diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ScheduleDAG.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/ScheduleDAG.cpp | 642 |
1 files changed, 642 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp new file mode 100644 index 000000000000..75e379073578 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp @@ -0,0 +1,642 @@ +//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the ScheduleDAG class, which is a base class used by +// scheduling implementation classes. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "pre-RA-sched" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/ScheduleHazardRecognizer.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include <climits> +using namespace llvm; + +#ifndef NDEBUG +static cl::opt<bool> StressSchedOpt( + "stress-sched", cl::Hidden, cl::init(false), + cl::desc("Stress test instruction scheduling")); +#endif + +void SchedulingPriorityQueue::anchor() { } + +ScheduleDAG::ScheduleDAG(MachineFunction &mf) + : TM(mf.getTarget()), + TII(TM.getInstrInfo()), + TRI(TM.getRegisterInfo()), + MF(mf), MRI(mf.getRegInfo()), + EntrySU(), ExitSU() { +#ifndef NDEBUG + StressSched = StressSchedOpt; +#endif +} + +ScheduleDAG::~ScheduleDAG() {} + +/// Clear the DAG state (e.g. between scheduling regions). +void ScheduleDAG::clearDAG() { + SUnits.clear(); + EntrySU = SUnit(); + ExitSU = SUnit(); +} + +/// getInstrDesc helper to handle SDNodes. +const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const { + if (!Node || !Node->isMachineOpcode()) return NULL; + return &TII->get(Node->getMachineOpcode()); +} + +/// addPred - This adds the specified edge as a pred of the current node if +/// not already. It also adds the current node as a successor of the +/// specified node. +bool SUnit::addPred(const SDep &D, bool Required) { + // If this node already has this depenence, don't add a redundant one. + for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end(); + I != E; ++I) { + // Zero-latency weak edges may be added purely for heuristic ordering. Don't + // add them if another kind of edge already exists. + if (!Required && I->getSUnit() == D.getSUnit()) + return false; + if (I->overlaps(D)) { + // Extend the latency if needed. Equivalent to removePred(I) + addPred(D). + if (I->getLatency() < D.getLatency()) { + SUnit *PredSU = I->getSUnit(); + // Find the corresponding successor in N. + SDep ForwardD = *I; + ForwardD.setSUnit(this); + for (SmallVectorImpl<SDep>::iterator II = PredSU->Succs.begin(), + EE = PredSU->Succs.end(); II != EE; ++II) { + if (*II == ForwardD) { + II->setLatency(D.getLatency()); + break; + } + } + I->setLatency(D.getLatency()); + } + return false; + } + } + // Now add a corresponding succ to N. + SDep P = D; + P.setSUnit(this); + SUnit *N = D.getSUnit(); + // Update the bookkeeping. + if (D.getKind() == SDep::Data) { + assert(NumPreds < UINT_MAX && "NumPreds will overflow!"); + assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!"); + ++NumPreds; + ++N->NumSuccs; + } + if (!N->isScheduled) { + if (D.isWeak()) { + ++WeakPredsLeft; + } + else { + assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!"); + ++NumPredsLeft; + } + } + if (!isScheduled) { + if (D.isWeak()) { + ++N->WeakSuccsLeft; + } + else { + assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!"); + ++N->NumSuccsLeft; + } + } + Preds.push_back(D); + N->Succs.push_back(P); + if (P.getLatency() != 0) { + this->setDepthDirty(); + N->setHeightDirty(); + } + return true; +} + +/// removePred - This removes the specified edge as a pred of the current +/// node if it exists. It also removes the current node as a successor of +/// the specified node. +void SUnit::removePred(const SDep &D) { + // Find the matching predecessor. + for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end(); + I != E; ++I) + if (*I == D) { + // Find the corresponding successor in N. + SDep P = D; + P.setSUnit(this); + SUnit *N = D.getSUnit(); + SmallVectorImpl<SDep>::iterator Succ = std::find(N->Succs.begin(), + N->Succs.end(), P); + assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!"); + N->Succs.erase(Succ); + Preds.erase(I); + // Update the bookkeeping. + if (P.getKind() == SDep::Data) { + assert(NumPreds > 0 && "NumPreds will underflow!"); + assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); + --NumPreds; + --N->NumSuccs; + } + if (!N->isScheduled) { + if (D.isWeak()) + --WeakPredsLeft; + else { + assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); + --NumPredsLeft; + } + } + if (!isScheduled) { + if (D.isWeak()) + --N->WeakSuccsLeft; + else { + assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); + --N->NumSuccsLeft; + } + } + if (P.getLatency() != 0) { + this->setDepthDirty(); + N->setHeightDirty(); + } + return; + } +} + +void SUnit::setDepthDirty() { + if (!isDepthCurrent) return; + SmallVector<SUnit*, 8> WorkList; + WorkList.push_back(this); + do { + SUnit *SU = WorkList.pop_back_val(); + SU->isDepthCurrent = false; + for (SUnit::const_succ_iterator I = SU->Succs.begin(), + E = SU->Succs.end(); I != E; ++I) { + SUnit *SuccSU = I->getSUnit(); + if (SuccSU->isDepthCurrent) + WorkList.push_back(SuccSU); + } + } while (!WorkList.empty()); +} + +void SUnit::setHeightDirty() { + if (!isHeightCurrent) return; + SmallVector<SUnit*, 8> WorkList; + WorkList.push_back(this); + do { + SUnit *SU = WorkList.pop_back_val(); + SU->isHeightCurrent = false; + for (SUnit::const_pred_iterator I = SU->Preds.begin(), + E = SU->Preds.end(); I != E; ++I) { + SUnit *PredSU = I->getSUnit(); + if (PredSU->isHeightCurrent) + WorkList.push_back(PredSU); + } + } while (!WorkList.empty()); +} + +/// setDepthToAtLeast - Update this node's successors to reflect the +/// fact that this node's depth just increased. +/// +void SUnit::setDepthToAtLeast(unsigned NewDepth) { + if (NewDepth <= getDepth()) + return; + setDepthDirty(); + Depth = NewDepth; + isDepthCurrent = true; +} + +/// setHeightToAtLeast - Update this node's predecessors to reflect the +/// fact that this node's height just increased. +/// +void SUnit::setHeightToAtLeast(unsigned NewHeight) { + if (NewHeight <= getHeight()) + return; + setHeightDirty(); + Height = NewHeight; + isHeightCurrent = true; +} + +/// ComputeDepth - Calculate the maximal path from the node to the exit. +/// +void SUnit::ComputeDepth() { + SmallVector<SUnit*, 8> WorkList; + WorkList.push_back(this); + do { + SUnit *Cur = WorkList.back(); + + bool Done = true; + unsigned MaxPredDepth = 0; + for (SUnit::const_pred_iterator I = Cur->Preds.begin(), + E = Cur->Preds.end(); I != E; ++I) { + SUnit *PredSU = I->getSUnit(); + if (PredSU->isDepthCurrent) + MaxPredDepth = std::max(MaxPredDepth, + PredSU->Depth + I->getLatency()); + else { + Done = false; + WorkList.push_back(PredSU); + } + } + + if (Done) { + WorkList.pop_back(); + if (MaxPredDepth != Cur->Depth) { + Cur->setDepthDirty(); + Cur->Depth = MaxPredDepth; + } + Cur->isDepthCurrent = true; + } + } while (!WorkList.empty()); +} + +/// ComputeHeight - Calculate the maximal path from the node to the entry. +/// +void SUnit::ComputeHeight() { + SmallVector<SUnit*, 8> WorkList; + WorkList.push_back(this); + do { + SUnit *Cur = WorkList.back(); + + bool Done = true; + unsigned MaxSuccHeight = 0; + for (SUnit::const_succ_iterator I = Cur->Succs.begin(), + E = Cur->Succs.end(); I != E; ++I) { + SUnit *SuccSU = I->getSUnit(); + if (SuccSU->isHeightCurrent) + MaxSuccHeight = std::max(MaxSuccHeight, + SuccSU->Height + I->getLatency()); + else { + Done = false; + WorkList.push_back(SuccSU); + } + } + + if (Done) { + WorkList.pop_back(); + if (MaxSuccHeight != Cur->Height) { + Cur->setHeightDirty(); + Cur->Height = MaxSuccHeight; + } + Cur->isHeightCurrent = true; + } + } while (!WorkList.empty()); +} + +void SUnit::biasCriticalPath() { + if (NumPreds < 2) + return; + + SUnit::pred_iterator BestI = Preds.begin(); + unsigned MaxDepth = BestI->getSUnit()->getDepth(); + for (SUnit::pred_iterator + I = llvm::next(BestI), E = Preds.end(); I != E; ++I) { + if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth) + BestI = I; + } + if (BestI != Preds.begin()) + std::swap(*Preds.begin(), *BestI); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or +/// a group of nodes flagged together. +void SUnit::dump(const ScheduleDAG *G) const { + dbgs() << "SU(" << NodeNum << "): "; + G->dumpNode(this); +} + +void SUnit::dumpAll(const ScheduleDAG *G) const { + dump(G); + + dbgs() << " # preds left : " << NumPredsLeft << "\n"; + dbgs() << " # succs left : " << NumSuccsLeft << "\n"; + if (WeakPredsLeft) + dbgs() << " # weak preds left : " << WeakPredsLeft << "\n"; + if (WeakSuccsLeft) + dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n"; + dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n"; + dbgs() << " Latency : " << Latency << "\n"; + dbgs() << " Depth : " << getDepth() << "\n"; + dbgs() << " Height : " << getHeight() << "\n"; + + if (Preds.size() != 0) { + dbgs() << " Predecessors:\n"; + for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); + I != E; ++I) { + dbgs() << " "; + switch (I->getKind()) { + case SDep::Data: dbgs() << "val "; break; + case SDep::Anti: dbgs() << "anti"; break; + case SDep::Output: dbgs() << "out "; break; + case SDep::Order: dbgs() << "ch "; break; + } + dbgs() << "SU(" << I->getSUnit()->NodeNum << ")"; + if (I->isArtificial()) + dbgs() << " *"; + dbgs() << ": Latency=" << I->getLatency(); + if (I->isAssignedRegDep()) + dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI); + dbgs() << "\n"; + } + } + if (Succs.size() != 0) { + dbgs() << " Successors:\n"; + for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); + I != E; ++I) { + dbgs() << " "; + switch (I->getKind()) { + case SDep::Data: dbgs() << "val "; break; + case SDep::Anti: dbgs() << "anti"; break; + case SDep::Output: dbgs() << "out "; break; + case SDep::Order: dbgs() << "ch "; break; + } + dbgs() << "SU(" << I->getSUnit()->NodeNum << ")"; + if (I->isArtificial()) + dbgs() << " *"; + dbgs() << ": Latency=" << I->getLatency(); + if (I->isAssignedRegDep()) + dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI); + dbgs() << "\n"; + } + } + dbgs() << "\n"; +} +#endif + +#ifndef NDEBUG +/// VerifyScheduledDAG - Verify that all SUnits were scheduled and that +/// their state is consistent. Return the number of scheduled nodes. +/// +unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) { + bool AnyNotSched = false; + unsigned DeadNodes = 0; + for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { + if (!SUnits[i].isScheduled) { + if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) { + ++DeadNodes; + continue; + } + if (!AnyNotSched) + dbgs() << "*** Scheduling failed! ***\n"; + SUnits[i].dump(this); + dbgs() << "has not been scheduled!\n"; + AnyNotSched = true; + } + if (SUnits[i].isScheduled && + (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) > + unsigned(INT_MAX)) { + if (!AnyNotSched) + dbgs() << "*** Scheduling failed! ***\n"; + SUnits[i].dump(this); + dbgs() << "has an unexpected " + << (isBottomUp ? "Height" : "Depth") << " value!\n"; + AnyNotSched = true; + } + if (isBottomUp) { + if (SUnits[i].NumSuccsLeft != 0) { + if (!AnyNotSched) + dbgs() << "*** Scheduling failed! ***\n"; + SUnits[i].dump(this); + dbgs() << "has successors left!\n"; + AnyNotSched = true; + } + } else { + if (SUnits[i].NumPredsLeft != 0) { + if (!AnyNotSched) + dbgs() << "*** Scheduling failed! ***\n"; + SUnits[i].dump(this); + dbgs() << "has predecessors left!\n"; + AnyNotSched = true; + } + } + } + assert(!AnyNotSched); + return SUnits.size() - DeadNodes; +} +#endif + +/// InitDAGTopologicalSorting - create the initial topological +/// ordering from the DAG to be scheduled. +/// +/// The idea of the algorithm is taken from +/// "Online algorithms for managing the topological order of +/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly +/// This is the MNR algorithm, which was first introduced by +/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in +/// "Maintaining a topological order under edge insertions". +/// +/// Short description of the algorithm: +/// +/// Topological ordering, ord, of a DAG maps each node to a topological +/// index so that for all edges X->Y it is the case that ord(X) < ord(Y). +/// +/// This means that if there is a path from the node X to the node Z, +/// then ord(X) < ord(Z). +/// +/// This property can be used to check for reachability of nodes: +/// if Z is reachable from X, then an insertion of the edge Z->X would +/// create a cycle. +/// +/// The algorithm first computes a topological ordering for the DAG by +/// initializing the Index2Node and Node2Index arrays and then tries to keep +/// the ordering up-to-date after edge insertions by reordering the DAG. +/// +/// On insertion of the edge X->Y, the algorithm first marks by calling DFS +/// the nodes reachable from Y, and then shifts them using Shift to lie +/// immediately after X in Index2Node. +void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { + unsigned DAGSize = SUnits.size(); + std::vector<SUnit*> WorkList; + WorkList.reserve(DAGSize); + + Index2Node.resize(DAGSize); + Node2Index.resize(DAGSize); + + // Initialize the data structures. + if (ExitSU) + WorkList.push_back(ExitSU); + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SUnit *SU = &SUnits[i]; + int NodeNum = SU->NodeNum; + unsigned Degree = SU->Succs.size(); + // Temporarily use the Node2Index array as scratch space for degree counts. + Node2Index[NodeNum] = Degree; + + // Is it a node without dependencies? + if (Degree == 0) { + assert(SU->Succs.empty() && "SUnit should have no successors"); + // Collect leaf nodes. + WorkList.push_back(SU); + } + } + + int Id = DAGSize; + while (!WorkList.empty()) { + SUnit *SU = WorkList.back(); + WorkList.pop_back(); + if (SU->NodeNum < DAGSize) + Allocate(SU->NodeNum, --Id); + for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + SUnit *SU = I->getSUnit(); + if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum]) + // If all dependencies of the node are processed already, + // then the node can be computed now. + WorkList.push_back(SU); + } + } + + Visited.resize(DAGSize); + +#ifndef NDEBUG + // Check correctness of the ordering + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SUnit *SU = &SUnits[i]; + for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] && + "Wrong topological sorting"); + } + } +#endif +} + +/// AddPred - Updates the topological ordering to accommodate an edge +/// to be added from SUnit X to SUnit Y. +void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { + int UpperBound, LowerBound; + LowerBound = Node2Index[Y->NodeNum]; + UpperBound = Node2Index[X->NodeNum]; + bool HasLoop = false; + // Is Ord(X) < Ord(Y) ? + if (LowerBound < UpperBound) { + // Update the topological order. + Visited.reset(); + DFS(Y, UpperBound, HasLoop); + assert(!HasLoop && "Inserted edge creates a loop!"); + // Recompute topological indexes. + Shift(Visited, LowerBound, UpperBound); + } +} + +/// RemovePred - Updates the topological ordering to accommodate an +/// an edge to be removed from the specified node N from the predecessors +/// of the current node M. +void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { + // InitDAGTopologicalSorting(); +} + +/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark +/// all nodes affected by the edge insertion. These nodes will later get new +/// topological indexes by means of the Shift method. +void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, + bool &HasLoop) { + std::vector<const SUnit*> WorkList; + WorkList.reserve(SUnits.size()); + + WorkList.push_back(SU); + do { + SU = WorkList.back(); + WorkList.pop_back(); + Visited.set(SU->NodeNum); + for (int I = SU->Succs.size()-1; I >= 0; --I) { + unsigned s = SU->Succs[I].getSUnit()->NodeNum; + // Edges to non-SUnits are allowed but ignored (e.g. ExitSU). + if (s >= Node2Index.size()) + continue; + if (Node2Index[s] == UpperBound) { + HasLoop = true; + return; + } + // Visit successors if not already and in affected region. + if (!Visited.test(s) && Node2Index[s] < UpperBound) { + WorkList.push_back(SU->Succs[I].getSUnit()); + } + } + } while (!WorkList.empty()); +} + +/// Shift - Renumber the nodes so that the topological ordering is +/// preserved. +void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, + int UpperBound) { + std::vector<int> L; + int shift = 0; + int i; + + for (i = LowerBound; i <= UpperBound; ++i) { + // w is node at topological index i. + int w = Index2Node[i]; + if (Visited.test(w)) { + // Unmark. + Visited.reset(w); + L.push_back(w); + shift = shift + 1; + } else { + Allocate(w, i - shift); + } + } + + for (unsigned j = 0; j < L.size(); ++j) { + Allocate(L[j], i - shift); + i = i + 1; + } +} + + +/// WillCreateCycle - Returns true if adding an edge to TargetSU from SU will +/// create a cycle. If so, it is not safe to call AddPred(TargetSU, SU). +bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) { + // Is SU reachable from TargetSU via successor edges? + if (IsReachable(SU, TargetSU)) + return true; + for (SUnit::pred_iterator + I = TargetSU->Preds.begin(), E = TargetSU->Preds.end(); I != E; ++I) + if (I->isAssignedRegDep() && + IsReachable(SU, I->getSUnit())) + return true; + return false; +} + +/// IsReachable - Checks if SU is reachable from TargetSU. +bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, + const SUnit *TargetSU) { + // If insertion of the edge SU->TargetSU would create a cycle + // then there is a path from TargetSU to SU. + int UpperBound, LowerBound; + LowerBound = Node2Index[TargetSU->NodeNum]; + UpperBound = Node2Index[SU->NodeNum]; + bool HasLoop = false; + // Is Ord(TargetSU) < Ord(SU) ? + if (LowerBound < UpperBound) { + Visited.reset(); + // There may be a path from TargetSU to SU. Check for it. + DFS(TargetSU, UpperBound, HasLoop); + } + return HasLoop; +} + +/// Allocate - assign the topological index to the node n. +void ScheduleDAGTopologicalSort::Allocate(int n, int index) { + Node2Index[n] = index; + Index2Node[index] = n; +} + +ScheduleDAGTopologicalSort:: +ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu) + : SUnits(sunits), ExitSU(exitsu) {} + +ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {} |