aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp3020
1 files changed, 3020 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
new file mode 100644
index 000000000000..802c459a0223
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
@@ -0,0 +1,3020 @@
+//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements bottom-up and top-down register pressure reduction list
+// schedulers, using standard algorithms. The basic approach uses a priority
+// queue of available nodes to schedule. One at a time, nodes are taken from
+// the priority queue (thus in priority order), checked for legality to
+// schedule, and emitted if legal.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "ScheduleDAGSDNodes.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <climits>
+using namespace llvm;
+
+#define DEBUG_TYPE "pre-RA-sched"
+
+STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
+STATISTIC(NumUnfolds, "Number of nodes unfolded");
+STATISTIC(NumDups, "Number of duplicated nodes");
+STATISTIC(NumPRCopies, "Number of physical register copies");
+
+static RegisterScheduler
+ burrListDAGScheduler("list-burr",
+ "Bottom-up register reduction list scheduling",
+ createBURRListDAGScheduler);
+static RegisterScheduler
+ sourceListDAGScheduler("source",
+ "Similar to list-burr but schedules in source "
+ "order when possible",
+ createSourceListDAGScheduler);
+
+static RegisterScheduler
+ hybridListDAGScheduler("list-hybrid",
+ "Bottom-up register pressure aware list scheduling "
+ "which tries to balance latency and register pressure",
+ createHybridListDAGScheduler);
+
+static RegisterScheduler
+ ILPListDAGScheduler("list-ilp",
+ "Bottom-up register pressure aware list scheduling "
+ "which tries to balance ILP and register pressure",
+ createILPListDAGScheduler);
+
+static cl::opt<bool> DisableSchedCycles(
+ "disable-sched-cycles", cl::Hidden, cl::init(false),
+ cl::desc("Disable cycle-level precision during preRA scheduling"));
+
+// Temporary sched=list-ilp flags until the heuristics are robust.
+// Some options are also available under sched=list-hybrid.
+static cl::opt<bool> DisableSchedRegPressure(
+ "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
+ cl::desc("Disable regpressure priority in sched=list-ilp"));
+static cl::opt<bool> DisableSchedLiveUses(
+ "disable-sched-live-uses", cl::Hidden, cl::init(true),
+ cl::desc("Disable live use priority in sched=list-ilp"));
+static cl::opt<bool> DisableSchedVRegCycle(
+ "disable-sched-vrcycle", cl::Hidden, cl::init(false),
+ cl::desc("Disable virtual register cycle interference checks"));
+static cl::opt<bool> DisableSchedPhysRegJoin(
+ "disable-sched-physreg-join", cl::Hidden, cl::init(false),
+ cl::desc("Disable physreg def-use affinity"));
+static cl::opt<bool> DisableSchedStalls(
+ "disable-sched-stalls", cl::Hidden, cl::init(true),
+ cl::desc("Disable no-stall priority in sched=list-ilp"));
+static cl::opt<bool> DisableSchedCriticalPath(
+ "disable-sched-critical-path", cl::Hidden, cl::init(false),
+ cl::desc("Disable critical path priority in sched=list-ilp"));
+static cl::opt<bool> DisableSchedHeight(
+ "disable-sched-height", cl::Hidden, cl::init(false),
+ cl::desc("Disable scheduled-height priority in sched=list-ilp"));
+static cl::opt<bool> Disable2AddrHack(
+ "disable-2addr-hack", cl::Hidden, cl::init(true),
+ cl::desc("Disable scheduler's two-address hack"));
+
+static cl::opt<int> MaxReorderWindow(
+ "max-sched-reorder", cl::Hidden, cl::init(6),
+ cl::desc("Number of instructions to allow ahead of the critical path "
+ "in sched=list-ilp"));
+
+static cl::opt<unsigned> AvgIPC(
+ "sched-avg-ipc", cl::Hidden, cl::init(1),
+ cl::desc("Average inst/cycle whan no target itinerary exists."));
+
+namespace {
+//===----------------------------------------------------------------------===//
+/// ScheduleDAGRRList - The actual register reduction list scheduler
+/// implementation. This supports both top-down and bottom-up scheduling.
+///
+class ScheduleDAGRRList : public ScheduleDAGSDNodes {
+private:
+ /// NeedLatency - True if the scheduler will make use of latency information.
+ ///
+ bool NeedLatency;
+
+ /// AvailableQueue - The priority queue to use for the available SUnits.
+ SchedulingPriorityQueue *AvailableQueue;
+
+ /// PendingQueue - This contains all of the instructions whose operands have
+ /// been issued, but their results are not ready yet (due to the latency of
+ /// the operation). Once the operands becomes available, the instruction is
+ /// added to the AvailableQueue.
+ std::vector<SUnit*> PendingQueue;
+
+ /// HazardRec - The hazard recognizer to use.
+ ScheduleHazardRecognizer *HazardRec;
+
+ /// CurCycle - The current scheduler state corresponds to this cycle.
+ unsigned CurCycle;
+
+ /// MinAvailableCycle - Cycle of the soonest available instruction.
+ unsigned MinAvailableCycle;
+
+ /// IssueCount - Count instructions issued in this cycle
+ /// Currently valid only for bottom-up scheduling.
+ unsigned IssueCount;
+
+ /// LiveRegDefs - A set of physical registers and their definition
+ /// that are "live". These nodes must be scheduled before any other nodes that
+ /// modifies the registers can be scheduled.
+ unsigned NumLiveRegs;
+ std::unique_ptr<SUnit*[]> LiveRegDefs;
+ std::unique_ptr<SUnit*[]> LiveRegGens;
+
+ // Collect interferences between physical register use/defs.
+ // Each interference is an SUnit and set of physical registers.
+ SmallVector<SUnit*, 4> Interferences;
+ typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
+ LRegsMapT LRegsMap;
+
+ /// Topo - A topological ordering for SUnits which permits fast IsReachable
+ /// and similar queries.
+ ScheduleDAGTopologicalSort Topo;
+
+ // Hack to keep track of the inverse of FindCallSeqStart without more crazy
+ // DAG crawling.
+ DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
+
+public:
+ ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
+ SchedulingPriorityQueue *availqueue,
+ CodeGenOpt::Level OptLevel)
+ : ScheduleDAGSDNodes(mf),
+ NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
+ Topo(SUnits, nullptr) {
+
+ const TargetSubtargetInfo &STI = mf.getSubtarget();
+ if (DisableSchedCycles || !NeedLatency)
+ HazardRec = new ScheduleHazardRecognizer();
+ else
+ HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
+ }
+
+ ~ScheduleDAGRRList() override {
+ delete HazardRec;
+ delete AvailableQueue;
+ }
+
+ void Schedule() override;
+
+ ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
+
+ /// IsReachable - Checks if SU is reachable from TargetSU.
+ bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
+ return Topo.IsReachable(SU, TargetSU);
+ }
+
+ /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
+ /// create a cycle.
+ bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
+ return Topo.WillCreateCycle(SU, TargetSU);
+ }
+
+ /// AddPred - adds a predecessor edge to SUnit SU.
+ /// This returns true if this is a new predecessor.
+ /// Updates the topological ordering if required.
+ void AddPred(SUnit *SU, const SDep &D) {
+ Topo.AddPred(SU, D.getSUnit());
+ SU->addPred(D);
+ }
+
+ /// RemovePred - removes a predecessor edge from SUnit SU.
+ /// This returns true if an edge was removed.
+ /// Updates the topological ordering if required.
+ void RemovePred(SUnit *SU, const SDep &D) {
+ Topo.RemovePred(SU, D.getSUnit());
+ SU->removePred(D);
+ }
+
+private:
+ bool isReady(SUnit *SU) {
+ return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
+ AvailableQueue->isReady(SU);
+ }
+
+ void ReleasePred(SUnit *SU, const SDep *PredEdge);
+ void ReleasePredecessors(SUnit *SU);
+ void ReleasePending();
+ void AdvanceToCycle(unsigned NextCycle);
+ void AdvancePastStalls(SUnit *SU);
+ void EmitNode(SUnit *SU);
+ void ScheduleNodeBottomUp(SUnit*);
+ void CapturePred(SDep *PredEdge);
+ void UnscheduleNodeBottomUp(SUnit*);
+ void RestoreHazardCheckerBottomUp();
+ void BacktrackBottomUp(SUnit*, SUnit*);
+ SUnit *CopyAndMoveSuccessors(SUnit*);
+ void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
+ const TargetRegisterClass*,
+ const TargetRegisterClass*,
+ SmallVectorImpl<SUnit*>&);
+ bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
+
+ void releaseInterferences(unsigned Reg = 0);
+
+ SUnit *PickNodeToScheduleBottomUp();
+ void ListScheduleBottomUp();
+
+ /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
+ /// Updates the topological ordering if required.
+ SUnit *CreateNewSUnit(SDNode *N) {
+ unsigned NumSUnits = SUnits.size();
+ SUnit *NewNode = newSUnit(N);
+ // Update the topological ordering.
+ if (NewNode->NodeNum >= NumSUnits)
+ Topo.InitDAGTopologicalSorting();
+ return NewNode;
+ }
+
+ /// CreateClone - Creates a new SUnit from an existing one.
+ /// Updates the topological ordering if required.
+ SUnit *CreateClone(SUnit *N) {
+ unsigned NumSUnits = SUnits.size();
+ SUnit *NewNode = Clone(N);
+ // Update the topological ordering.
+ if (NewNode->NodeNum >= NumSUnits)
+ Topo.InitDAGTopologicalSorting();
+ return NewNode;
+ }
+
+ /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
+ /// need actual latency information but the hybrid scheduler does.
+ bool forceUnitLatencies() const override {
+ return !NeedLatency;
+ }
+};
+} // end anonymous namespace
+
+/// GetCostForDef - Looks up the register class and cost for a given definition.
+/// Typically this just means looking up the representative register class,
+/// but for untyped values (MVT::Untyped) it means inspecting the node's
+/// opcode to determine what register class is being generated.
+static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
+ const TargetLowering *TLI,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI,
+ unsigned &RegClass, unsigned &Cost,
+ const MachineFunction &MF) {
+ MVT VT = RegDefPos.GetValue();
+
+ // Special handling for untyped values. These values can only come from
+ // the expansion of custom DAG-to-DAG patterns.
+ if (VT == MVT::Untyped) {
+ const SDNode *Node = RegDefPos.GetNode();
+
+ // Special handling for CopyFromReg of untyped values.
+ if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
+ unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
+ const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
+ RegClass = RC->getID();
+ Cost = 1;
+ return;
+ }
+
+ unsigned Opcode = Node->getMachineOpcode();
+ if (Opcode == TargetOpcode::REG_SEQUENCE) {
+ unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
+ const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
+ RegClass = RC->getID();
+ Cost = 1;
+ return;
+ }
+
+ unsigned Idx = RegDefPos.GetIdx();
+ const MCInstrDesc Desc = TII->get(Opcode);
+ const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
+ RegClass = RC->getID();
+ // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
+ // better way to determine it.
+ Cost = 1;
+ } else {
+ RegClass = TLI->getRepRegClassFor(VT)->getID();
+ Cost = TLI->getRepRegClassCostFor(VT);
+ }
+}
+
+/// Schedule - Schedule the DAG using list scheduling.
+void ScheduleDAGRRList::Schedule() {
+ DEBUG(dbgs()
+ << "********** List Scheduling BB#" << BB->getNumber()
+ << " '" << BB->getName() << "' **********\n");
+
+ CurCycle = 0;
+ IssueCount = 0;
+ MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
+ NumLiveRegs = 0;
+ // Allocate slots for each physical register, plus one for a special register
+ // to track the virtual resource of a calling sequence.
+ LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
+ LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
+ CallSeqEndForStart.clear();
+ assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
+
+ // Build the scheduling graph.
+ BuildSchedGraph(nullptr);
+
+ DEBUG(for (SUnit &SU : SUnits)
+ SU.dumpAll(this));
+ Topo.InitDAGTopologicalSorting();
+
+ AvailableQueue->initNodes(SUnits);
+
+ HazardRec->Reset();
+
+ // Execute the actual scheduling loop.
+ ListScheduleBottomUp();
+
+ AvailableQueue->releaseState();
+
+ DEBUG({
+ dbgs() << "*** Final schedule ***\n";
+ dumpSchedule();
+ dbgs() << '\n';
+ });
+}
+
+//===----------------------------------------------------------------------===//
+// Bottom-Up Scheduling
+//===----------------------------------------------------------------------===//
+
+/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
+/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
+void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
+ SUnit *PredSU = PredEdge->getSUnit();
+
+#ifndef NDEBUG
+ if (PredSU->NumSuccsLeft == 0) {
+ dbgs() << "*** Scheduling failed! ***\n";
+ PredSU->dump(this);
+ dbgs() << " has been released too many times!\n";
+ llvm_unreachable(nullptr);
+ }
+#endif
+ --PredSU->NumSuccsLeft;
+
+ if (!forceUnitLatencies()) {
+ // Updating predecessor's height. This is now the cycle when the
+ // predecessor can be scheduled without causing a pipeline stall.
+ PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
+ }
+
+ // If all the node's successors are scheduled, this node is ready
+ // to be scheduled. Ignore the special EntrySU node.
+ if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
+ PredSU->isAvailable = true;
+
+ unsigned Height = PredSU->getHeight();
+ if (Height < MinAvailableCycle)
+ MinAvailableCycle = Height;
+
+ if (isReady(PredSU)) {
+ AvailableQueue->push(PredSU);
+ }
+ // CapturePred and others may have left the node in the pending queue, avoid
+ // adding it twice.
+ else if (!PredSU->isPending) {
+ PredSU->isPending = true;
+ PendingQueue.push_back(PredSU);
+ }
+ }
+}
+
+/// IsChainDependent - Test if Outer is reachable from Inner through
+/// chain dependencies.
+static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
+ unsigned NestLevel,
+ const TargetInstrInfo *TII) {
+ SDNode *N = Outer;
+ for (;;) {
+ if (N == Inner)
+ return true;
+ // For a TokenFactor, examine each operand. There may be multiple ways
+ // to get to the CALLSEQ_BEGIN, but we need to find the path with the
+ // most nesting in order to ensure that we find the corresponding match.
+ if (N->getOpcode() == ISD::TokenFactor) {
+ for (const SDValue &Op : N->op_values())
+ if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
+ return true;
+ return false;
+ }
+ // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
+ if (N->isMachineOpcode()) {
+ if (N->getMachineOpcode() ==
+ (unsigned)TII->getCallFrameDestroyOpcode()) {
+ ++NestLevel;
+ } else if (N->getMachineOpcode() ==
+ (unsigned)TII->getCallFrameSetupOpcode()) {
+ if (NestLevel == 0)
+ return false;
+ --NestLevel;
+ }
+ }
+ // Otherwise, find the chain and continue climbing.
+ for (const SDValue &Op : N->op_values())
+ if (Op.getValueType() == MVT::Other) {
+ N = Op.getNode();
+ goto found_chain_operand;
+ }
+ return false;
+ found_chain_operand:;
+ if (N->getOpcode() == ISD::EntryToken)
+ return false;
+ }
+}
+
+/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
+/// the corresponding (lowered) CALLSEQ_BEGIN node.
+///
+/// NestLevel and MaxNested are used in recursion to indcate the current level
+/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
+/// level seen so far.
+///
+/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
+/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
+static SDNode *
+FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
+ const TargetInstrInfo *TII) {
+ for (;;) {
+ // For a TokenFactor, examine each operand. There may be multiple ways
+ // to get to the CALLSEQ_BEGIN, but we need to find the path with the
+ // most nesting in order to ensure that we find the corresponding match.
+ if (N->getOpcode() == ISD::TokenFactor) {
+ SDNode *Best = nullptr;
+ unsigned BestMaxNest = MaxNest;
+ for (const SDValue &Op : N->op_values()) {
+ unsigned MyNestLevel = NestLevel;
+ unsigned MyMaxNest = MaxNest;
+ if (SDNode *New = FindCallSeqStart(Op.getNode(),
+ MyNestLevel, MyMaxNest, TII))
+ if (!Best || (MyMaxNest > BestMaxNest)) {
+ Best = New;
+ BestMaxNest = MyMaxNest;
+ }
+ }
+ assert(Best);
+ MaxNest = BestMaxNest;
+ return Best;
+ }
+ // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
+ if (N->isMachineOpcode()) {
+ if (N->getMachineOpcode() ==
+ (unsigned)TII->getCallFrameDestroyOpcode()) {
+ ++NestLevel;
+ MaxNest = std::max(MaxNest, NestLevel);
+ } else if (N->getMachineOpcode() ==
+ (unsigned)TII->getCallFrameSetupOpcode()) {
+ assert(NestLevel != 0);
+ --NestLevel;
+ if (NestLevel == 0)
+ return N;
+ }
+ }
+ // Otherwise, find the chain and continue climbing.
+ for (const SDValue &Op : N->op_values())
+ if (Op.getValueType() == MVT::Other) {
+ N = Op.getNode();
+ goto found_chain_operand;
+ }
+ return nullptr;
+ found_chain_operand:;
+ if (N->getOpcode() == ISD::EntryToken)
+ return nullptr;
+ }
+}
+
+/// Call ReleasePred for each predecessor, then update register live def/gen.
+/// Always update LiveRegDefs for a register dependence even if the current SU
+/// also defines the register. This effectively create one large live range
+/// across a sequence of two-address node. This is important because the
+/// entire chain must be scheduled together. Example:
+///
+/// flags = (3) add
+/// flags = (2) addc flags
+/// flags = (1) addc flags
+///
+/// results in
+///
+/// LiveRegDefs[flags] = 3
+/// LiveRegGens[flags] = 1
+///
+/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
+/// interference on flags.
+void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
+ // Bottom up: release predecessors
+ for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ ReleasePred(SU, &*I);
+ if (I->isAssignedRegDep()) {
+ // This is a physical register dependency and it's impossible or
+ // expensive to copy the register. Make sure nothing that can
+ // clobber the register is scheduled between the predecessor and
+ // this node.
+ SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
+ assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
+ "interference on register dependence");
+ LiveRegDefs[I->getReg()] = I->getSUnit();
+ if (!LiveRegGens[I->getReg()]) {
+ ++NumLiveRegs;
+ LiveRegGens[I->getReg()] = SU;
+ }
+ }
+ }
+
+ // If we're scheduling a lowered CALLSEQ_END, find the corresponding
+ // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
+ // these nodes, to prevent other calls from being interscheduled with them.
+ unsigned CallResource = TRI->getNumRegs();
+ if (!LiveRegDefs[CallResource])
+ for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
+ if (Node->isMachineOpcode() &&
+ Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
+ unsigned NestLevel = 0;
+ unsigned MaxNest = 0;
+ SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
+
+ SUnit *Def = &SUnits[N->getNodeId()];
+ CallSeqEndForStart[Def] = SU;
+
+ ++NumLiveRegs;
+ LiveRegDefs[CallResource] = Def;
+ LiveRegGens[CallResource] = SU;
+ break;
+ }
+}
+
+/// Check to see if any of the pending instructions are ready to issue. If
+/// so, add them to the available queue.
+void ScheduleDAGRRList::ReleasePending() {
+ if (DisableSchedCycles) {
+ assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
+ return;
+ }
+
+ // If the available queue is empty, it is safe to reset MinAvailableCycle.
+ if (AvailableQueue->empty())
+ MinAvailableCycle = UINT_MAX;
+
+ // Check to see if any of the pending instructions are ready to issue. If
+ // so, add them to the available queue.
+ for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
+ unsigned ReadyCycle = PendingQueue[i]->getHeight();
+ if (ReadyCycle < MinAvailableCycle)
+ MinAvailableCycle = ReadyCycle;
+
+ if (PendingQueue[i]->isAvailable) {
+ if (!isReady(PendingQueue[i]))
+ continue;
+ AvailableQueue->push(PendingQueue[i]);
+ }
+ PendingQueue[i]->isPending = false;
+ PendingQueue[i] = PendingQueue.back();
+ PendingQueue.pop_back();
+ --i; --e;
+ }
+}
+
+/// Move the scheduler state forward by the specified number of Cycles.
+void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
+ if (NextCycle <= CurCycle)
+ return;
+
+ IssueCount = 0;
+ AvailableQueue->setCurCycle(NextCycle);
+ if (!HazardRec->isEnabled()) {
+ // Bypass lots of virtual calls in case of long latency.
+ CurCycle = NextCycle;
+ }
+ else {
+ for (; CurCycle != NextCycle; ++CurCycle) {
+ HazardRec->RecedeCycle();
+ }
+ }
+ // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
+ // available Q to release pending nodes at least once before popping.
+ ReleasePending();
+}
+
+/// Move the scheduler state forward until the specified node's dependents are
+/// ready and can be scheduled with no resource conflicts.
+void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
+ if (DisableSchedCycles)
+ return;
+
+ // FIXME: Nodes such as CopyFromReg probably should not advance the current
+ // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
+ // has predecessors the cycle will be advanced when they are scheduled.
+ // But given the crude nature of modeling latency though such nodes, we
+ // currently need to treat these nodes like real instructions.
+ // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
+
+ unsigned ReadyCycle = SU->getHeight();
+
+ // Bump CurCycle to account for latency. We assume the latency of other
+ // available instructions may be hidden by the stall (not a full pipe stall).
+ // This updates the hazard recognizer's cycle before reserving resources for
+ // this instruction.
+ AdvanceToCycle(ReadyCycle);
+
+ // Calls are scheduled in their preceding cycle, so don't conflict with
+ // hazards from instructions after the call. EmitNode will reset the
+ // scoreboard state before emitting the call.
+ if (SU->isCall)
+ return;
+
+ // FIXME: For resource conflicts in very long non-pipelined stages, we
+ // should probably skip ahead here to avoid useless scoreboard checks.
+ int Stalls = 0;
+ while (true) {
+ ScheduleHazardRecognizer::HazardType HT =
+ HazardRec->getHazardType(SU, -Stalls);
+
+ if (HT == ScheduleHazardRecognizer::NoHazard)
+ break;
+
+ ++Stalls;
+ }
+ AdvanceToCycle(CurCycle + Stalls);
+}
+
+/// Record this SUnit in the HazardRecognizer.
+/// Does not update CurCycle.
+void ScheduleDAGRRList::EmitNode(SUnit *SU) {
+ if (!HazardRec->isEnabled())
+ return;
+
+ // Check for phys reg copy.
+ if (!SU->getNode())
+ return;
+
+ switch (SU->getNode()->getOpcode()) {
+ default:
+ assert(SU->getNode()->isMachineOpcode() &&
+ "This target-independent node should not be scheduled.");
+ break;
+ case ISD::MERGE_VALUES:
+ case ISD::TokenFactor:
+ case ISD::LIFETIME_START:
+ case ISD::LIFETIME_END:
+ case ISD::CopyToReg:
+ case ISD::CopyFromReg:
+ case ISD::EH_LABEL:
+ // Noops don't affect the scoreboard state. Copies are likely to be
+ // removed.
+ return;
+ case ISD::INLINEASM:
+ // For inline asm, clear the pipeline state.
+ HazardRec->Reset();
+ return;
+ }
+ if (SU->isCall) {
+ // Calls are scheduled with their preceding instructions. For bottom-up
+ // scheduling, clear the pipeline state before emitting.
+ HazardRec->Reset();
+ }
+
+ HazardRec->EmitInstruction(SU);
+}
+
+static void resetVRegCycle(SUnit *SU);
+
+/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
+/// count of its predecessors. If a predecessor pending count is zero, add it to
+/// the Available queue.
+void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
+ DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(SU->dump(this));
+
+#ifndef NDEBUG
+ if (CurCycle < SU->getHeight())
+ DEBUG(dbgs() << " Height [" << SU->getHeight()
+ << "] pipeline stall!\n");
+#endif
+
+ // FIXME: Do not modify node height. It may interfere with
+ // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
+ // node its ready cycle can aid heuristics, and after scheduling it can
+ // indicate the scheduled cycle.
+ SU->setHeightToAtLeast(CurCycle);
+
+ // Reserve resources for the scheduled instruction.
+ EmitNode(SU);
+
+ Sequence.push_back(SU);
+
+ AvailableQueue->scheduledNode(SU);
+
+ // If HazardRec is disabled, and each inst counts as one cycle, then
+ // advance CurCycle before ReleasePredecessors to avoid useless pushes to
+ // PendingQueue for schedulers that implement HasReadyFilter.
+ if (!HazardRec->isEnabled() && AvgIPC < 2)
+ AdvanceToCycle(CurCycle + 1);
+
+ // Update liveness of predecessors before successors to avoid treating a
+ // two-address node as a live range def.
+ ReleasePredecessors(SU);
+
+ // Release all the implicit physical register defs that are live.
+ for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I) {
+ // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
+ if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
+ assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
+ --NumLiveRegs;
+ LiveRegDefs[I->getReg()] = nullptr;
+ LiveRegGens[I->getReg()] = nullptr;
+ releaseInterferences(I->getReg());
+ }
+ }
+ // Release the special call resource dependence, if this is the beginning
+ // of a call.
+ unsigned CallResource = TRI->getNumRegs();
+ if (LiveRegDefs[CallResource] == SU)
+ for (const SDNode *SUNode = SU->getNode(); SUNode;
+ SUNode = SUNode->getGluedNode()) {
+ if (SUNode->isMachineOpcode() &&
+ SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
+ assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
+ --NumLiveRegs;
+ LiveRegDefs[CallResource] = nullptr;
+ LiveRegGens[CallResource] = nullptr;
+ releaseInterferences(CallResource);
+ }
+ }
+
+ resetVRegCycle(SU);
+
+ SU->isScheduled = true;
+
+ // Conditions under which the scheduler should eagerly advance the cycle:
+ // (1) No available instructions
+ // (2) All pipelines full, so available instructions must have hazards.
+ //
+ // If HazardRec is disabled, the cycle was pre-advanced before calling
+ // ReleasePredecessors. In that case, IssueCount should remain 0.
+ //
+ // Check AvailableQueue after ReleasePredecessors in case of zero latency.
+ if (HazardRec->isEnabled() || AvgIPC > 1) {
+ if (SU->getNode() && SU->getNode()->isMachineOpcode())
+ ++IssueCount;
+ if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
+ || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
+ AdvanceToCycle(CurCycle + 1);
+ }
+}
+
+/// CapturePred - This does the opposite of ReleasePred. Since SU is being
+/// unscheduled, incrcease the succ left count of its predecessors. Remove
+/// them from AvailableQueue if necessary.
+void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
+ SUnit *PredSU = PredEdge->getSUnit();
+ if (PredSU->isAvailable) {
+ PredSU->isAvailable = false;
+ if (!PredSU->isPending)
+ AvailableQueue->remove(PredSU);
+ }
+
+ assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
+ ++PredSU->NumSuccsLeft;
+}
+
+/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
+/// its predecessor states to reflect the change.
+void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
+ DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
+ DEBUG(SU->dump(this));
+
+ for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ CapturePred(&*I);
+ if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
+ assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
+ assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
+ "Physical register dependency violated?");
+ --NumLiveRegs;
+ LiveRegDefs[I->getReg()] = nullptr;
+ LiveRegGens[I->getReg()] = nullptr;
+ releaseInterferences(I->getReg());
+ }
+ }
+
+ // Reclaim the special call resource dependence, if this is the beginning
+ // of a call.
+ unsigned CallResource = TRI->getNumRegs();
+ for (const SDNode *SUNode = SU->getNode(); SUNode;
+ SUNode = SUNode->getGluedNode()) {
+ if (SUNode->isMachineOpcode() &&
+ SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
+ ++NumLiveRegs;
+ LiveRegDefs[CallResource] = SU;
+ LiveRegGens[CallResource] = CallSeqEndForStart[SU];
+ }
+ }
+
+ // Release the special call resource dependence, if this is the end
+ // of a call.
+ if (LiveRegGens[CallResource] == SU)
+ for (const SDNode *SUNode = SU->getNode(); SUNode;
+ SUNode = SUNode->getGluedNode()) {
+ if (SUNode->isMachineOpcode() &&
+ SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
+ assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
+ --NumLiveRegs;
+ LiveRegDefs[CallResource] = nullptr;
+ LiveRegGens[CallResource] = nullptr;
+ releaseInterferences(CallResource);
+ }
+ }
+
+ for (auto &Succ : SU->Succs) {
+ if (Succ.isAssignedRegDep()) {
+ auto Reg = Succ.getReg();
+ if (!LiveRegDefs[Reg])
+ ++NumLiveRegs;
+ // This becomes the nearest def. Note that an earlier def may still be
+ // pending if this is a two-address node.
+ LiveRegDefs[Reg] = SU;
+
+ // Update LiveRegGen only if was empty before this unscheduling.
+ // This is to avoid incorrect updating LiveRegGen set in previous run.
+ if (!LiveRegGens[Reg]) {
+ // Find the successor with the lowest height.
+ LiveRegGens[Reg] = Succ.getSUnit();
+ for (auto &Succ2 : SU->Succs) {
+ if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
+ Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
+ LiveRegGens[Reg] = Succ2.getSUnit();
+ }
+ }
+ }
+ }
+ if (SU->getHeight() < MinAvailableCycle)
+ MinAvailableCycle = SU->getHeight();
+
+ SU->setHeightDirty();
+ SU->isScheduled = false;
+ SU->isAvailable = true;
+ if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
+ // Don't make available until backtracking is complete.
+ SU->isPending = true;
+ PendingQueue.push_back(SU);
+ }
+ else {
+ AvailableQueue->push(SU);
+ }
+ AvailableQueue->unscheduledNode(SU);
+}
+
+/// After backtracking, the hazard checker needs to be restored to a state
+/// corresponding the current cycle.
+void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
+ HazardRec->Reset();
+
+ unsigned LookAhead = std::min((unsigned)Sequence.size(),
+ HazardRec->getMaxLookAhead());
+ if (LookAhead == 0)
+ return;
+
+ std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
+ unsigned HazardCycle = (*I)->getHeight();
+ for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
+ SUnit *SU = *I;
+ for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
+ HazardRec->RecedeCycle();
+ }
+ EmitNode(SU);
+ }
+}
+
+/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
+/// BTCycle in order to schedule a specific node.
+void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
+ SUnit *OldSU = Sequence.back();
+ while (true) {
+ Sequence.pop_back();
+ // FIXME: use ready cycle instead of height
+ CurCycle = OldSU->getHeight();
+ UnscheduleNodeBottomUp(OldSU);
+ AvailableQueue->setCurCycle(CurCycle);
+ if (OldSU == BtSU)
+ break;
+ OldSU = Sequence.back();
+ }
+
+ assert(!SU->isSucc(OldSU) && "Something is wrong!");
+
+ RestoreHazardCheckerBottomUp();
+
+ ReleasePending();
+
+ ++NumBacktracks;
+}
+
+static bool isOperandOf(const SUnit *SU, SDNode *N) {
+ for (const SDNode *SUNode = SU->getNode(); SUNode;
+ SUNode = SUNode->getGluedNode()) {
+ if (SUNode->isOperandOf(N))
+ return true;
+ }
+ return false;
+}
+
+/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
+/// successors to the newly created node.
+SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
+ SDNode *N = SU->getNode();
+ if (!N)
+ return nullptr;
+
+ if (SU->getNode()->getGluedNode())
+ return nullptr;
+
+ SUnit *NewSU;
+ bool TryUnfold = false;
+ for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
+ MVT VT = N->getSimpleValueType(i);
+ if (VT == MVT::Glue)
+ return nullptr;
+ else if (VT == MVT::Other)
+ TryUnfold = true;
+ }
+ for (const SDValue &Op : N->op_values()) {
+ MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
+ if (VT == MVT::Glue)
+ return nullptr;
+ }
+
+ if (TryUnfold) {
+ SmallVector<SDNode*, 2> NewNodes;
+ if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
+ return nullptr;
+
+ // unfolding an x86 DEC64m operation results in store, dec, load which
+ // can't be handled here so quit
+ if (NewNodes.size() == 3)
+ return nullptr;
+
+ DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
+ assert(NewNodes.size() == 2 && "Expected a load folding node!");
+
+ N = NewNodes[1];
+ SDNode *LoadNode = NewNodes[0];
+ unsigned NumVals = N->getNumValues();
+ unsigned OldNumVals = SU->getNode()->getNumValues();
+ for (unsigned i = 0; i != NumVals; ++i)
+ DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
+ DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
+ SDValue(LoadNode, 1));
+
+ // LoadNode may already exist. This can happen when there is another
+ // load from the same location and producing the same type of value
+ // but it has different alignment or volatileness.
+ bool isNewLoad = true;
+ SUnit *LoadSU;
+ if (LoadNode->getNodeId() != -1) {
+ LoadSU = &SUnits[LoadNode->getNodeId()];
+ isNewLoad = false;
+ } else {
+ LoadSU = CreateNewSUnit(LoadNode);
+ LoadNode->setNodeId(LoadSU->NodeNum);
+
+ InitNumRegDefsLeft(LoadSU);
+ computeLatency(LoadSU);
+ }
+
+ SUnit *NewSU = CreateNewSUnit(N);
+ assert(N->getNodeId() == -1 && "Node already inserted!");
+ N->setNodeId(NewSU->NodeNum);
+
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+ for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
+ if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
+ NewSU->isTwoAddress = true;
+ break;
+ }
+ }
+ if (MCID.isCommutable())
+ NewSU->isCommutable = true;
+
+ InitNumRegDefsLeft(NewSU);
+ computeLatency(NewSU);
+
+ // Record all the edges to and from the old SU, by category.
+ SmallVector<SDep, 4> ChainPreds;
+ SmallVector<SDep, 4> ChainSuccs;
+ SmallVector<SDep, 4> LoadPreds;
+ SmallVector<SDep, 4> NodePreds;
+ SmallVector<SDep, 4> NodeSuccs;
+ for (SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl())
+ ChainPreds.push_back(Pred);
+ else if (isOperandOf(Pred.getSUnit(), LoadNode))
+ LoadPreds.push_back(Pred);
+ else
+ NodePreds.push_back(Pred);
+ }
+ for (SDep &Succ : SU->Succs) {
+ if (Succ.isCtrl())
+ ChainSuccs.push_back(Succ);
+ else
+ NodeSuccs.push_back(Succ);
+ }
+
+ // Now assign edges to the newly-created nodes.
+ for (const SDep &Pred : ChainPreds) {
+ RemovePred(SU, Pred);
+ if (isNewLoad)
+ AddPred(LoadSU, Pred);
+ }
+ for (const SDep &Pred : LoadPreds) {
+ RemovePred(SU, Pred);
+ if (isNewLoad)
+ AddPred(LoadSU, Pred);
+ }
+ for (const SDep &Pred : NodePreds) {
+ RemovePred(SU, Pred);
+ AddPred(NewSU, Pred);
+ }
+ for (SDep D : NodeSuccs) {
+ SUnit *SuccDep = D.getSUnit();
+ D.setSUnit(SU);
+ RemovePred(SuccDep, D);
+ D.setSUnit(NewSU);
+ AddPred(SuccDep, D);
+ // Balance register pressure.
+ if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
+ && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
+ --NewSU->NumRegDefsLeft;
+ }
+ for (SDep D : ChainSuccs) {
+ SUnit *SuccDep = D.getSUnit();
+ D.setSUnit(SU);
+ RemovePred(SuccDep, D);
+ if (isNewLoad) {
+ D.setSUnit(LoadSU);
+ AddPred(SuccDep, D);
+ }
+ }
+
+ // Add a data dependency to reflect that NewSU reads the value defined
+ // by LoadSU.
+ SDep D(LoadSU, SDep::Data, 0);
+ D.setLatency(LoadSU->Latency);
+ AddPred(NewSU, D);
+
+ if (isNewLoad)
+ AvailableQueue->addNode(LoadSU);
+ AvailableQueue->addNode(NewSU);
+
+ ++NumUnfolds;
+
+ if (NewSU->NumSuccsLeft == 0) {
+ NewSU->isAvailable = true;
+ return NewSU;
+ }
+ SU = NewSU;
+ }
+
+ DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n");
+ NewSU = CreateClone(SU);
+
+ // New SUnit has the exact same predecessors.
+ for (SDep &Pred : SU->Preds)
+ if (!Pred.isArtificial())
+ AddPred(NewSU, Pred);
+
+ // Only copy scheduled successors. Cut them from old node's successor
+ // list and move them over.
+ SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
+ for (SDep &Succ : SU->Succs) {
+ if (Succ.isArtificial())
+ continue;
+ SUnit *SuccSU = Succ.getSUnit();
+ if (SuccSU->isScheduled) {
+ SDep D = Succ;
+ D.setSUnit(NewSU);
+ AddPred(SuccSU, D);
+ D.setSUnit(SU);
+ DelDeps.push_back(std::make_pair(SuccSU, D));
+ }
+ }
+ for (auto &DelDep : DelDeps)
+ RemovePred(DelDep.first, DelDep.second);
+
+ AvailableQueue->updateNode(SU);
+ AvailableQueue->addNode(NewSU);
+
+ ++NumDups;
+ return NewSU;
+}
+
+/// InsertCopiesAndMoveSuccs - Insert register copies and move all
+/// scheduled successors of the given SUnit to the last copy.
+void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC,
+ SmallVectorImpl<SUnit*> &Copies) {
+ SUnit *CopyFromSU = CreateNewSUnit(nullptr);
+ CopyFromSU->CopySrcRC = SrcRC;
+ CopyFromSU->CopyDstRC = DestRC;
+
+ SUnit *CopyToSU = CreateNewSUnit(nullptr);
+ CopyToSU->CopySrcRC = DestRC;
+ CopyToSU->CopyDstRC = SrcRC;
+
+ // Only copy scheduled successors. Cut them from old node's successor
+ // list and move them over.
+ SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
+ for (SDep &Succ : SU->Succs) {
+ if (Succ.isArtificial())
+ continue;
+ SUnit *SuccSU = Succ.getSUnit();
+ if (SuccSU->isScheduled) {
+ SDep D = Succ;
+ D.setSUnit(CopyToSU);
+ AddPred(SuccSU, D);
+ DelDeps.push_back(std::make_pair(SuccSU, Succ));
+ }
+ else {
+ // Avoid scheduling the def-side copy before other successors. Otherwise
+ // we could introduce another physreg interference on the copy and
+ // continue inserting copies indefinitely.
+ AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
+ }
+ }
+ for (auto &DelDep : DelDeps)
+ RemovePred(DelDep.first, DelDep.second);
+
+ SDep FromDep(SU, SDep::Data, Reg);
+ FromDep.setLatency(SU->Latency);
+ AddPred(CopyFromSU, FromDep);
+ SDep ToDep(CopyFromSU, SDep::Data, 0);
+ ToDep.setLatency(CopyFromSU->Latency);
+ AddPred(CopyToSU, ToDep);
+
+ AvailableQueue->updateNode(SU);
+ AvailableQueue->addNode(CopyFromSU);
+ AvailableQueue->addNode(CopyToSU);
+ Copies.push_back(CopyFromSU);
+ Copies.push_back(CopyToSU);
+
+ ++NumPRCopies;
+}
+
+/// getPhysicalRegisterVT - Returns the ValueType of the physical register
+/// definition of the specified node.
+/// FIXME: Move to SelectionDAG?
+static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
+ const TargetInstrInfo *TII) {
+ unsigned NumRes;
+ if (N->getOpcode() == ISD::CopyFromReg) {
+ // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
+ NumRes = 1;
+ } else {
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+ assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
+ NumRes = MCID.getNumDefs();
+ for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
+ if (Reg == *ImpDef)
+ break;
+ ++NumRes;
+ }
+ }
+ return N->getSimpleValueType(NumRes);
+}
+
+/// CheckForLiveRegDef - Return true and update live register vector if the
+/// specified register def of the specified SUnit clobbers any "live" registers.
+static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
+ SUnit **LiveRegDefs,
+ SmallSet<unsigned, 4> &RegAdded,
+ SmallVectorImpl<unsigned> &LRegs,
+ const TargetRegisterInfo *TRI) {
+ for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
+
+ // Check if Ref is live.
+ if (!LiveRegDefs[*AliasI]) continue;
+
+ // Allow multiple uses of the same def.
+ if (LiveRegDefs[*AliasI] == SU) continue;
+
+ // Add Reg to the set of interfering live regs.
+ if (RegAdded.insert(*AliasI).second) {
+ LRegs.push_back(*AliasI);
+ }
+ }
+}
+
+/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
+/// by RegMask, and add them to LRegs.
+static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
+ ArrayRef<SUnit*> LiveRegDefs,
+ SmallSet<unsigned, 4> &RegAdded,
+ SmallVectorImpl<unsigned> &LRegs) {
+ // Look at all live registers. Skip Reg0 and the special CallResource.
+ for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
+ if (!LiveRegDefs[i]) continue;
+ if (LiveRegDefs[i] == SU) continue;
+ if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
+ if (RegAdded.insert(i).second)
+ LRegs.push_back(i);
+ }
+}
+
+/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
+static const uint32_t *getNodeRegMask(const SDNode *N) {
+ for (const SDValue &Op : N->op_values())
+ if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
+ return RegOp->getRegMask();
+ return nullptr;
+}
+
+/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
+/// scheduling of the given node to satisfy live physical register dependencies.
+/// If the specific node is the last one that's available to schedule, do
+/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
+bool ScheduleDAGRRList::
+DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
+ if (NumLiveRegs == 0)
+ return false;
+
+ SmallSet<unsigned, 4> RegAdded;
+ // If this node would clobber any "live" register, then it's not ready.
+ //
+ // If SU is the currently live definition of the same register that it uses,
+ // then we are free to schedule it.
+ for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
+ CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs.get(),
+ RegAdded, LRegs, TRI);
+ }
+
+ for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
+ if (Node->getOpcode() == ISD::INLINEASM) {
+ // Inline asm can clobber physical defs.
+ unsigned NumOps = Node->getNumOperands();
+ if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
+ --NumOps; // Ignore the glue operand.
+
+ for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
+ unsigned Flags =
+ cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
+ unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
+
+ ++i; // Skip the ID value.
+ if (InlineAsm::isRegDefKind(Flags) ||
+ InlineAsm::isRegDefEarlyClobberKind(Flags) ||
+ InlineAsm::isClobberKind(Flags)) {
+ // Check for def of register or earlyclobber register.
+ for (; NumVals; --NumVals, ++i) {
+ unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
+ }
+ } else
+ i += NumVals;
+ }
+ continue;
+ }
+
+ if (!Node->isMachineOpcode())
+ continue;
+ // If we're in the middle of scheduling a call, don't begin scheduling
+ // another call. Also, don't allow any physical registers to be live across
+ // the call.
+ if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
+ // Check the special calling-sequence resource.
+ unsigned CallResource = TRI->getNumRegs();
+ if (LiveRegDefs[CallResource]) {
+ SDNode *Gen = LiveRegGens[CallResource]->getNode();
+ while (SDNode *Glued = Gen->getGluedNode())
+ Gen = Glued;
+ if (!IsChainDependent(Gen, Node, 0, TII) &&
+ RegAdded.insert(CallResource).second)
+ LRegs.push_back(CallResource);
+ }
+ }
+ if (const uint32_t *RegMask = getNodeRegMask(Node))
+ CheckForLiveRegDefMasked(SU, RegMask,
+ makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
+ RegAdded, LRegs);
+
+ const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
+ if (!MCID.ImplicitDefs)
+ continue;
+ for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
+ CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
+ }
+
+ return !LRegs.empty();
+}
+
+void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
+ // Add the nodes that aren't ready back onto the available list.
+ for (unsigned i = Interferences.size(); i > 0; --i) {
+ SUnit *SU = Interferences[i-1];
+ LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
+ if (Reg) {
+ SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
+ if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
+ continue;
+ }
+ SU->isPending = false;
+ // The interfering node may no longer be available due to backtracking.
+ // Furthermore, it may have been made available again, in which case it is
+ // now already in the AvailableQueue.
+ if (SU->isAvailable && !SU->NodeQueueId) {
+ DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n');
+ AvailableQueue->push(SU);
+ }
+ if (i < Interferences.size())
+ Interferences[i-1] = Interferences.back();
+ Interferences.pop_back();
+ LRegsMap.erase(LRegsPos);
+ }
+}
+
+/// Return a node that can be scheduled in this cycle. Requirements:
+/// (1) Ready: latency has been satisfied
+/// (2) No Hazards: resources are available
+/// (3) No Interferences: may unschedule to break register interferences.
+SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
+ SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
+ while (CurSU) {
+ SmallVector<unsigned, 4> LRegs;
+ if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
+ break;
+ DEBUG(dbgs() << " Interfering reg " <<
+ (LRegs[0] == TRI->getNumRegs() ? "CallResource"
+ : TRI->getName(LRegs[0]))
+ << " SU #" << CurSU->NodeNum << '\n');
+ std::pair<LRegsMapT::iterator, bool> LRegsPair =
+ LRegsMap.insert(std::make_pair(CurSU, LRegs));
+ if (LRegsPair.second) {
+ CurSU->isPending = true; // This SU is not in AvailableQueue right now.
+ Interferences.push_back(CurSU);
+ }
+ else {
+ assert(CurSU->isPending && "Interferences are pending");
+ // Update the interference with current live regs.
+ LRegsPair.first->second = LRegs;
+ }
+ CurSU = AvailableQueue->pop();
+ }
+ if (CurSU)
+ return CurSU;
+
+ // All candidates are delayed due to live physical reg dependencies.
+ // Try backtracking, code duplication, or inserting cross class copies
+ // to resolve it.
+ for (SUnit *TrySU : Interferences) {
+ SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
+
+ // Try unscheduling up to the point where it's safe to schedule
+ // this node.
+ SUnit *BtSU = nullptr;
+ unsigned LiveCycle = UINT_MAX;
+ for (unsigned Reg : LRegs) {
+ if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
+ BtSU = LiveRegGens[Reg];
+ LiveCycle = BtSU->getHeight();
+ }
+ }
+ if (!WillCreateCycle(TrySU, BtSU)) {
+ // BacktrackBottomUp mutates Interferences!
+ BacktrackBottomUp(TrySU, BtSU);
+
+ // Force the current node to be scheduled before the node that
+ // requires the physical reg dep.
+ if (BtSU->isAvailable) {
+ BtSU->isAvailable = false;
+ if (!BtSU->isPending)
+ AvailableQueue->remove(BtSU);
+ }
+ DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
+ << TrySU->NodeNum << ")\n");
+ AddPred(TrySU, SDep(BtSU, SDep::Artificial));
+
+ // If one or more successors has been unscheduled, then the current
+ // node is no longer available.
+ if (!TrySU->isAvailable || !TrySU->NodeQueueId)
+ CurSU = AvailableQueue->pop();
+ else {
+ // Available and in AvailableQueue
+ AvailableQueue->remove(TrySU);
+ CurSU = TrySU;
+ }
+ // Interferences has been mutated. We must break.
+ break;
+ }
+ }
+
+ if (!CurSU) {
+ // Can't backtrack. If it's too expensive to copy the value, then try
+ // duplicate the nodes that produces these "too expensive to copy"
+ // values to break the dependency. In case even that doesn't work,
+ // insert cross class copies.
+ // If it's not too expensive, i.e. cost != -1, issue copies.
+ SUnit *TrySU = Interferences[0];
+ SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
+ assert(LRegs.size() == 1 && "Can't handle this yet!");
+ unsigned Reg = LRegs[0];
+ SUnit *LRDef = LiveRegDefs[Reg];
+ MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
+ const TargetRegisterClass *RC =
+ TRI->getMinimalPhysRegClass(Reg, VT);
+ const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
+
+ // If cross copy register class is the same as RC, then it must be possible
+ // copy the value directly. Do not try duplicate the def.
+ // If cross copy register class is not the same as RC, then it's possible to
+ // copy the value but it require cross register class copies and it is
+ // expensive.
+ // If cross copy register class is null, then it's not possible to copy
+ // the value at all.
+ SUnit *NewDef = nullptr;
+ if (DestRC != RC) {
+ NewDef = CopyAndMoveSuccessors(LRDef);
+ if (!DestRC && !NewDef)
+ report_fatal_error("Can't handle live physical register dependency!");
+ }
+ if (!NewDef) {
+ // Issue copies, these can be expensive cross register class copies.
+ SmallVector<SUnit*, 2> Copies;
+ InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
+ DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum
+ << " to SU #" << Copies.front()->NodeNum << "\n");
+ AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
+ NewDef = Copies.back();
+ }
+
+ DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum
+ << " to SU #" << TrySU->NodeNum << "\n");
+ LiveRegDefs[Reg] = NewDef;
+ AddPred(NewDef, SDep(TrySU, SDep::Artificial));
+ TrySU->isAvailable = false;
+ CurSU = NewDef;
+ }
+ assert(CurSU && "Unable to resolve live physical register dependencies!");
+ return CurSU;
+}
+
+/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
+/// schedulers.
+void ScheduleDAGRRList::ListScheduleBottomUp() {
+ // Release any predecessors of the special Exit node.
+ ReleasePredecessors(&ExitSU);
+
+ // Add root to Available queue.
+ if (!SUnits.empty()) {
+ SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
+ assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
+ RootSU->isAvailable = true;
+ AvailableQueue->push(RootSU);
+ }
+
+ // While Available queue is not empty, grab the node with the highest
+ // priority. If it is not ready put it back. Schedule the node.
+ Sequence.reserve(SUnits.size());
+ while (!AvailableQueue->empty() || !Interferences.empty()) {
+ DEBUG(dbgs() << "\nExamining Available:\n";
+ AvailableQueue->dump(this));
+
+ // Pick the best node to schedule taking all constraints into
+ // consideration.
+ SUnit *SU = PickNodeToScheduleBottomUp();
+
+ AdvancePastStalls(SU);
+
+ ScheduleNodeBottomUp(SU);
+
+ while (AvailableQueue->empty() && !PendingQueue.empty()) {
+ // Advance the cycle to free resources. Skip ahead to the next ready SU.
+ assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
+ AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
+ }
+ }
+
+ // Reverse the order if it is bottom up.
+ std::reverse(Sequence.begin(), Sequence.end());
+
+#ifndef NDEBUG
+ VerifyScheduledSequence(/*isBottomUp=*/true);
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// RegReductionPriorityQueue Definition
+//===----------------------------------------------------------------------===//
+//
+// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
+// to reduce register pressure.
+//
+namespace {
+class RegReductionPQBase;
+
+struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
+ bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
+};
+
+#ifndef NDEBUG
+template<class SF>
+struct reverse_sort : public queue_sort {
+ SF &SortFunc;
+ reverse_sort(SF &sf) : SortFunc(sf) {}
+
+ bool operator()(SUnit* left, SUnit* right) const {
+ // reverse left/right rather than simply !SortFunc(left, right)
+ // to expose different paths in the comparison logic.
+ return SortFunc(right, left);
+ }
+};
+#endif // NDEBUG
+
+/// bu_ls_rr_sort - Priority function for bottom up register pressure
+// reduction scheduler.
+struct bu_ls_rr_sort : public queue_sort {
+ enum {
+ IsBottomUp = true,
+ HasReadyFilter = false
+ };
+
+ RegReductionPQBase *SPQ;
+ bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
+
+ bool operator()(SUnit* left, SUnit* right) const;
+};
+
+// src_ls_rr_sort - Priority function for source order scheduler.
+struct src_ls_rr_sort : public queue_sort {
+ enum {
+ IsBottomUp = true,
+ HasReadyFilter = false
+ };
+
+ RegReductionPQBase *SPQ;
+ src_ls_rr_sort(RegReductionPQBase *spq)
+ : SPQ(spq) {}
+
+ bool operator()(SUnit* left, SUnit* right) const;
+};
+
+// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
+struct hybrid_ls_rr_sort : public queue_sort {
+ enum {
+ IsBottomUp = true,
+ HasReadyFilter = false
+ };
+
+ RegReductionPQBase *SPQ;
+ hybrid_ls_rr_sort(RegReductionPQBase *spq)
+ : SPQ(spq) {}
+
+ bool isReady(SUnit *SU, unsigned CurCycle) const;
+
+ bool operator()(SUnit* left, SUnit* right) const;
+};
+
+// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
+// scheduler.
+struct ilp_ls_rr_sort : public queue_sort {
+ enum {
+ IsBottomUp = true,
+ HasReadyFilter = false
+ };
+
+ RegReductionPQBase *SPQ;
+ ilp_ls_rr_sort(RegReductionPQBase *spq)
+ : SPQ(spq) {}
+
+ bool isReady(SUnit *SU, unsigned CurCycle) const;
+
+ bool operator()(SUnit* left, SUnit* right) const;
+};
+
+class RegReductionPQBase : public SchedulingPriorityQueue {
+protected:
+ std::vector<SUnit*> Queue;
+ unsigned CurQueueId;
+ bool TracksRegPressure;
+ bool SrcOrder;
+
+ // SUnits - The SUnits for the current graph.
+ std::vector<SUnit> *SUnits;
+
+ MachineFunction &MF;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const TargetLowering *TLI;
+ ScheduleDAGRRList *scheduleDAG;
+
+ // SethiUllmanNumbers - The SethiUllman number for each node.
+ std::vector<unsigned> SethiUllmanNumbers;
+
+ /// RegPressure - Tracking current reg pressure per register class.
+ ///
+ std::vector<unsigned> RegPressure;
+
+ /// RegLimit - Tracking the number of allocatable registers per register
+ /// class.
+ std::vector<unsigned> RegLimit;
+
+public:
+ RegReductionPQBase(MachineFunction &mf,
+ bool hasReadyFilter,
+ bool tracksrp,
+ bool srcorder,
+ const TargetInstrInfo *tii,
+ const TargetRegisterInfo *tri,
+ const TargetLowering *tli)
+ : SchedulingPriorityQueue(hasReadyFilter),
+ CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
+ MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(nullptr) {
+ if (TracksRegPressure) {
+ unsigned NumRC = TRI->getNumRegClasses();
+ RegLimit.resize(NumRC);
+ RegPressure.resize(NumRC);
+ std::fill(RegLimit.begin(), RegLimit.end(), 0);
+ std::fill(RegPressure.begin(), RegPressure.end(), 0);
+ for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
+ E = TRI->regclass_end(); I != E; ++I)
+ RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
+ }
+ }
+
+ void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
+ scheduleDAG = scheduleDag;
+ }
+
+ ScheduleHazardRecognizer* getHazardRec() {
+ return scheduleDAG->getHazardRec();
+ }
+
+ void initNodes(std::vector<SUnit> &sunits) override;
+
+ void addNode(const SUnit *SU) override;
+
+ void updateNode(const SUnit *SU) override;
+
+ void releaseState() override {
+ SUnits = nullptr;
+ SethiUllmanNumbers.clear();
+ std::fill(RegPressure.begin(), RegPressure.end(), 0);
+ }
+
+ unsigned getNodePriority(const SUnit *SU) const;
+
+ unsigned getNodeOrdering(const SUnit *SU) const {
+ if (!SU->getNode()) return 0;
+
+ return SU->getNode()->getIROrder();
+ }
+
+ bool empty() const override { return Queue.empty(); }
+
+ void push(SUnit *U) override {
+ assert(!U->NodeQueueId && "Node in the queue already");
+ U->NodeQueueId = ++CurQueueId;
+ Queue.push_back(U);
+ }
+
+ void remove(SUnit *SU) override {
+ assert(!Queue.empty() && "Queue is empty!");
+ assert(SU->NodeQueueId != 0 && "Not in queue!");
+ std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
+ SU);
+ if (I != std::prev(Queue.end()))
+ std::swap(*I, Queue.back());
+ Queue.pop_back();
+ SU->NodeQueueId = 0;
+ }
+
+ bool tracksRegPressure() const override { return TracksRegPressure; }
+
+ void dumpRegPressure() const;
+
+ bool HighRegPressure(const SUnit *SU) const;
+
+ bool MayReduceRegPressure(SUnit *SU) const;
+
+ int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
+
+ void scheduledNode(SUnit *SU) override;
+
+ void unscheduledNode(SUnit *SU) override;
+
+protected:
+ bool canClobber(const SUnit *SU, const SUnit *Op);
+ void AddPseudoTwoAddrDeps();
+ void PrescheduleNodesWithMultipleUses();
+ void CalculateSethiUllmanNumbers();
+};
+
+template<class SF>
+static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
+ std::vector<SUnit *>::iterator Best = Q.begin();
+ for (std::vector<SUnit *>::iterator I = std::next(Q.begin()),
+ E = Q.end(); I != E; ++I)
+ if (Picker(*Best, *I))
+ Best = I;
+ SUnit *V = *Best;
+ if (Best != std::prev(Q.end()))
+ std::swap(*Best, Q.back());
+ Q.pop_back();
+ return V;
+}
+
+template<class SF>
+SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
+#ifndef NDEBUG
+ if (DAG->StressSched) {
+ reverse_sort<SF> RPicker(Picker);
+ return popFromQueueImpl(Q, RPicker);
+ }
+#endif
+ (void)DAG;
+ return popFromQueueImpl(Q, Picker);
+}
+
+template<class SF>
+class RegReductionPriorityQueue : public RegReductionPQBase {
+ SF Picker;
+
+public:
+ RegReductionPriorityQueue(MachineFunction &mf,
+ bool tracksrp,
+ bool srcorder,
+ const TargetInstrInfo *tii,
+ const TargetRegisterInfo *tri,
+ const TargetLowering *tli)
+ : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
+ tii, tri, tli),
+ Picker(this) {}
+
+ bool isBottomUp() const override { return SF::IsBottomUp; }
+
+ bool isReady(SUnit *U) const override {
+ return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
+ }
+
+ SUnit *pop() override {
+ if (Queue.empty()) return nullptr;
+
+ SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
+ V->NodeQueueId = 0;
+ return V;
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ void dump(ScheduleDAG *DAG) const override {
+ // Emulate pop() without clobbering NodeQueueIds.
+ std::vector<SUnit*> DumpQueue = Queue;
+ SF DumpPicker = Picker;
+ while (!DumpQueue.empty()) {
+ SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
+ dbgs() << "Height " << SU->getHeight() << ": ";
+ SU->dump(DAG);
+ }
+ }
+#endif
+};
+
+typedef RegReductionPriorityQueue<bu_ls_rr_sort>
+BURegReductionPriorityQueue;
+
+typedef RegReductionPriorityQueue<src_ls_rr_sort>
+SrcRegReductionPriorityQueue;
+
+typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
+HybridBURRPriorityQueue;
+
+typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
+ILPBURRPriorityQueue;
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Static Node Priority for Register Pressure Reduction
+//===----------------------------------------------------------------------===//
+
+// Check for special nodes that bypass scheduling heuristics.
+// Currently this pushes TokenFactor nodes down, but may be used for other
+// pseudo-ops as well.
+//
+// Return -1 to schedule right above left, 1 for left above right.
+// Return 0 if no bias exists.
+static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
+ bool LSchedLow = left->isScheduleLow;
+ bool RSchedLow = right->isScheduleLow;
+ if (LSchedLow != RSchedLow)
+ return LSchedLow < RSchedLow ? 1 : -1;
+ return 0;
+}
+
+/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
+/// Smaller number is the higher priority.
+static unsigned
+CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
+ unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
+ if (SethiUllmanNumber != 0)
+ return SethiUllmanNumber;
+
+ unsigned Extra = 0;
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl()) continue; // ignore chain preds
+ SUnit *PredSU = Pred.getSUnit();
+ unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
+ if (PredSethiUllman > SethiUllmanNumber) {
+ SethiUllmanNumber = PredSethiUllman;
+ Extra = 0;
+ } else if (PredSethiUllman == SethiUllmanNumber)
+ ++Extra;
+ }
+
+ SethiUllmanNumber += Extra;
+
+ if (SethiUllmanNumber == 0)
+ SethiUllmanNumber = 1;
+
+ return SethiUllmanNumber;
+}
+
+/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
+/// scheduling units.
+void RegReductionPQBase::CalculateSethiUllmanNumbers() {
+ SethiUllmanNumbers.assign(SUnits->size(), 0);
+
+ for (const SUnit &SU : *SUnits)
+ CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
+}
+
+void RegReductionPQBase::addNode(const SUnit *SU) {
+ unsigned SUSize = SethiUllmanNumbers.size();
+ if (SUnits->size() > SUSize)
+ SethiUllmanNumbers.resize(SUSize*2, 0);
+ CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
+}
+
+void RegReductionPQBase::updateNode(const SUnit *SU) {
+ SethiUllmanNumbers[SU->NodeNum] = 0;
+ CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
+}
+
+// Lower priority means schedule further down. For bottom-up scheduling, lower
+// priority SUs are scheduled before higher priority SUs.
+unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
+ assert(SU->NodeNum < SethiUllmanNumbers.size());
+ unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
+ if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
+ // CopyToReg should be close to its uses to facilitate coalescing and
+ // avoid spilling.
+ return 0;
+ if (Opc == TargetOpcode::EXTRACT_SUBREG ||
+ Opc == TargetOpcode::SUBREG_TO_REG ||
+ Opc == TargetOpcode::INSERT_SUBREG)
+ // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
+ // close to their uses to facilitate coalescing.
+ return 0;
+ if (SU->NumSuccs == 0 && SU->NumPreds != 0)
+ // If SU does not have a register use, i.e. it doesn't produce a value
+ // that would be consumed (e.g. store), then it terminates a chain of
+ // computation. Give it a large SethiUllman number so it will be
+ // scheduled right before its predecessors that it doesn't lengthen
+ // their live ranges.
+ return 0xffff;
+ if (SU->NumPreds == 0 && SU->NumSuccs != 0)
+ // If SU does not have a register def, schedule it close to its uses
+ // because it does not lengthen any live ranges.
+ return 0;
+#if 1
+ return SethiUllmanNumbers[SU->NodeNum];
+#else
+ unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
+ if (SU->isCallOp) {
+ // FIXME: This assumes all of the defs are used as call operands.
+ int NP = (int)Priority - SU->getNode()->getNumValues();
+ return (NP > 0) ? NP : 0;
+ }
+ return Priority;
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Register Pressure Tracking
+//===----------------------------------------------------------------------===//
+
+void RegReductionPQBase::dumpRegPressure() const {
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
+ E = TRI->regclass_end(); I != E; ++I) {
+ const TargetRegisterClass *RC = *I;
+ unsigned Id = RC->getID();
+ unsigned RP = RegPressure[Id];
+ if (!RP) continue;
+ DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
+ << RegLimit[Id] << '\n');
+ }
+#endif
+}
+
+bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
+ if (!TLI)
+ return false;
+
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl())
+ continue;
+ SUnit *PredSU = Pred.getSUnit();
+ // NumRegDefsLeft is zero when enough uses of this node have been scheduled
+ // to cover the number of registers defined (they are all live).
+ if (PredSU->NumRegDefsLeft == 0) {
+ continue;
+ }
+ for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
+ RegDefPos.IsValid(); RegDefPos.Advance()) {
+ unsigned RCId, Cost;
+ GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
+
+ if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
+ return true;
+ }
+ }
+ return false;
+}
+
+bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
+ const SDNode *N = SU->getNode();
+
+ if (!N->isMachineOpcode() || !SU->NumSuccs)
+ return false;
+
+ unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
+ for (unsigned i = 0; i != NumDefs; ++i) {
+ MVT VT = N->getSimpleValueType(i);
+ if (!N->hasAnyUseOfValue(i))
+ continue;
+ unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
+ if (RegPressure[RCId] >= RegLimit[RCId])
+ return true;
+ }
+ return false;
+}
+
+// Compute the register pressure contribution by this instruction by count up
+// for uses that are not live and down for defs. Only count register classes
+// that are already under high pressure. As a side effect, compute the number of
+// uses of registers that are already live.
+//
+// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
+// so could probably be factored.
+int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
+ LiveUses = 0;
+ int PDiff = 0;
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl())
+ continue;
+ SUnit *PredSU = Pred.getSUnit();
+ // NumRegDefsLeft is zero when enough uses of this node have been scheduled
+ // to cover the number of registers defined (they are all live).
+ if (PredSU->NumRegDefsLeft == 0) {
+ if (PredSU->getNode()->isMachineOpcode())
+ ++LiveUses;
+ continue;
+ }
+ for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
+ RegDefPos.IsValid(); RegDefPos.Advance()) {
+ MVT VT = RegDefPos.GetValue();
+ unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
+ if (RegPressure[RCId] >= RegLimit[RCId])
+ ++PDiff;
+ }
+ }
+ const SDNode *N = SU->getNode();
+
+ if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
+ return PDiff;
+
+ unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
+ for (unsigned i = 0; i != NumDefs; ++i) {
+ MVT VT = N->getSimpleValueType(i);
+ if (!N->hasAnyUseOfValue(i))
+ continue;
+ unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
+ if (RegPressure[RCId] >= RegLimit[RCId])
+ --PDiff;
+ }
+ return PDiff;
+}
+
+void RegReductionPQBase::scheduledNode(SUnit *SU) {
+ if (!TracksRegPressure)
+ return;
+
+ if (!SU->getNode())
+ return;
+
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl())
+ continue;
+ SUnit *PredSU = Pred.getSUnit();
+ // NumRegDefsLeft is zero when enough uses of this node have been scheduled
+ // to cover the number of registers defined (they are all live).
+ if (PredSU->NumRegDefsLeft == 0) {
+ continue;
+ }
+ // FIXME: The ScheduleDAG currently loses information about which of a
+ // node's values is consumed by each dependence. Consequently, if the node
+ // defines multiple register classes, we don't know which to pressurize
+ // here. Instead the following loop consumes the register defs in an
+ // arbitrary order. At least it handles the common case of clustered loads
+ // to the same class. For precise liveness, each SDep needs to indicate the
+ // result number. But that tightly couples the ScheduleDAG with the
+ // SelectionDAG making updates tricky. A simpler hack would be to attach a
+ // value type or register class to SDep.
+ //
+ // The most important aspect of register tracking is balancing the increase
+ // here with the reduction further below. Note that this SU may use multiple
+ // defs in PredSU. The can't be determined here, but we've already
+ // compensated by reducing NumRegDefsLeft in PredSU during
+ // ScheduleDAGSDNodes::AddSchedEdges.
+ --PredSU->NumRegDefsLeft;
+ unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
+ for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
+ RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
+ if (SkipRegDefs)
+ continue;
+
+ unsigned RCId, Cost;
+ GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
+ RegPressure[RCId] += Cost;
+ break;
+ }
+ }
+
+ // We should have this assert, but there may be dead SDNodes that never
+ // materialize as SUnits, so they don't appear to generate liveness.
+ //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
+ int SkipRegDefs = (int)SU->NumRegDefsLeft;
+ for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
+ RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
+ if (SkipRegDefs > 0)
+ continue;
+ unsigned RCId, Cost;
+ GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
+ if (RegPressure[RCId] < Cost) {
+ // Register pressure tracking is imprecise. This can happen. But we try
+ // hard not to let it happen because it likely results in poor scheduling.
+ DEBUG(dbgs() << " SU(" << SU->NodeNum << ") has too many regdefs\n");
+ RegPressure[RCId] = 0;
+ }
+ else {
+ RegPressure[RCId] -= Cost;
+ }
+ }
+ dumpRegPressure();
+}
+
+void RegReductionPQBase::unscheduledNode(SUnit *SU) {
+ if (!TracksRegPressure)
+ return;
+
+ const SDNode *N = SU->getNode();
+ if (!N) return;
+
+ if (!N->isMachineOpcode()) {
+ if (N->getOpcode() != ISD::CopyToReg)
+ return;
+ } else {
+ unsigned Opc = N->getMachineOpcode();
+ if (Opc == TargetOpcode::EXTRACT_SUBREG ||
+ Opc == TargetOpcode::INSERT_SUBREG ||
+ Opc == TargetOpcode::SUBREG_TO_REG ||
+ Opc == TargetOpcode::REG_SEQUENCE ||
+ Opc == TargetOpcode::IMPLICIT_DEF)
+ return;
+ }
+
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl())
+ continue;
+ SUnit *PredSU = Pred.getSUnit();
+ // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
+ // counts data deps.
+ if (PredSU->NumSuccsLeft != PredSU->Succs.size())
+ continue;
+ const SDNode *PN = PredSU->getNode();
+ if (!PN->isMachineOpcode()) {
+ if (PN->getOpcode() == ISD::CopyFromReg) {
+ MVT VT = PN->getSimpleValueType(0);
+ unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
+ RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
+ }
+ continue;
+ }
+ unsigned POpc = PN->getMachineOpcode();
+ if (POpc == TargetOpcode::IMPLICIT_DEF)
+ continue;
+ if (POpc == TargetOpcode::EXTRACT_SUBREG ||
+ POpc == TargetOpcode::INSERT_SUBREG ||
+ POpc == TargetOpcode::SUBREG_TO_REG) {
+ MVT VT = PN->getSimpleValueType(0);
+ unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
+ RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
+ continue;
+ }
+ unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
+ for (unsigned i = 0; i != NumDefs; ++i) {
+ MVT VT = PN->getSimpleValueType(i);
+ if (!PN->hasAnyUseOfValue(i))
+ continue;
+ unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
+ if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
+ // Register pressure tracking is imprecise. This can happen.
+ RegPressure[RCId] = 0;
+ else
+ RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
+ }
+ }
+
+ // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
+ // may transfer data dependencies to CopyToReg.
+ if (SU->NumSuccs && N->isMachineOpcode()) {
+ unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
+ for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
+ MVT VT = N->getSimpleValueType(i);
+ if (VT == MVT::Glue || VT == MVT::Other)
+ continue;
+ if (!N->hasAnyUseOfValue(i))
+ continue;
+ unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
+ RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
+ }
+ }
+
+ dumpRegPressure();
+}
+
+//===----------------------------------------------------------------------===//
+// Dynamic Node Priority for Register Pressure Reduction
+//===----------------------------------------------------------------------===//
+
+/// closestSucc - Returns the scheduled cycle of the successor which is
+/// closest to the current cycle.
+static unsigned closestSucc(const SUnit *SU) {
+ unsigned MaxHeight = 0;
+ for (const SDep &Succ : SU->Succs) {
+ if (Succ.isCtrl()) continue; // ignore chain succs
+ unsigned Height = Succ.getSUnit()->getHeight();
+ // If there are bunch of CopyToRegs stacked up, they should be considered
+ // to be at the same position.
+ if (Succ.getSUnit()->getNode() &&
+ Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
+ Height = closestSucc(Succ.getSUnit())+1;
+ if (Height > MaxHeight)
+ MaxHeight = Height;
+ }
+ return MaxHeight;
+}
+
+/// calcMaxScratches - Returns an cost estimate of the worse case requirement
+/// for scratch registers, i.e. number of data dependencies.
+static unsigned calcMaxScratches(const SUnit *SU) {
+ unsigned Scratches = 0;
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl()) continue; // ignore chain preds
+ Scratches++;
+ }
+ return Scratches;
+}
+
+/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
+/// CopyFromReg from a virtual register.
+static bool hasOnlyLiveInOpers(const SUnit *SU) {
+ bool RetVal = false;
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl()) continue;
+ const SUnit *PredSU = Pred.getSUnit();
+ if (PredSU->getNode() &&
+ PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
+ unsigned Reg =
+ cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ RetVal = true;
+ continue;
+ }
+ }
+ return false;
+ }
+ return RetVal;
+}
+
+/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
+/// CopyToReg to a virtual register. This SU def is probably a liveout and
+/// it has no other use. It should be scheduled closer to the terminator.
+static bool hasOnlyLiveOutUses(const SUnit *SU) {
+ bool RetVal = false;
+ for (const SDep &Succ : SU->Succs) {
+ if (Succ.isCtrl()) continue;
+ const SUnit *SuccSU = Succ.getSUnit();
+ if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
+ unsigned Reg =
+ cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ RetVal = true;
+ continue;
+ }
+ }
+ return false;
+ }
+ return RetVal;
+}
+
+// Set isVRegCycle for a node with only live in opers and live out uses. Also
+// set isVRegCycle for its CopyFromReg operands.
+//
+// This is only relevant for single-block loops, in which case the VRegCycle
+// node is likely an induction variable in which the operand and target virtual
+// registers should be coalesced (e.g. pre/post increment values). Setting the
+// isVRegCycle flag helps the scheduler prioritize other uses of the same
+// CopyFromReg so that this node becomes the virtual register "kill". This
+// avoids interference between the values live in and out of the block and
+// eliminates a copy inside the loop.
+static void initVRegCycle(SUnit *SU) {
+ if (DisableSchedVRegCycle)
+ return;
+
+ if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
+ return;
+
+ DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
+
+ SU->isVRegCycle = true;
+
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl()) continue;
+ Pred.getSUnit()->isVRegCycle = true;
+ }
+}
+
+// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
+// CopyFromReg operands. We should no longer penalize other uses of this VReg.
+static void resetVRegCycle(SUnit *SU) {
+ if (!SU->isVRegCycle)
+ return;
+
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl()) continue; // ignore chain preds
+ SUnit *PredSU = Pred.getSUnit();
+ if (PredSU->isVRegCycle) {
+ assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
+ "VRegCycle def must be CopyFromReg");
+ Pred.getSUnit()->isVRegCycle = false;
+ }
+ }
+}
+
+// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
+// means a node that defines the VRegCycle has not been scheduled yet.
+static bool hasVRegCycleUse(const SUnit *SU) {
+ // If this SU also defines the VReg, don't hoist it as a "use".
+ if (SU->isVRegCycle)
+ return false;
+
+ for (const SDep &Pred : SU->Preds) {
+ if (Pred.isCtrl()) continue; // ignore chain preds
+ if (Pred.getSUnit()->isVRegCycle &&
+ Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
+ DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n");
+ return true;
+ }
+ }
+ return false;
+}
+
+// Check for either a dependence (latency) or resource (hazard) stall.
+//
+// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
+static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
+ if ((int)SPQ->getCurCycle() < Height) return true;
+ if (SPQ->getHazardRec()->getHazardType(SU, 0)
+ != ScheduleHazardRecognizer::NoHazard)
+ return true;
+ return false;
+}
+
+// Return -1 if left has higher priority, 1 if right has higher priority.
+// Return 0 if latency-based priority is equivalent.
+static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
+ RegReductionPQBase *SPQ) {
+ // Scheduling an instruction that uses a VReg whose postincrement has not yet
+ // been scheduled will induce a copy. Model this as an extra cycle of latency.
+ int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
+ int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
+ int LHeight = (int)left->getHeight() + LPenalty;
+ int RHeight = (int)right->getHeight() + RPenalty;
+
+ bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
+ BUHasStall(left, LHeight, SPQ);
+ bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
+ BUHasStall(right, RHeight, SPQ);
+
+ // If scheduling one of the node will cause a pipeline stall, delay it.
+ // If scheduling either one of the node will cause a pipeline stall, sort
+ // them according to their height.
+ if (LStall) {
+ if (!RStall)
+ return 1;
+ if (LHeight != RHeight)
+ return LHeight > RHeight ? 1 : -1;
+ } else if (RStall)
+ return -1;
+
+ // If either node is scheduling for latency, sort them by height/depth
+ // and latency.
+ if (!checkPref || (left->SchedulingPref == Sched::ILP ||
+ right->SchedulingPref == Sched::ILP)) {
+ // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
+ // is enabled, grouping instructions by cycle, then its height is already
+ // covered so only its depth matters. We also reach this point if both stall
+ // but have the same height.
+ if (!SPQ->getHazardRec()->isEnabled()) {
+ if (LHeight != RHeight)
+ return LHeight > RHeight ? 1 : -1;
+ }
+ int LDepth = left->getDepth() - LPenalty;
+ int RDepth = right->getDepth() - RPenalty;
+ if (LDepth != RDepth) {
+ DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
+ << ") depth " << LDepth << " vs SU (" << right->NodeNum
+ << ") depth " << RDepth << "\n");
+ return LDepth < RDepth ? 1 : -1;
+ }
+ if (left->Latency != right->Latency)
+ return left->Latency > right->Latency ? 1 : -1;
+ }
+ return 0;
+}
+
+static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
+ // Schedule physical register definitions close to their use. This is
+ // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
+ // long as shortening physreg live ranges is generally good, we can defer
+ // creating a subtarget hook.
+ if (!DisableSchedPhysRegJoin) {
+ bool LHasPhysReg = left->hasPhysRegDefs;
+ bool RHasPhysReg = right->hasPhysRegDefs;
+ if (LHasPhysReg != RHasPhysReg) {
+ #ifndef NDEBUG
+ static const char *const PhysRegMsg[] = { " has no physreg",
+ " defines a physreg" };
+ #endif
+ DEBUG(dbgs() << " SU (" << left->NodeNum << ") "
+ << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
+ << PhysRegMsg[RHasPhysReg] << "\n");
+ return LHasPhysReg < RHasPhysReg;
+ }
+ }
+
+ // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
+ unsigned LPriority = SPQ->getNodePriority(left);
+ unsigned RPriority = SPQ->getNodePriority(right);
+
+ // Be really careful about hoisting call operands above previous calls.
+ // Only allows it if it would reduce register pressure.
+ if (left->isCall && right->isCallOp) {
+ unsigned RNumVals = right->getNode()->getNumValues();
+ RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
+ }
+ if (right->isCall && left->isCallOp) {
+ unsigned LNumVals = left->getNode()->getNumValues();
+ LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
+ }
+
+ if (LPriority != RPriority)
+ return LPriority > RPriority;
+
+ // One or both of the nodes are calls and their sethi-ullman numbers are the
+ // same, then keep source order.
+ if (left->isCall || right->isCall) {
+ unsigned LOrder = SPQ->getNodeOrdering(left);
+ unsigned ROrder = SPQ->getNodeOrdering(right);
+
+ // Prefer an ordering where the lower the non-zero order number, the higher
+ // the preference.
+ if ((LOrder || ROrder) && LOrder != ROrder)
+ return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
+ }
+
+ // Try schedule def + use closer when Sethi-Ullman numbers are the same.
+ // e.g.
+ // t1 = op t2, c1
+ // t3 = op t4, c2
+ //
+ // and the following instructions are both ready.
+ // t2 = op c3
+ // t4 = op c4
+ //
+ // Then schedule t2 = op first.
+ // i.e.
+ // t4 = op c4
+ // t2 = op c3
+ // t1 = op t2, c1
+ // t3 = op t4, c2
+ //
+ // This creates more short live intervals.
+ unsigned LDist = closestSucc(left);
+ unsigned RDist = closestSucc(right);
+ if (LDist != RDist)
+ return LDist < RDist;
+
+ // How many registers becomes live when the node is scheduled.
+ unsigned LScratch = calcMaxScratches(left);
+ unsigned RScratch = calcMaxScratches(right);
+ if (LScratch != RScratch)
+ return LScratch > RScratch;
+
+ // Comparing latency against a call makes little sense unless the node
+ // is register pressure-neutral.
+ if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
+ return (left->NodeQueueId > right->NodeQueueId);
+
+ // Do not compare latencies when one or both of the nodes are calls.
+ if (!DisableSchedCycles &&
+ !(left->isCall || right->isCall)) {
+ int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
+ if (result != 0)
+ return result > 0;
+ }
+ else {
+ if (left->getHeight() != right->getHeight())
+ return left->getHeight() > right->getHeight();
+
+ if (left->getDepth() != right->getDepth())
+ return left->getDepth() < right->getDepth();
+ }
+
+ assert(left->NodeQueueId && right->NodeQueueId &&
+ "NodeQueueId cannot be zero");
+ return (left->NodeQueueId > right->NodeQueueId);
+}
+
+// Bottom up
+bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
+ if (int res = checkSpecialNodes(left, right))
+ return res > 0;
+
+ return BURRSort(left, right, SPQ);
+}
+
+// Source order, otherwise bottom up.
+bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
+ if (int res = checkSpecialNodes(left, right))
+ return res > 0;
+
+ unsigned LOrder = SPQ->getNodeOrdering(left);
+ unsigned ROrder = SPQ->getNodeOrdering(right);
+
+ // Prefer an ordering where the lower the non-zero order number, the higher
+ // the preference.
+ if ((LOrder || ROrder) && LOrder != ROrder)
+ return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
+
+ return BURRSort(left, right, SPQ);
+}
+
+// If the time between now and when the instruction will be ready can cover
+// the spill code, then avoid adding it to the ready queue. This gives long
+// stalls highest priority and allows hoisting across calls. It should also
+// speed up processing the available queue.
+bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
+ static const unsigned ReadyDelay = 3;
+
+ if (SPQ->MayReduceRegPressure(SU)) return true;
+
+ if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
+
+ if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
+ != ScheduleHazardRecognizer::NoHazard)
+ return false;
+
+ return true;
+}
+
+// Return true if right should be scheduled with higher priority than left.
+bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
+ if (int res = checkSpecialNodes(left, right))
+ return res > 0;
+
+ if (left->isCall || right->isCall)
+ // No way to compute latency of calls.
+ return BURRSort(left, right, SPQ);
+
+ bool LHigh = SPQ->HighRegPressure(left);
+ bool RHigh = SPQ->HighRegPressure(right);
+ // Avoid causing spills. If register pressure is high, schedule for
+ // register pressure reduction.
+ if (LHigh && !RHigh) {
+ DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("
+ << right->NodeNum << ")\n");
+ return true;
+ }
+ else if (!LHigh && RHigh) {
+ DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("
+ << left->NodeNum << ")\n");
+ return false;
+ }
+ if (!LHigh && !RHigh) {
+ int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
+ if (result != 0)
+ return result > 0;
+ }
+ return BURRSort(left, right, SPQ);
+}
+
+// Schedule as many instructions in each cycle as possible. So don't make an
+// instruction available unless it is ready in the current cycle.
+bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
+ if (SU->getHeight() > CurCycle) return false;
+
+ if (SPQ->getHazardRec()->getHazardType(SU, 0)
+ != ScheduleHazardRecognizer::NoHazard)
+ return false;
+
+ return true;
+}
+
+static bool canEnableCoalescing(SUnit *SU) {
+ unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
+ if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
+ // CopyToReg should be close to its uses to facilitate coalescing and
+ // avoid spilling.
+ return true;
+
+ if (Opc == TargetOpcode::EXTRACT_SUBREG ||
+ Opc == TargetOpcode::SUBREG_TO_REG ||
+ Opc == TargetOpcode::INSERT_SUBREG)
+ // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
+ // close to their uses to facilitate coalescing.
+ return true;
+
+ if (SU->NumPreds == 0 && SU->NumSuccs != 0)
+ // If SU does not have a register def, schedule it close to its uses
+ // because it does not lengthen any live ranges.
+ return true;
+
+ return false;
+}
+
+// list-ilp is currently an experimental scheduler that allows various
+// heuristics to be enabled prior to the normal register reduction logic.
+bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
+ if (int res = checkSpecialNodes(left, right))
+ return res > 0;
+
+ if (left->isCall || right->isCall)
+ // No way to compute latency of calls.
+ return BURRSort(left, right, SPQ);
+
+ unsigned LLiveUses = 0, RLiveUses = 0;
+ int LPDiff = 0, RPDiff = 0;
+ if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
+ LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
+ RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
+ }
+ if (!DisableSchedRegPressure && LPDiff != RPDiff) {
+ DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
+ << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
+ return LPDiff > RPDiff;
+ }
+
+ if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
+ bool LReduce = canEnableCoalescing(left);
+ bool RReduce = canEnableCoalescing(right);
+ if (LReduce && !RReduce) return false;
+ if (RReduce && !LReduce) return true;
+ }
+
+ if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
+ DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
+ << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
+ return LLiveUses < RLiveUses;
+ }
+
+ if (!DisableSchedStalls) {
+ bool LStall = BUHasStall(left, left->getHeight(), SPQ);
+ bool RStall = BUHasStall(right, right->getHeight(), SPQ);
+ if (LStall != RStall)
+ return left->getHeight() > right->getHeight();
+ }
+
+ if (!DisableSchedCriticalPath) {
+ int spread = (int)left->getDepth() - (int)right->getDepth();
+ if (std::abs(spread) > MaxReorderWindow) {
+ DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
+ << left->getDepth() << " != SU(" << right->NodeNum << "): "
+ << right->getDepth() << "\n");
+ return left->getDepth() < right->getDepth();
+ }
+ }
+
+ if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
+ int spread = (int)left->getHeight() - (int)right->getHeight();
+ if (std::abs(spread) > MaxReorderWindow)
+ return left->getHeight() > right->getHeight();
+ }
+
+ return BURRSort(left, right, SPQ);
+}
+
+void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
+ SUnits = &sunits;
+ // Add pseudo dependency edges for two-address nodes.
+ if (!Disable2AddrHack)
+ AddPseudoTwoAddrDeps();
+ // Reroute edges to nodes with multiple uses.
+ if (!TracksRegPressure && !SrcOrder)
+ PrescheduleNodesWithMultipleUses();
+ // Calculate node priorities.
+ CalculateSethiUllmanNumbers();
+
+ // For single block loops, mark nodes that look like canonical IV increments.
+ if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
+ for (SUnit &SU : sunits)
+ initVRegCycle(&SU);
+}
+
+//===----------------------------------------------------------------------===//
+// Preschedule for Register Pressure
+//===----------------------------------------------------------------------===//
+
+bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
+ if (SU->isTwoAddress) {
+ unsigned Opc = SU->getNode()->getMachineOpcode();
+ const MCInstrDesc &MCID = TII->get(Opc);
+ unsigned NumRes = MCID.getNumDefs();
+ unsigned NumOps = MCID.getNumOperands() - NumRes;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
+ SDNode *DU = SU->getNode()->getOperand(i).getNode();
+ if (DU->getNodeId() != -1 &&
+ Op->OrigNode == &(*SUnits)[DU->getNodeId()])
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
+/// successor's explicit physregs whose definition can reach DepSU.
+/// i.e. DepSU should not be scheduled above SU.
+static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
+ ScheduleDAGRRList *scheduleDAG,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) {
+ const MCPhysReg *ImpDefs
+ = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
+ const uint32_t *RegMask = getNodeRegMask(SU->getNode());
+ if(!ImpDefs && !RegMask)
+ return false;
+
+ for (const SDep &Succ : SU->Succs) {
+ SUnit *SuccSU = Succ.getSUnit();
+ for (const SDep &SuccPred : SuccSU->Preds) {
+ if (!SuccPred.isAssignedRegDep())
+ continue;
+
+ if (RegMask &&
+ MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
+ scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
+ return true;
+
+ if (ImpDefs)
+ for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
+ // Return true if SU clobbers this physical register use and the
+ // definition of the register reaches from DepSU. IsReachable queries
+ // a topological forward sort of the DAG (following the successors).
+ if (TRI->regsOverlap(*ImpDef, SuccPred.getReg()) &&
+ scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
+ return true;
+ }
+ }
+ return false;
+}
+
+/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
+/// physical register defs.
+static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) {
+ SDNode *N = SuccSU->getNode();
+ unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
+ const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
+ assert(ImpDefs && "Caller should check hasPhysRegDefs");
+ for (const SDNode *SUNode = SU->getNode(); SUNode;
+ SUNode = SUNode->getGluedNode()) {
+ if (!SUNode->isMachineOpcode())
+ continue;
+ const MCPhysReg *SUImpDefs =
+ TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
+ const uint32_t *SURegMask = getNodeRegMask(SUNode);
+ if (!SUImpDefs && !SURegMask)
+ continue;
+ for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
+ MVT VT = N->getSimpleValueType(i);
+ if (VT == MVT::Glue || VT == MVT::Other)
+ continue;
+ if (!N->hasAnyUseOfValue(i))
+ continue;
+ unsigned Reg = ImpDefs[i - NumDefs];
+ if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
+ return true;
+ if (!SUImpDefs)
+ continue;
+ for (;*SUImpDefs; ++SUImpDefs) {
+ unsigned SUReg = *SUImpDefs;
+ if (TRI->regsOverlap(Reg, SUReg))
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
+/// are not handled well by the general register pressure reduction
+/// heuristics. When presented with code like this:
+///
+/// N
+/// / |
+/// / |
+/// U store
+/// |
+/// ...
+///
+/// the heuristics tend to push the store up, but since the
+/// operand of the store has another use (U), this would increase
+/// the length of that other use (the U->N edge).
+///
+/// This function transforms code like the above to route U's
+/// dependence through the store when possible, like this:
+///
+/// N
+/// ||
+/// ||
+/// store
+/// |
+/// U
+/// |
+/// ...
+///
+/// This results in the store being scheduled immediately
+/// after N, which shortens the U->N live range, reducing
+/// register pressure.
+///
+void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
+ // Visit all the nodes in topological order, working top-down.
+ for (SUnit &SU : *SUnits) {
+ // For now, only look at nodes with no data successors, such as stores.
+ // These are especially important, due to the heuristics in
+ // getNodePriority for nodes with no data successors.
+ if (SU.NumSuccs != 0)
+ continue;
+ // For now, only look at nodes with exactly one data predecessor.
+ if (SU.NumPreds != 1)
+ continue;
+ // Avoid prescheduling copies to virtual registers, which don't behave
+ // like other nodes from the perspective of scheduling heuristics.
+ if (SDNode *N = SU.getNode())
+ if (N->getOpcode() == ISD::CopyToReg &&
+ TargetRegisterInfo::isVirtualRegister
+ (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
+ continue;
+
+ // Locate the single data predecessor.
+ SUnit *PredSU = nullptr;
+ for (const SDep &Pred : SU.Preds)
+ if (!Pred.isCtrl()) {
+ PredSU = Pred.getSUnit();
+ break;
+ }
+ assert(PredSU);
+
+ // Don't rewrite edges that carry physregs, because that requires additional
+ // support infrastructure.
+ if (PredSU->hasPhysRegDefs)
+ continue;
+ // Short-circuit the case where SU is PredSU's only data successor.
+ if (PredSU->NumSuccs == 1)
+ continue;
+ // Avoid prescheduling to copies from virtual registers, which don't behave
+ // like other nodes from the perspective of scheduling heuristics.
+ if (SDNode *N = SU.getNode())
+ if (N->getOpcode() == ISD::CopyFromReg &&
+ TargetRegisterInfo::isVirtualRegister
+ (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
+ continue;
+
+ // Perform checks on the successors of PredSU.
+ for (const SDep &PredSucc : PredSU->Succs) {
+ SUnit *PredSuccSU = PredSucc.getSUnit();
+ if (PredSuccSU == &SU) continue;
+ // If PredSU has another successor with no data successors, for
+ // now don't attempt to choose either over the other.
+ if (PredSuccSU->NumSuccs == 0)
+ goto outer_loop_continue;
+ // Don't break physical register dependencies.
+ if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
+ if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
+ goto outer_loop_continue;
+ // Don't introduce graph cycles.
+ if (scheduleDAG->IsReachable(&SU, PredSuccSU))
+ goto outer_loop_continue;
+ }
+
+ // Ok, the transformation is safe and the heuristics suggest it is
+ // profitable. Update the graph.
+ DEBUG(dbgs() << " Prescheduling SU #" << SU.NodeNum
+ << " next to PredSU #" << PredSU->NodeNum
+ << " to guide scheduling in the presence of multiple uses\n");
+ for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
+ SDep Edge = PredSU->Succs[i];
+ assert(!Edge.isAssignedRegDep());
+ SUnit *SuccSU = Edge.getSUnit();
+ if (SuccSU != &SU) {
+ Edge.setSUnit(PredSU);
+ scheduleDAG->RemovePred(SuccSU, Edge);
+ scheduleDAG->AddPred(&SU, Edge);
+ Edge.setSUnit(&SU);
+ scheduleDAG->AddPred(SuccSU, Edge);
+ --i;
+ }
+ }
+ outer_loop_continue:;
+ }
+}
+
+/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
+/// it as a def&use operand. Add a pseudo control edge from it to the other
+/// node (if it won't create a cycle) so the two-address one will be scheduled
+/// first (lower in the schedule). If both nodes are two-address, favor the
+/// one that has a CopyToReg use (more likely to be a loop induction update).
+/// If both are two-address, but one is commutable while the other is not
+/// commutable, favor the one that's not commutable.
+void RegReductionPQBase::AddPseudoTwoAddrDeps() {
+ for (SUnit &SU : *SUnits) {
+ if (!SU.isTwoAddress)
+ continue;
+
+ SDNode *Node = SU.getNode();
+ if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
+ continue;
+
+ bool isLiveOut = hasOnlyLiveOutUses(&SU);
+ unsigned Opc = Node->getMachineOpcode();
+ const MCInstrDesc &MCID = TII->get(Opc);
+ unsigned NumRes = MCID.getNumDefs();
+ unsigned NumOps = MCID.getNumOperands() - NumRes;
+ for (unsigned j = 0; j != NumOps; ++j) {
+ if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
+ continue;
+ SDNode *DU = SU.getNode()->getOperand(j).getNode();
+ if (DU->getNodeId() == -1)
+ continue;
+ const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
+ if (!DUSU)
+ continue;
+ for (const SDep &Succ : DUSU->Succs) {
+ if (Succ.isCtrl())
+ continue;
+ SUnit *SuccSU = Succ.getSUnit();
+ if (SuccSU == &SU)
+ continue;
+ // Be conservative. Ignore if nodes aren't at roughly the same
+ // depth and height.
+ if (SuccSU->getHeight() < SU.getHeight() &&
+ (SU.getHeight() - SuccSU->getHeight()) > 1)
+ continue;
+ // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
+ // constrains whatever is using the copy, instead of the copy
+ // itself. In the case that the copy is coalesced, this
+ // preserves the intent of the pseudo two-address heurietics.
+ while (SuccSU->Succs.size() == 1 &&
+ SuccSU->getNode()->isMachineOpcode() &&
+ SuccSU->getNode()->getMachineOpcode() ==
+ TargetOpcode::COPY_TO_REGCLASS)
+ SuccSU = SuccSU->Succs.front().getSUnit();
+ // Don't constrain non-instruction nodes.
+ if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
+ continue;
+ // Don't constrain nodes with physical register defs if the
+ // predecessor can clobber them.
+ if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
+ if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
+ continue;
+ }
+ // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
+ // these may be coalesced away. We want them close to their uses.
+ unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
+ if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
+ SuccOpc == TargetOpcode::INSERT_SUBREG ||
+ SuccOpc == TargetOpcode::SUBREG_TO_REG)
+ continue;
+ if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
+ (!canClobber(SuccSU, DUSU) ||
+ (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
+ (!SU.isCommutable && SuccSU->isCommutable)) &&
+ !scheduleDAG->IsReachable(SuccSU, &SU)) {
+ DEBUG(dbgs() << " Adding a pseudo-two-addr edge from SU #"
+ << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
+ scheduleDAG->AddPred(&SU, SDep(SuccSU, SDep::Artificial));
+ }
+ }
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+llvm::ScheduleDAGSDNodes *
+llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
+ CodeGenOpt::Level OptLevel) {
+ const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
+ const TargetInstrInfo *TII = STI.getInstrInfo();
+ const TargetRegisterInfo *TRI = STI.getRegisterInfo();
+
+ BURegReductionPriorityQueue *PQ =
+ new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
+ ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
+ PQ->setScheduleDAG(SD);
+ return SD;
+}
+
+llvm::ScheduleDAGSDNodes *
+llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
+ CodeGenOpt::Level OptLevel) {
+ const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
+ const TargetInstrInfo *TII = STI.getInstrInfo();
+ const TargetRegisterInfo *TRI = STI.getRegisterInfo();
+
+ SrcRegReductionPriorityQueue *PQ =
+ new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
+ ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
+ PQ->setScheduleDAG(SD);
+ return SD;
+}
+
+llvm::ScheduleDAGSDNodes *
+llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
+ CodeGenOpt::Level OptLevel) {
+ const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
+ const TargetInstrInfo *TII = STI.getInstrInfo();
+ const TargetRegisterInfo *TRI = STI.getRegisterInfo();
+ const TargetLowering *TLI = IS->TLI;
+
+ HybridBURRPriorityQueue *PQ =
+ new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
+
+ ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
+ PQ->setScheduleDAG(SD);
+ return SD;
+}
+
+llvm::ScheduleDAGSDNodes *
+llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
+ CodeGenOpt::Level OptLevel) {
+ const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
+ const TargetInstrInfo *TII = STI.getInstrInfo();
+ const TargetRegisterInfo *TRI = STI.getRegisterInfo();
+ const TargetLowering *TLI = IS->TLI;
+
+ ILPBURRPriorityQueue *PQ =
+ new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
+ ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
+ PQ->setScheduleDAG(SD);
+ return SD;
+}