+ // Make desired shift
+ SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
+ DAG.getConstant(1, VT), ShiftOp);
+
+ // Emit bit tests and jumps
+ SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
+ VT, SwitchVal, DAG.getConstant(B.Mask, VT));
+ Cmp = DAG.getSetCC(getCurSDLoc(),
+ TLI->getSetCCResultType(*DAG.getContext(), VT),
+ AndOp, DAG.getConstant(0, VT),
+ ISD::SETNE);
+ }
+
+ // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
+ addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
+ // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
+ addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
+
+ SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
+ MVT::Other, getControlRoot(),
+ Cmp, DAG.getBasicBlock(B.TargetBB));
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = SwitchBB;
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ if (NextMBB != NextBlock)
+ BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
+ DAG.getBasicBlock(NextMBB));
+
+ DAG.setRoot(BrAnd);
+}
+
+void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
+ MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
+
+ // Retrieve successors.
+ MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
+ MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
+
+ const Value *Callee(I.getCalledValue());
+ const Function *Fn = dyn_cast<Function>(Callee);
+ if (isa<InlineAsm>(Callee))
+ visitInlineAsm(&I);
+ else if (Fn && Fn->isIntrinsic()) {
+ assert(Fn->getIntrinsicID() == Intrinsic::donothing);
+ // Ignore invokes to @llvm.donothing: jump directly to the next BB.
+ } else
+ LowerCallTo(&I, getValue(Callee), false, LandingPad);
+
+ // If the value of the invoke is used outside of its defining block, make it
+ // available as a virtual register.
+ CopyToExportRegsIfNeeded(&I);
+
+ // Update successor info
+ addSuccessorWithWeight(InvokeMBB, Return);
+ addSuccessorWithWeight(InvokeMBB, LandingPad);
+
+ // Drop into normal successor.
+ DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
+ MVT::Other, getControlRoot(),
+ DAG.getBasicBlock(Return)));
+}
+
+void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
+ llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
+}
+
+void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
+ assert(FuncInfo.MBB->isLandingPad() &&
+ "Call to landingpad not in landing pad!");
+
+ MachineBasicBlock *MBB = FuncInfo.MBB;
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ AddLandingPadInfo(LP, MMI, MBB);
+
+ // If there aren't registers to copy the values into (e.g., during SjLj
+ // exceptions), then don't bother to create these DAG nodes.
+ const TargetLowering *TLI = TM.getTargetLowering();
+ if (TLI->getExceptionPointerRegister() == 0 &&
+ TLI->getExceptionSelectorRegister() == 0)
+ return;
+
+ SmallVector<EVT, 2> ValueVTs;
+ ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
+ assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
+
+ // Get the two live-in registers as SDValues. The physregs have already been
+ // copied into virtual registers.
+ SDValue Ops[2];
+ Ops[0] = DAG.getZExtOrTrunc(
+ DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
+ FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
+ getCurSDLoc(), ValueVTs[0]);
+ Ops[1] = DAG.getZExtOrTrunc(
+ DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
+ FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
+ getCurSDLoc(), ValueVTs[1]);
+
+ // Merge into one.
+ SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
+ DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
+ &Ops[0], 2);
+ setValue(&LP, Res);
+}
+
+/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
+/// small case ranges).
+bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock *Default,
+ MachineBasicBlock *SwitchBB) {
+ // Size is the number of Cases represented by this range.
+ size_t Size = CR.Range.second - CR.Range.first;
+ if (Size > 3)
+ return false;
+
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = FuncInfo.MF;
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CR.CaseBB;
+
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ BranchProbabilityInfo *BPI = FuncInfo.BPI;
+ // If any two of the cases has the same destination, and if one value
+ // is the same as the other, but has one bit unset that the other has set,
+ // use bit manipulation to do two compares at once. For example:
+ // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
+ // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
+ // TODO: Handle cases where CR.CaseBB != SwitchBB.
+ if (Size == 2 && CR.CaseBB == SwitchBB) {
+ Case &Small = *CR.Range.first;
+ Case &Big = *(CR.Range.second-1);
+
+ if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
+ const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
+ const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
+
+ // Check that there is only one bit different.
+ if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
+ (SmallValue | BigValue) == BigValue) {
+ // Isolate the common bit.
+ APInt CommonBit = BigValue & ~SmallValue;
+ assert((SmallValue | CommonBit) == BigValue &&
+ CommonBit.countPopulation() == 1 && "Not a common bit?");
+
+ SDValue CondLHS = getValue(SV);
+ EVT VT = CondLHS.getValueType();
+ SDLoc DL = getCurSDLoc();
+
+ SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
+ DAG.getConstant(CommonBit, VT));
+ SDValue Cond = DAG.getSetCC(DL, MVT::i1,
+ Or, DAG.getConstant(BigValue, VT),
+ ISD::SETEQ);
+
+ // Update successor info.
+ // Both Small and Big will jump to Small.BB, so we sum up the weights.
+ addSuccessorWithWeight(SwitchBB, Small.BB,
+ Small.ExtraWeight + Big.ExtraWeight);
+ addSuccessorWithWeight(SwitchBB, Default,
+ // The default destination is the first successor in IR.
+ BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
+
+ // Insert the true branch.
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
+ getControlRoot(), Cond,
+ DAG.getBasicBlock(Small.BB));
+
+ // Insert the false branch.
+ BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
+ DAG.getBasicBlock(Default));
+
+ DAG.setRoot(BrCond);
+ return true;
+ }
+ }
+ }
+
+ // Order cases by weight so the most likely case will be checked first.
+ uint32_t UnhandledWeights = 0;
+ if (BPI) {
+ for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
+ uint32_t IWeight = I->ExtraWeight;
+ UnhandledWeights += IWeight;
+ for (CaseItr J = CR.Range.first; J < I; ++J) {
+ uint32_t JWeight = J->ExtraWeight;
+ if (IWeight > JWeight)
+ std::swap(*I, *J);
+ }
+ }
+ }
+ // Rearrange the case blocks so that the last one falls through if possible.
+ Case &BackCase = *(CR.Range.second-1);
+ if (Size > 1 &&
+ NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
+ // The last case block won't fall through into 'NextBlock' if we emit the
+ // branches in this order. See if rearranging a case value would help.
+ // We start at the bottom as it's the case with the least weight.
+ for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
+ if (I->BB == NextBlock) {
+ std::swap(*I, BackCase);
+ break;
+ }
+ }
+
+ // Create a CaseBlock record representing a conditional branch to
+ // the Case's target mbb if the value being switched on SV is equal
+ // to C.
+ MachineBasicBlock *CurBlock = CR.CaseBB;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
+ MachineBasicBlock *FallThrough;
+ if (I != E-1) {
+ FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
+ CurMF->insert(BBI, FallThrough);
+
+ // Put SV in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(SV);
+ } else {
+ // If the last case doesn't match, go to the default block.
+ FallThrough = Default;
+ }
+
+ const Value *RHS, *LHS, *MHS;
+ ISD::CondCode CC;
+ if (I->High == I->Low) {
+ // This is just small small case range :) containing exactly 1 case
+ CC = ISD::SETEQ;
+ LHS = SV; RHS = I->High; MHS = NULL;
+ } else {
+ CC = ISD::SETLE;
+ LHS = I->Low; MHS = SV; RHS = I->High;
+ }
+
+ // The false weight should be sum of all un-handled cases.
+ UnhandledWeights -= I->ExtraWeight;
+ CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
+ /* me */ CurBlock,
+ /* trueweight */ I->ExtraWeight,
+ /* falseweight */ UnhandledWeights);
+
+ // If emitting the first comparison, just call visitSwitchCase to emit the
+ // code into the current block. Otherwise, push the CaseBlock onto the
+ // vector to be later processed by SDISel, and insert the node's MBB
+ // before the next MBB.
+ if (CurBlock == SwitchBB)
+ visitSwitchCase(CB, SwitchBB);
+ else
+ SwitchCases.push_back(CB);
+
+ CurBlock = FallThrough;
+ }
+
+ return true;
+}
+
+static inline bool areJTsAllowed(const TargetLowering &TLI) {
+ return TLI.supportJumpTables() &&
+ (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+ TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
+}
+
+static APInt ComputeRange(const APInt &First, const APInt &Last) {
+ uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
+ APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
+ return (LastExt - FirstExt + 1ULL);
+}
+
+/// handleJTSwitchCase - Emit jumptable for current switch case range
+bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
+ CaseRecVector &WorkList,
+ const Value *SV,
+ MachineBasicBlock *Default,
+ MachineBasicBlock *SwitchBB) {
+ Case& FrontCase = *CR.Range.first;
+ Case& BackCase = *(CR.Range.second-1);
+
+ const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
+ const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
+
+ APInt TSize(First.getBitWidth(), 0);
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
+ TSize += I->size();
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
+ return false;
+
+ APInt Range = ComputeRange(First, Last);
+ // The density is TSize / Range. Require at least 40%.
+ // It should not be possible for IntTSize to saturate for sane code, but make
+ // sure we handle Range saturation correctly.
+ uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
+ uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
+ if (IntTSize * 10 < IntRange * 4)
+ return false;
+
+ DEBUG(dbgs() << "Lowering jump table\n"
+ << "First entry: " << First << ". Last entry: " << Last << '\n'
+ << "Range: " << Range << ". Size: " << TSize << ".\n\n");
+
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = FuncInfo.MF;
+
+ // Figure out which block is immediately after the current one.
+ MachineFunction::iterator BBI = CR.CaseBB;
+ ++BBI;
+
+ const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+ // Create a new basic block to hold the code for loading the address
+ // of the jump table, and jumping to it. Update successor information;
+ // we will either branch to the default case for the switch, or the jump
+ // table.
+ MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, JumpTableBB);
+
+ addSuccessorWithWeight(CR.CaseBB, Default);
+ addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
+
+ // Build a vector of destination BBs, corresponding to each target
+ // of the jump table. If the value of the jump table slot corresponds to
+ // a case statement, push the case's BB onto the vector, otherwise, push
+ // the default BB.
+ std::vector<MachineBasicBlock*> DestBBs;
+ APInt TEI = First;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
+ const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
+ const APInt &High = cast<ConstantInt>(I->High)->getValue();
+
+ if (Low.sle(TEI) && TEI.sle(High)) {
+ DestBBs.push_back(I->BB);
+ if (TEI==High)
+ ++I;
+ } else {
+ DestBBs.push_back(Default);
+ }
+ }
+
+ // Calculate weight for each unique destination in CR.
+ DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
+ if (FuncInfo.BPI)
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
+ DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
+ DestWeights.find(I->BB);
+ if (Itr != DestWeights.end())
+ Itr->second += I->ExtraWeight;
+ else
+ DestWeights[I->BB] = I->ExtraWeight;
+ }
+
+ // Update successor info. Add one edge to each unique successor.
+ BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
+ for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
+ E = DestBBs.end(); I != E; ++I) {
+ if (!SuccsHandled[(*I)->getNumber()]) {
+ SuccsHandled[(*I)->getNumber()] = true;
+ DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
+ DestWeights.find(*I);
+ addSuccessorWithWeight(JumpTableBB, *I,
+ Itr != DestWeights.end() ? Itr->second : 0);
+ }
+ }
+
+ // Create a jump table index for this jump table.
+ unsigned JTEncoding = TLI->getJumpTableEncoding();
+ unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
+ ->createJumpTableIndex(DestBBs);
+
+ // Set the jump table information so that we can codegen it as a second
+ // MachineBasicBlock
+ JumpTable JT(-1U, JTI, JumpTableBB, Default);
+ JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
+ if (CR.CaseBB == SwitchBB)
+ visitJumpTableHeader(JT, JTH, SwitchBB);
+
+ JTCases.push_back(JumpTableBlock(JTH, JT));
+ return true;
+}
+
+/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
+/// 2 subtrees.
+bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock* Default,
+ MachineBasicBlock* SwitchBB) {
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = FuncInfo.MF;
+
+ // Figure out which block is immediately after the current one.
+ MachineFunction::iterator BBI = CR.CaseBB;
+ ++BBI;
+
+ Case& FrontCase = *CR.Range.first;
+ Case& BackCase = *(CR.Range.second-1);
+ const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+ // Size is the number of Cases represented by this range.
+ unsigned Size = CR.Range.second - CR.Range.first;
+
+ const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
+ const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
+ double FMetric = 0;
+ CaseItr Pivot = CR.Range.first + Size/2;
+
+ // Select optimal pivot, maximizing sum density of LHS and RHS. This will
+ // (heuristically) allow us to emit JumpTable's later.
+ APInt TSize(First.getBitWidth(), 0);
+ for (CaseItr I = CR.Range.first, E = CR.Range.second;
+ I!=E; ++I)
+ TSize += I->size();
+
+ APInt LSize = FrontCase.size();
+ APInt RSize = TSize-LSize;
+ DEBUG(dbgs() << "Selecting best pivot: \n"
+ << "First: " << First << ", Last: " << Last <<'\n'
+ << "LSize: " << LSize << ", RSize: " << RSize << '\n');
+ for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
+ J!=E; ++I, ++J) {
+ const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
+ const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
+ APInt Range = ComputeRange(LEnd, RBegin);
+ assert((Range - 2ULL).isNonNegative() &&
+ "Invalid case distance");
+ // Use volatile double here to avoid excess precision issues on some hosts,
+ // e.g. that use 80-bit X87 registers.
+ volatile double LDensity =
+ (double)LSize.roundToDouble() /
+ (LEnd - First + 1ULL).roundToDouble();
+ volatile double RDensity =
+ (double)RSize.roundToDouble() /
+ (Last - RBegin + 1ULL).roundToDouble();
+ double Metric = Range.logBase2()*(LDensity+RDensity);
+ // Should always split in some non-trivial place
+ DEBUG(dbgs() <<"=>Step\n"
+ << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
+ << "LDensity: " << LDensity
+ << ", RDensity: " << RDensity << '\n'
+ << "Metric: " << Metric << '\n');
+ if (FMetric < Metric) {
+ Pivot = J;
+ FMetric = Metric;
+ DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
+ }
+
+ LSize += J->size();
+ RSize -= J->size();
+ }
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ if (areJTsAllowed(*TLI)) {
+ // If our case is dense we *really* should handle it earlier!
+ assert((FMetric > 0) && "Should handle dense range earlier!");
+ } else {
+ Pivot = CR.Range.first + Size/2;
+ }
+
+ CaseRange LHSR(CR.Range.first, Pivot);
+ CaseRange RHSR(Pivot, CR.Range.second);
+ const Constant *C = Pivot->Low;
+ MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
+
+ // We know that we branch to the LHS if the Value being switched on is
+ // less than the Pivot value, C. We use this to optimize our binary
+ // tree a bit, by recognizing that if SV is greater than or equal to the
+ // LHS's Case Value, and that Case Value is exactly one less than the
+ // Pivot's Value, then we can branch directly to the LHS's Target,
+ // rather than creating a leaf node for it.
+ if ((LHSR.second - LHSR.first) == 1 &&
+ LHSR.first->High == CR.GE &&
+ cast<ConstantInt>(C)->getValue() ==
+ (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
+ TrueBB = LHSR.first->BB;
+ } else {
+ TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, TrueBB);
+ WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
+
+ // Put SV in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(SV);
+ }
+
+ // Similar to the optimization above, if the Value being switched on is
+ // known to be less than the Constant CR.LT, and the current Case Value
+ // is CR.LT - 1, then we can branch directly to the target block for
+ // the current Case Value, rather than emitting a RHS leaf node for it.
+ if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
+ cast<ConstantInt>(RHSR.first->Low)->getValue() ==
+ (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
+ FalseBB = RHSR.first->BB;
+ } else {
+ FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, FalseBB);
+ WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
+
+ // Put SV in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(SV);
+ }
+
+ // Create a CaseBlock record representing a conditional branch to
+ // the LHS node if the value being switched on SV is less than C.
+ // Otherwise, branch to LHS.
+ CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
+
+ if (CR.CaseBB == SwitchBB)
+ visitSwitchCase(CB, SwitchBB);
+ else
+ SwitchCases.push_back(CB);
+
+ return true;
+}
+
+/// handleBitTestsSwitchCase - if current case range has few destination and
+/// range span less, than machine word bitwidth, encode case range into series
+/// of masks and emit bit tests with these masks.
+bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock* Default,
+ MachineBasicBlock* SwitchBB) {
+ const TargetLowering *TLI = TM.getTargetLowering();
+ EVT PTy = TLI->getPointerTy();
+ unsigned IntPtrBits = PTy.getSizeInBits();
+
+ Case& FrontCase = *CR.Range.first;
+ Case& BackCase = *(CR.Range.second-1);
+
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = FuncInfo.MF;
+
+ // If target does not have legal shift left, do not emit bit tests at all.
+ if (!TLI->isOperationLegal(ISD::SHL, PTy))
+ return false;
+
+ size_t numCmps = 0;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second;
+ I!=E; ++I) {
+ // Single case counts one, case range - two.
+ numCmps += (I->Low == I->High ? 1 : 2);
+ }
+
+ // Count unique destinations
+ SmallSet<MachineBasicBlock*, 4> Dests;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
+ Dests.insert(I->BB);
+ if (Dests.size() > 3)
+ // Don't bother the code below, if there are too much unique destinations
+ return false;
+ }
+ DEBUG(dbgs() << "Total number of unique destinations: "
+ << Dests.size() << '\n'
+ << "Total number of comparisons: " << numCmps << '\n');
+
+ // Compute span of values.
+ const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
+ const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
+ APInt cmpRange = maxValue - minValue;
+
+ DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
+ << "Low bound: " << minValue << '\n'
+ << "High bound: " << maxValue << '\n');
+
+ if (cmpRange.uge(IntPtrBits) ||
+ (!(Dests.size() == 1 && numCmps >= 3) &&
+ !(Dests.size() == 2 && numCmps >= 5) &&
+ !(Dests.size() >= 3 && numCmps >= 6)))
+ return false;
+
+ DEBUG(dbgs() << "Emitting bit tests\n");
+ APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
+
+ // Optimize the case where all the case values fit in a
+ // word without having to subtract minValue. In this case,
+ // we can optimize away the subtraction.
+ if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
+ cmpRange = maxValue;
+ } else {
+ lowBound = minValue;
+ }
+
+ CaseBitsVector CasesBits;
+ unsigned i, count = 0;
+
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
+ MachineBasicBlock* Dest = I->BB;
+ for (i = 0; i < count; ++i)
+ if (Dest == CasesBits[i].BB)
+ break;
+
+ if (i == count) {
+ assert((count < 3) && "Too much destinations to test!");
+ CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
+ count++;
+ }
+
+ const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
+ const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
+
+ uint64_t lo = (lowValue - lowBound).getZExtValue();
+ uint64_t hi = (highValue - lowBound).getZExtValue();
+ CasesBits[i].ExtraWeight += I->ExtraWeight;
+
+ for (uint64_t j = lo; j <= hi; j++) {
+ CasesBits[i].Mask |= 1ULL << j;
+ CasesBits[i].Bits++;
+ }
+
+ }
+ std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
+
+ BitTestInfo BTC;
+
+ // Figure out which block is immediately after the current one.
+ MachineFunction::iterator BBI = CR.CaseBB;
+ ++BBI;
+
+ const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+ DEBUG(dbgs() << "Cases:\n");
+ for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
+ DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
+ << ", Bits: " << CasesBits[i].Bits
+ << ", BB: " << CasesBits[i].BB << '\n');
+
+ MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, CaseBB);
+ BTC.push_back(BitTestCase(CasesBits[i].Mask,
+ CaseBB,
+ CasesBits[i].BB, CasesBits[i].ExtraWeight));
+
+ // Put SV in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(SV);
+ }
+
+ BitTestBlock BTB(lowBound, cmpRange, SV,
+ -1U, MVT::Other, (CR.CaseBB == SwitchBB),
+ CR.CaseBB, Default, BTC);
+
+ if (CR.CaseBB == SwitchBB)
+ visitBitTestHeader(BTB, SwitchBB);
+
+ BitTestCases.push_back(BTB);
+
+ return true;
+}
+
+/// Clusterify - Transform simple list of Cases into list of CaseRange's
+size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
+ const SwitchInst& SI) {
+ size_t numCmps = 0;
+
+ BranchProbabilityInfo *BPI = FuncInfo.BPI;
+ // Start with "simple" cases
+ for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
+ i != e; ++i) {
+ const BasicBlock *SuccBB = i.getCaseSuccessor();
+ MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
+
+ uint32_t ExtraWeight =
+ BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
+
+ Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
+ SMBB, ExtraWeight));
+ }
+ std::sort(Cases.begin(), Cases.end(), CaseCmp());
+
+ // Merge case into clusters
+ if (Cases.size() >= 2)
+ // Must recompute end() each iteration because it may be
+ // invalidated by erase if we hold on to it
+ for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
+ J != Cases.end(); ) {
+ const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
+ const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
+ MachineBasicBlock* nextBB = J->BB;
+ MachineBasicBlock* currentBB = I->BB;
+
+ // If the two neighboring cases go to the same destination, merge them
+ // into a single case.
+ if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
+ I->High = J->High;
+ I->ExtraWeight += J->ExtraWeight;
+ J = Cases.erase(J);
+ } else {
+ I = J++;
+ }
+ }
+
+ for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
+ if (I->Low != I->High)
+ // A range counts double, since it requires two compares.
+ ++numCmps;
+ }
+
+ return numCmps;
+}
+
+void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
+ MachineBasicBlock *Last) {
+ // Update JTCases.
+ for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
+ if (JTCases[i].first.HeaderBB == First)
+ JTCases[i].first.HeaderBB = Last;
+
+ // Update BitTestCases.
+ for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
+ if (BitTestCases[i].Parent == First)
+ BitTestCases[i].Parent = Last;
+}
+
+void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
+ MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
+
+ // If there is only the default destination, branch to it if it is not the
+ // next basic block. Otherwise, just fall through.
+ if (!SI.getNumCases()) {
+ // Update machine-CFG edges.
+
+ // If this is not a fall-through branch, emit the branch.
+ SwitchMBB->addSuccessor(Default);
+ if (Default != NextBlock)
+ DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
+ MVT::Other, getControlRoot(),
+ DAG.getBasicBlock(Default)));
+
+ return;
+ }
+
+ // If there are any non-default case statements, create a vector of Cases
+ // representing each one, and sort the vector so that we can efficiently
+ // create a binary search tree from them.
+ CaseVector Cases;
+ size_t numCmps = Clusterify(Cases, SI);
+ DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
+ << ". Total compares: " << numCmps << '\n');
+ (void)numCmps;
+
+ // Get the Value to be switched on and default basic blocks, which will be
+ // inserted into CaseBlock records, representing basic blocks in the binary
+ // search tree.
+ const Value *SV = SI.getCondition();
+
+ // Push the initial CaseRec onto the worklist
+ CaseRecVector WorkList;
+ WorkList.push_back(CaseRec(SwitchMBB,0,0,
+ CaseRange(Cases.begin(),Cases.end())));
+
+ while (!WorkList.empty()) {
+ // Grab a record representing a case range to process off the worklist
+ CaseRec CR = WorkList.back();
+ WorkList.pop_back();
+
+ if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
+ continue;
+
+ // If the range has few cases (two or less) emit a series of specific
+ // tests.
+ if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
+ continue;
+
+ // If the switch has more than N blocks, and is at least 40% dense, and the
+ // target supports indirect branches, then emit a jump table rather than
+ // lowering the switch to a binary tree of conditional branches.
+ // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
+ if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
+ continue;
+
+ // Emit binary tree. We need to pick a pivot, and push left and right ranges
+ // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
+ handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
+ }
+}
+
+void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
+ MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
+
+ // Update machine-CFG edges with unique successors.
+ SmallSet<BasicBlock*, 32> Done;
+ for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
+ BasicBlock *BB = I.getSuccessor(i);
+ bool Inserted = Done.insert(BB);
+ if (!Inserted)
+ continue;
+
+ MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
+ addSuccessorWithWeight(IndirectBrMBB, Succ);
+ }
+
+ DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
+ MVT::Other, getControlRoot(),
+ getValue(I.getAddress())));
+}
+
+void SelectionDAGBuilder::visitFSub(const User &I) {
+ // -0.0 - X --> fneg
+ Type *Ty = I.getType();
+ if (isa<Constant>(I.getOperand(0)) &&
+ I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
+ SDValue Op2 = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
+ Op2.getValueType(), Op2));
+ return;
+ }
+
+ visitBinary(I, ISD::FSUB);
+}
+
+void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
+ Op1.getValueType(), Op1, Op2));
+}
+
+void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+
+ EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
+
+ // Coerce the shift amount to the right type if we can.
+ if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
+ unsigned ShiftSize = ShiftTy.getSizeInBits();
+ unsigned Op2Size = Op2.getValueType().getSizeInBits();
+ SDLoc DL = getCurSDLoc();
+
+ // If the operand is smaller than the shift count type, promote it.
+ if (ShiftSize > Op2Size)
+ Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
+
+ // If the operand is larger than the shift count type but the shift
+ // count type has enough bits to represent any shift value, truncate
+ // it now. This is a common case and it exposes the truncate to
+ // optimization early.
+ else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
+ Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
+ // Otherwise we'll need to temporarily settle for some other convenient
+ // type. Type legalization will make adjustments once the shiftee is split.
+ else
+ Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
+ }
+
+ setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
+ Op1.getValueType(), Op1, Op2));
+}
+
+void SelectionDAGBuilder::visitSDiv(const User &I) {
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+
+ // Turn exact SDivs into multiplications.
+ // FIXME: This should be in DAGCombiner, but it doesn't have access to the
+ // exact bit.
+ if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
+ !isa<ConstantSDNode>(Op1) &&
+ isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
+ setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
+ getCurSDLoc(), DAG));
+ else
+ setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
+ Op1, Op2));
+}
+
+void SelectionDAGBuilder::visitICmp(const User &I) {
+ ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
+ if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
+ predicate = IC->getPredicate();
+ else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
+ predicate = ICmpInst::Predicate(IC->getPredicate());
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ ISD::CondCode Opcode = getICmpCondCode(predicate);
+
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
+}
+
+void SelectionDAGBuilder::visitFCmp(const User &I) {
+ FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
+ if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
+ predicate = FC->getPredicate();
+ else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
+ predicate = FCmpInst::Predicate(FC->getPredicate());
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ ISD::CondCode Condition = getFCmpCondCode(predicate);
+ if (TM.Options.NoNaNsFPMath)
+ Condition = getFCmpCodeWithoutNaN(Condition);
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
+}
+
+void SelectionDAGBuilder::visitSelect(const User &I) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0) return;
+
+ SmallVector<SDValue, 4> Values(NumValues);
+ SDValue Cond = getValue(I.getOperand(0));
+ SDValue TrueVal = getValue(I.getOperand(1));
+ SDValue FalseVal = getValue(I.getOperand(2));
+ ISD::NodeType OpCode = Cond.getValueType().isVector() ?
+ ISD::VSELECT : ISD::SELECT;
+
+ for (unsigned i = 0; i != NumValues; ++i)
+ Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
+ TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
+ Cond,
+ SDValue(TrueVal.getNode(),
+ TrueVal.getResNo() + i),
+ SDValue(FalseVal.getNode(),
+ FalseVal.getResNo() + i));
+
+ setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
+ DAG.getVTList(&ValueVTs[0], NumValues),
+ &Values[0], NumValues));
+}
+
+void SelectionDAGBuilder::visitTrunc(const User &I) {
+ // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitZExt(const User &I) {
+ // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
+ // ZExt also can't be a cast to bool for same reason. So, nothing much to do
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitSExt(const User &I) {
+ // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
+ // SExt also can't be a cast to bool for same reason. So, nothing much to do
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitFPTrunc(const User &I) {
+ // FPTrunc is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ const TargetLowering *TLI = TM.getTargetLowering();
+ EVT DestVT = TLI->getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
+ DestVT, N,
+ DAG.getTargetConstant(0, TLI->getPointerTy())));
+}
+
+void SelectionDAGBuilder::visitFPExt(const User &I) {
+ // FPExt is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitFPToUI(const User &I) {
+ // FPToUI is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitFPToSI(const User &I) {
+ // FPToSI is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitUIToFP(const User &I) {
+ // UIToFP is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitSIToFP(const User &I) {
+ // SIToFP is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitPtrToInt(const User &I) {
+ // What to do depends on the size of the integer and the size of the pointer.
+ // We can either truncate, zero extend, or no-op, accordingly.
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
+}
+
+void SelectionDAGBuilder::visitIntToPtr(const User &I) {
+ // What to do depends on the size of the integer and the size of the pointer.
+ // We can either truncate, zero extend, or no-op, accordingly.
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
+}
+
+void SelectionDAGBuilder::visitBitCast(const User &I) {
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+
+ // BitCast assures us that source and destination are the same size so this is
+ // either a BITCAST or a no-op.
+ if (DestVT != N.getValueType())
+ setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
+ DestVT, N)); // convert types.
+ else
+ setValue(&I, N); // noop cast.
+}
+
+void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const Value *SV = I.getOperand(0);
+ SDValue N = getValue(SV);
+ EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+
+ unsigned SrcAS = SV->getType()->getPointerAddressSpace();
+ unsigned DestAS = I.getType()->getPointerAddressSpace();
+
+ if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
+ N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
+
+ setValue(&I, N);
+}
+
+void SelectionDAGBuilder::visitInsertElement(const User &I) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue InVec = getValue(I.getOperand(0));
+ SDValue InVal = getValue(I.getOperand(1));
+ SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
+ getCurSDLoc(), TLI.getVectorIdxTy());
+ setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
+ TM.getTargetLowering()->getValueType(I.getType()),
+ InVec, InVal, InIdx));
+}
+
+void SelectionDAGBuilder::visitExtractElement(const User &I) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue InVec = getValue(I.getOperand(0));
+ SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
+ getCurSDLoc(), TLI.getVectorIdxTy());
+ setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
+ TM.getTargetLowering()->getValueType(I.getType()),
+ InVec, InIdx));
+}
+
+// Utility for visitShuffleVector - Return true if every element in Mask,
+// beginning from position Pos and ending in Pos+Size, falls within the
+// specified sequential range [L, L+Pos). or is undef.
+static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
+ unsigned Pos, unsigned Size, int Low) {
+ for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
+ if (Mask[i] >= 0 && Mask[i] != Low)
+ return false;
+ return true;
+}
+
+void SelectionDAGBuilder::visitShuffleVector(const User &I) {
+ SDValue Src1 = getValue(I.getOperand(0));
+ SDValue Src2 = getValue(I.getOperand(1));
+
+ SmallVector<int, 8> Mask;
+ ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
+ unsigned MaskNumElts = Mask.size();
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ EVT VT = TLI->getValueType(I.getType());
+ EVT SrcVT = Src1.getValueType();
+ unsigned SrcNumElts = SrcVT.getVectorNumElements();
+
+ if (SrcNumElts == MaskNumElts) {
+ setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
+ &Mask[0]));
+ return;
+ }
+
+ // Normalize the shuffle vector since mask and vector length don't match.
+ if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
+ // Mask is longer than the source vectors and is a multiple of the source
+ // vectors. We can use concatenate vector to make the mask and vectors
+ // lengths match.
+ if (SrcNumElts*2 == MaskNumElts) {
+ // First check for Src1 in low and Src2 in high
+ if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
+ isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
+ // The shuffle is concatenating two vectors together.
+ setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
+ VT, Src1, Src2));
+ return;
+ }
+ // Then check for Src2 in low and Src1 in high
+ if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
+ isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
+ // The shuffle is concatenating two vectors together.
+ setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
+ VT, Src2, Src1));
+ return;
+ }
+ }
+
+ // Pad both vectors with undefs to make them the same length as the mask.
+ unsigned NumConcat = MaskNumElts / SrcNumElts;
+ bool Src1U = Src1.getOpcode() == ISD::UNDEF;
+ bool Src2U = Src2.getOpcode() == ISD::UNDEF;
+ SDValue UndefVal = DAG.getUNDEF(SrcVT);
+
+ SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
+ SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
+ MOps1[0] = Src1;
+ MOps2[0] = Src2;
+
+ Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
+ getCurSDLoc(), VT,
+ &MOps1[0], NumConcat);
+ Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
+ getCurSDLoc(), VT,
+ &MOps2[0], NumConcat);
+
+ // Readjust mask for new input vector length.
+ SmallVector<int, 8> MappedOps;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Idx = Mask[i];
+ if (Idx >= (int)SrcNumElts)
+ Idx -= SrcNumElts - MaskNumElts;
+ MappedOps.push_back(Idx);
+ }
+
+ setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
+ &MappedOps[0]));
+ return;
+ }
+
+ if (SrcNumElts > MaskNumElts) {
+ // Analyze the access pattern of the vector to see if we can extract
+ // two subvectors and do the shuffle. The analysis is done by calculating
+ // the range of elements the mask access on both vectors.
+ int MinRange[2] = { static_cast<int>(SrcNumElts),
+ static_cast<int>(SrcNumElts)};
+ int MaxRange[2] = {-1, -1};
+
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Idx = Mask[i];
+ unsigned Input = 0;
+ if (Idx < 0)
+ continue;
+
+ if (Idx >= (int)SrcNumElts) {
+ Input = 1;
+ Idx -= SrcNumElts;
+ }
+ if (Idx > MaxRange[Input])
+ MaxRange[Input] = Idx;
+ if (Idx < MinRange[Input])
+ MinRange[Input] = Idx;
+ }
+
+ // Check if the access is smaller than the vector size and can we find
+ // a reasonable extract index.
+ int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
+ // Extract.
+ int StartIdx[2]; // StartIdx to extract from
+ for (unsigned Input = 0; Input < 2; ++Input) {
+ if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
+ RangeUse[Input] = 0; // Unused
+ StartIdx[Input] = 0;
+ continue;
+ }
+
+ // Find a good start index that is a multiple of the mask length. Then
+ // see if the rest of the elements are in range.
+ StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
+ if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
+ StartIdx[Input] + MaskNumElts <= SrcNumElts)
+ RangeUse[Input] = 1; // Extract from a multiple of the mask length.
+ }
+
+ if (RangeUse[0] == 0 && RangeUse[1] == 0) {
+ setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
+ return;
+ }
+ if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
+ // Extract appropriate subvector and generate a vector shuffle
+ for (unsigned Input = 0; Input < 2; ++Input) {
+ SDValue &Src = Input == 0 ? Src1 : Src2;
+ if (RangeUse[Input] == 0)
+ Src = DAG.getUNDEF(VT);
+ else
+ Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
+ Src, DAG.getConstant(StartIdx[Input],
+ TLI->getVectorIdxTy()));
+ }
+
+ // Calculate new mask.
+ SmallVector<int, 8> MappedOps;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Idx = Mask[i];
+ if (Idx >= 0) {
+ if (Idx < (int)SrcNumElts)
+ Idx -= StartIdx[0];
+ else
+ Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
+ }
+ MappedOps.push_back(Idx);
+ }
+
+ setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
+ &MappedOps[0]));
+ return;
+ }
+ }
+
+ // We can't use either concat vectors or extract subvectors so fall back to
+ // replacing the shuffle with extract and build vector.
+ // to insert and build vector.
+ EVT EltVT = VT.getVectorElementType();
+ EVT IdxVT = TLI->getVectorIdxTy();
+ SmallVector<SDValue,8> Ops;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Idx = Mask[i];
+ SDValue Res;
+
+ if (Idx < 0) {
+ Res = DAG.getUNDEF(EltVT);
+ } else {
+ SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
+ if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
+
+ Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
+ EltVT, Src, DAG.getConstant(Idx, IdxVT));
+ }
+
+ Ops.push_back(Res);
+ }
+
+ setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
+ VT, &Ops[0], Ops.size()));
+}
+
+void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
+ const Value *Op0 = I.getOperand(0);
+ const Value *Op1 = I.getOperand(1);
+ Type *AggTy = I.getType();
+ Type *ValTy = Op1->getType();
+ bool IntoUndef = isa<UndefValue>(Op0);
+ bool FromUndef = isa<UndefValue>(Op1);
+
+ unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ SmallVector<EVT, 4> AggValueVTs;
+ ComputeValueVTs(*TLI, AggTy, AggValueVTs);
+ SmallVector<EVT, 4> ValValueVTs;
+ ComputeValueVTs(*TLI, ValTy, ValValueVTs);
+
+ unsigned NumAggValues = AggValueVTs.size();
+ unsigned NumValValues = ValValueVTs.size();
+ SmallVector<SDValue, 4> Values(NumAggValues);
+
+ SDValue Agg = getValue(Op0);
+ unsigned i = 0;
+ // Copy the beginning value(s) from the original aggregate.
+ for (; i != LinearIndex; ++i)
+ Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
+ SDValue(Agg.getNode(), Agg.getResNo() + i);
+ // Copy values from the inserted value(s).
+ if (NumValValues) {
+ SDValue Val = getValue(Op1);
+ for (; i != LinearIndex + NumValValues; ++i)
+ Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
+ SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
+ }
+ // Copy remaining value(s) from the original aggregate.
+ for (; i != NumAggValues; ++i)
+ Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
+ SDValue(Agg.getNode(), Agg.getResNo() + i);
+
+ setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
+ DAG.getVTList(&AggValueVTs[0], NumAggValues),
+ &Values[0], NumAggValues));
+}
+
+void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
+ const Value *Op0 = I.getOperand(0);
+ Type *AggTy = Op0->getType();
+ Type *ValTy = I.getType();
+ bool OutOfUndef = isa<UndefValue>(Op0);
+
+ unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ SmallVector<EVT, 4> ValValueVTs;
+ ComputeValueVTs(*TLI, ValTy, ValValueVTs);
+
+ unsigned NumValValues = ValValueVTs.size();
+
+ // Ignore a extractvalue that produces an empty object
+ if (!NumValValues) {
+ setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
+ return;
+ }
+
+ SmallVector<SDValue, 4> Values(NumValValues);
+
+ SDValue Agg = getValue(Op0);
+ // Copy out the selected value(s).
+ for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
+ Values[i - LinearIndex] =
+ OutOfUndef ?
+ DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
+ SDValue(Agg.getNode(), Agg.getResNo() + i);
+
+ setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
+ DAG.getVTList(&ValValueVTs[0], NumValValues),
+ &Values[0], NumValValues));
+}
+
+void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
+ Value *Op0 = I.getOperand(0);
+ // Note that the pointer operand may be a vector of pointers. Take the scalar
+ // element which holds a pointer.
+ Type *Ty = Op0->getType()->getScalarType();
+ unsigned AS = Ty->getPointerAddressSpace();
+ SDValue N = getValue(Op0);
+
+ for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
+ OI != E; ++OI) {
+ const Value *Idx = *OI;
+ if (StructType *StTy = dyn_cast<StructType>(Ty)) {
+ unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
+ if (Field) {
+ // N = N + Offset
+ uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
+ N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
+ DAG.getConstant(Offset, N.getValueType()));
+ }
+
+ Ty = StTy->getElementType(Field);
+ } else {
+ Ty = cast<SequentialType>(Ty)->getElementType();
+
+ // If this is a constant subscript, handle it quickly.
+ const TargetLowering *TLI = TM.getTargetLowering();
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->isZero()) continue;
+ uint64_t Offs =
+ TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
+ SDValue OffsVal;
+ EVT PTy = TLI->getPointerTy(AS);
+ unsigned PtrBits = PTy.getSizeInBits();
+ if (PtrBits < 64)
+ OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
+ DAG.getConstant(Offs, MVT::i64));
+ else
+ OffsVal = DAG.getConstant(Offs, PTy);
+
+ N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
+ OffsVal);
+ continue;
+ }
+
+ // N = N + Idx * ElementSize;
+ APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
+ TD->getTypeAllocSize(Ty));
+ SDValue IdxN = getValue(Idx);
+
+ // If the index is smaller or larger than intptr_t, truncate or extend
+ // it.
+ IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
+
+ // If this is a multiply by a power of two, turn it into a shl
+ // immediately. This is a very common case.
+ if (ElementSize != 1) {
+ if (ElementSize.isPowerOf2()) {
+ unsigned Amt = ElementSize.logBase2();
+ IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
+ N.getValueType(), IdxN,
+ DAG.getConstant(Amt, IdxN.getValueType()));
+ } else {
+ SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
+ IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
+ N.getValueType(), IdxN, Scale);
+ }
+ }
+
+ N = DAG.getNode(ISD::ADD, getCurSDLoc(),
+ N.getValueType(), N, IdxN);
+ }
+ }
+
+ setValue(&I, N);
+}
+
+void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
+ // If this is a fixed sized alloca in the entry block of the function,
+ // allocate it statically on the stack.
+ if (FuncInfo.StaticAllocaMap.count(&I))
+ return; // getValue will auto-populate this.
+
+ Type *Ty = I.getAllocatedType();
+ const TargetLowering *TLI = TM.getTargetLowering();
+ uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
+ unsigned Align =
+ std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
+ I.getAlignment());
+
+ SDValue AllocSize = getValue(I.getArraySize());
+
+ EVT IntPtr = TLI->getPointerTy();
+ if (AllocSize.getValueType() != IntPtr)
+ AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
+
+ AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
+ AllocSize,
+ DAG.getConstant(TySize, IntPtr));
+
+ // Handle alignment. If the requested alignment is less than or equal to
+ // the stack alignment, ignore it. If the size is greater than or equal to
+ // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
+ unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
+ if (Align <= StackAlign)
+ Align = 0;
+
+ // Round the size of the allocation up to the stack alignment size
+ // by add SA-1 to the size.
+ AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
+ AllocSize.getValueType(), AllocSize,
+ DAG.getIntPtrConstant(StackAlign-1));
+
+ // Mask out the low bits for alignment purposes.
+ AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
+ AllocSize.getValueType(), AllocSize,
+ DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
+
+ SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
+ SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
+ SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
+ VTs, Ops, 3);
+ setValue(&I, DSA);
+ DAG.setRoot(DSA.getValue(1));
+
+ // Inform the Frame Information that we have just allocated a variable-sized
+ // object.
+ FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
+}
+
+void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
+ if (I.isAtomic())
+ return visitAtomicLoad(I);
+
+ const Value *SV = I.getOperand(0);
+ SDValue Ptr = getValue(SV);
+
+ Type *Ty = I.getType();
+
+ bool isVolatile = I.isVolatile();
+ bool isNonTemporal = I.getMetadata("nontemporal") != 0;
+ bool isInvariant = I.getMetadata("invariant.load") != 0;
+ unsigned Alignment = I.getAlignment();
+ const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
+ const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
+
+ SmallVector<EVT, 4> ValueVTs;
+ SmallVector<uint64_t, 4> Offsets;
+ ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0)
+ return;
+
+ SDValue Root;
+ bool ConstantMemory = false;
+ if (I.isVolatile() || NumValues > MaxParallelChains)
+ // Serialize volatile loads with other side effects.
+ Root = getRoot();
+ else if (AA->pointsToConstantMemory(
+ AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
+ // Do not serialize (non-volatile) loads of constant memory with anything.
+ Root = DAG.getEntryNode();
+ ConstantMemory = true;
+ } else {
+ // Do not serialize non-volatile loads against each other.
+ Root = DAG.getRoot();
+ }
+
+ SmallVector<SDValue, 4> Values(NumValues);
+ SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
+ NumValues));
+ EVT PtrVT = Ptr.getValueType();
+ unsigned ChainI = 0;
+ for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
+ // Serializing loads here may result in excessive register pressure, and
+ // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
+ // could recover a bit by hoisting nodes upward in the chain by recognizing
+ // they are side-effect free or do not alias. The optimizer should really
+ // avoid this case by converting large object/array copies to llvm.memcpy
+ // (MaxParallelChains should always remain as failsafe).
+ if (ChainI == MaxParallelChains) {
+ assert(PendingLoads.empty() && "PendingLoads must be serialized first");
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
+ MVT::Other, &Chains[0], ChainI);
+ Root = Chain;
+ ChainI = 0;
+ }
+ SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
+ PtrVT, Ptr,
+ DAG.getConstant(Offsets[i], PtrVT));
+ SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
+ A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
+ isNonTemporal, isInvariant, Alignment, TBAAInfo,
+ Ranges);
+
+ Values[i] = L;
+ Chains[ChainI] = L.getValue(1);
+ }
+
+ if (!ConstantMemory) {
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
+ MVT::Other, &Chains[0], ChainI);
+ if (isVolatile)
+ DAG.setRoot(Chain);
+ else
+ PendingLoads.push_back(Chain);
+ }
+
+ setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
+ DAG.getVTList(&ValueVTs[0], NumValues),
+ &Values[0], NumValues));
+}
+
+void SelectionDAGBuilder::visitStore(const StoreInst &I) {
+ if (I.isAtomic())
+ return visitAtomicStore(I);
+
+ const Value *SrcV = I.getOperand(0);
+ const Value *PtrV = I.getOperand(1);
+
+ SmallVector<EVT, 4> ValueVTs;
+ SmallVector<uint64_t, 4> Offsets;
+ ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0)
+ return;
+
+ // Get the lowered operands. Note that we do this after
+ // checking if NumResults is zero, because with zero results
+ // the operands won't have values in the map.
+ SDValue Src = getValue(SrcV);
+ SDValue Ptr = getValue(PtrV);
+
+ SDValue Root = getRoot();
+ SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
+ NumValues));
+ EVT PtrVT = Ptr.getValueType();
+ bool isVolatile = I.isVolatile();
+ bool isNonTemporal = I.getMetadata("nontemporal") != 0;
+ unsigned Alignment = I.getAlignment();
+ const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
+
+ unsigned ChainI = 0;
+ for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
+ // See visitLoad comments.
+ if (ChainI == MaxParallelChains) {
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
+ MVT::Other, &Chains[0], ChainI);
+ Root = Chain;
+ ChainI = 0;
+ }
+ SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
+ DAG.getConstant(Offsets[i], PtrVT));
+ SDValue St = DAG.getStore(Root, getCurSDLoc(),
+ SDValue(Src.getNode(), Src.getResNo() + i),
+ Add, MachinePointerInfo(PtrV, Offsets[i]),
+ isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ Chains[ChainI] = St;
+ }
+
+ SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
+ MVT::Other, &Chains[0], ChainI);
+ DAG.setRoot(StoreNode);
+}
+
+static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
+ SynchronizationScope Scope,
+ bool Before, SDLoc dl,
+ SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ // Fence, if necessary
+ if (Before) {
+ if (Order == AcquireRelease || Order == SequentiallyConsistent)
+ Order = Release;
+ else if (Order == Acquire || Order == Monotonic)
+ return Chain;
+ } else {
+ if (Order == AcquireRelease)
+ Order = Acquire;
+ else if (Order == Release || Order == Monotonic)
+ return Chain;
+ }
+ SDValue Ops[3];
+ Ops[0] = Chain;
+ Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
+ Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
+ return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
+}
+
+void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
+ SDLoc dl = getCurSDLoc();
+ AtomicOrdering Order = I.getOrdering();
+ SynchronizationScope Scope = I.getSynchScope();
+
+ SDValue InChain = getRoot();
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ if (TLI->getInsertFencesForAtomic())
+ InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
+ DAG, *TLI);
+
+ SDValue L =
+ DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
+ getValue(I.getCompareOperand()).getSimpleValueType(),
+ InChain,
+ getValue(I.getPointerOperand()),
+ getValue(I.getCompareOperand()),
+ getValue(I.getNewValOperand()),
+ MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
+ TLI->getInsertFencesForAtomic() ? Monotonic : Order,
+ Scope);
+
+ SDValue OutChain = L.getValue(1);
+
+ if (TLI->getInsertFencesForAtomic())
+ OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
+ DAG, *TLI);
+
+ setValue(&I, L);
+ DAG.setRoot(OutChain);
+}
+
+void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
+ SDLoc dl = getCurSDLoc();
+ ISD::NodeType NT;
+ switch (I.getOperation()) {
+ default: llvm_unreachable("Unknown atomicrmw operation");
+ case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
+ case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
+ case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
+ case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
+ case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
+ case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
+ case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
+ case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
+ case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
+ case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
+ case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
+ }
+ AtomicOrdering Order = I.getOrdering();
+ SynchronizationScope Scope = I.getSynchScope();
+
+ SDValue InChain = getRoot();
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ if (TLI->getInsertFencesForAtomic())
+ InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
+ DAG, *TLI);
+
+ SDValue L =
+ DAG.getAtomic(NT, dl,
+ getValue(I.getValOperand()).getSimpleValueType(),
+ InChain,
+ getValue(I.getPointerOperand()),
+ getValue(I.getValOperand()),
+ I.getPointerOperand(), 0 /* Alignment */,
+ TLI->getInsertFencesForAtomic() ? Monotonic : Order,
+ Scope);
+
+ SDValue OutChain = L.getValue(1);
+
+ if (TLI->getInsertFencesForAtomic())
+ OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
+ DAG, *TLI);
+
+ setValue(&I, L);
+ DAG.setRoot(OutChain);
+}
+
+void SelectionDAGBuilder::visitFence(const FenceInst &I) {
+ SDLoc dl = getCurSDLoc();
+ const TargetLowering *TLI = TM.getTargetLowering();
+ SDValue Ops[3];
+ Ops[0] = getRoot();
+ Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
+ Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
+ DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
+}
+
+void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
+ SDLoc dl = getCurSDLoc();
+ AtomicOrdering Order = I.getOrdering();
+ SynchronizationScope Scope = I.getSynchScope();
+
+ SDValue InChain = getRoot();
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ EVT VT = TLI->getValueType(I.getType());
+
+ if (I.getAlignment() < VT.getSizeInBits() / 8)
+ report_fatal_error("Cannot generate unaligned atomic load");
+
+ SDValue L =
+ DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
+ getValue(I.getPointerOperand()),
+ I.getPointerOperand(), I.getAlignment(),
+ TLI->getInsertFencesForAtomic() ? Monotonic : Order,
+ Scope);
+
+ SDValue OutChain = L.getValue(1);
+
+ if (TLI->getInsertFencesForAtomic())
+ OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
+ DAG, *TLI);
+
+ setValue(&I, L);
+ DAG.setRoot(OutChain);
+}
+
+void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
+ SDLoc dl = getCurSDLoc();
+
+ AtomicOrdering Order = I.getOrdering();
+ SynchronizationScope Scope = I.getSynchScope();
+
+ SDValue InChain = getRoot();
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ EVT VT = TLI->getValueType(I.getValueOperand()->getType());
+
+ if (I.getAlignment() < VT.getSizeInBits() / 8)
+ report_fatal_error("Cannot generate unaligned atomic store");
+
+ if (TLI->getInsertFencesForAtomic())
+ InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
+ DAG, *TLI);
+
+ SDValue OutChain =
+ DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
+ InChain,
+ getValue(I.getPointerOperand()),
+ getValue(I.getValueOperand()),
+ I.getPointerOperand(), I.getAlignment(),
+ TLI->getInsertFencesForAtomic() ? Monotonic : Order,
+ Scope);
+
+ if (TLI->getInsertFencesForAtomic())
+ OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
+ DAG, *TLI);
+
+ DAG.setRoot(OutChain);
+}
+
+/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
+/// node.
+void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
+ unsigned Intrinsic) {
+ bool HasChain = !I.doesNotAccessMemory();
+ bool OnlyLoad = HasChain && I.onlyReadsMemory();
+
+ // Build the operand list.
+ SmallVector<SDValue, 8> Ops;
+ if (HasChain) { // If this intrinsic has side-effects, chainify it.
+ if (OnlyLoad) {
+ // We don't need to serialize loads against other loads.
+ Ops.push_back(DAG.getRoot());
+ } else {
+ Ops.push_back(getRoot());
+ }
+ }
+
+ // Info is set by getTgtMemInstrinsic
+ TargetLowering::IntrinsicInfo Info;
+ const TargetLowering *TLI = TM.getTargetLowering();
+ bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
+
+ // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
+ if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
+ Info.opc == ISD::INTRINSIC_W_CHAIN)
+ Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
+
+ // Add all operands of the call to the operand list.
+ for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
+ SDValue Op = getValue(I.getArgOperand(i));
+ Ops.push_back(Op);
+ }
+
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(*TLI, I.getType(), ValueVTs);
+
+ if (HasChain)
+ ValueVTs.push_back(MVT::Other);
+
+ SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
+
+ // Create the node.
+ SDValue Result;
+ if (IsTgtIntrinsic) {
+ // This is target intrinsic that touches memory
+ Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
+ VTs, &Ops[0], Ops.size(),
+ Info.memVT,
+ MachinePointerInfo(Info.ptrVal, Info.offset),
+ Info.align, Info.vol,
+ Info.readMem, Info.writeMem);
+ } else if (!HasChain) {
+ Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
+ VTs, &Ops[0], Ops.size());
+ } else if (!I.getType()->isVoidTy()) {
+ Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
+ VTs, &Ops[0], Ops.size());
+ } else {
+ Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
+ VTs, &Ops[0], Ops.size());
+ }
+
+ if (HasChain) {
+ SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
+ if (OnlyLoad)
+ PendingLoads.push_back(Chain);
+ else
+ DAG.setRoot(Chain);
+ }
+
+ if (!I.getType()->isVoidTy()) {
+ if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
+ EVT VT = TLI->getValueType(PTy);
+ Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
+ }
+
+ setValue(&I, Result);
+ }
+}
+
+/// GetSignificand - Get the significand and build it into a floating-point
+/// number with exponent of 1:
+///
+/// Op = (Op & 0x007fffff) | 0x3f800000;
+///
+/// where Op is the hexadecimal representation of floating point value.
+static SDValue
+GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
+ SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
+ DAG.getConstant(0x007fffff, MVT::i32));
+ SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
+ DAG.getConstant(0x3f800000, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
+}
+
+/// GetExponent - Get the exponent:
+///
+/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
+///
+/// where Op is the hexadecimal representation of floating point value.
+static SDValue
+GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
+ SDLoc dl) {
+ SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
+ DAG.getConstant(0x7f800000, MVT::i32));
+ SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
+ DAG.getConstant(23, TLI.getPointerTy()));
+ SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
+ DAG.getConstant(127, MVT::i32));
+ return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
+}
+
+/// getF32Constant - Get 32-bit floating point constant.
+static SDValue
+getF32Constant(SelectionDAG &DAG, unsigned Flt) {
+ return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
+ MVT::f32);
+}
+
+/// expandExp - Lower an exp intrinsic. Handles the special sequences for
+/// limited-precision mode.
+static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ if (Op.getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+
+ // Put the exponent in the right bit position for later addition to the
+ // final result:
+ //
+ // #define LOG2OFe 1.4426950f
+ // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
+ getF32Constant(DAG, 0x3fb8aa3b));
+ SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
+
+ // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
+ SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+ SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
+
+ // IntegerPartOfX <<= 23;
+ IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+ DAG.getConstant(23, TLI.getPointerTy()));
+
+ SDValue TwoToFracPartOfX;
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.997535578f +
+ // (0.735607626f + 0.252464424f * x) * x;
+ //
+ // error 0.0144103317, which is 6 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3e814304));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f3c50c8));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f7f5e7e));
+ } else if (LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999892986f +
+ // (0.696457318f +
+ // (0.224338339f + 0.792043434e-1f * x) * x) * x;
+ //
+ // 0.000107046256 error, which is 13 to 14 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3da235e3));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3e65b8f3));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f324b07));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3f7ff8fd));
+ } else { // LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999999982f +
+ // (0.693148872f +
+ // (0.240227044f +
+ // (0.554906021e-1f +
+ // (0.961591928e-2f +
+ // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+ //
+ // error 2.47208000*10^(-7), which is better than 18 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3924b03e));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3ab24b87));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3c1d8c17));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3d634a1d));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x3e75fe14));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x3f317234));
+ SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+ TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+ getF32Constant(DAG, 0x3f800000));
+ }
+
+ // Add the exponent into the result in integer domain.
+ SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
+ DAG.getNode(ISD::ADD, dl, MVT::i32,
+ t13, IntegerPartOfX));
+ }
+
+ // No special expansion.
+ return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
+}
+
+/// expandLog - Lower a log intrinsic. Handles the special sequences for
+/// limited-precision mode.
+static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ if (Op.getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
+
+ // Scale the exponent by log(2) [0.69314718f].
+ SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
+ SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
+ getF32Constant(DAG, 0x3f317218));
+
+ // Get the significand and build it into a floating-point number with
+ // exponent of 1.
+ SDValue X = GetSignificand(DAG, Op1, dl);
+
+ SDValue LogOfMantissa;
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // LogofMantissa =
+ // -1.1609546f +
+ // (1.4034025f - 0.23903021f * x) * x;
+ //
+ // error 0.0034276066, which is better than 8 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbe74c456));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3fb3a2b1));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f949a29));
+ } else if (LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // LogOfMantissa =
+ // -1.7417939f +
+ // (2.8212026f +
+ // (-1.4699568f +
+ // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
+ //
+ // error 0.000061011436, which is 14 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbd67b6d6));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3ee4f4b8));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3fbc278b));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x40348e95));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3fdef31a));
+ } else { // LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // LogOfMantissa =
+ // -2.1072184f +
+ // (4.2372794f +
+ // (-3.7029485f +
+ // (2.2781945f +
+ // (-0.87823314f +
+ // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
+ //
+ // error 0.0000023660568, which is better than 18 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbc91e5ac));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3e4350aa));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f60d3e3));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x4011cdf0));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x406cfd1c));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x408797cb));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x4006dcab));
+ }
+
+ return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
+ }
+
+ // No special expansion.
+ return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
+}
+
+/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
+/// limited-precision mode.
+static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ if (Op.getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
+
+ // Get the exponent.
+ SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
+
+ // Get the significand and build it into a floating-point number with
+ // exponent of 1.
+ SDValue X = GetSignificand(DAG, Op1, dl);
+
+ // Different possible minimax approximations of significand in
+ // floating-point for various degrees of accuracy over [1,2].
+ SDValue Log2ofMantissa;
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
+ //
+ // error 0.0049451742, which is more than 7 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbeb08fe0));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x40019463));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3fd6633d));
+ } else if (LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // Log2ofMantissa =
+ // -2.51285454f +
+ // (4.07009056f +
+ // (-2.12067489f +
+ // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
+ //
+ // error 0.0000876136000, which is better than 13 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbda7262e));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3f25280b));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x4007b923));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x40823e2f));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x4020d29c));
+ } else { // LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // Log2ofMantissa =
+ // -3.0400495f +
+ // (6.1129976f +
+ // (-5.3420409f +
+ // (3.2865683f +
+ // (-1.2669343f +
+ // (0.27515199f -
+ // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
+ //
+ // error 0.0000018516, which is better than 18 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbcd2769e));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3e8ce0b9));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3fa22ae7));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x40525723));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x40aaf200));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x40c39dad));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x4042902c));
+ }
+
+ return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
+ }
+
+ // No special expansion.
+ return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
+}
+
+/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
+/// limited-precision mode.
+static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ if (Op.getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
+
+ // Scale the exponent by log10(2) [0.30102999f].
+ SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
+ SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
+ getF32Constant(DAG, 0x3e9a209a));
+
+ // Get the significand and build it into a floating-point number with
+ // exponent of 1.
+ SDValue X = GetSignificand(DAG, Op1, dl);
+
+ SDValue Log10ofMantissa;
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // Log10ofMantissa =
+ // -0.50419619f +
+ // (0.60948995f - 0.10380950f * x) * x;
+ //
+ // error 0.0014886165, which is 6 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbdd49a13));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3f1c0789));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f011300));
+ } else if (LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // Log10ofMantissa =
+ // -0.64831180f +
+ // (0.91751397f +
+ // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
+ //
+ // error 0.00019228036, which is better than 12 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3d431f31));
+ SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3ea21fb2));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f6ae232));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f25f7c3));
+ } else { // LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // Log10ofMantissa =
+ // -0.84299375f +
+ // (1.5327582f +
+ // (-1.0688956f +
+ // (0.49102474f +
+ // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
+ //
+ // error 0.0000037995730, which is better than 18 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3c5d51ce));
+ SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3e00685a));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3efb6798));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f88d192));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3fc4316c));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x3f57ce70));
+ }
+
+ return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
+ }
+
+ // No special expansion.
+ return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
+}
+
+/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
+/// limited-precision mode.
+static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ if (Op.getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
+
+ // FractionalPartOfX = x - (float)IntegerPartOfX;
+ SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+ SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
+
+ // IntegerPartOfX <<= 23;
+ IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+ DAG.getConstant(23, TLI.getPointerTy()));
+
+ SDValue TwoToFractionalPartOfX;
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.997535578f +
+ // (0.735607626f + 0.252464424f * x) * x;
+ //
+ // error 0.0144103317, which is 6 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3e814304));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f3c50c8));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f7f5e7e));
+ } else if (LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999892986f +
+ // (0.696457318f +
+ // (0.224338339f + 0.792043434e-1f * x) * x) * x;
+ //
+ // error 0.000107046256, which is 13 to 14 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3da235e3));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3e65b8f3));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f324b07));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3f7ff8fd));
+ } else { // LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999999982f +
+ // (0.693148872f +
+ // (0.240227044f +
+ // (0.554906021e-1f +
+ // (0.961591928e-2f +
+ // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+ // error 2.47208000*10^(-7), which is better than 18 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3924b03e));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3ab24b87));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3c1d8c17));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3d634a1d));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x3e75fe14));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x3f317234));
+ SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+ TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+ getF32Constant(DAG, 0x3f800000));
+ }
+
+ // Add the exponent into the result in integer domain.
+ SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
+ TwoToFractionalPartOfX);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
+ DAG.getNode(ISD::ADD, dl, MVT::i32,
+ t13, IntegerPartOfX));
+ }
+
+ // No special expansion.
+ return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
+}
+
+/// visitPow - Lower a pow intrinsic. Handles the special sequences for
+/// limited-precision mode with x == 10.0f.
+static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
+ SelectionDAG &DAG, const TargetLowering &TLI) {
+ bool IsExp10 = false;
+ if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
+ APFloat Ten(10.0f);
+ IsExp10 = LHSC->isExactlyValue(Ten);
+ }
+ }
+
+ if (IsExp10) {
+ // Put the exponent in the right bit position for later addition to the
+ // final result:
+ //
+ // #define LOG2OF10 3.3219281f
+ // IntegerPartOfX = (int32_t)(x * LOG2OF10);
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
+ getF32Constant(DAG, 0x40549a78));
+ SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
+
+ // FractionalPartOfX = x - (float)IntegerPartOfX;
+ SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+ SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
+
+ // IntegerPartOfX <<= 23;
+ IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+ DAG.getConstant(23, TLI.getPointerTy()));
+
+ SDValue TwoToFractionalPartOfX;
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // twoToFractionalPartOfX =
+ // 0.997535578f +
+ // (0.735607626f + 0.252464424f * x) * x;
+ //
+ // error 0.0144103317, which is 6 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3e814304));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f3c50c8));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f7f5e7e));
+ } else if (LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999892986f +
+ // (0.696457318f +
+ // (0.224338339f + 0.792043434e-1f * x) * x) * x;
+ //
+ // error 0.000107046256, which is 13 to 14 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3da235e3));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3e65b8f3));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f324b07));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3f7ff8fd));
+ } else { // LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999999982f +
+ // (0.693148872f +
+ // (0.240227044f +
+ // (0.554906021e-1f +
+ // (0.961591928e-2f +
+ // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+ // error 2.47208000*10^(-7), which is better than 18 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3924b03e));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3ab24b87));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3c1d8c17));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3d634a1d));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x3e75fe14));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x3f317234));
+ SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+ TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+ getF32Constant(DAG, 0x3f800000));
+ }
+
+ SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
+ DAG.getNode(ISD::ADD, dl, MVT::i32,
+ t13, IntegerPartOfX));
+ }
+
+ // No special expansion.
+ return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
+}
+
+
+/// ExpandPowI - Expand a llvm.powi intrinsic.
+static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
+ SelectionDAG &DAG) {
+ // If RHS is a constant, we can expand this out to a multiplication tree,
+ // otherwise we end up lowering to a call to __powidf2 (for example). When
+ // optimizing for size, we only want to do this if the expansion would produce
+ // a small number of multiplies, otherwise we do the full expansion.
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
+ // Get the exponent as a positive value.
+ unsigned Val = RHSC->getSExtValue();
+ if ((int)Val < 0) Val = -Val;
+
+ // powi(x, 0) -> 1.0
+ if (Val == 0)
+ return DAG.getConstantFP(1.0, LHS.getValueType());
+
+ const Function *F = DAG.getMachineFunction().getFunction();
+ if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize) ||
+ // If optimizing for size, don't insert too many multiplies. This
+ // inserts up to 5 multiplies.
+ CountPopulation_32(Val)+Log2_32(Val) < 7) {
+ // We use the simple binary decomposition method to generate the multiply
+ // sequence. There are more optimal ways to do this (for example,
+ // powi(x,15) generates one more multiply than it should), but this has
+ // the benefit of being both really simple and much better than a libcall.
+ SDValue Res; // Logically starts equal to 1.0
+ SDValue CurSquare = LHS;
+ while (Val) {
+ if (Val & 1) {
+ if (Res.getNode())
+ Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
+ else
+ Res = CurSquare; // 1.0*CurSquare.
+ }
+
+ CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
+ CurSquare, CurSquare);
+ Val >>= 1;
+ }
+
+ // If the original was negative, invert the result, producing 1/(x*x*x).
+ if (RHSC->getSExtValue() < 0)
+ Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
+ DAG.getConstantFP(1.0, LHS.getValueType()), Res);
+ return Res;
+ }
+ }
+
+ // Otherwise, expand to a libcall.
+ return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
+}
+
+// getTruncatedArgReg - Find underlying register used for an truncated
+// argument.
+static unsigned getTruncatedArgReg(const SDValue &N) {
+ if (N.getOpcode() != ISD::TRUNCATE)
+ return 0;
+
+ const SDValue &Ext = N.getOperand(0);
+ if (Ext.getOpcode() == ISD::AssertZext ||
+ Ext.getOpcode() == ISD::AssertSext) {
+ const SDValue &CFR = Ext.getOperand(0);
+ if (CFR.getOpcode() == ISD::CopyFromReg)
+ return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
+ if (CFR.getOpcode() == ISD::TRUNCATE)
+ return getTruncatedArgReg(CFR);
+ }
+ return 0;
+}
+
+/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
+/// argument, create the corresponding DBG_VALUE machine instruction for it now.
+/// At the end of instruction selection, they will be inserted to the entry BB.
+bool
+SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
+ int64_t Offset,
+ const SDValue &N) {
+ const Argument *Arg = dyn_cast<Argument>(V);
+ if (!Arg)
+ return false;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
+
+ // Ignore inlined function arguments here.
+ DIVariable DV(Variable);
+ if (DV.isInlinedFnArgument(MF.getFunction()))
+ return false;
+
+ Optional<MachineOperand> Op;
+ // Some arguments' frame index is recorded during argument lowering.
+ if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
+ Op = MachineOperand::CreateFI(FI);
+
+ if (!Op && N.getNode()) {
+ unsigned Reg;
+ if (N.getOpcode() == ISD::CopyFromReg)
+ Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
+ else
+ Reg = getTruncatedArgReg(N);
+ if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ unsigned PR = RegInfo.getLiveInPhysReg(Reg);
+ if (PR)
+ Reg = PR;
+ }
+ if (Reg)
+ Op = MachineOperand::CreateReg(Reg, false);
+ }
+
+ if (!Op) {
+ // Check if ValueMap has reg number.
+ DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
+ if (VMI != FuncInfo.ValueMap.end())
+ Op = MachineOperand::CreateReg(VMI->second, false);
+ }
+
+ if (!Op && N.getNode())
+ // Check if frame index is available.
+ if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
+ if (FrameIndexSDNode *FINode =
+ dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
+ Op = MachineOperand::CreateFI(FINode->getIndex());
+
+ if (!Op)
+ return false;
+
+ // FIXME: This does not handle register-indirect values at offset 0.
+ bool IsIndirect = Offset != 0;
+ if (Op->isReg())
+ FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
+ TII->get(TargetOpcode::DBG_VALUE),
+ IsIndirect,
+ Op->getReg(), Offset, Variable));
+ else
+ FuncInfo.ArgDbgValues.push_back(
+ BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
+ .addOperand(*Op).addImm(Offset).addMetadata(Variable));
+
+ return true;
+}
+
+// VisualStudio defines setjmp as _setjmp
+#if defined(_MSC_VER) && defined(setjmp) && \
+ !defined(setjmp_undefined_for_msvc)
+# pragma push_macro("setjmp")
+# undef setjmp
+# define setjmp_undefined_for_msvc
+#endif
+
+/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
+/// we want to emit this as a call to a named external function, return the name
+/// otherwise lower it and return null.
+const char *
+SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
+ const TargetLowering *TLI = TM.getTargetLowering();
+ SDLoc sdl = getCurSDLoc();
+ DebugLoc dl = getCurDebugLoc();
+ SDValue Res;
+
+ switch (Intrinsic) {
+ default:
+ // By default, turn this into a target intrinsic node.
+ visitTargetIntrinsic(I, Intrinsic);
+ return 0;
+ case Intrinsic::vastart: visitVAStart(I); return 0;
+ case Intrinsic::vaend: visitVAEnd(I); return 0;
+ case Intrinsic::vacopy: visitVACopy(I); return 0;
+ case Intrinsic::returnaddress:
+ setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
+ getValue(I.getArgOperand(0))));
+ return 0;
+ case Intrinsic::frameaddress:
+ setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
+ getValue(I.getArgOperand(0))));
+ return 0;
+ case Intrinsic::setjmp:
+ return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
+ case Intrinsic::longjmp:
+ return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
+ case Intrinsic::memcpy: {
+ // Assert for address < 256 since we support only user defined address
+ // spaces.
+ assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
+ < 256 &&
+ cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
+ < 256 &&
+ "Unknown address space");
+ SDValue Op1 = getValue(I.getArgOperand(0));
+ SDValue Op2 = getValue(I.getArgOperand(1));
+ SDValue Op3 = getValue(I.getArgOperand(2));
+ unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
+ if (!Align)
+ Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
+ bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
+ DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
+ MachinePointerInfo(I.getArgOperand(0)),
+ MachinePointerInfo(I.getArgOperand(1))));
+ return 0;
+ }
+ case Intrinsic::memset: {
+ // Assert for address < 256 since we support only user defined address
+ // spaces.
+ assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
+ < 256 &&
+ "Unknown address space");
+ SDValue Op1 = getValue(I.getArgOperand(0));
+ SDValue Op2 = getValue(I.getArgOperand(1));
+ SDValue Op3 = getValue(I.getArgOperand(2));
+ unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
+ if (!Align)
+ Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
+ bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
+ DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
+ MachinePointerInfo(I.getArgOperand(0))));
+ return 0;
+ }
+ case Intrinsic::memmove: {
+ // Assert for address < 256 since we support only user defined address
+ // spaces.
+ assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
+ < 256 &&
+ cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
+ < 256 &&
+ "Unknown address space");
+ SDValue Op1 = getValue(I.getArgOperand(0));
+ SDValue Op2 = getValue(I.getArgOperand(1));
+ SDValue Op3 = getValue(I.getArgOperand(2));
+ unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
+ if (!Align)
+ Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
+ bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
+ DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
+ MachinePointerInfo(I.getArgOperand(0)),
+ MachinePointerInfo(I.getArgOperand(1))));
+ return 0;
+ }
+ case Intrinsic::dbg_declare: {
+ const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
+ MDNode *Variable = DI.getVariable();
+ const Value *Address = DI.getAddress();
+ DIVariable DIVar(Variable);
+ assert((!DIVar || DIVar.isVariable()) &&
+ "Variable in DbgDeclareInst should be either null or a DIVariable.");
+ if (!Address || !DIVar) {
+ DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
+ return 0;
+ }
+
+ // Check if address has undef value.
+ if (isa<UndefValue>(Address) ||
+ (Address->use_empty() && !isa<Argument>(Address))) {
+ DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
+ return 0;
+ }
+
+ SDValue &N = NodeMap[Address];
+ if (!N.getNode() && isa<Argument>(Address))
+ // Check unused arguments map.
+ N = UnusedArgNodeMap[Address];
+ SDDbgValue *SDV;
+ if (N.getNode()) {
+ if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
+ Address = BCI->getOperand(0);
+ // Parameters are handled specially.
+ bool isParameter =
+ (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
+ isa<Argument>(Address));
+
+ const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
+
+ if (isParameter && !AI) {
+ FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
+ if (FINode)
+ // Byval parameter. We have a frame index at this point.
+ SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
+ 0, dl, SDNodeOrder);
+ else {
+ // Address is an argument, so try to emit its dbg value using
+ // virtual register info from the FuncInfo.ValueMap.
+ EmitFuncArgumentDbgValue(Address, Variable, 0, N);
+ return 0;
+ }
+ } else if (AI)
+ SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
+ 0, dl, SDNodeOrder);
+ else {
+ // Can't do anything with other non-AI cases yet.
+ DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
+ DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
+ DEBUG(Address->dump());
+ return 0;
+ }
+ DAG.AddDbgValue(SDV, N.getNode(), isParameter);
+ } else {
+ // If Address is an argument then try to emit its dbg value using
+ // virtual register info from the FuncInfo.ValueMap.
+ if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
+ // If variable is pinned by a alloca in dominating bb then
+ // use StaticAllocaMap.
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
+ if (AI->getParent() != DI.getParent()) {
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ SDV = DAG.getDbgValue(Variable, SI->second,
+ 0, dl, SDNodeOrder);
+ DAG.AddDbgValue(SDV, 0, false);
+ return 0;
+ }
+ }
+ }
+ DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
+ }
+ }
+ return 0;
+ }
+ case Intrinsic::dbg_value: {
+ const DbgValueInst &DI = cast<DbgValueInst>(I);
+ DIVariable DIVar(DI.getVariable());
+ assert((!DIVar || DIVar.isVariable()) &&
+ "Variable in DbgValueInst should be either null or a DIVariable.");
+ if (!DIVar)
+ return 0;
+
+ MDNode *Variable = DI.getVariable();
+ uint64_t Offset = DI.getOffset();
+ const Value *V = DI.getValue();
+ if (!V)
+ return 0;
+
+ SDDbgValue *SDV;
+ if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
+ SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
+ DAG.AddDbgValue(SDV, 0, false);
+ } else {
+ // Do not use getValue() in here; we don't want to generate code at
+ // this point if it hasn't been done yet.
+ SDValue N = NodeMap[V];
+ if (!N.getNode() && isa<Argument>(V))
+ // Check unused arguments map.
+ N = UnusedArgNodeMap[V];
+ if (N.getNode()) {
+ if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
+ SDV = DAG.getDbgValue(Variable, N.getNode(),
+ N.getResNo(), Offset, dl, SDNodeOrder);
+ DAG.AddDbgValue(SDV, N.getNode(), false);
+ }
+ } else if (!V->use_empty() ) {
+ // Do not call getValue(V) yet, as we don't want to generate code.
+ // Remember it for later.
+ DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
+ DanglingDebugInfoMap[V] = DDI;
+ } else {
+ // We may expand this to cover more cases. One case where we have no
+ // data available is an unreferenced parameter.
+ DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
+ }
+ }
+
+ // Build a debug info table entry.
+ if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
+ V = BCI->getOperand(0);
+ const AllocaInst *AI = dyn_cast<AllocaInst>(V);
+ // Don't handle byval struct arguments or VLAs, for example.
+ if (!AI) {
+ DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
+ DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
+ return 0;
+ }
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI == FuncInfo.StaticAllocaMap.end())
+ return 0; // VLAs.
+ int FI = SI->second;
+
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
+ MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
+ return 0;
+ }
+
+ case Intrinsic::eh_typeid_for: {
+ // Find the type id for the given typeinfo.
+ GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
+ unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
+ Res = DAG.getConstant(TypeID, MVT::i32);
+ setValue(&I, Res);
+ return 0;
+ }
+
+ case Intrinsic::eh_return_i32:
+ case Intrinsic::eh_return_i64:
+ DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
+ DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
+ MVT::Other,
+ getControlRoot(),
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1))));
+ return 0;
+ case Intrinsic::eh_unwind_init:
+ DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
+ return 0;
+ case Intrinsic::eh_dwarf_cfa: {
+ SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
+ TLI->getPointerTy());
+ SDValue Offset = DAG.getNode(ISD::ADD, sdl,
+ CfaArg.getValueType(),
+ DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
+ CfaArg.getValueType()),
+ CfaArg);
+ SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
+ TLI->getPointerTy(),
+ DAG.getConstant(0, TLI->getPointerTy()));
+ setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
+ FA, Offset));
+ return 0;
+ }
+ case Intrinsic::eh_sjlj_callsite: {
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
+ assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
+ assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
+
+ MMI.setCurrentCallSite(CI->getZExtValue());
+ return 0;
+ }
+ case Intrinsic::eh_sjlj_functioncontext: {
+ // Get and store the index of the function context.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ AllocaInst *FnCtx =
+ cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
+ int FI = FuncInfo.StaticAllocaMap[FnCtx];
+ MFI->setFunctionContextIndex(FI);
+ return 0;
+ }
+ case Intrinsic::eh_sjlj_setjmp: {
+ SDValue Ops[2];
+ Ops[0] = getRoot();
+ Ops[1] = getValue(I.getArgOperand(0));
+ SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
+ DAG.getVTList(MVT::i32, MVT::Other),
+ Ops, 2);
+ setValue(&I, Op.getValue(0));
+ DAG.setRoot(Op.getValue(1));
+ return 0;
+ }
+ case Intrinsic::eh_sjlj_longjmp: {
+ DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
+ getRoot(), getValue(I.getArgOperand(0))));
+ return 0;
+ }
+
+ case Intrinsic::x86_mmx_pslli_w:
+ case Intrinsic::x86_mmx_pslli_d:
+ case Intrinsic::x86_mmx_pslli_q:
+ case Intrinsic::x86_mmx_psrli_w:
+ case Intrinsic::x86_mmx_psrli_d:
+ case Intrinsic::x86_mmx_psrli_q:
+ case Intrinsic::x86_mmx_psrai_w:
+ case Intrinsic::x86_mmx_psrai_d: {
+ SDValue ShAmt = getValue(I.getArgOperand(1));
+ if (isa<ConstantSDNode>(ShAmt)) {
+ visitTargetIntrinsic(I, Intrinsic);
+ return 0;
+ }
+ unsigned NewIntrinsic = 0;
+ EVT ShAmtVT = MVT::v2i32;
+ switch (Intrinsic) {
+ case Intrinsic::x86_mmx_pslli_w:
+ NewIntrinsic = Intrinsic::x86_mmx_psll_w;
+ break;
+ case Intrinsic::x86_mmx_pslli_d:
+ NewIntrinsic = Intrinsic::x86_mmx_psll_d;
+ break;
+ case Intrinsic::x86_mmx_pslli_q:
+ NewIntrinsic = Intrinsic::x86_mmx_psll_q;
+ break;
+ case Intrinsic::x86_mmx_psrli_w:
+ NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
+ break;
+ case Intrinsic::x86_mmx_psrli_d:
+ NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
+ break;
+ case Intrinsic::x86_mmx_psrli_q:
+ NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
+ break;
+ case Intrinsic::x86_mmx_psrai_w:
+ NewIntrinsic = Intrinsic::x86_mmx_psra_w;
+ break;
+ case Intrinsic::x86_mmx_psrai_d:
+ NewIntrinsic = Intrinsic::x86_mmx_psra_d;
+ break;
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ }
+
+ // The vector shift intrinsics with scalars uses 32b shift amounts but
+ // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
+ // to be zero.
+ // We must do this early because v2i32 is not a legal type.
+ SDValue ShOps[2];
+ ShOps[0] = ShAmt;
+ ShOps[1] = DAG.getConstant(0, MVT::i32);
+ ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
+ EVT DestVT = TLI->getValueType(I.getType());
+ ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
+ Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
+ DAG.getConstant(NewIntrinsic, MVT::i32),
+ getValue(I.getArgOperand(0)), ShAmt);
+ setValue(&I, Res);
+ return 0;
+ }
+ case Intrinsic::x86_avx_vinsertf128_pd_256:
+ case Intrinsic::x86_avx_vinsertf128_ps_256:
+ case Intrinsic::x86_avx_vinsertf128_si_256:
+ case Intrinsic::x86_avx2_vinserti128: {
+ EVT DestVT = TLI->getValueType(I.getType());
+ EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
+ uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
+ ElVT.getVectorNumElements();
+ Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1)),
+ DAG.getConstant(Idx, TLI->getVectorIdxTy()));
+ setValue(&I, Res);
+ return 0;
+ }
+ case Intrinsic::x86_avx_vextractf128_pd_256:
+ case Intrinsic::x86_avx_vextractf128_ps_256:
+ case Intrinsic::x86_avx_vextractf128_si_256:
+ case Intrinsic::x86_avx2_vextracti128: {
+ EVT DestVT = TLI->getValueType(I.getType());
+ uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
+ DestVT.getVectorNumElements();
+ Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
+ getValue(I.getArgOperand(0)),
+ DAG.getConstant(Idx, TLI->getVectorIdxTy()));
+ setValue(&I, Res);
+ return 0;
+ }
+ case Intrinsic::convertff:
+ case Intrinsic::convertfsi:
+ case Intrinsic::convertfui:
+ case Intrinsic::convertsif:
+ case Intrinsic::convertuif:
+ case Intrinsic::convertss:
+ case Intrinsic::convertsu:
+ case Intrinsic::convertus:
+ case Intrinsic::convertuu: {
+ ISD::CvtCode Code = ISD::CVT_INVALID;
+ switch (Intrinsic) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::convertff: Code = ISD::CVT_FF; break;
+ case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
+ case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
+ case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
+ case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
+ case Intrinsic::convertss: Code = ISD::CVT_SS; break;
+ case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
+ case Intrinsic::convertus: Code = ISD::CVT_US; break;
+ case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
+ }
+ EVT DestVT = TLI->getValueType(I.getType());
+ const Value *Op1 = I.getArgOperand(0);
+ Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
+ DAG.getValueType(DestVT),
+ DAG.getValueType(getValue(Op1).getValueType()),
+ getValue(I.getArgOperand(1)),
+ getValue(I.getArgOperand(2)),
+ Code);
+ setValue(&I, Res);
+ return 0;
+ }
+ case Intrinsic::powi:
+ setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1)), DAG));
+ return 0;
+ case Intrinsic::log:
+ setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ return 0;
+ case Intrinsic::log2:
+ setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ return 0;
+ case Intrinsic::log10:
+ setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ return 0;
+ case Intrinsic::exp:
+ setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ return 0;
+ case Intrinsic::exp2:
+ setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ return 0;
+ case Intrinsic::pow:
+ setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1)), DAG, *TLI));
+ return 0;
+ case Intrinsic::sqrt:
+ case Intrinsic::fabs:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::round: {
+ unsigned Opcode;
+ switch (Intrinsic) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
+ case Intrinsic::fabs: Opcode = ISD::FABS; break;
+ case Intrinsic::sin: Opcode = ISD::FSIN; break;
+ case Intrinsic::cos: Opcode = ISD::FCOS; break;
+ case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
+ case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
+ case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
+ case Intrinsic::rint: Opcode = ISD::FRINT; break;
+ case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
+ case Intrinsic::round: Opcode = ISD::FROUND; break;
+ }
+
+ setValue(&I, DAG.getNode(Opcode, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ getValue(I.getArgOperand(0))));
+ return 0;
+ }
+ case Intrinsic::copysign:
+ setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1))));
+ return 0;
+ case Intrinsic::fma:
+ setValue(&I, DAG.getNode(ISD::FMA, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1)),
+ getValue(I.getArgOperand(2))));
+ return 0;
+ case Intrinsic::fmuladd: {
+ EVT VT = TLI->getValueType(I.getType());
+ if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
+ TLI->isFMAFasterThanFMulAndFAdd(VT)) {
+ setValue(&I, DAG.getNode(ISD::FMA, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1)),
+ getValue(I.getArgOperand(2))));
+ } else {
+ SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1)));
+ SDValue Add = DAG.getNode(ISD::FADD, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ Mul,
+ getValue(I.getArgOperand(2)));
+ setValue(&I, Add);
+ }
+ return 0;
+ }
+ case Intrinsic::convert_to_fp16:
+ setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
+ MVT::i16, getValue(I.getArgOperand(0))));
+ return 0;
+ case Intrinsic::convert_from_fp16:
+ setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
+ MVT::f32, getValue(I.getArgOperand(0))));
+ return 0;
+ case Intrinsic::pcmarker: {
+ SDValue Tmp = getValue(I.getArgOperand(0));
+ DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
+ return 0;
+ }
+ case Intrinsic::readcyclecounter: {
+ SDValue Op = getRoot();
+ Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
+ DAG.getVTList(MVT::i64, MVT::Other),
+ &Op, 1);
+ setValue(&I, Res);
+ DAG.setRoot(Res.getValue(1));
+ return 0;
+ }
+ case Intrinsic::bswap:
+ setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ getValue(I.getArgOperand(0))));
+ return 0;
+ case Intrinsic::cttz: {
+ SDValue Arg = getValue(I.getArgOperand(0));
+ ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
+ EVT Ty = Arg.getValueType();
+ setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
+ sdl, Ty, Arg));
+ return 0;
+ }
+ case Intrinsic::ctlz: {
+ SDValue Arg = getValue(I.getArgOperand(0));
+ ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
+ EVT Ty = Arg.getValueType();
+ setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
+ sdl, Ty, Arg));
+ return 0;
+ }
+ case Intrinsic::ctpop: {
+ SDValue Arg = getValue(I.getArgOperand(0));
+ EVT Ty = Arg.getValueType();
+ setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
+ return 0;
+ }
+ case Intrinsic::stacksave: {
+ SDValue Op = getRoot();
+ Res = DAG.getNode(ISD::STACKSAVE, sdl,
+ DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
+ setValue(&I, Res);
+ DAG.setRoot(Res.getValue(1));
+ return 0;
+ }
+ case Intrinsic::stackrestore: {
+ Res = getValue(I.getArgOperand(0));
+ DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
+ return 0;
+ }
+ case Intrinsic::stackprotector: {
+ // Emit code into the DAG to store the stack guard onto the stack.
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ EVT PtrTy = TLI->getPointerTy();
+
+ SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
+ AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
+
+ int FI = FuncInfo.StaticAllocaMap[Slot];
+ MFI->setStackProtectorIndex(FI);
+
+ SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
+
+ // Store the stack protector onto the stack.
+ Res = DAG.getStore(getRoot(), sdl, Src, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ true, false, 0);
+ setValue(&I, Res);
+ DAG.setRoot(Res);
+ return 0;
+ }
+ case Intrinsic::objectsize: {
+ // If we don't know by now, we're never going to know.
+ ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
+
+ assert(CI && "Non-constant type in __builtin_object_size?");
+
+ SDValue Arg = getValue(I.getCalledValue());
+ EVT Ty = Arg.getValueType();
+
+ if (CI->isZero())
+ Res = DAG.getConstant(-1ULL, Ty);
+ else
+ Res = DAG.getConstant(0, Ty);
+
+ setValue(&I, Res);
+ return 0;
+ }
+ case Intrinsic::annotation:
+ case Intrinsic::ptr_annotation:
+ // Drop the intrinsic, but forward the value
+ setValue(&I, getValue(I.getOperand(0)));
+ return 0;
+ case Intrinsic::var_annotation:
+ // Discard annotate attributes
+ return 0;
+
+ case Intrinsic::init_trampoline: {
+ const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
+
+ SDValue Ops[6];
+ Ops[0] = getRoot();
+ Ops[1] = getValue(I.getArgOperand(0));
+ Ops[2] = getValue(I.getArgOperand(1));
+ Ops[3] = getValue(I.getArgOperand(2));
+ Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
+ Ops[5] = DAG.getSrcValue(F);
+
+ Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
+
+ DAG.setRoot(Res);
+ return 0;
+ }
+ case Intrinsic::adjust_trampoline: {
+ setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
+ TLI->getPointerTy(),
+ getValue(I.getArgOperand(0))));
+ return 0;
+ }
+ case Intrinsic::gcroot:
+ if (GFI) {
+ const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
+ const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
+
+ FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
+ GFI->addStackRoot(FI->getIndex(), TypeMap);
+ }
+ return 0;
+ case Intrinsic::gcread:
+ case Intrinsic::gcwrite:
+ llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
+ case Intrinsic::flt_rounds:
+ setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
+ return 0;
+
+ case Intrinsic::expect: {
+ // Just replace __builtin_expect(exp, c) with EXP.
+ setValue(&I, getValue(I.getArgOperand(0)));
+ return 0;
+ }
+
+ case Intrinsic::debugtrap:
+ case Intrinsic::trap: {
+ StringRef TrapFuncName = TM.Options.getTrapFunctionName();
+ if (TrapFuncName.empty()) {
+ ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
+ ISD::TRAP : ISD::DEBUGTRAP;
+ DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
+ return 0;
+ }
+ TargetLowering::ArgListTy Args;
+ TargetLowering::
+ CallLoweringInfo CLI(getRoot(), I.getType(),
+ false, false, false, false, 0, CallingConv::C,
+ /*isTailCall=*/false,
+ /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
+ DAG.getExternalSymbol(TrapFuncName.data(),
+ TLI->getPointerTy()),
+ Args, DAG, sdl);
+ std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
+ DAG.setRoot(Result.second);
+ return 0;
+ }
+
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow: {
+ ISD::NodeType Op;
+ switch (Intrinsic) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
+ case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
+ case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
+ case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
+ case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
+ case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
+ }
+ SDValue Op1 = getValue(I.getArgOperand(0));
+ SDValue Op2 = getValue(I.getArgOperand(1));
+
+ SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
+ setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
+ return 0;
+ }
+ case Intrinsic::prefetch: {
+ SDValue Ops[5];
+ unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
+ Ops[0] = getRoot();
+ Ops[1] = getValue(I.getArgOperand(0));
+ Ops[2] = getValue(I.getArgOperand(1));
+ Ops[3] = getValue(I.getArgOperand(2));
+ Ops[4] = getValue(I.getArgOperand(3));
+ DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
+ DAG.getVTList(MVT::Other),
+ &Ops[0], 5,
+ EVT::getIntegerVT(*Context, 8),
+ MachinePointerInfo(I.getArgOperand(0)),
+ 0, /* align */
+ false, /* volatile */
+ rw==0, /* read */
+ rw==1)); /* write */
+ return 0;
+ }
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end: {
+ bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
+ // Stack coloring is not enabled in O0, discard region information.
+ if (TM.getOptLevel() == CodeGenOpt::None)
+ return 0;
+
+ SmallVector<Value *, 4> Allocas;
+ GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
+
+ for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
+ E = Allocas.end(); Object != E; ++Object) {
+ AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
+
+ // Could not find an Alloca.
+ if (!LifetimeObject)
+ continue;
+
+ int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
+
+ SDValue Ops[2];
+ Ops[0] = getRoot();
+ Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
+ unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
+
+ Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
+ DAG.setRoot(Res);
+ }
+ return 0;
+ }
+ case Intrinsic::invariant_start:
+ // Discard region information.
+ setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
+ return 0;
+ case Intrinsic::invariant_end:
+ // Discard region information.
+ return 0;
+ case Intrinsic::stackprotectorcheck: {
+ // Do not actually emit anything for this basic block. Instead we initialize
+ // the stack protector descriptor and export the guard variable so we can
+ // access it in FinishBasicBlock.
+ const BasicBlock *BB = I.getParent();
+ SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
+ ExportFromCurrentBlock(SPDescriptor.getGuard());
+
+ // Flush our exports since we are going to process a terminator.
+ (void)getControlRoot();
+ return 0;
+ }
+ case Intrinsic::donothing:
+ // ignore
+ return 0;
+ case Intrinsic::experimental_stackmap: {
+ visitStackmap(I);
+ return 0;
+ }
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64: {
+ visitPatchpoint(I);
+ return 0;
+ }
+ }
+}
+
+void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
+ bool isTailCall,
+ MachineBasicBlock *LandingPad) {
+ PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+ FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+ Type *RetTy = FTy->getReturnType();
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ MCSymbol *BeginLabel = 0;
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Args.reserve(CS.arg_size());
+
+ // Check whether the function can return without sret-demotion.
+ SmallVector<ISD::OutputArg, 4> Outs;
+ const TargetLowering *TLI = TM.getTargetLowering();
+ GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
+
+ bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
+ DAG.getMachineFunction(),
+ FTy->isVarArg(), Outs,
+ FTy->getContext());
+
+ SDValue DemoteStackSlot;
+ int DemoteStackIdx = -100;
+
+ if (!CanLowerReturn) {
+ uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
+ FTy->getReturnType());
+ unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(
+ FTy->getReturnType());
+ MachineFunction &MF = DAG.getMachineFunction();
+ DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
+ Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
+
+ DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
+ Entry.Node = DemoteStackSlot;
+ Entry.Ty = StackSlotPtrType;
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Entry.isInReg = false;
+ Entry.isSRet = true;
+ Entry.isNest = false;
+ Entry.isByVal = false;
+ Entry.isReturned = false;
+ Entry.Alignment = Align;
+ Args.push_back(Entry);
+ RetTy = Type::getVoidTy(FTy->getContext());
+ }
+
+ for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ i != e; ++i) {
+ const Value *V = *i;
+
+ // Skip empty types
+ if (V->getType()->isEmptyTy())
+ continue;
+
+ SDValue ArgNode = getValue(V);
+ Entry.Node = ArgNode; Entry.Ty = V->getType();
+
+ // Skip the first return-type Attribute to get to params.
+ Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
+ Args.push_back(Entry);
+ }
+
+ if (LandingPad) {
+ // Insert a label before the invoke call to mark the try range. This can be
+ // used to detect deletion of the invoke via the MachineModuleInfo.
+ BeginLabel = MMI.getContext().CreateTempSymbol();
+
+ // For SjLj, keep track of which landing pads go with which invokes
+ // so as to maintain the ordering of pads in the LSDA.
+ unsigned CallSiteIndex = MMI.getCurrentCallSite();
+ if (CallSiteIndex) {
+ MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
+ LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
+
+ // Now that the call site is handled, stop tracking it.
+ MMI.setCurrentCallSite(0);
+ }
+
+ // Both PendingLoads and PendingExports must be flushed here;
+ // this call might not return.
+ (void)getRoot();
+ DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
+ }
+
+ // Check if target-independent constraints permit a tail call here.
+ // Target-dependent constraints are checked within TLI->LowerCallTo.
+ if (isTailCall && !isInTailCallPosition(CS, *TLI))
+ isTailCall = false;
+
+ TargetLowering::
+ CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
+ getCurSDLoc(), CS);
+ std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
+ assert((isTailCall || Result.second.getNode()) &&
+ "Non-null chain expected with non-tail call!");
+ assert((Result.second.getNode() || !Result.first.getNode()) &&
+ "Null value expected with tail call!");
+ if (Result.first.getNode()) {
+ setValue(CS.getInstruction(), Result.first);
+ } else if (!CanLowerReturn && Result.second.getNode()) {
+ // The instruction result is the result of loading from the
+ // hidden sret parameter.
+ SmallVector<EVT, 1> PVTs;
+ Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
+
+ ComputeValueVTs(*TLI, PtrRetTy, PVTs);
+ assert(PVTs.size() == 1 && "Pointers should fit in one register");
+ EVT PtrVT = PVTs[0];
+
+ SmallVector<EVT, 4> RetTys;
+ SmallVector<uint64_t, 4> Offsets;
+ RetTy = FTy->getReturnType();
+ ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
+
+ unsigned NumValues = RetTys.size();
+ SmallVector<SDValue, 4> Values(NumValues);
+ SmallVector<SDValue, 4> Chains(NumValues);
+
+ for (unsigned i = 0; i < NumValues; ++i) {
+ SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
+ DemoteStackSlot,
+ DAG.getConstant(Offsets[i], PtrVT));
+ SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
+ MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
+ false, false, false, 1);
+ Values[i] = L;
+ Chains[i] = L.getValue(1);
+ }
+
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
+ MVT::Other, &Chains[0], NumValues);
+ PendingLoads.push_back(Chain);
+
+ setValue(CS.getInstruction(),
+ DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
+ DAG.getVTList(&RetTys[0], RetTys.size()),
+ &Values[0], Values.size()));
+ }
+
+ if (!Result.second.getNode()) {
+ // As a special case, a null chain means that a tail call has been emitted
+ // and the DAG root is already updated.
+ HasTailCall = true;
+
+ // Since there's no actual continuation from this block, nothing can be
+ // relying on us setting vregs for them.
+ PendingExports.clear();
+ } else {
+ DAG.setRoot(Result.second);
+ }
+
+ if (LandingPad) {
+ // Insert a label at the end of the invoke call to mark the try range. This
+ // can be used to detect deletion of the invoke via the MachineModuleInfo.
+ MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
+ DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
+
+ // Inform MachineModuleInfo of range.
+ MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
+ }
+}
+
+/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
+/// value is equal or not-equal to zero.
+static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
+ for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
+ UI != E; ++UI) {
+ if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
+ if (IC->isEquality())
+ if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
+ if (C->isNullValue())
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
+ Type *LoadTy,
+ SelectionDAGBuilder &Builder) {
+
+ // Check to see if this load can be trivially constant folded, e.g. if the
+ // input is from a string literal.
+ if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
+ // Cast pointer to the type we really want to load.
+ LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
+ PointerType::getUnqual(LoadTy));
+
+ if (const Constant *LoadCst =
+ ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
+ Builder.TD))
+ return Builder.getValue(LoadCst);
+ }
+
+ // Otherwise, we have to emit the load. If the pointer is to unfoldable but
+ // still constant memory, the input chain can be the entry node.
+ SDValue Root;
+ bool ConstantMemory = false;
+
+ // Do not serialize (non-volatile) loads of constant memory with anything.
+ if (Builder.AA->pointsToConstantMemory(PtrVal)) {
+ Root = Builder.DAG.getEntryNode();
+ ConstantMemory = true;
+ } else {
+ // Do not serialize non-volatile loads against each other.
+ Root = Builder.DAG.getRoot();
+ }
+
+ SDValue Ptr = Builder.getValue(PtrVal);
+ SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
+ Ptr, MachinePointerInfo(PtrVal),
+ false /*volatile*/,
+ false /*nontemporal*/,
+ false /*isinvariant*/, 1 /* align=1 */);
+
+ if (!ConstantMemory)
+ Builder.PendingLoads.push_back(LoadVal.getValue(1));
+ return LoadVal;
+}
+
+/// processIntegerCallValue - Record the value for an instruction that
+/// produces an integer result, converting the type where necessary.
+void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
+ SDValue Value,
+ bool IsSigned) {
+ EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
+ if (IsSigned)
+ Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
+ else
+ Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
+ setValue(&I, Value);
+}
+
+/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
+/// If so, return true and lower it, otherwise return false and it will be
+/// lowered like a normal call.
+bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
+ // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
+ if (I.getNumArgOperands() != 3)
+ return false;
+
+ const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
+ if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
+ !I.getArgOperand(2)->getType()->isIntegerTy() ||
+ !I.getType()->isIntegerTy())
+ return false;
+
+ const Value *Size = I.getArgOperand(2);
+ const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
+ if (CSize && CSize->getZExtValue() == 0) {
+ EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
+ setValue(&I, DAG.getConstant(0, CallVT));
+ return true;
+ }
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(LHS), getValue(RHS), getValue(Size),
+ MachinePointerInfo(LHS),
+ MachinePointerInfo(RHS));
+ if (Res.first.getNode()) {
+ processIntegerCallValue(I, Res.first, true);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
+
+ // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
+ // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
+ if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
+ bool ActuallyDoIt = true;
+ MVT LoadVT;
+ Type *LoadTy;
+ switch (CSize->getZExtValue()) {
+ default:
+ LoadVT = MVT::Other;
+ LoadTy = 0;
+ ActuallyDoIt = false;
+ break;
+ case 2:
+ LoadVT = MVT::i16;
+ LoadTy = Type::getInt16Ty(CSize->getContext());
+ break;
+ case 4:
+ LoadVT = MVT::i32;
+ LoadTy = Type::getInt32Ty(CSize->getContext());
+ break;
+ case 8:
+ LoadVT = MVT::i64;
+ LoadTy = Type::getInt64Ty(CSize->getContext());
+ break;
+ /*
+ case 16:
+ LoadVT = MVT::v4i32;
+ LoadTy = Type::getInt32Ty(CSize->getContext());
+ LoadTy = VectorType::get(LoadTy, 4);
+ break;
+ */
+ }
+
+ // This turns into unaligned loads. We only do this if the target natively
+ // supports the MVT we'll be loading or if it is small enough (<= 4) that
+ // we'll only produce a small number of byte loads.
+
+ // Require that we can find a legal MVT, and only do this if the target
+ // supports unaligned loads of that type. Expanding into byte loads would
+ // bloat the code.
+ const TargetLowering *TLI = TM.getTargetLowering();
+ if (ActuallyDoIt && CSize->getZExtValue() > 4) {
+ // TODO: Handle 5 byte compare as 4-byte + 1 byte.
+ // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
+ if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
+ ActuallyDoIt = false;
+ }
+
+ if (ActuallyDoIt) {
+ SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
+ SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
+
+ SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
+ ISD::SETNE);
+ processIntegerCallValue(I, Res, false);
+ return true;
+ }
+ }
+
+
+ return false;
+}
+
+/// visitMemChrCall -- See if we can lower a memchr call into an optimized
+/// form. If so, return true and lower it, otherwise return false and it
+/// will be lowered like a normal call.
+bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
+ // Verify that the prototype makes sense. void *memchr(void *, int, size_t)
+ if (I.getNumArgOperands() != 3)
+ return false;
+
+ const Value *Src = I.getArgOperand(0);
+ const Value *Char = I.getArgOperand(1);
+ const Value *Length = I.getArgOperand(2);
+ if (!Src->getType()->isPointerTy() ||
+ !Char->getType()->isIntegerTy() ||
+ !Length->getType()->isIntegerTy() ||
+ !I.getType()->isPointerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(Src), getValue(Char), getValue(Length),
+ MachinePointerInfo(Src));
+ if (Res.first.getNode()) {
+ setValue(&I, Res.first);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
+/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
+/// optimized form. If so, return true and lower it, otherwise return false
+/// and it will be lowered like a normal call.
+bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
+ // Verify that the prototype makes sense. char *strcpy(char *, char *)
+ if (I.getNumArgOperands() != 2)
+ return false;
+
+ const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
+ if (!Arg0->getType()->isPointerTy() ||
+ !Arg1->getType()->isPointerTy() ||
+ !I.getType()->isPointerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
+ getValue(Arg0), getValue(Arg1),
+ MachinePointerInfo(Arg0),
+ MachinePointerInfo(Arg1), isStpcpy);
+ if (Res.first.getNode()) {
+ setValue(&I, Res.first);
+ DAG.setRoot(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
+/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
+/// If so, return true and lower it, otherwise return false and it will be
+/// lowered like a normal call.
+bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
+ // Verify that the prototype makes sense. int strcmp(void*,void*)
+ if (I.getNumArgOperands() != 2)
+ return false;
+
+ const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
+ if (!Arg0->getType()->isPointerTy() ||
+ !Arg1->getType()->isPointerTy() ||
+ !I.getType()->isIntegerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(Arg0), getValue(Arg1),
+ MachinePointerInfo(Arg0),
+ MachinePointerInfo(Arg1));
+ if (Res.first.getNode()) {
+ processIntegerCallValue(I, Res.first, true);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
+/// visitStrLenCall -- See if we can lower a strlen call into an optimized
+/// form. If so, return true and lower it, otherwise return false and it
+/// will be lowered like a normal call.
+bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
+ // Verify that the prototype makes sense. size_t strlen(char *)
+ if (I.getNumArgOperands() != 1)
+ return false;
+
+ const Value *Arg0 = I.getArgOperand(0);
+ if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(Arg0), MachinePointerInfo(Arg0));
+ if (Res.first.getNode()) {
+ processIntegerCallValue(I, Res.first, false);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
+/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
+/// form. If so, return true and lower it, otherwise return false and it
+/// will be lowered like a normal call.
+bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
+ // Verify that the prototype makes sense. size_t strnlen(char *, size_t)
+ if (I.getNumArgOperands() != 2)
+ return false;
+
+ const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
+ if (!Arg0->getType()->isPointerTy() ||
+ !Arg1->getType()->isIntegerTy() ||
+ !I.getType()->isIntegerTy())
+ return false;
+
+ const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
+ std::pair<SDValue, SDValue> Res =
+ TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
+ getValue(Arg0), getValue(Arg1),
+ MachinePointerInfo(Arg0));
+ if (Res.first.getNode()) {
+ processIntegerCallValue(I, Res.first, false);
+ PendingLoads.push_back(Res.second);
+ return true;
+ }
+
+ return false;
+}
+
+/// visitUnaryFloatCall - If a call instruction is a unary floating-point
+/// operation (as expected), translate it to an SDNode with the specified opcode
+/// and return true.
+bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
+ unsigned Opcode) {
+ // Sanity check that it really is a unary floating-point call.
+ if (I.getNumArgOperands() != 1 ||
+ !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
+ I.getType() != I.getArgOperand(0)->getType() ||
+ !I.onlyReadsMemory())
+ return false;
+
+ SDValue Tmp = getValue(I.getArgOperand(0));
+ setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
+ return true;
+}
+
+void SelectionDAGBuilder::visitCall(const CallInst &I) {
+ // Handle inline assembly differently.
+ if (isa<InlineAsm>(I.getCalledValue())) {
+ visitInlineAsm(&I);
+ return;
+ }
+
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ ComputeUsesVAFloatArgument(I, &MMI);
+
+ const char *RenameFn = 0;
+ if (Function *F = I.getCalledFunction()) {
+ if (F->isDeclaration()) {
+ if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
+ if (unsigned IID = II->getIntrinsicID(F)) {
+ RenameFn = visitIntrinsicCall(I, IID);
+ if (!RenameFn)
+ return;
+ }
+ }
+ if (unsigned IID = F->getIntrinsicID()) {
+ RenameFn = visitIntrinsicCall(I, IID);
+ if (!RenameFn)
+ return;
+ }
+ }
+
+ // Check for well-known libc/libm calls. If the function is internal, it
+ // can't be a library call.
+ LibFunc::Func Func;
+ if (!F->hasLocalLinkage() && F->hasName() &&
+ LibInfo->getLibFunc(F->getName(), Func) &&
+ LibInfo->hasOptimizedCodeGen(Func)) {
+ switch (Func) {
+ default: break;
+ case LibFunc::copysign:
+ case LibFunc::copysignf:
+ case LibFunc::copysignl:
+ if (I.getNumArgOperands() == 2 && // Basic sanity checks.
+ I.getArgOperand(0)->getType()->isFloatingPointTy() &&
+ I.getType() == I.getArgOperand(0)->getType() &&
+ I.getType() == I.getArgOperand(1)->getType() &&
+ I.onlyReadsMemory()) {
+ SDValue LHS = getValue(I.getArgOperand(0));
+ SDValue RHS = getValue(I.getArgOperand(1));
+ setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
+ LHS.getValueType(), LHS, RHS));
+ return;
+ }
+ break;
+ case LibFunc::fabs:
+ case LibFunc::fabsf:
+ case LibFunc::fabsl:
+ if (visitUnaryFloatCall(I, ISD::FABS))
+ return;
+ break;
+ case LibFunc::sin:
+ case LibFunc::sinf:
+ case LibFunc::sinl:
+ if (visitUnaryFloatCall(I, ISD::FSIN))
+ return;
+ break;
+ case LibFunc::cos:
+ case LibFunc::cosf:
+ case LibFunc::cosl:
+ if (visitUnaryFloatCall(I, ISD::FCOS))
+ return;
+ break;
+ case LibFunc::sqrt:
+ case LibFunc::sqrtf:
+ case LibFunc::sqrtl:
+ case LibFunc::sqrt_finite:
+ case LibFunc::sqrtf_finite:
+ case LibFunc::sqrtl_finite:
+ if (visitUnaryFloatCall(I, ISD::FSQRT))
+ return;
+ break;
+ case LibFunc::floor:
+ case LibFunc::floorf:
+ case LibFunc::floorl:
+ if (visitUnaryFloatCall(I, ISD::FFLOOR))
+ return;
+ break;
+ case LibFunc::nearbyint:
+ case LibFunc::nearbyintf:
+ case LibFunc::nearbyintl:
+ if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
+ return;
+ break;
+ case LibFunc::ceil:
+ case LibFunc::ceilf:
+ case LibFunc::ceill:
+ if (visitUnaryFloatCall(I, ISD::FCEIL))
+ return;
+ break;
+ case LibFunc::rint:
+ case LibFunc::rintf:
+ case LibFunc::rintl:
+ if (visitUnaryFloatCall(I, ISD::FRINT))
+ return;
+ break;
+ case LibFunc::round:
+ case LibFunc::roundf:
+ case LibFunc::roundl:
+ if (visitUnaryFloatCall(I, ISD::FROUND))
+ return;
+ break;
+ case LibFunc::trunc:
+ case LibFunc::truncf:
+ case LibFunc::truncl:
+ if (visitUnaryFloatCall(I, ISD::FTRUNC))
+ return;
+ break;
+ case LibFunc::log2:
+ case LibFunc::log2f:
+ case LibFunc::log2l:
+ if (visitUnaryFloatCall(I, ISD::FLOG2))
+ return;
+ break;
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ case LibFunc::exp2l:
+ if (visitUnaryFloatCall(I, ISD::FEXP2))
+ return;
+ break;
+ case LibFunc::memcmp:
+ if (visitMemCmpCall(I))
+ return;
+ break;
+ case LibFunc::memchr:
+ if (visitMemChrCall(I))
+ return;
+ break;
+ case LibFunc::strcpy:
+ if (visitStrCpyCall(I, false))
+ return;
+ break;
+ case LibFunc::stpcpy:
+ if (visitStrCpyCall(I, true))
+ return;
+ break;
+ case LibFunc::strcmp:
+ if (visitStrCmpCall(I))
+ return;
+ break;
+ case LibFunc::strlen:
+ if (visitStrLenCall(I))
+ return;
+ break;
+ case LibFunc::strnlen:
+ if (visitStrNLenCall(I))
+ return;
+ break;
+ }
+ }
+ }
+
+ SDValue Callee;
+ if (!RenameFn)
+ Callee = getValue(I.getCalledValue());
+ else
+ Callee = DAG.getExternalSymbol(RenameFn,
+ TM.getTargetLowering()->getPointerTy());
+
+ // Check if we can potentially perform a tail call. More detailed checking is
+ // be done within LowerCallTo, after more information about the call is known.
+ LowerCallTo(&I, Callee, I.isTailCall());
+}
+
+namespace {
+
+/// AsmOperandInfo - This contains information for each constraint that we are
+/// lowering.
+class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
+public:
+ /// CallOperand - If this is the result output operand or a clobber
+ /// this is null, otherwise it is the incoming operand to the CallInst.
+ /// This gets modified as the asm is processed.
+ SDValue CallOperand;
+
+ /// AssignedRegs - If this is a register or register class operand, this
+ /// contains the set of register corresponding to the operand.
+ RegsForValue AssignedRegs;
+
+ explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
+ : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
+ }
+
+ /// getCallOperandValEVT - Return the EVT of the Value* that this operand
+ /// corresponds to. If there is no Value* for this operand, it returns
+ /// MVT::Other.
+ EVT getCallOperandValEVT(LLVMContext &Context,
+ const TargetLowering &TLI,
+ const DataLayout *TD) const {
+ if (CallOperandVal == 0) return MVT::Other;
+
+ if (isa<BasicBlock>(CallOperandVal))
+ return TLI.getPointerTy();
+
+ llvm::Type *OpTy = CallOperandVal->getType();
+
+ // FIXME: code duplicated from TargetLowering::ParseConstraints().
+ // If this is an indirect operand, the operand is a pointer to the
+ // accessed type.
+ if (isIndirect) {
+ llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
+ if (!PtrTy)
+ report_fatal_error("Indirect operand for inline asm not a pointer!");
+ OpTy = PtrTy->getElementType();
+ }
+
+ // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
+ if (StructType *STy = dyn_cast<StructType>(OpTy))
+ if (STy->getNumElements() == 1)
+ OpTy = STy->getElementType(0);
+
+ // If OpTy is not a single value, it may be a struct/union that we
+ // can tile with integers.
+ if (!OpTy->isSingleValueType() && OpTy->isSized()) {
+ unsigned BitSize = TD->getTypeSizeInBits(OpTy);
+ switch (BitSize) {
+ default: break;
+ case 1:
+ case 8:
+ case 16:
+ case 32:
+ case 64:
+ case 128:
+ OpTy = IntegerType::get(Context, BitSize);
+ break;
+ }
+ }
+
+ return TLI.getValueType(OpTy, true);
+ }
+};
+
+typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
+
+} // end anonymous namespace
+
+/// GetRegistersForValue - Assign registers (virtual or physical) for the
+/// specified operand. We prefer to assign virtual registers, to allow the
+/// register allocator to handle the assignment process. However, if the asm
+/// uses features that we can't model on machineinstrs, we have SDISel do the
+/// allocation. This produces generally horrible, but correct, code.
+///
+/// OpInfo describes the operand.
+///
+static void GetRegistersForValue(SelectionDAG &DAG,
+ const TargetLowering &TLI,
+ SDLoc DL,
+ SDISelAsmOperandInfo &OpInfo) {
+ LLVMContext &Context = *DAG.getContext();
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ SmallVector<unsigned, 4> Regs;
+
+ // If this is a constraint for a single physreg, or a constraint for a
+ // register class, find it.
+ std::pair<unsigned, const TargetRegisterClass*> PhysReg =
+ TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+
+ unsigned NumRegs = 1;
+ if (OpInfo.ConstraintVT != MVT::Other) {
+ // If this is a FP input in an integer register (or visa versa) insert a bit
+ // cast of the input value. More generally, handle any case where the input
+ // value disagrees with the register class we plan to stick this in.
+ if (OpInfo.Type == InlineAsm::isInput &&
+ PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
+ // Try to convert to the first EVT that the reg class contains. If the
+ // types are identical size, use a bitcast to convert (e.g. two differing
+ // vector types).
+ MVT RegVT = *PhysReg.second->vt_begin();
+ if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
+ OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
+ RegVT, OpInfo.CallOperand);
+ OpInfo.ConstraintVT = RegVT;
+ } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
+ // If the input is a FP value and we want it in FP registers, do a
+ // bitcast to the corresponding integer type. This turns an f64 value
+ // into i64, which can be passed with two i32 values on a 32-bit
+ // machine.
+ RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
+ OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
+ RegVT, OpInfo.CallOperand);
+ OpInfo.ConstraintVT = RegVT;
+ }
+ }
+
+ NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
+ }
+
+ MVT RegVT;
+ EVT ValueVT = OpInfo.ConstraintVT;
+
+ // If this is a constraint for a specific physical register, like {r17},
+ // assign it now.
+ if (unsigned AssignedReg = PhysReg.first) {
+ const TargetRegisterClass *RC = PhysReg.second;
+ if (OpInfo.ConstraintVT == MVT::Other)
+ ValueVT = *RC->vt_begin();
+
+ // Get the actual register value type. This is important, because the user
+ // may have asked for (e.g.) the AX register in i32 type. We need to
+ // remember that AX is actually i16 to get the right extension.
+ RegVT = *RC->vt_begin();
+
+ // This is a explicit reference to a physical register.
+ Regs.push_back(AssignedReg);
+
+ // If this is an expanded reference, add the rest of the regs to Regs.
+ if (NumRegs != 1) {
+ TargetRegisterClass::iterator I = RC->begin();
+ for (; *I != AssignedReg; ++I)
+ assert(I != RC->end() && "Didn't find reg!");
+
+ // Already added the first reg.
+ --NumRegs; ++I;
+ for (; NumRegs; --NumRegs, ++I) {
+ assert(I != RC->end() && "Ran out of registers to allocate!");
+ Regs.push_back(*I);
+ }
+ }
+
+ OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
+ return;
+ }
+
+ // Otherwise, if this was a reference to an LLVM register class, create vregs
+ // for this reference.
+ if (const TargetRegisterClass *RC = PhysReg.second) {
+ RegVT = *RC->vt_begin();
+ if (OpInfo.ConstraintVT == MVT::Other)
+ ValueVT = RegVT;
+
+ // Create the appropriate number of virtual registers.
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ for (; NumRegs; --NumRegs)
+ Regs.push_back(RegInfo.createVirtualRegister(RC));
+
+ OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
+ return;
+ }
+
+ // Otherwise, we couldn't allocate enough registers for this.
+}
+
+/// visitInlineAsm - Handle a call to an InlineAsm object.
+///
+void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
+ const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+
+ /// ConstraintOperands - Information about all of the constraints.
+ SDISelAsmOperandInfoVector ConstraintOperands;
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ TargetLowering::AsmOperandInfoVector
+ TargetConstraints = TLI->ParseConstraints(CS);
+
+ bool hasMemory = false;
+
+ unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
+ unsigned ResNo = 0; // ResNo - The result number of the next output.
+ for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+ ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+ MVT OpVT = MVT::Other;
+
+ // Compute the value type for each operand.
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ // Indirect outputs just consume an argument.
+ if (OpInfo.isIndirect) {
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ }
+
+ // The return value of the call is this value. As such, there is no
+ // corresponding argument.
+ assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
+ if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
+ OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
+ } else {
+ assert(ResNo == 0 && "Asm only has one result!");
+ OpVT = TLI->getSimpleValueType(CS.getType());
+ }
+ ++ResNo;
+ break;
+ case InlineAsm::isInput:
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ case InlineAsm::isClobber:
+ // Nothing to do.
+ break;
+ }
+
+ // If this is an input or an indirect output, process the call argument.
+ // BasicBlocks are labels, currently appearing only in asm's.
+ if (OpInfo.CallOperandVal) {
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
+ OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
+ } else {
+ OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
+ }
+
+ OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
+ getSimpleVT();
+ }
+
+ OpInfo.ConstraintVT = OpVT;
+
+ // Indirect operand accesses access memory.
+ if (OpInfo.isIndirect)
+ hasMemory = true;
+ else {
+ for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
+ TargetLowering::ConstraintType
+ CType = TLI->getConstraintType(OpInfo.Codes[j]);
+ if (CType == TargetLowering::C_Memory) {
+ hasMemory = true;
+ break;
+ }
+ }
+ }
+ }
+
+ SDValue Chain, Flag;
+
+ // We won't need to flush pending loads if this asm doesn't touch
+ // memory and is nonvolatile.
+ if (hasMemory || IA->hasSideEffects())
+ Chain = getRoot();
+ else
+ Chain = DAG.getRoot();
+
+ // Second pass over the constraints: compute which constraint option to use
+ // and assign registers to constraints that want a specific physreg.
+ for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+ // If this is an output operand with a matching input operand, look up the
+ // matching input. If their types mismatch, e.g. one is an integer, the
+ // other is floating point, or their sizes are different, flag it as an
+ // error.
+ if (OpInfo.hasMatchingInput()) {
+ SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ std::pair<unsigned, const TargetRegisterClass*> MatchRC =
+ TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+ std::pair<unsigned, const TargetRegisterClass*> InputRC =
+ TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
+ Input.ConstraintVT);
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (MatchRC.second != InputRC.second)) {
+ report_fatal_error("Unsupported asm: input constraint"
+ " with a matching output constraint of"
+ " incompatible type!");
+ }
+ Input.ConstraintVT = OpInfo.ConstraintVT;
+ }
+ }
+
+ // Compute the constraint code and ConstraintType to use.
+ TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
+ OpInfo.Type == InlineAsm::isClobber)
+ continue;
+
+ // If this is a memory input, and if the operand is not indirect, do what we
+ // need to to provide an address for the memory input.
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
+ !OpInfo.isIndirect) {
+ assert((OpInfo.isMultipleAlternative ||
+ (OpInfo.Type == InlineAsm::isInput)) &&
+ "Can only indirectify direct input operands!");
+
+ // Memory operands really want the address of the value. If we don't have
+ // an indirect input, put it in the constpool if we can, otherwise spill
+ // it to a stack slot.
+ // TODO: This isn't quite right. We need to handle these according to
+ // the addressing mode that the constraint wants. Also, this may take
+ // an additional register for the computation and we don't want that
+ // either.
+
+ // If the operand is a float, integer, or vector constant, spill to a
+ // constant pool entry to get its address.
+ const Value *OpVal = OpInfo.CallOperandVal;
+ if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
+ isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
+ OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
+ TLI->getPointerTy());
+ } else {
+ // Otherwise, create a stack slot and emit a store to it before the
+ // asm.
+ Type *Ty = OpVal->getType();
+ uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
+ unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
+ Chain = DAG.getStore(Chain, getCurSDLoc(),
+ OpInfo.CallOperand, StackSlot,
+ MachinePointerInfo::getFixedStack(SSFI),
+ false, false, 0);
+ OpInfo.CallOperand = StackSlot;
+ }
+
+ // There is no longer a Value* corresponding to this operand.
+ OpInfo.CallOperandVal = 0;
+
+ // It is now an indirect operand.
+ OpInfo.isIndirect = true;
+ }
+
+ // If this constraint is for a specific register, allocate it before
+ // anything else.
+ if (OpInfo.ConstraintType == TargetLowering::C_Register)
+ GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
+ }
+
+ // Second pass - Loop over all of the operands, assigning virtual or physregs
+ // to register class operands.
+ for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+ // C_Register operands have already been allocated, Other/Memory don't need
+ // to be.
+ if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
+ GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
+ }
+
+ // AsmNodeOperands - The operands for the ISD::INLINEASM node.
+ std::vector<SDValue> AsmNodeOperands;
+ AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
+ AsmNodeOperands.push_back(
+ DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
+ TLI->getPointerTy()));
+
+ // If we have a !srcloc metadata node associated with it, we want to attach
+ // this to the ultimately generated inline asm machineinstr. To do this, we
+ // pass in the third operand as this (potentially null) inline asm MDNode.
+ const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
+ AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
+
+ // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
+ // bits as operand 3.
+ unsigned ExtraInfo = 0;
+ if (IA->hasSideEffects())
+ ExtraInfo |= InlineAsm::Extra_HasSideEffects;
+ if (IA->isAlignStack())
+ ExtraInfo |= InlineAsm::Extra_IsAlignStack;
+ // Set the asm dialect.
+ ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
+
+ // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
+ for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+ TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
+
+ // Compute the constraint code and ConstraintType to use.
+ TLI->ComputeConstraintToUse(OpInfo, SDValue());
+
+ // Ideally, we would only check against memory constraints. However, the
+ // meaning of an other constraint can be target-specific and we can't easily
+ // reason about it. Therefore, be conservative and set MayLoad/MayStore
+ // for other constriants as well.
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
+ OpInfo.ConstraintType == TargetLowering::C_Other) {
+ if (OpInfo.Type == InlineAsm::isInput)
+ ExtraInfo |= InlineAsm::Extra_MayLoad;
+ else if (OpInfo.Type == InlineAsm::isOutput)
+ ExtraInfo |= InlineAsm::Extra_MayStore;
+ else if (OpInfo.Type == InlineAsm::isClobber)
+ ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
+ }
+ }
+
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
+ TLI->getPointerTy()));
+
+ // Loop over all of the inputs, copying the operand values into the
+ // appropriate registers and processing the output regs.
+ RegsForValue RetValRegs;
+
+ // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
+ std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
+
+ for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput: {
+ if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
+ OpInfo.ConstraintType != TargetLowering::C_Register) {
+ // Memory output, or 'other' output (e.g. 'X' constraint).
+ assert(OpInfo.isIndirect && "Memory output must be indirect operand");
+
+ // Add information to the INLINEASM node to know about this output.
+ unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
+ AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
+ TLI->getPointerTy()));
+ AsmNodeOperands.push_back(OpInfo.CallOperand);
+ break;
+ }
+
+ // Otherwise, this is a register or register class output.
+
+ // Copy the output from the appropriate register. Find a register that
+ // we can use.
+ if (OpInfo.AssignedRegs.Regs.empty()) {
+ LLVMContext &Ctx = *DAG.getContext();
+ Ctx.emitError(CS.getInstruction(),
+ "couldn't allocate output register for constraint '" +
+ Twine(OpInfo.ConstraintCode) + "'");
+ return;
+ }
+
+ // If this is an indirect operand, store through the pointer after the
+ // asm.
+ if (OpInfo.isIndirect) {
+ IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
+ OpInfo.CallOperandVal));
+ } else {
+ // This is the result value of the call.
+ assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
+ // Concatenate this output onto the outputs list.
+ RetValRegs.append(OpInfo.AssignedRegs);
+ }
+
+ // Add information to the INLINEASM node to know that this register is
+ // set.
+ OpInfo.AssignedRegs
+ .AddInlineAsmOperands(OpInfo.isEarlyClobber
+ ? InlineAsm::Kind_RegDefEarlyClobber
+ : InlineAsm::Kind_RegDef,
+ false, 0, DAG, AsmNodeOperands);
+ break;
+ }
+ case InlineAsm::isInput: {
+ SDValue InOperandVal = OpInfo.CallOperand;
+
+ if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
+ // If this is required to match an output register we have already set,
+ // just use its register.
+ unsigned OperandNo = OpInfo.getMatchedOperand();
+
+ // Scan until we find the definition we already emitted of this operand.
+ // When we find it, create a RegsForValue operand.
+ unsigned CurOp = InlineAsm::Op_FirstOperand;
+ for (; OperandNo; --OperandNo) {
+ // Advance to the next operand.
+ unsigned OpFlag =
+ cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
+ assert((InlineAsm::isRegDefKind(OpFlag) ||
+ InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
+ InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
+ CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
+ }
+
+ unsigned OpFlag =
+ cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
+ if (InlineAsm::isRegDefKind(OpFlag) ||
+ InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
+ // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
+ if (OpInfo.isIndirect) {
+ // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
+ LLVMContext &Ctx = *DAG.getContext();
+ Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
+ " don't know how to handle tied "
+ "indirect register inputs");
+ return;
+ }
+
+ RegsForValue MatchedRegs;
+ MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
+ MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
+ MatchedRegs.RegVTs.push_back(RegVT);
+ MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
+ for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
+ i != e; ++i) {
+ if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
+ MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
+ else {
+ LLVMContext &Ctx = *DAG.getContext();
+ Ctx.emitError(CS.getInstruction(),
+ "inline asm error: This value"
+ " type register class is not natively supported!");
+ return;
+ }
+ }
+ // Use the produced MatchedRegs object to
+ MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
+ Chain, &Flag, CS.getInstruction());
+ MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
+ true, OpInfo.getMatchedOperand(),
+ DAG, AsmNodeOperands);
+ break;
+ }
+
+ assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
+ assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
+ "Unexpected number of operands");
+ // Add information to the INLINEASM node to know about this input.
+ // See InlineAsm.h isUseOperandTiedToDef.
+ OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
+ OpInfo.getMatchedOperand());
+ AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
+ TLI->getPointerTy()));
+ AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
+ break;
+ }
+
+ // Treat indirect 'X' constraint as memory.
+ if (OpInfo.ConstraintType == TargetLowering::C_Other &&
+ OpInfo.isIndirect)
+ OpInfo.ConstraintType = TargetLowering::C_Memory;
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Other) {
+ std::vector<SDValue> Ops;
+ TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
+ Ops, DAG);
+ if (Ops.empty()) {
+ LLVMContext &Ctx = *DAG.getContext();
+ Ctx.emitError(CS.getInstruction(),
+ "invalid operand for inline asm constraint '" +
+ Twine(OpInfo.ConstraintCode) + "'");
+ return;
+ }
+
+ // Add information to the INLINEASM node to know about this input.
+ unsigned ResOpType =
+ InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+ TLI->getPointerTy()));
+ AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
+ break;
+ }
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
+ assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
+ assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
+ "Memory operands expect pointer values");
+
+ // Add information to the INLINEASM node to know about this input.
+ unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+ TLI->getPointerTy()));
+ AsmNodeOperands.push_back(InOperandVal);
+ break;
+ }
+
+ assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
+ OpInfo.ConstraintType == TargetLowering::C_Register) &&
+ "Unknown constraint type!");
+
+ // TODO: Support this.
+ if (OpInfo.isIndirect) {
+ LLVMContext &Ctx = *DAG.getContext();
+ Ctx.emitError(CS.getInstruction(),
+ "Don't know how to handle indirect register inputs yet "
+ "for constraint '" +
+ Twine(OpInfo.ConstraintCode) + "'");
+ return;
+ }
+
+ // Copy the input into the appropriate registers.
+ if (OpInfo.AssignedRegs.Regs.empty()) {
+ LLVMContext &Ctx = *DAG.getContext();
+ Ctx.emitError(CS.getInstruction(),
+ "couldn't allocate input reg for constraint '" +
+ Twine(OpInfo.ConstraintCode) + "'");
+ return;
+ }
+
+ OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
+ Chain, &Flag, CS.getInstruction());
+
+ OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
+ DAG, AsmNodeOperands);
+ break;
+ }
+ case InlineAsm::isClobber: {
+ // Add the clobbered value to the operand list, so that the register
+ // allocator is aware that the physreg got clobbered.
+ if (!OpInfo.AssignedRegs.Regs.empty())
+ OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
+ false, 0, DAG,
+ AsmNodeOperands);
+ break;
+ }
+ }
+ }
+
+ // Finish up input operands. Set the input chain and add the flag last.
+ AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
+ if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
+
+ Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
+ DAG.getVTList(MVT::Other, MVT::Glue),
+ &AsmNodeOperands[0], AsmNodeOperands.size());
+ Flag = Chain.getValue(1);
+
+ // If this asm returns a register value, copy the result from that register
+ // and set it as the value of the call.
+ if (!RetValRegs.Regs.empty()) {
+ SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
+ Chain, &Flag, CS.getInstruction());
+
+ // FIXME: Why don't we do this for inline asms with MRVs?
+ if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
+ EVT ResultType = TLI->getValueType(CS.getType());
+
+ // If any of the results of the inline asm is a vector, it may have the
+ // wrong width/num elts. This can happen for register classes that can
+ // contain multiple different value types. The preg or vreg allocated may
+ // not have the same VT as was expected. Convert it to the right type
+ // with bit_convert.
+ if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
+ Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
+ ResultType, Val);
+
+ } else if (ResultType != Val.getValueType() &&
+ ResultType.isInteger() && Val.getValueType().isInteger()) {
+ // If a result value was tied to an input value, the computed result may
+ // have a wider width than the expected result. Extract the relevant
+ // portion.
+ Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
+ }
+
+ assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
+ }
+
+ setValue(CS.getInstruction(), Val);
+ // Don't need to use this as a chain in this case.
+ if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
+ return;
+ }
+
+ std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
+
+ // Process indirect outputs, first output all of the flagged copies out of
+ // physregs.
+ for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
+ RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
+ const Value *Ptr = IndirectStoresToEmit[i].second;
+ SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
+ Chain, &Flag, IA);
+ StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
+ }
+
+ // Emit the non-flagged stores from the physregs.
+ SmallVector<SDValue, 8> OutChains;
+ for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
+ SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
+ StoresToEmit[i].first,
+ getValue(StoresToEmit[i].second),
+ MachinePointerInfo(StoresToEmit[i].second),
+ false, false, 0);
+ OutChains.push_back(Val);
+ }
+
+ if (!OutChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
+ &OutChains[0], OutChains.size());
+
+ DAG.setRoot(Chain);
+}
+
+void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
+ DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
+ MVT::Other, getRoot(),
+ getValue(I.getArgOperand(0)),
+ DAG.getSrcValue(I.getArgOperand(0))));
+}
+
+void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
+ const TargetLowering *TLI = TM.getTargetLowering();
+ const DataLayout &TD = *TLI->getDataLayout();
+ SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
+ getRoot(), getValue(I.getOperand(0)),
+ DAG.getSrcValue(I.getOperand(0)),
+ TD.getABITypeAlignment(I.getType()));
+ setValue(&I, V);
+ DAG.setRoot(V.getValue(1));
+}
+
+void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
+ DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
+ MVT::Other, getRoot(),
+ getValue(I.getArgOperand(0)),
+ DAG.getSrcValue(I.getArgOperand(0))));
+}
+
+void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
+ DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
+ MVT::Other, getRoot(),
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1)),
+ DAG.getSrcValue(I.getArgOperand(0)),
+ DAG.getSrcValue(I.getArgOperand(1))));
+}
+
+/// \brief Lower an argument list according to the target calling convention.
+///
+/// \return A tuple of <return-value, token-chain>
+///
+/// This is a helper for lowering intrinsics that follow a target calling
+/// convention or require stack pointer adjustment. Only a subset of the
+/// intrinsic's operands need to participate in the calling convention.
+std::pair<SDValue, SDValue>
+SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
+ unsigned NumArgs, SDValue Callee,
+ bool useVoidTy) {
+ TargetLowering::ArgListTy Args;
+ Args.reserve(NumArgs);
+
+ // Populate the argument list.
+ // Attributes for args start at offset 1, after the return attribute.
+ ImmutableCallSite CS(&CI);
+ for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
+ ArgI != ArgE; ++ArgI) {
+ const Value *V = CI.getOperand(ArgI);
+
+ assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
+
+ TargetLowering::ArgListEntry Entry;
+ Entry.Node = getValue(V);
+ Entry.Ty = V->getType();
+ Entry.setAttributes(&CS, AttrI);
+ Args.push_back(Entry);
+ }
+
+ Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
+ TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false,
+ /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs,
+ CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false,
+ /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc());
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ return TLI->LowerCallTo(CLI);
+}
+
+/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
+void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
+ // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
+ // [live variables...])
+
+ assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
+
+ SDValue Callee = getValue(CI.getCalledValue());
+
+ // Lower into a call sequence with no args and no return value.
+ std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee);
+ // Set the root to the target-lowered call chain.
+ SDValue Chain = Result.second;
+ DAG.setRoot(Chain);
+
+ /// Get a call instruction from the call sequence chain.
+ /// Tail calls are not allowed.
+ SDNode *CallEnd = Chain.getNode();
+ assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
+ "Expected a callseq node.");
+ SDNode *Call = CallEnd->getOperand(0).getNode();
+ bool hasGlue = Call->getGluedNode();
+
+ // Replace the target specific call node with the stackmap intrinsic.
+ SmallVector<SDValue, 8> Ops;
+
+ // Add the <id> and <numShadowBytes> constants.
+ for (unsigned i = 0; i < 2; ++i) {
+ SDValue tmp = getValue(CI.getOperand(i));
+ Ops.push_back(DAG.getTargetConstant(
+ cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
+ }
+ // Push live variables for the stack map.
+ for (unsigned i = 2, e = CI.getNumArgOperands(); i != e; ++i)
+ Ops.push_back(getValue(CI.getArgOperand(i)));
+
+ // Push the chain (this is originally the first operand of the call, but
+ // becomes now the last or second to last operand).
+ Ops.push_back(*(Call->op_begin()));
+
+ // Push the glue flag (last operand).
+ if (hasGlue)
+ Ops.push_back(*(Call->op_end()-1));
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ // Replace the target specific call node with a STACKMAP node.
+ MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(),
+ NodeTys, Ops);
+
+ // StackMap generates no value, so nothing goes in the NodeMap.
+
+ // Fixup the consumers of the intrinsic. The chain and glue may be used in the
+ // call sequence.
+ DAG.ReplaceAllUsesWith(Call, MN);
+
+ DAG.DeleteNode(Call);
+}
+
+/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
+void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
+ // void|i64 @llvm.experimental.patchpoint.void|i64(i32 <id>,
+ // i32 <numBytes>,
+ // i8* <target>,
+ // i32 <numArgs>,
+ // [Args...],
+ // [live variables...])
+
+ CallingConv::ID CC = CI.getCallingConv();
+ bool isAnyRegCC = CC == CallingConv::AnyReg;
+ bool hasDef = !CI.getType()->isVoidTy();
+ SDValue Callee = getValue(CI.getOperand(2)); // <target>
+
+ // Get the real number of arguments participating in the call <numArgs>
+ unsigned NumArgs =
+ cast<ConstantSDNode>(getValue(CI.getArgOperand(3)))->getZExtValue();
+
+ // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
+ assert(CI.getNumArgOperands() >= NumArgs + 4 &&
+ "Not enough arguments provided to the patchpoint intrinsic");
+
+ // For AnyRegCC the arguments are lowered later on manually.
+ unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
+ std::pair<SDValue, SDValue> Result =
+ LowerCallOperands(CI, 4, NumCallArgs, Callee, isAnyRegCC);
+
+ // Set the root to the target-lowered call chain.
+ SDValue Chain = Result.second;
+ DAG.setRoot(Chain);
+
+ SDNode *CallEnd = Chain.getNode();
+ if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
+ CallEnd = CallEnd->getOperand(0).getNode();
+
+ /// Get a call instruction from the call sequence chain.
+ /// Tail calls are not allowed.
+ assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
+ "Expected a callseq node.");
+ SDNode *Call = CallEnd->getOperand(0).getNode();
+ bool hasGlue = Call->getGluedNode();
+
+ // Replace the target specific call node with the patchable intrinsic.
+ SmallVector<SDValue, 8> Ops;
+
+ // Add the <id> and <numNopBytes> constants.
+ for (unsigned i = 0; i < 2; ++i) {
+ SDValue tmp = getValue(CI.getOperand(i));
+ Ops.push_back(DAG.getTargetConstant(
+ cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
+ }
+ // Assume that the Callee is a constant address.
+ Ops.push_back(
+ DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
+ /*isTarget=*/true));
+
+ // Adjust <numArgs> to account for any arguments that have been passed on the
+ // stack instead.
+ // Call Node: Chain, Target, {Args}, RegMask, [Glue]
+ unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
+ NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
+ Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
+
+ // Add the calling convention
+ Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
+
+ // Add the arguments we omitted previously. The register allocator should
+ // place these in any free register.
+ if (isAnyRegCC)
+ for (unsigned i = 4, e = NumArgs + 4; i != e; ++i)
+ Ops.push_back(getValue(CI.getArgOperand(i)));
+
+ // Push the arguments from the call instruction.
+ SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
+ for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
+ Ops.push_back(*i);
+
+ // Push live variables for the stack map.
+ for (unsigned i = NumArgs + 4, e = CI.getNumArgOperands(); i != e; ++i) {
+ SDValue OpVal = getValue(CI.getArgOperand(i));
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
+ Ops.push_back(
+ DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
+ Ops.push_back(
+ DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
+ } else
+ Ops.push_back(OpVal);
+ }
+
+ // Push the register mask info.
+ if (hasGlue)
+ Ops.push_back(*(Call->op_end()-2));
+ else
+ Ops.push_back(*(Call->op_end()-1));
+
+ // Push the chain (this is originally the first operand of the call, but
+ // becomes now the last or second to last operand).
+ Ops.push_back(*(Call->op_begin()));
+
+ // Push the glue flag (last operand).
+ if (hasGlue)
+ Ops.push_back(*(Call->op_end()-1));
+
+ SDVTList NodeTys;
+ if (isAnyRegCC && hasDef) {
+ // Create the return types based on the intrinsic definition
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SmallVector<EVT, 3> ValueVTs;
+ ComputeValueVTs(TLI, CI.getType(), ValueVTs);
+ assert(ValueVTs.size() == 1 && "Expected only one return value type.");
+
+ // There is always a chain and a glue type at the end
+ ValueVTs.push_back(MVT::Other);
+ ValueVTs.push_back(MVT::Glue);
+ NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
+ } else
+ NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ // Replace the target specific call node with a PATCHPOINT node.
+ MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
+ getCurSDLoc(), NodeTys, Ops);
+
+ // Update the NodeMap.
+ if (hasDef) {
+ if (isAnyRegCC)
+ setValue(&CI, SDValue(MN, 0));
+ else
+ setValue(&CI, Result.first);
+ }
+
+ // Fixup the consumers of the intrinsic. The chain and glue may be used in the
+ // call sequence. Furthermore the location of the chain and glue can change
+ // when the AnyReg calling convention is used and the intrinsic returns a
+ // value.
+ if (isAnyRegCC && hasDef) {
+ SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
+ SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
+ DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
+ } else
+ DAG.ReplaceAllUsesWith(Call, MN);
+ DAG.DeleteNode(Call);
+}
+
+/// TargetLowering::LowerCallTo - This is the default LowerCallTo
+/// implementation, which just calls LowerCall.
+/// FIXME: When all targets are
+/// migrated to using LowerCall, this hook should be integrated into SDISel.
+std::pair<SDValue, SDValue>
+TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
+ // Handle the incoming return values from the call.
+ CLI.Ins.clear();
+ SmallVector<EVT, 4> RetTys;
+ ComputeValueVTs(*this, CLI.RetTy, RetTys);
+ for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+ EVT VT = RetTys[I];
+ MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
+ unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ ISD::InputArg MyFlags;
+ MyFlags.VT = RegisterVT;
+ MyFlags.ArgVT = VT;
+ MyFlags.Used = CLI.IsReturnValueUsed;
+ if (CLI.RetSExt)
+ MyFlags.Flags.setSExt();
+ if (CLI.RetZExt)
+ MyFlags.Flags.setZExt();
+ if (CLI.IsInReg)
+ MyFlags.Flags.setInReg();
+ CLI.Ins.push_back(MyFlags);
+ }
+ }
+
+ // Handle all of the outgoing arguments.
+ CLI.Outs.clear();
+ CLI.OutVals.clear();
+ ArgListTy &Args = CLI.Args;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
+ for (unsigned Value = 0, NumValues = ValueVTs.size();
+ Value != NumValues; ++Value) {
+ EVT VT = ValueVTs[Value];
+ Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
+ SDValue Op = SDValue(Args[i].Node.getNode(),
+ Args[i].Node.getResNo() + Value);
+ ISD::ArgFlagsTy Flags;
+ unsigned OriginalAlignment =
+ getDataLayout()->getABITypeAlignment(ArgTy);
+
+ if (Args[i].isZExt)
+ Flags.setZExt();
+ if (Args[i].isSExt)
+ Flags.setSExt();
+ if (Args[i].isInReg)
+ Flags.setInReg();
+ if (Args[i].isSRet)
+ Flags.setSRet();
+ if (Args[i].isByVal) {
+ Flags.setByVal();
+ PointerType *Ty = cast<PointerType>(Args[i].Ty);
+ Type *ElementTy = Ty->getElementType();
+ Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
+ // For ByVal, alignment should come from FE. BE will guess if this
+ // info is not there but there are cases it cannot get right.
+ unsigned FrameAlign;
+ if (Args[i].Alignment)
+ FrameAlign = Args[i].Alignment;
+ else
+ FrameAlign = getByValTypeAlignment(ElementTy);
+ Flags.setByValAlign(FrameAlign);
+ }
+ if (Args[i].isNest)
+ Flags.setNest();
+ Flags.setOrigAlign(OriginalAlignment);
+
+ MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
+ unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
+ SmallVector<SDValue, 4> Parts(NumParts);
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ if (Args[i].isSExt)
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (Args[i].isZExt)
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ // Conservatively only handle 'returned' on non-vectors for now
+ if (Args[i].isReturned && !Op.getValueType().isVector()) {
+ assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
+ "unexpected use of 'returned'");
+ // Before passing 'returned' to the target lowering code, ensure that
+ // either the register MVT and the actual EVT are the same size or that
+ // the return value and argument are extended in the same way; in these
+ // cases it's safe to pass the argument register value unchanged as the
+ // return register value (although it's at the target's option whether
+ // to do so)
+ // TODO: allow code generation to take advantage of partially preserved
+ // registers rather than clobbering the entire register when the
+ // parameter extension method is not compatible with the return
+ // extension method
+ if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
+ (ExtendKind != ISD::ANY_EXTEND &&
+ CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
+ Flags.setReturned();
+ }
+
+ getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
+ PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
+
+ for (unsigned j = 0; j != NumParts; ++j) {
+ // if it isn't first piece, alignment must be 1
+ ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
+ i < CLI.NumFixedArgs,
+ i, j*Parts[j].getValueType().getStoreSize());
+ if (NumParts > 1 && j == 0)
+ MyFlags.Flags.setSplit();
+ else if (j != 0)
+ MyFlags.Flags.setOrigAlign(1);
+
+ CLI.Outs.push_back(MyFlags);
+ CLI.OutVals.push_back(Parts[j]);
+ }
+ }
+ }
+
+ SmallVector<SDValue, 4> InVals;
+ CLI.Chain = LowerCall(CLI, InVals);
+
+ // Verify that the target's LowerCall behaved as expected.
+ assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
+ "LowerCall didn't return a valid chain!");
+ assert((!CLI.IsTailCall || InVals.empty()) &&
+ "LowerCall emitted a return value for a tail call!");
+ assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
+ "LowerCall didn't emit the correct number of values!");
+
+ // For a tail call, the return value is merely live-out and there aren't
+ // any nodes in the DAG representing it. Return a special value to
+ // indicate that a tail call has been emitted and no more Instructions
+ // should be processed in the current block.
+ if (CLI.IsTailCall) {
+ CLI.DAG.setRoot(CLI.Chain);
+ return std::make_pair(SDValue(), SDValue());
+ }
+
+ DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
+ assert(InVals[i].getNode() &&
+ "LowerCall emitted a null value!");
+ assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
+ "LowerCall emitted a value with the wrong type!");
+ });
+
+ // Collect the legal value parts into potentially illegal values
+ // that correspond to the original function's return values.
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ if (CLI.RetSExt)
+ AssertOp = ISD::AssertSext;
+ else if (CLI.RetZExt)
+ AssertOp = ISD::AssertZext;
+ SmallVector<SDValue, 4> ReturnValues;
+ unsigned CurReg = 0;
+ for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+ EVT VT = RetTys[I];
+ MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
+ unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
+
+ ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
+ NumRegs, RegisterVT, VT, NULL,
+ AssertOp));
+ CurReg += NumRegs;
+ }
+
+ // For a function returning void, there is no return value. We can't create
+ // such a node, so we just return a null return value in that case. In
+ // that case, nothing will actually look at the value.
+ if (ReturnValues.empty())
+ return std::make_pair(SDValue(), CLI.Chain);
+
+ SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
+ CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
+ &ReturnValues[0], ReturnValues.size());
+ return std::make_pair(Res, CLI.Chain);
+}
+
+void TargetLowering::LowerOperationWrapper(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ SDValue Res = LowerOperation(SDValue(N, 0), DAG);
+ if (Res.getNode())
+ Results.push_back(Res);
+}
+
+SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ llvm_unreachable("LowerOperation not implemented for this target!");
+}
+
+void
+SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
+ SDValue Op = getNonRegisterValue(V);
+ assert((Op.getOpcode() != ISD::CopyFromReg ||
+ cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
+ "Copy from a reg to the same reg!");
+ assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
+
+ const TargetLowering *TLI = TM.getTargetLowering();
+ RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
+ SDValue Chain = DAG.getEntryNode();
+ RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
+ PendingExports.push_back(Chain);
+}
+
+#include "llvm/CodeGen/SelectionDAGISel.h"
+
+/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
+/// entry block, return true. This includes arguments used by switches, since
+/// the switch may expand into multiple basic blocks.
+static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
+ // With FastISel active, we may be splitting blocks, so force creation
+ // of virtual registers for all non-dead arguments.
+ if (FastISel)
+ return A->use_empty();
+
+ const BasicBlock *Entry = A->getParent()->begin();
+ for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
+ UI != E; ++UI) {
+ const User *U = *UI;
+ if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
+ return false; // Use not in entry block.
+ }
+ return true;
+}
+
+void SelectionDAGISel::LowerArguments(const Function &F) {
+ SelectionDAG &DAG = SDB->DAG;
+ SDLoc dl = SDB->getCurSDLoc();
+ const TargetLowering *TLI = getTargetLowering();
+ const DataLayout *TD = TLI->getDataLayout();
+ SmallVector<ISD::InputArg, 16> Ins;
+
+ if (!FuncInfo->CanLowerReturn) {
+ // Put in an sret pointer parameter before all the other parameters.
+ SmallVector<EVT, 1> ValueVTs;
+ ComputeValueVTs(*getTargetLowering(),
+ PointerType::getUnqual(F.getReturnType()), ValueVTs);
+
+ // NOTE: Assuming that a pointer will never break down to more than one VT
+ // or one register.
+ ISD::ArgFlagsTy Flags;
+ Flags.setSRet();
+ MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
+ ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
+ Ins.push_back(RetArg);
+ }
+
+ // Set up the incoming argument description vector.
+ unsigned Idx = 1;
+ for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I, ++Idx) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(*TLI, I->getType(), ValueVTs);
+ bool isArgValueUsed = !I->use_empty();
+ unsigned PartBase = 0;
+ for (unsigned Value = 0, NumValues = ValueVTs.size();
+ Value != NumValues; ++Value) {
+ EVT VT = ValueVTs[Value];
+ Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
+ ISD::ArgFlagsTy Flags;
+ unsigned OriginalAlignment =
+ TD->getABITypeAlignment(ArgTy);
+
+ if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
+ Flags.setZExt();
+ if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
+ Flags.setSExt();
+ if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
+ Flags.setInReg();
+ if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
+ Flags.setSRet();
+ if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
+ Flags.setByVal();
+ PointerType *Ty = cast<PointerType>(I->getType());
+ Type *ElementTy = Ty->getElementType();
+ Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
+ // For ByVal, alignment should be passed from FE. BE will guess if
+ // this info is not there but there are cases it cannot get right.
+ unsigned FrameAlign;
+ if (F.getParamAlignment(Idx))
+ FrameAlign = F.getParamAlignment(Idx);
+ else
+ FrameAlign = TLI->getByValTypeAlignment(ElementTy);
+ Flags.setByValAlign(FrameAlign);
+ }
+ if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
+ Flags.setNest();
+ Flags.setOrigAlign(OriginalAlignment);
+
+ MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
+ unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
+ Idx-1, PartBase+i*RegisterVT.getStoreSize());
+ if (NumRegs > 1 && i == 0)
+ MyFlags.Flags.setSplit();
+ // if it isn't first piece, alignment must be 1
+ else if (i > 0)
+ MyFlags.Flags.setOrigAlign(1);
+ Ins.push_back(MyFlags);
+ }
+ PartBase += VT.getStoreSize();
+ }
+ }
+
+ // Call the target to set up the argument values.
+ SmallVector<SDValue, 8> InVals;
+ SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
+ F.isVarArg(), Ins,
+ dl, DAG, InVals);
+
+ // Verify that the target's LowerFormalArguments behaved as expected.
+ assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
+ "LowerFormalArguments didn't return a valid chain!");
+ assert(InVals.size() == Ins.size() &&
+ "LowerFormalArguments didn't emit the correct number of values!");
+ DEBUG({
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ assert(InVals[i].getNode() &&
+ "LowerFormalArguments emitted a null value!");
+ assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
+ "LowerFormalArguments emitted a value with the wrong type!");
+ }
+ });
+
+ // Update the DAG with the new chain value resulting from argument lowering.
+ DAG.setRoot(NewRoot);
+
+ // Set up the argument values.
+ unsigned i = 0;
+ Idx = 1;
+ if (!FuncInfo->CanLowerReturn) {
+ // Create a virtual register for the sret pointer, and put in a copy
+ // from the sret argument into it.
+ SmallVector<EVT, 1> ValueVTs;
+ ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
+ MVT VT = ValueVTs[0].getSimpleVT();
+ MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
+ RegVT, VT, NULL, AssertOp);
+
+ MachineFunction& MF = SDB->DAG.getMachineFunction();
+ MachineRegisterInfo& RegInfo = MF.getRegInfo();
+ unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
+ FuncInfo->DemoteRegister = SRetReg;
+ NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
+ SRetReg, ArgValue);
+ DAG.setRoot(NewRoot);
+
+ // i indexes lowered arguments. Bump it past the hidden sret argument.
+ // Idx indexes LLVM arguments. Don't touch it.
+ ++i;
+ }
+
+ for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
+ ++I, ++Idx) {
+ SmallVector<SDValue, 4> ArgValues;
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(*TLI, I->getType(), ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+
+ // If this argument is unused then remember its value. It is used to generate
+ // debugging information.
+ if (I->use_empty() && NumValues) {
+ SDB->setUnusedArgValue(I, InVals[i]);
+
+ // Also remember any frame index for use in FastISel.
+ if (FrameIndexSDNode *FI =
+ dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
+ FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
+ }
+
+ for (unsigned Val = 0; Val != NumValues; ++Val) {
+ EVT VT = ValueVTs[Val];
+ MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
+ unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
+
+ if (!I->use_empty()) {
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
+ AssertOp = ISD::AssertSext;
+ else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
+ AssertOp = ISD::AssertZext;
+
+ ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
+ NumParts, PartVT, VT,
+ NULL, AssertOp));
+ }
+
+ i += NumParts;
+ }
+
+ // We don't need to do anything else for unused arguments.
+ if (ArgValues.empty())
+ continue;
+
+ // Note down frame index.
+ if (FrameIndexSDNode *FI =
+ dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
+ FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
+
+ SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
+ SDB->getCurSDLoc());
+
+ SDB->setValue(I, Res);
+ if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
+ if (LoadSDNode *LNode =
+ dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
+ if (FrameIndexSDNode *FI =
+ dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
+ FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
+ }
+
+ // If this argument is live outside of the entry block, insert a copy from
+ // wherever we got it to the vreg that other BB's will reference it as.
+ if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
+ // If we can, though, try to skip creating an unnecessary vreg.
+ // FIXME: This isn't very clean... it would be nice to make this more
+ // general. It's also subtly incompatible with the hacks FastISel
+ // uses with vregs.
+ unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ FuncInfo->ValueMap[I] = Reg;
+ continue;
+ }
+ }
+ if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
+ FuncInfo->InitializeRegForValue(I);
+ SDB->CopyToExportRegsIfNeeded(I);
+ }
+ }
+
+ assert(i == InVals.size() && "Argument register count mismatch!");
+
+ // Finally, if the target has anything special to do, allow it to do so.
+ // FIXME: this should insert code into the DAG!
+ EmitFunctionEntryCode();
+}
+
+/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
+/// ensure constants are generated when needed. Remember the virtual registers
+/// that need to be added to the Machine PHI nodes as input. We cannot just
+/// directly add them, because expansion might result in multiple MBB's for one
+/// BB. As such, the start of the BB might correspond to a different MBB than
+/// the end.
+///
+void
+SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
+ const TerminatorInst *TI = LLVMBB->getTerminator();
+
+ SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
+
+ // Check successor nodes' PHI nodes that expect a constant to be available
+ // from this block.
+ for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
+ const BasicBlock *SuccBB = TI->getSuccessor(succ);
+ if (!isa<PHINode>(SuccBB->begin())) continue;
+ MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
+
+ // If this terminator has multiple identical successors (common for
+ // switches), only handle each succ once.
+ if (!SuccsHandled.insert(SuccMBB)) continue;
+
+ MachineBasicBlock::iterator MBBI = SuccMBB->begin();
+
+ // At this point we know that there is a 1-1 correspondence between LLVM PHI
+ // nodes and Machine PHI nodes, but the incoming operands have not been
+ // emitted yet.
+ for (BasicBlock::const_iterator I = SuccBB->begin();
+ const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ // Ignore dead phi's.
+ if (PN->use_empty()) continue;
+
+ // Skip empty types
+ if (PN->getType()->isEmptyTy())
+ continue;
+
+ unsigned Reg;
+ const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
+
+ if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
+ unsigned &RegOut = ConstantsOut[C];
+ if (RegOut == 0) {
+ RegOut = FuncInfo.CreateRegs(C->getType());
+ CopyValueToVirtualRegister(C, RegOut);
+ }
+ Reg = RegOut;
+ } else {
+ DenseMap<const Value *, unsigned>::iterator I =
+ FuncInfo.ValueMap.find(PHIOp);
+ if (I != FuncInfo.ValueMap.end())
+ Reg = I->second;
+ else {
+ assert(isa<AllocaInst>(PHIOp) &&
+ FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
+ "Didn't codegen value into a register!??");
+ Reg = FuncInfo.CreateRegs(PHIOp->getType());
+ CopyValueToVirtualRegister(PHIOp, Reg);
+ }
+ }
+
+ // Remember that this register needs to added to the machine PHI node as
+ // the input for this MBB.
+ SmallVector<EVT, 4> ValueVTs;
+ const TargetLowering *TLI = TM.getTargetLowering();
+ ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
+ for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
+ EVT VT = ValueVTs[vti];
+ unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
+ for (unsigned i = 0, e = NumRegisters; i != e; ++i)
+ FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
+ Reg += NumRegisters;
+ }
+ }
+ }
+
+ ConstantsOut.clear();
+}
+
+/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
+/// is 0.
+MachineBasicBlock *
+SelectionDAGBuilder::StackProtectorDescriptor::
+AddSuccessorMBB(const BasicBlock *BB,
+ MachineBasicBlock *ParentMBB,
+ MachineBasicBlock *SuccMBB) {
+ // If SuccBB has not been created yet, create it.
+ if (!SuccMBB) {
+ MachineFunction *MF = ParentMBB->getParent();
+ MachineFunction::iterator BBI = ParentMBB;
+ SuccMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(++BBI, SuccMBB);
+ }
+ // Add it as a successor of ParentMBB.
+ ParentMBB->addSuccessor(SuccMBB);
+ return SuccMBB;
+}