aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp727
1 files changed, 507 insertions, 220 deletions
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
index a4d4a93e6dd5..71e7a21ef2bc 100644
--- a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -12,8 +12,11 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "sched-instrs"
-#include "llvm/Operator.h"
+#define DEBUG_TYPE "misched"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
@@ -22,19 +25,17 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterPressure.h"
-#include "llvm/CodeGen/ScheduleDAGILP.h"
-#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/CodeGen/ScheduleDFS.h"
+#include "llvm/IR/Operator.h"
#include "llvm/MC/MCInstrItineraries.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
@@ -66,7 +67,7 @@ static const Value *getUnderlyingObjectFromInt(const Value *V) {
// regular getUnderlyingObjectFromInt.
if (U->getOpcode() == Instruction::PtrToInt)
return U->getOperand(0);
- // If we find an add of a constant or a multiplied value, it's
+ // If we find an add of a constant, a multiplied value, or a phi, it's
// likely that the other operand will lead us to the base
// object. We don't have to worry about the case where the
// object address is somehow being computed by the multiply,
@@ -74,7 +75,8 @@ static const Value *getUnderlyingObjectFromInt(const Value *V) {
// identifiable object.
if (U->getOpcode() != Instruction::Add ||
(!isa<ConstantInt>(U->getOperand(1)) &&
- Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
+ Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
+ !isa<PHINode>(U->getOperand(1))))
return V;
V = U->getOperand(0);
} else {
@@ -84,56 +86,77 @@ static const Value *getUnderlyingObjectFromInt(const Value *V) {
} while (1);
}
-/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
+/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
-static const Value *getUnderlyingObject(const Value *V) {
- // First just call Value::getUnderlyingObject to let it do what it does.
+static void getUnderlyingObjects(const Value *V,
+ SmallVectorImpl<Value *> &Objects) {
+ SmallPtrSet<const Value*, 16> Visited;
+ SmallVector<const Value *, 4> Working(1, V);
do {
- V = GetUnderlyingObject(V);
- // If it found an inttoptr, use special code to continue climing.
- if (Operator::getOpcode(V) != Instruction::IntToPtr)
- break;
- const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
- // If that succeeded in finding a pointer, continue the search.
- if (!O->getType()->isPointerTy())
- break;
- V = O;
- } while (1);
- return V;
+ V = Working.pop_back_val();
+
+ SmallVector<Value *, 4> Objs;
+ GetUnderlyingObjects(const_cast<Value *>(V), Objs);
+
+ for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
+ I != IE; ++I) {
+ V = *I;
+ if (!Visited.insert(V))
+ continue;
+ if (Operator::getOpcode(V) == Instruction::IntToPtr) {
+ const Value *O =
+ getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
+ if (O->getType()->isPointerTy()) {
+ Working.push_back(O);
+ continue;
+ }
+ }
+ Objects.push_back(const_cast<Value *>(V));
+ }
+ } while (!Working.empty());
}
-/// getUnderlyingObjectForInstr - If this machine instr has memory reference
+/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
/// information and it can be tracked to a normal reference to a known
-/// object, return the Value for that object. Otherwise return null.
-static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
- const MachineFrameInfo *MFI,
- bool &MayAlias) {
- MayAlias = true;
+/// object, return the Value for that object.
+static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
+ const MachineFrameInfo *MFI,
+ SmallVectorImpl<std::pair<const Value *, bool> > &Objects) {
if (!MI->hasOneMemOperand() ||
!(*MI->memoperands_begin())->getValue() ||
(*MI->memoperands_begin())->isVolatile())
- return 0;
+ return;
const Value *V = (*MI->memoperands_begin())->getValue();
if (!V)
- return 0;
-
- V = getUnderlyingObject(V);
- if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
- // For now, ignore PseudoSourceValues which may alias LLVM IR values
- // because the code that uses this function has no way to cope with
- // such aliases.
- if (PSV->isAliased(MFI))
- return 0;
-
- MayAlias = PSV->mayAlias(MFI);
- return V;
- }
+ return;
+
+ SmallVector<Value *, 4> Objs;
+ getUnderlyingObjects(V, Objs);
- if (isIdentifiedObject(V))
- return V;
+ for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
+ I != IE; ++I) {
+ bool MayAlias = true;
+ V = *I;
+
+ if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
+ // For now, ignore PseudoSourceValues which may alias LLVM IR values
+ // because the code that uses this function has no way to cope with
+ // such aliases.
- return 0;
+ if (PSV->isAliased(MFI)) {
+ Objects.clear();
+ return;
+ }
+
+ MayAlias = PSV->mayAlias(MFI);
+ } else if (!isIdentifiedObject(V)) {
+ Objects.clear();
+ return;
+ }
+
+ Objects.push_back(std::make_pair(V, MayAlias));
+ }
}
void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
@@ -145,20 +168,6 @@ void ScheduleDAGInstrs::finishBlock() {
BB = 0;
}
-/// Initialize the map with the number of registers.
-void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
- PhysRegSet.setUniverse(Limit);
- SUnits.resize(Limit);
-}
-
-/// Clear the map without deallocating storage.
-void Reg2SUnitsMap::clear() {
- for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
- SUnits[*I].clear();
- }
- PhysRegSet.clear();
-}
-
/// Initialize the DAG and common scheduler state for the current scheduling
/// region. This does not actually create the DAG, only clears it. The
/// scheduling driver may call BuildSchedGraph multiple times per scheduling
@@ -205,10 +214,11 @@ void ScheduleDAGInstrs::addSchedBarrierDeps() {
if (Reg == 0) continue;
if (TRI->isPhysicalRegister(Reg))
- Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
+ Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
else {
assert(!IsPostRA && "Virtual register encountered after regalloc.");
- addVRegUseDeps(&ExitSU, i);
+ if (MO.readsReg()) // ignore undef operands
+ addVRegUseDeps(&ExitSU, i);
}
}
} else {
@@ -221,7 +231,7 @@ void ScheduleDAGInstrs::addSchedBarrierDeps() {
E = (*SI)->livein_end(); I != E; ++I) {
unsigned Reg = *I;
if (!Uses.contains(Reg))
- Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
+ Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
}
}
}
@@ -239,27 +249,31 @@ void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
Alias.isValid(); ++Alias) {
if (!Uses.contains(*Alias))
continue;
- std::vector<PhysRegSUOper> &UseList = Uses[*Alias];
- for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
- SUnit *UseSU = UseList[i].SU;
+ for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
+ SUnit *UseSU = I->SU;
if (UseSU == SU)
continue;
- SDep dep(SU, SDep::Data, *Alias);
-
// Adjust the dependence latency using operand def/use information,
// then allow the target to perform its own adjustments.
- int UseOp = UseList[i].OpIdx;
- MachineInstr *RegUse = UseOp < 0 ? 0 : UseSU->getInstr();
- dep.setLatency(
+ int UseOp = I->OpIdx;
+ MachineInstr *RegUse = 0;
+ SDep Dep;
+ if (UseOp < 0)
+ Dep = SDep(SU, SDep::Artificial);
+ else {
+ Dep = SDep(SU, SDep::Data, *Alias);
+ RegUse = UseSU->getInstr();
+ Dep.setMinLatency(
+ SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
+ RegUse, UseOp, /*FindMin=*/true));
+ }
+ Dep.setLatency(
SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
RegUse, UseOp, /*FindMin=*/false));
- dep.setMinLatency(
- SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
- RegUse, UseOp, /*FindMin=*/true));
- ST.adjustSchedDependency(SU, UseSU, dep);
- UseSU->addPred(dep);
+ ST.adjustSchedDependency(SU, UseSU, Dep);
+ UseSU->addPred(Dep);
}
}
}
@@ -282,9 +296,8 @@ void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
Alias.isValid(); ++Alias) {
if (!Defs.contains(*Alias))
continue;
- std::vector<PhysRegSUOper> &DefList = Defs[*Alias];
- for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
- SUnit *DefSU = DefList[i].SU;
+ for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
+ SUnit *DefSU = I->SU;
if (DefSU == &ExitSU)
continue;
if (DefSU != SU &&
@@ -308,33 +321,37 @@ void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
// Either insert a new Reg2SUnits entry with an empty SUnits list, or
// retrieve the existing SUnits list for this register's uses.
// Push this SUnit on the use list.
- Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx));
+ Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
}
else {
addPhysRegDataDeps(SU, OperIdx);
-
- // Either insert a new Reg2SUnits entry with an empty SUnits list, or
- // retrieve the existing SUnits list for this register's defs.
- std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()];
+ unsigned Reg = MO.getReg();
// clear this register's use list
- if (Uses.contains(MO.getReg()))
- Uses[MO.getReg()].clear();
-
- if (!MO.isDead())
- DefList.clear();
-
- // Calls will not be reordered because of chain dependencies (see
- // below). Since call operands are dead, calls may continue to be added
- // to the DefList making dependence checking quadratic in the size of
- // the block. Instead, we leave only one call at the back of the
- // DefList.
- if (SU->isCall) {
- while (!DefList.empty() && DefList.back().SU->isCall)
- DefList.pop_back();
+ if (Uses.contains(Reg))
+ Uses.eraseAll(Reg);
+
+ if (!MO.isDead()) {
+ Defs.eraseAll(Reg);
+ } else if (SU->isCall) {
+ // Calls will not be reordered because of chain dependencies (see
+ // below). Since call operands are dead, calls may continue to be added
+ // to the DefList making dependence checking quadratic in the size of
+ // the block. Instead, we leave only one call at the back of the
+ // DefList.
+ Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
+ Reg2SUnitsMap::iterator B = P.first;
+ Reg2SUnitsMap::iterator I = P.second;
+ for (bool isBegin = I == B; !isBegin; /* empty */) {
+ isBegin = (--I) == B;
+ if (!I->SU->isCall)
+ break;
+ I = Defs.erase(I);
+ }
}
+
// Defs are pushed in the order they are visited and never reordered.
- DefList.push_back(PhysRegSUOper(SU, OperIdx));
+ Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
}
}
@@ -445,23 +462,29 @@ static inline bool isUnsafeMemoryObject(MachineInstr *MI,
if ((*MI->memoperands_begin())->isVolatile() ||
MI->hasUnmodeledSideEffects())
return true;
-
const Value *V = (*MI->memoperands_begin())->getValue();
if (!V)
return true;
- V = getUnderlyingObject(V);
- if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
- // Similarly to getUnderlyingObjectForInstr:
- // For now, ignore PseudoSourceValues which may alias LLVM IR values
- // because the code that uses this function has no way to cope with
- // such aliases.
- if (PSV->isAliased(MFI))
+ SmallVector<Value *, 4> Objs;
+ getUnderlyingObjects(V, Objs);
+ for (SmallVector<Value *, 4>::iterator I = Objs.begin(),
+ IE = Objs.end(); I != IE; ++I) {
+ V = *I;
+
+ if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
+ // Similarly to getUnderlyingObjectForInstr:
+ // For now, ignore PseudoSourceValues which may alias LLVM IR values
+ // because the code that uses this function has no way to cope with
+ // such aliases.
+ if (PSV->isAliased(MFI))
+ return true;
+ }
+
+ // Does this pointer refer to a distinct and identifiable object?
+ if (!isIdentifiedObject(V))
return true;
}
- // Does this pointer refer to a distinct and identifiable object?
- if (!isIdentifiedObject(V))
- return true;
return false;
}
@@ -680,8 +703,8 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
// so that they can be given more precise dependencies. We track
// separately the known memory locations that may alias and those
// that are known not to alias
- std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
- std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
+ MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
+ MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
std::set<SUnit*> RejectMemNodes;
// Remove any stale debug info; sometimes BuildSchedGraph is called again
@@ -691,8 +714,8 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
assert(Defs.empty() && Uses.empty() &&
"Only BuildGraph should update Defs/Uses");
- Defs.setRegLimit(TRI->getNumRegs());
- Uses.setRegLimit(TRI->getNumRegs());
+ Defs.setUniverse(TRI->getNumRegs());
+ Uses.setUniverse(TRI->getNumRegs());
assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
// FIXME: Allow SparseSet to reserve space for the creation of virtual
@@ -705,17 +728,17 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
addSchedBarrierDeps();
// Walk the list of instructions, from bottom moving up.
- MachineInstr *PrevMI = NULL;
+ MachineInstr *DbgMI = NULL;
for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
MII != MIE; --MII) {
MachineInstr *MI = prior(MII);
- if (MI && PrevMI) {
- DbgValues.push_back(std::make_pair(PrevMI, MI));
- PrevMI = NULL;
+ if (MI && DbgMI) {
+ DbgValues.push_back(std::make_pair(DbgMI, MI));
+ DbgMI = NULL;
}
if (MI->isDebugValue()) {
- PrevMI = MI;
+ DbgMI = MI;
continue;
}
if (RPTracker) {
@@ -723,13 +746,14 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
}
- assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() &&
+ assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
"Cannot schedule terminators or labels!");
SUnit *SU = MISUnitMap[MI];
assert(SU && "No SUnit mapped to this MI");
// Add register-based dependencies (data, anti, and output).
+ bool HasVRegDef = false;
for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
const MachineOperand &MO = MI->getOperand(j);
if (!MO.isReg()) continue;
@@ -740,12 +764,26 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
addPhysRegDeps(SU, j);
else {
assert(!IsPostRA && "Virtual register encountered!");
- if (MO.isDef())
+ if (MO.isDef()) {
+ HasVRegDef = true;
addVRegDefDeps(SU, j);
+ }
else if (MO.readsReg()) // ignore undef operands
addVRegUseDeps(SU, j);
}
}
+ // If we haven't seen any uses in this scheduling region, create a
+ // dependence edge to ExitSU to model the live-out latency. This is required
+ // for vreg defs with no in-region use, and prefetches with no vreg def.
+ //
+ // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
+ // check currently relies on being called before adding chain deps.
+ if (SU->NumSuccs == 0 && SU->Latency > 1
+ && (HasVRegDef || MI->mayLoad())) {
+ SDep Dep(SU, SDep::Artificial);
+ Dep.setLatency(SU->Latency - 1);
+ ExitSU.addPred(Dep);
+ }
// Add chain dependencies.
// Chain dependencies used to enforce memory order should have
@@ -760,11 +798,11 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
if (isGlobalMemoryObject(AA, MI)) {
// Be conservative with these and add dependencies on all memory
// references, even those that are known to not alias.
- for (std::map<const Value *, SUnit *>::iterator I =
+ for (MapVector<const Value *, SUnit *>::iterator I =
NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
I->second->addPred(SDep(SU, SDep::Barrier));
}
- for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
+ for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
SDep Dep(SU, SDep::Barrier);
@@ -798,10 +836,10 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
TrueMemOrderLatency);
- for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
+ for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
E = AliasMemDefs.end(); I != E; ++I)
addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
- for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
+ for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
@@ -813,60 +851,70 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
AliasMemDefs.clear();
AliasMemUses.clear();
} else if (MI->mayStore()) {
- bool MayAlias = true;
- if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
+ SmallVector<std::pair<const Value *, bool>, 4> Objs;
+ getUnderlyingObjectsForInstr(MI, MFI, Objs);
+
+ if (Objs.empty()) {
+ // Treat all other stores conservatively.
+ goto new_alias_chain;
+ }
+
+ bool MayAlias = false;
+ for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
+ K = Objs.begin(), KE = Objs.end(); K != KE; ++K) {
+ const Value *V = K->first;
+ bool ThisMayAlias = K->second;
+ if (ThisMayAlias)
+ MayAlias = true;
+
// A store to a specific PseudoSourceValue. Add precise dependencies.
// Record the def in MemDefs, first adding a dep if there is
// an existing def.
- std::map<const Value *, SUnit *>::iterator I =
- ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
- std::map<const Value *, SUnit *>::iterator IE =
- ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
+ MapVector<const Value *, SUnit *>::iterator I =
+ ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
+ MapVector<const Value *, SUnit *>::iterator IE =
+ ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
if (I != IE) {
- addChainDependency(AA, MFI, SU, I->second, RejectMemNodes,
- 0, true);
+ addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
I->second = SU;
} else {
- if (MayAlias)
+ if (ThisMayAlias)
AliasMemDefs[V] = SU;
else
NonAliasMemDefs[V] = SU;
}
// Handle the uses in MemUses, if there are any.
- std::map<const Value *, std::vector<SUnit *> >::iterator J =
- ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
- std::map<const Value *, std::vector<SUnit *> >::iterator JE =
- ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
+ MapVector<const Value *, std::vector<SUnit *> >::iterator J =
+ ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
+ MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
+ ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
if (J != JE) {
for (unsigned i = 0, e = J->second.size(); i != e; ++i)
addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
TrueMemOrderLatency, true);
J->second.clear();
}
- if (MayAlias) {
- // Add dependencies from all the PendingLoads, i.e. loads
- // with no underlying object.
- for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
- addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
- TrueMemOrderLatency);
- // Add dependence on alias chain, if needed.
- if (AliasChain)
- addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
- // But we also should check dependent instructions for the
- // SU in question.
- adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
- TrueMemOrderLatency);
- }
- // Add dependence on barrier chain, if needed.
- // There is no point to check aliasing on barrier event. Even if
- // SU and barrier _could_ be reordered, they should not. In addition,
- // we have lost all RejectMemNodes below barrier.
- if (BarrierChain)
- BarrierChain->addPred(SDep(SU, SDep::Barrier));
- } else {
- // Treat all other stores conservatively.
- goto new_alias_chain;
}
+ if (MayAlias) {
+ // Add dependencies from all the PendingLoads, i.e. loads
+ // with no underlying object.
+ for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
+ addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
+ TrueMemOrderLatency);
+ // Add dependence on alias chain, if needed.
+ if (AliasChain)
+ addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
+ // But we also should check dependent instructions for the
+ // SU in question.
+ adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
+ TrueMemOrderLatency);
+ }
+ // Add dependence on barrier chain, if needed.
+ // There is no point to check aliasing on barrier event. Even if
+ // SU and barrier _could_ be reordered, they should not. In addition,
+ // we have lost all RejectMemNodes below barrier.
+ if (BarrierChain)
+ BarrierChain->addPred(SDep(SU, SDep::Barrier));
if (!ExitSU.isPred(SU))
// Push store's up a bit to avoid them getting in between cmp
@@ -877,28 +925,41 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
if (MI->isInvariantLoad(AA)) {
// Invariant load, no chain dependencies needed!
} else {
- if (const Value *V =
- getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
- // A load from a specific PseudoSourceValue. Add precise dependencies.
- std::map<const Value *, SUnit *>::iterator I =
- ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
- std::map<const Value *, SUnit *>::iterator IE =
- ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
- if (I != IE)
- addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
- if (MayAlias)
- AliasMemUses[V].push_back(SU);
- else
- NonAliasMemUses[V].push_back(SU);
- } else {
+ SmallVector<std::pair<const Value *, bool>, 4> Objs;
+ getUnderlyingObjectsForInstr(MI, MFI, Objs);
+
+ if (Objs.empty()) {
// A load with no underlying object. Depend on all
// potentially aliasing stores.
- for (std::map<const Value *, SUnit *>::iterator I =
+ for (MapVector<const Value *, SUnit *>::iterator I =
AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
PendingLoads.push_back(SU);
MayAlias = true;
+ } else {
+ MayAlias = false;
+ }
+
+ for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
+ J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
+ const Value *V = J->first;
+ bool ThisMayAlias = J->second;
+
+ if (ThisMayAlias)
+ MayAlias = true;
+
+ // A load from a specific PseudoSourceValue. Add precise dependencies.
+ MapVector<const Value *, SUnit *>::iterator I =
+ ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
+ MapVector<const Value *, SUnit *>::iterator IE =
+ ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
+ if (I != IE)
+ addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
+ if (ThisMayAlias)
+ AliasMemUses[V].push_back(SU);
+ else
+ NonAliasMemUses[V].push_back(SU);
}
if (MayAlias)
adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
@@ -910,8 +971,8 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
}
}
}
- if (PrevMI)
- FirstDbgValue = PrevMI;
+ if (DbgMI)
+ FirstDbgValue = DbgMI;
Defs.clear();
Uses.clear();
@@ -933,7 +994,7 @@ std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
else if (SU == &ExitSU)
oss << "<exit>";
else
- SU->getInstr()->print(oss);
+ SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
return oss.str();
}
@@ -943,6 +1004,203 @@ std::string ScheduleDAGInstrs::getDAGName() const {
return "dag." + BB->getFullName();
}
+//===----------------------------------------------------------------------===//
+// SchedDFSResult Implementation
+//===----------------------------------------------------------------------===//
+
+namespace llvm {
+/// \brief Internal state used to compute SchedDFSResult.
+class SchedDFSImpl {
+ SchedDFSResult &R;
+
+ /// Join DAG nodes into equivalence classes by their subtree.
+ IntEqClasses SubtreeClasses;
+ /// List PredSU, SuccSU pairs that represent data edges between subtrees.
+ std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
+
+ struct RootData {
+ unsigned NodeID;
+ unsigned ParentNodeID; // Parent node (member of the parent subtree).
+ unsigned SubInstrCount; // Instr count in this tree only, not children.
+
+ RootData(unsigned id): NodeID(id),
+ ParentNodeID(SchedDFSResult::InvalidSubtreeID),
+ SubInstrCount(0) {}
+
+ unsigned getSparseSetIndex() const { return NodeID; }
+ };
+
+ SparseSet<RootData> RootSet;
+
+public:
+ SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
+ RootSet.setUniverse(R.DFSNodeData.size());
+ }
+
+ /// Return true if this node been visited by the DFS traversal.
+ ///
+ /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
+ /// ID. Later, SubtreeID is updated but remains valid.
+ bool isVisited(const SUnit *SU) const {
+ return R.DFSNodeData[SU->NodeNum].SubtreeID
+ != SchedDFSResult::InvalidSubtreeID;
+ }
+
+ /// Initialize this node's instruction count. We don't need to flag the node
+ /// visited until visitPostorder because the DAG cannot have cycles.
+ void visitPreorder(const SUnit *SU) {
+ R.DFSNodeData[SU->NodeNum].InstrCount =
+ SU->getInstr()->isTransient() ? 0 : 1;
+ }
+
+ /// Called once for each node after all predecessors are visited. Revisit this
+ /// node's predecessors and potentially join them now that we know the ILP of
+ /// the other predecessors.
+ void visitPostorderNode(const SUnit *SU) {
+ // Mark this node as the root of a subtree. It may be joined with its
+ // successors later.
+ R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
+ RootData RData(SU->NodeNum);
+ RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
+
+ // If any predecessors are still in their own subtree, they either cannot be
+ // joined or are large enough to remain separate. If this parent node's
+ // total instruction count is not greater than a child subtree by at least
+ // the subtree limit, then try to join it now since splitting subtrees is
+ // only useful if multiple high-pressure paths are possible.
+ unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
+ for (SUnit::const_pred_iterator
+ PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
+ if (PI->getKind() != SDep::Data)
+ continue;
+ unsigned PredNum = PI->getSUnit()->NodeNum;
+ if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
+ joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
+
+ // Either link or merge the TreeData entry from the child to the parent.
+ if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
+ // If the predecessor's parent is invalid, this is a tree edge and the
+ // current node is the parent.
+ if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
+ RootSet[PredNum].ParentNodeID = SU->NodeNum;
+ }
+ else if (RootSet.count(PredNum)) {
+ // The predecessor is not a root, but is still in the root set. This
+ // must be the new parent that it was just joined to. Note that
+ // RootSet[PredNum].ParentNodeID may either be invalid or may still be
+ // set to the original parent.
+ RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
+ RootSet.erase(PredNum);
+ }
+ }
+ RootSet[SU->NodeNum] = RData;
+ }
+
+ /// Called once for each tree edge after calling visitPostOrderNode on the
+ /// predecessor. Increment the parent node's instruction count and
+ /// preemptively join this subtree to its parent's if it is small enough.
+ void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
+ R.DFSNodeData[Succ->NodeNum].InstrCount
+ += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
+ joinPredSubtree(PredDep, Succ);
+ }
+
+ /// Add a connection for cross edges.
+ void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
+ ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
+ }
+
+ /// Set each node's subtree ID to the representative ID and record connections
+ /// between trees.
+ void finalize() {
+ SubtreeClasses.compress();
+ R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
+ assert(SubtreeClasses.getNumClasses() == RootSet.size()
+ && "number of roots should match trees");
+ for (SparseSet<RootData>::const_iterator
+ RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
+ unsigned TreeID = SubtreeClasses[RI->NodeID];
+ if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
+ R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
+ R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
+ // Note that SubInstrCount may be greater than InstrCount if we joined
+ // subtrees across a cross edge. InstrCount will be attributed to the
+ // original parent, while SubInstrCount will be attributed to the joined
+ // parent.
+ }
+ R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
+ R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
+ DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
+ for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
+ R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
+ DEBUG(dbgs() << " SU(" << Idx << ") in tree "
+ << R.DFSNodeData[Idx].SubtreeID << '\n');
+ }
+ for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
+ I = ConnectionPairs.begin(), E = ConnectionPairs.end();
+ I != E; ++I) {
+ unsigned PredTree = SubtreeClasses[I->first->NodeNum];
+ unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
+ if (PredTree == SuccTree)
+ continue;
+ unsigned Depth = I->first->getDepth();
+ addConnection(PredTree, SuccTree, Depth);
+ addConnection(SuccTree, PredTree, Depth);
+ }
+ }
+
+protected:
+ /// Join the predecessor subtree with the successor that is its DFS
+ /// parent. Apply some heuristics before joining.
+ bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
+ bool CheckLimit = true) {
+ assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
+
+ // Check if the predecessor is already joined.
+ const SUnit *PredSU = PredDep.getSUnit();
+ unsigned PredNum = PredSU->NodeNum;
+ if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
+ return false;
+
+ // Four is the magic number of successors before a node is considered a
+ // pinch point.
+ unsigned NumDataSucs = 0;
+ for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
+ SE = PredSU->Succs.end(); SI != SE; ++SI) {
+ if (SI->getKind() == SDep::Data) {
+ if (++NumDataSucs >= 4)
+ return false;
+ }
+ }
+ if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
+ return false;
+ R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
+ SubtreeClasses.join(Succ->NodeNum, PredNum);
+ return true;
+ }
+
+ /// Called by finalize() to record a connection between trees.
+ void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
+ if (!Depth)
+ return;
+
+ do {
+ SmallVectorImpl<SchedDFSResult::Connection> &Connections =
+ R.SubtreeConnections[FromTree];
+ for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
+ I = Connections.begin(), E = Connections.end(); I != E; ++I) {
+ if (I->TreeID == ToTree) {
+ I->Level = std::max(I->Level, Depth);
+ return;
+ }
+ }
+ Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
+ FromTree = R.DFSTreeData[FromTree].ParentTreeID;
+ } while (FromTree != SchedDFSResult::InvalidSubtreeID);
+ }
+};
+} // namespace llvm
+
namespace {
/// \brief Manage the stack used by a reverse depth-first search over the DAG.
class SchedDAGReverseDFS {
@@ -955,7 +1213,10 @@ public:
}
void advance() { ++DFSStack.back().second; }
- void backtrack() { DFSStack.pop_back(); }
+ const SDep *backtrack() {
+ DFSStack.pop_back();
+ return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
+ }
const SUnit *getCurr() const { return DFSStack.back().first; }
@@ -967,57 +1228,83 @@ public:
};
} // anonymous
-void ScheduleDAGILP::resize(unsigned NumSUnits) {
- ILPValues.resize(NumSUnits);
-}
-
-ILPValue ScheduleDAGILP::getILP(const SUnit *SU) {
- return ILPValues[SU->NodeNum];
-}
-
-// A leaf node has an ILP of 1/1.
-static ILPValue initILP(const SUnit *SU) {
- unsigned Cnt = SU->getInstr()->isTransient() ? 0 : 1;
- return ILPValue(Cnt, 1 + SU->getDepth());
+static bool hasDataSucc(const SUnit *SU) {
+ for (SUnit::const_succ_iterator
+ SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
+ if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
+ return true;
+ }
+ return false;
}
/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
/// search from this root.
-void ScheduleDAGILP::computeILP(const SUnit *Root) {
+void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
if (!IsBottomUp)
llvm_unreachable("Top-down ILP metric is unimplemnted");
- SchedDAGReverseDFS DFS;
- // Mark a node visited by validating it.
- ILPValues[Root->NodeNum] = initILP(Root);
- DFS.follow(Root);
- for (;;) {
- // Traverse the leftmost path as far as possible.
- while (DFS.getPred() != DFS.getPredEnd()) {
- const SUnit *PredSU = DFS.getPred()->getSUnit();
- DFS.advance();
- // If the pred is already valid, skip it.
- if (ILPValues[PredSU->NodeNum].isValid())
- continue;
- ILPValues[PredSU->NodeNum] = initILP(PredSU);
- DFS.follow(PredSU);
+ SchedDFSImpl Impl(*this);
+ for (ArrayRef<SUnit>::const_iterator
+ SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
+ const SUnit *SU = &*SI;
+ if (Impl.isVisited(SU) || hasDataSucc(SU))
+ continue;
+
+ SchedDAGReverseDFS DFS;
+ Impl.visitPreorder(SU);
+ DFS.follow(SU);
+ for (;;) {
+ // Traverse the leftmost path as far as possible.
+ while (DFS.getPred() != DFS.getPredEnd()) {
+ const SDep &PredDep = *DFS.getPred();
+ DFS.advance();
+ // Ignore non-data edges.
+ if (PredDep.getKind() != SDep::Data
+ || PredDep.getSUnit()->isBoundaryNode()) {
+ continue;
+ }
+ // An already visited edge is a cross edge, assuming an acyclic DAG.
+ if (Impl.isVisited(PredDep.getSUnit())) {
+ Impl.visitCrossEdge(PredDep, DFS.getCurr());
+ continue;
+ }
+ Impl.visitPreorder(PredDep.getSUnit());
+ DFS.follow(PredDep.getSUnit());
+ }
+ // Visit the top of the stack in postorder and backtrack.
+ const SUnit *Child = DFS.getCurr();
+ const SDep *PredDep = DFS.backtrack();
+ Impl.visitPostorderNode(Child);
+ if (PredDep)
+ Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
+ if (DFS.isComplete())
+ break;
}
- // Visit the top of the stack in postorder and backtrack.
- unsigned PredCount = ILPValues[DFS.getCurr()->NodeNum].InstrCount;
- DFS.backtrack();
- if (DFS.isComplete())
- break;
- // Add the recently finished predecessor's bottom-up descendent count.
- ILPValues[DFS.getCurr()->NodeNum].InstrCount += PredCount;
+ }
+ Impl.finalize();
+}
+
+/// The root of the given SubtreeID was just scheduled. For all subtrees
+/// connected to this tree, record the depth of the connection so that the
+/// nearest connected subtrees can be prioritized.
+void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
+ for (SmallVectorImpl<Connection>::const_iterator
+ I = SubtreeConnections[SubtreeID].begin(),
+ E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
+ SubtreeConnectLevels[I->TreeID] =
+ std::max(SubtreeConnectLevels[I->TreeID], I->Level);
+ DEBUG(dbgs() << " Tree: " << I->TreeID
+ << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ILPValue::print(raw_ostream &OS) const {
- if (!isValid())
+ OS << InstrCount << " / " << Length << " = ";
+ if (!Length)
OS << "BADILP";
- OS << InstrCount << " / " << Cycles << " = "
- << format("%g", ((double)InstrCount / Cycles));
+ else
+ OS << format("%g", ((double)InstrCount / Length));
}
void ILPValue::dump() const {