aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp3058
1 files changed, 3058 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp b/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
new file mode 100644
index 000000000000..617ece902e0e
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
@@ -0,0 +1,3058 @@
+//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the generic RegisterCoalescer interface which
+// is used as the common interface used by all clients and
+// implementations of register coalescing.
+//
+//===----------------------------------------------------------------------===//
+
+#include "RegisterCoalescer.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveRangeEdit.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+STATISTIC(numJoins , "Number of interval joins performed");
+STATISTIC(numCrossRCs , "Number of cross class joins performed");
+STATISTIC(numCommutes , "Number of instruction commuting performed");
+STATISTIC(numExtends , "Number of copies extended");
+STATISTIC(NumReMats , "Number of instructions re-materialized");
+STATISTIC(NumInflated , "Number of register classes inflated");
+STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
+STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
+
+static cl::opt<bool>
+EnableJoining("join-liveintervals",
+ cl::desc("Coalesce copies (default=true)"),
+ cl::init(true));
+
+static cl::opt<bool> UseTerminalRule("terminal-rule",
+ cl::desc("Apply the terminal rule"),
+ cl::init(false), cl::Hidden);
+
+/// Temporary flag to test critical edge unsplitting.
+static cl::opt<bool>
+EnableJoinSplits("join-splitedges",
+ cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
+
+/// Temporary flag to test global copy optimization.
+static cl::opt<cl::boolOrDefault>
+EnableGlobalCopies("join-globalcopies",
+ cl::desc("Coalesce copies that span blocks (default=subtarget)"),
+ cl::init(cl::BOU_UNSET), cl::Hidden);
+
+static cl::opt<bool>
+VerifyCoalescing("verify-coalescing",
+ cl::desc("Verify machine instrs before and after register coalescing"),
+ cl::Hidden);
+
+namespace {
+ class RegisterCoalescer : public MachineFunctionPass,
+ private LiveRangeEdit::Delegate {
+ MachineFunction* MF;
+ MachineRegisterInfo* MRI;
+ const TargetMachine* TM;
+ const TargetRegisterInfo* TRI;
+ const TargetInstrInfo* TII;
+ LiveIntervals *LIS;
+ const MachineLoopInfo* Loops;
+ AliasAnalysis *AA;
+ RegisterClassInfo RegClassInfo;
+
+ /// A LaneMask to remember on which subregister live ranges we need to call
+ /// shrinkToUses() later.
+ LaneBitmask ShrinkMask;
+
+ /// True if the main range of the currently coalesced intervals should be
+ /// checked for smaller live intervals.
+ bool ShrinkMainRange;
+
+ /// \brief True if the coalescer should aggressively coalesce global copies
+ /// in favor of keeping local copies.
+ bool JoinGlobalCopies;
+
+ /// \brief True if the coalescer should aggressively coalesce fall-thru
+ /// blocks exclusively containing copies.
+ bool JoinSplitEdges;
+
+ /// Copy instructions yet to be coalesced.
+ SmallVector<MachineInstr*, 8> WorkList;
+ SmallVector<MachineInstr*, 8> LocalWorkList;
+
+ /// Set of instruction pointers that have been erased, and
+ /// that may be present in WorkList.
+ SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
+
+ /// Dead instructions that are about to be deleted.
+ SmallVector<MachineInstr*, 8> DeadDefs;
+
+ /// Virtual registers to be considered for register class inflation.
+ SmallVector<unsigned, 8> InflateRegs;
+
+ /// Recursively eliminate dead defs in DeadDefs.
+ void eliminateDeadDefs();
+
+ /// LiveRangeEdit callback for eliminateDeadDefs().
+ void LRE_WillEraseInstruction(MachineInstr *MI) override;
+
+ /// Coalesce the LocalWorkList.
+ void coalesceLocals();
+
+ /// Join compatible live intervals
+ void joinAllIntervals();
+
+ /// Coalesce copies in the specified MBB, putting
+ /// copies that cannot yet be coalesced into WorkList.
+ void copyCoalesceInMBB(MachineBasicBlock *MBB);
+
+ /// Tries to coalesce all copies in CurrList. Returns true if any progress
+ /// was made.
+ bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
+
+ /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
+ /// src/dst of the copy instruction CopyMI. This returns true if the copy
+ /// was successfully coalesced away. If it is not currently possible to
+ /// coalesce this interval, but it may be possible if other things get
+ /// coalesced, then it returns true by reference in 'Again'.
+ bool joinCopy(MachineInstr *TheCopy, bool &Again);
+
+ /// Attempt to join these two intervals. On failure, this
+ /// returns false. The output "SrcInt" will not have been modified, so we
+ /// can use this information below to update aliases.
+ bool joinIntervals(CoalescerPair &CP);
+
+ /// Attempt joining two virtual registers. Return true on success.
+ bool joinVirtRegs(CoalescerPair &CP);
+
+ /// Attempt joining with a reserved physreg.
+ bool joinReservedPhysReg(CoalescerPair &CP);
+
+ /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
+ /// Subranges in @p LI which only partially interfere with the desired
+ /// LaneMask are split as necessary. @p LaneMask are the lanes that
+ /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
+ /// lanemasks already adjusted to the coalesced register.
+ void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
+ LaneBitmask LaneMask, CoalescerPair &CP);
+
+ /// Join the liveranges of two subregisters. Joins @p RRange into
+ /// @p LRange, @p RRange may be invalid afterwards.
+ void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
+ LaneBitmask LaneMask, const CoalescerPair &CP);
+
+ /// We found a non-trivially-coalescable copy. If the source value number is
+ /// defined by a copy from the destination reg see if we can merge these two
+ /// destination reg valno# into a single value number, eliminating a copy.
+ /// This returns true if an interval was modified.
+ bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
+
+ /// Return true if there are definitions of IntB
+ /// other than BValNo val# that can reach uses of AValno val# of IntA.
+ bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
+ VNInfo *AValNo, VNInfo *BValNo);
+
+ /// We found a non-trivially-coalescable copy.
+ /// If the source value number is defined by a commutable instruction and
+ /// its other operand is coalesced to the copy dest register, see if we
+ /// can transform the copy into a noop by commuting the definition.
+ /// This returns true if an interval was modified.
+ bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
+
+ /// If the source of a copy is defined by a
+ /// trivial computation, replace the copy by rematerialize the definition.
+ bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
+ bool &IsDefCopy);
+
+ /// Return true if a copy involving a physreg should be joined.
+ bool canJoinPhys(const CoalescerPair &CP);
+
+ /// Replace all defs and uses of SrcReg to DstReg and update the subregister
+ /// number if it is not zero. If DstReg is a physical register and the
+ /// existing subregister number of the def / use being updated is not zero,
+ /// make sure to set it to the correct physical subregister.
+ void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
+
+ /// If the given machine operand reads only undefined lanes add an undef
+ /// flag.
+ /// This can happen when undef uses were previously concealed by a copy
+ /// which we coalesced. Example:
+ /// %vreg0:sub0<def,read-undef> = ...
+ /// %vreg1 = COPY %vreg0 <-- Coalescing COPY reveals undef
+ /// = use %vreg1:sub1 <-- hidden undef use
+ void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
+ MachineOperand &MO, unsigned SubRegIdx);
+
+ /// Handle copies of undef values.
+ /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
+ bool eliminateUndefCopy(MachineInstr *CopyMI);
+
+ /// Check whether or not we should apply the terminal rule on the
+ /// destination (Dst) of \p Copy.
+ /// When the terminal rule applies, Copy is not profitable to
+ /// coalesce.
+ /// Dst is terminal if it has exactly one affinity (Dst, Src) and
+ /// at least one interference (Dst, Dst2). If Dst is terminal, the
+ /// terminal rule consists in checking that at least one of
+ /// interfering node, say Dst2, has an affinity of equal or greater
+ /// weight with Src.
+ /// In that case, Dst2 and Dst will not be able to be both coalesced
+ /// with Src. Since Dst2 exposes more coalescing opportunities than
+ /// Dst, we can drop \p Copy.
+ bool applyTerminalRule(const MachineInstr &Copy) const;
+
+ /// Wrapper method for \see LiveIntervals::shrinkToUses.
+ /// This method does the proper fixing of the live-ranges when the afore
+ /// mentioned method returns true.
+ void shrinkToUses(LiveInterval *LI,
+ SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
+ if (LIS->shrinkToUses(LI, Dead)) {
+ /// Check whether or not \p LI is composed by multiple connected
+ /// components and if that is the case, fix that.
+ SmallVector<LiveInterval*, 8> SplitLIs;
+ LIS->splitSeparateComponents(*LI, SplitLIs);
+ }
+ }
+
+ public:
+ static char ID; ///< Class identification, replacement for typeinfo
+ RegisterCoalescer() : MachineFunctionPass(ID) {
+ initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+ void releaseMemory() override;
+
+ /// This is the pass entry point.
+ bool runOnMachineFunction(MachineFunction&) override;
+
+ /// Implement the dump method.
+ void print(raw_ostream &O, const Module* = nullptr) const override;
+ };
+} // end anonymous namespace
+
+char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
+
+INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
+ "Simple Register Coalescing", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
+ "Simple Register Coalescing", false, false)
+
+char RegisterCoalescer::ID = 0;
+
+static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
+ unsigned &Src, unsigned &Dst,
+ unsigned &SrcSub, unsigned &DstSub) {
+ if (MI->isCopy()) {
+ Dst = MI->getOperand(0).getReg();
+ DstSub = MI->getOperand(0).getSubReg();
+ Src = MI->getOperand(1).getReg();
+ SrcSub = MI->getOperand(1).getSubReg();
+ } else if (MI->isSubregToReg()) {
+ Dst = MI->getOperand(0).getReg();
+ DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
+ MI->getOperand(3).getImm());
+ Src = MI->getOperand(2).getReg();
+ SrcSub = MI->getOperand(2).getSubReg();
+ } else
+ return false;
+ return true;
+}
+
+/// Return true if this block should be vacated by the coalescer to eliminate
+/// branches. The important cases to handle in the coalescer are critical edges
+/// split during phi elimination which contain only copies. Simple blocks that
+/// contain non-branches should also be vacated, but this can be handled by an
+/// earlier pass similar to early if-conversion.
+static bool isSplitEdge(const MachineBasicBlock *MBB) {
+ if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
+ return false;
+
+ for (const auto &MI : *MBB) {
+ if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
+ return false;
+ }
+ return true;
+}
+
+bool CoalescerPair::setRegisters(const MachineInstr *MI) {
+ SrcReg = DstReg = 0;
+ SrcIdx = DstIdx = 0;
+ NewRC = nullptr;
+ Flipped = CrossClass = false;
+
+ unsigned Src, Dst, SrcSub, DstSub;
+ if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
+ return false;
+ Partial = SrcSub || DstSub;
+
+ // If one register is a physreg, it must be Dst.
+ if (TargetRegisterInfo::isPhysicalRegister(Src)) {
+ if (TargetRegisterInfo::isPhysicalRegister(Dst))
+ return false;
+ std::swap(Src, Dst);
+ std::swap(SrcSub, DstSub);
+ Flipped = true;
+ }
+
+ const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+
+ if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
+ // Eliminate DstSub on a physreg.
+ if (DstSub) {
+ Dst = TRI.getSubReg(Dst, DstSub);
+ if (!Dst) return false;
+ DstSub = 0;
+ }
+
+ // Eliminate SrcSub by picking a corresponding Dst superregister.
+ if (SrcSub) {
+ Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
+ if (!Dst) return false;
+ } else if (!MRI.getRegClass(Src)->contains(Dst)) {
+ return false;
+ }
+ } else {
+ // Both registers are virtual.
+ const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
+ const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
+
+ // Both registers have subreg indices.
+ if (SrcSub && DstSub) {
+ // Copies between different sub-registers are never coalescable.
+ if (Src == Dst && SrcSub != DstSub)
+ return false;
+
+ NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
+ SrcIdx, DstIdx);
+ if (!NewRC)
+ return false;
+ } else if (DstSub) {
+ // SrcReg will be merged with a sub-register of DstReg.
+ SrcIdx = DstSub;
+ NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
+ } else if (SrcSub) {
+ // DstReg will be merged with a sub-register of SrcReg.
+ DstIdx = SrcSub;
+ NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
+ } else {
+ // This is a straight copy without sub-registers.
+ NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
+ }
+
+ // The combined constraint may be impossible to satisfy.
+ if (!NewRC)
+ return false;
+
+ // Prefer SrcReg to be a sub-register of DstReg.
+ // FIXME: Coalescer should support subregs symmetrically.
+ if (DstIdx && !SrcIdx) {
+ std::swap(Src, Dst);
+ std::swap(SrcIdx, DstIdx);
+ Flipped = !Flipped;
+ }
+
+ CrossClass = NewRC != DstRC || NewRC != SrcRC;
+ }
+ // Check our invariants
+ assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
+ assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
+ "Cannot have a physical SubIdx");
+ SrcReg = Src;
+ DstReg = Dst;
+ return true;
+}
+
+bool CoalescerPair::flip() {
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg))
+ return false;
+ std::swap(SrcReg, DstReg);
+ std::swap(SrcIdx, DstIdx);
+ Flipped = !Flipped;
+ return true;
+}
+
+bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
+ if (!MI)
+ return false;
+ unsigned Src, Dst, SrcSub, DstSub;
+ if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
+ return false;
+
+ // Find the virtual register that is SrcReg.
+ if (Dst == SrcReg) {
+ std::swap(Src, Dst);
+ std::swap(SrcSub, DstSub);
+ } else if (Src != SrcReg) {
+ return false;
+ }
+
+ // Now check that Dst matches DstReg.
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
+ if (!TargetRegisterInfo::isPhysicalRegister(Dst))
+ return false;
+ assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
+ // DstSub could be set for a physreg from INSERT_SUBREG.
+ if (DstSub)
+ Dst = TRI.getSubReg(Dst, DstSub);
+ // Full copy of Src.
+ if (!SrcSub)
+ return DstReg == Dst;
+ // This is a partial register copy. Check that the parts match.
+ return TRI.getSubReg(DstReg, SrcSub) == Dst;
+ } else {
+ // DstReg is virtual.
+ if (DstReg != Dst)
+ return false;
+ // Registers match, do the subregisters line up?
+ return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
+ TRI.composeSubRegIndices(DstIdx, DstSub);
+ }
+}
+
+void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreservedID(MachineDominatorsID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void RegisterCoalescer::eliminateDeadDefs() {
+ SmallVector<unsigned, 8> NewRegs;
+ LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
+ nullptr, this).eliminateDeadDefs(DeadDefs);
+}
+
+void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
+ // MI may be in WorkList. Make sure we don't visit it.
+ ErasedInstrs.insert(MI);
+}
+
+bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
+ MachineInstr *CopyMI) {
+ assert(!CP.isPartial() && "This doesn't work for partial copies.");
+ assert(!CP.isPhys() && "This doesn't work for physreg copies.");
+
+ LiveInterval &IntA =
+ LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+ LiveInterval &IntB =
+ LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+ SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
+
+ // We have a non-trivially-coalescable copy with IntA being the source and
+ // IntB being the dest, thus this defines a value number in IntB. If the
+ // source value number (in IntA) is defined by a copy from B, see if we can
+ // merge these two pieces of B into a single value number, eliminating a copy.
+ // For example:
+ //
+ // A3 = B0
+ // ...
+ // B1 = A3 <- this copy
+ //
+ // In this case, B0 can be extended to where the B1 copy lives, allowing the
+ // B1 value number to be replaced with B0 (which simplifies the B
+ // liveinterval).
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B1' in
+ // the example above.
+ LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
+ if (BS == IntB.end()) return false;
+ VNInfo *BValNo = BS->valno;
+
+ // Get the location that B is defined at. Two options: either this value has
+ // an unknown definition point or it is defined at CopyIdx. If unknown, we
+ // can't process it.
+ if (BValNo->def != CopyIdx) return false;
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
+ LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
+ // The live segment might not exist after fun with physreg coalescing.
+ if (AS == IntA.end()) return false;
+ VNInfo *AValNo = AS->valno;
+
+ // If AValNo is defined as a copy from IntB, we can potentially process this.
+ // Get the instruction that defines this value number.
+ MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
+ // Don't allow any partial copies, even if isCoalescable() allows them.
+ if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
+ return false;
+
+ // Get the Segment in IntB that this value number starts with.
+ LiveInterval::iterator ValS =
+ IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
+ if (ValS == IntB.end())
+ return false;
+
+ // Make sure that the end of the live segment is inside the same block as
+ // CopyMI.
+ MachineInstr *ValSEndInst =
+ LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
+ if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
+ return false;
+
+ // Okay, we now know that ValS ends in the same block that the CopyMI
+ // live-range starts. If there are no intervening live segments between them
+ // in IntB, we can merge them.
+ if (ValS+1 != BS) return false;
+
+ DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
+
+ SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
+ // We are about to delete CopyMI, so need to remove it as the 'instruction
+ // that defines this value #'. Update the valnum with the new defining
+ // instruction #.
+ BValNo->def = FillerStart;
+
+ // Okay, we can merge them. We need to insert a new liverange:
+ // [ValS.end, BS.begin) of either value number, then we merge the
+ // two value numbers.
+ IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
+
+ // Okay, merge "B1" into the same value number as "B0".
+ if (BValNo != ValS->valno)
+ IntB.MergeValueNumberInto(BValNo, ValS->valno);
+
+ // Do the same for the subregister segments.
+ for (LiveInterval::SubRange &S : IntB.subranges()) {
+ VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
+ S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
+ VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
+ if (SubBValNo != SubValSNo)
+ S.MergeValueNumberInto(SubBValNo, SubValSNo);
+ }
+
+ DEBUG(dbgs() << " result = " << IntB << '\n');
+
+ // If the source instruction was killing the source register before the
+ // merge, unset the isKill marker given the live range has been extended.
+ int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
+ if (UIdx != -1) {
+ ValSEndInst->getOperand(UIdx).setIsKill(false);
+ }
+
+ // Rewrite the copy. If the copy instruction was killing the destination
+ // register before the merge, find the last use and trim the live range. That
+ // will also add the isKill marker.
+ CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
+ if (AS->end == CopyIdx)
+ shrinkToUses(&IntA);
+
+ ++numExtends;
+ return true;
+}
+
+bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
+ LiveInterval &IntB,
+ VNInfo *AValNo,
+ VNInfo *BValNo) {
+ // If AValNo has PHI kills, conservatively assume that IntB defs can reach
+ // the PHI values.
+ if (LIS->hasPHIKill(IntA, AValNo))
+ return true;
+
+ for (LiveRange::Segment &ASeg : IntA.segments) {
+ if (ASeg.valno != AValNo) continue;
+ LiveInterval::iterator BI =
+ std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
+ if (BI != IntB.begin())
+ --BI;
+ for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
+ if (BI->valno == BValNo)
+ continue;
+ if (BI->start <= ASeg.start && BI->end > ASeg.start)
+ return true;
+ if (BI->start > ASeg.start && BI->start < ASeg.end)
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Copy segements with value number @p SrcValNo from liverange @p Src to live
+/// range @Dst and use value number @p DstValNo there.
+static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
+ const LiveRange &Src, const VNInfo *SrcValNo)
+{
+ for (const LiveRange::Segment &S : Src.segments) {
+ if (S.valno != SrcValNo)
+ continue;
+ Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
+ }
+}
+
+bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
+ MachineInstr *CopyMI) {
+ assert(!CP.isPhys());
+
+ LiveInterval &IntA =
+ LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+ LiveInterval &IntB =
+ LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+
+ // We found a non-trivially-coalescable copy with IntA being the source and
+ // IntB being the dest, thus this defines a value number in IntB. If the
+ // source value number (in IntA) is defined by a commutable instruction and
+ // its other operand is coalesced to the copy dest register, see if we can
+ // transform the copy into a noop by commuting the definition. For example,
+ //
+ // A3 = op A2 B0<kill>
+ // ...
+ // B1 = A3 <- this copy
+ // ...
+ // = op A3 <- more uses
+ //
+ // ==>
+ //
+ // B2 = op B0 A2<kill>
+ // ...
+ // B1 = B2 <- now an identity copy
+ // ...
+ // = op B2 <- more uses
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B1' in
+ // the example above.
+ SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
+ VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
+ assert(BValNo != nullptr && BValNo->def == CopyIdx);
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
+ assert(AValNo && !AValNo->isUnused() && "COPY source not live");
+ if (AValNo->isPHIDef())
+ return false;
+ MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
+ if (!DefMI)
+ return false;
+ if (!DefMI->isCommutable())
+ return false;
+ // If DefMI is a two-address instruction then commuting it will change the
+ // destination register.
+ int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
+ assert(DefIdx != -1);
+ unsigned UseOpIdx;
+ if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
+ return false;
+
+ // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
+ // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
+ // passed to the method. That _other_ operand is chosen by
+ // the findCommutedOpIndices() method.
+ //
+ // That is obviously an area for improvement in case of instructions having
+ // more than 2 operands. For example, if some instruction has 3 commutable
+ // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
+ // op#2<->op#3) of commute transformation should be considered/tried here.
+ unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
+ if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
+ return false;
+
+ MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+ unsigned NewReg = NewDstMO.getReg();
+ if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
+ return false;
+
+ // Make sure there are no other definitions of IntB that would reach the
+ // uses which the new definition can reach.
+ if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
+ return false;
+
+ // If some of the uses of IntA.reg is already coalesced away, return false.
+ // It's not possible to determine whether it's safe to perform the coalescing.
+ for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
+ MachineInstr *UseMI = MO.getParent();
+ unsigned OpNo = &MO - &UseMI->getOperand(0);
+ SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
+ LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
+ if (US == IntA.end() || US->valno != AValNo)
+ continue;
+ // If this use is tied to a def, we can't rewrite the register.
+ if (UseMI->isRegTiedToDefOperand(OpNo))
+ return false;
+ }
+
+ DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
+ << *DefMI);
+
+ // At this point we have decided that it is legal to do this
+ // transformation. Start by commuting the instruction.
+ MachineBasicBlock *MBB = DefMI->getParent();
+ MachineInstr *NewMI =
+ TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
+ if (!NewMI)
+ return false;
+ if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
+ TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
+ !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
+ return false;
+ if (NewMI != DefMI) {
+ LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
+ MachineBasicBlock::iterator Pos = DefMI;
+ MBB->insert(Pos, NewMI);
+ MBB->erase(DefMI);
+ }
+
+ // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
+ // A = or A, B
+ // ...
+ // B = A
+ // ...
+ // C = A<kill>
+ // ...
+ // = B
+
+ // Update uses of IntA of the specific Val# with IntB.
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
+ UE = MRI->use_end();
+ UI != UE; /* ++UI is below because of possible MI removal */) {
+ MachineOperand &UseMO = *UI;
+ ++UI;
+ if (UseMO.isUndef())
+ continue;
+ MachineInstr *UseMI = UseMO.getParent();
+ if (UseMI->isDebugValue()) {
+ // FIXME These don't have an instruction index. Not clear we have enough
+ // info to decide whether to do this replacement or not. For now do it.
+ UseMO.setReg(NewReg);
+ continue;
+ }
+ SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
+ LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
+ assert(US != IntA.end() && "Use must be live");
+ if (US->valno != AValNo)
+ continue;
+ // Kill flags are no longer accurate. They are recomputed after RA.
+ UseMO.setIsKill(false);
+ if (TargetRegisterInfo::isPhysicalRegister(NewReg))
+ UseMO.substPhysReg(NewReg, *TRI);
+ else
+ UseMO.setReg(NewReg);
+ if (UseMI == CopyMI)
+ continue;
+ if (!UseMI->isCopy())
+ continue;
+ if (UseMI->getOperand(0).getReg() != IntB.reg ||
+ UseMI->getOperand(0).getSubReg())
+ continue;
+
+ // This copy will become a noop. If it's defining a new val#, merge it into
+ // BValNo.
+ SlotIndex DefIdx = UseIdx.getRegSlot();
+ VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
+ if (!DVNI)
+ continue;
+ DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
+ assert(DVNI->def == DefIdx);
+ BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
+ for (LiveInterval::SubRange &S : IntB.subranges()) {
+ VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
+ if (!SubDVNI)
+ continue;
+ VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
+ assert(SubBValNo->def == CopyIdx);
+ S.MergeValueNumberInto(SubDVNI, SubBValNo);
+ }
+
+ ErasedInstrs.insert(UseMI);
+ LIS->RemoveMachineInstrFromMaps(*UseMI);
+ UseMI->eraseFromParent();
+ }
+
+ // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
+ // is updated.
+ BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
+ if (IntB.hasSubRanges()) {
+ if (!IntA.hasSubRanges()) {
+ LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
+ IntA.createSubRangeFrom(Allocator, Mask, IntA);
+ }
+ SlotIndex AIdx = CopyIdx.getRegSlot(true);
+ for (LiveInterval::SubRange &SA : IntA.subranges()) {
+ VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
+ assert(ASubValNo != nullptr);
+
+ LaneBitmask AMask = SA.LaneMask;
+ for (LiveInterval::SubRange &SB : IntB.subranges()) {
+ LaneBitmask BMask = SB.LaneMask;
+ LaneBitmask Common = BMask & AMask;
+ if (Common == 0)
+ continue;
+
+ DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask)
+ << " into " << PrintLaneMask(Common) << '\n');
+ LaneBitmask BRest = BMask & ~AMask;
+ LiveInterval::SubRange *CommonRange;
+ if (BRest != 0) {
+ SB.LaneMask = BRest;
+ DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest)
+ << '\n');
+ // Duplicate SubRange for newly merged common stuff.
+ CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
+ } else {
+ // We van reuse the L SubRange.
+ SB.LaneMask = Common;
+ CommonRange = &SB;
+ }
+ LiveRange RangeCopy(SB, Allocator);
+
+ VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
+ assert(BSubValNo->def == CopyIdx);
+ BSubValNo->def = ASubValNo->def;
+ addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
+ AMask &= ~BMask;
+ }
+ if (AMask != 0) {
+ DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n');
+ LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
+ VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
+ addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
+ }
+ }
+ }
+
+ BValNo->def = AValNo->def;
+ addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
+ DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
+
+ LIS->removeVRegDefAt(IntA, AValNo->def);
+
+ DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
+ ++numCommutes;
+ return true;
+}
+
+/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
+/// defining a subregister.
+static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
+ assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ "This code cannot handle physreg aliasing");
+ for (const MachineOperand &Op : MI.operands()) {
+ if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
+ continue;
+ // Return true if we define the full register or don't care about the value
+ // inside other subregisters.
+ if (Op.getSubReg() == 0 || Op.isUndef())
+ return true;
+ }
+ return false;
+}
+
+bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
+ MachineInstr *CopyMI,
+ bool &IsDefCopy) {
+ IsDefCopy = false;
+ unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
+ unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
+ unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
+ unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
+ return false;
+
+ LiveInterval &SrcInt = LIS->getInterval(SrcReg);
+ SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
+ VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
+ assert(ValNo && "CopyMI input register not live");
+ if (ValNo->isPHIDef() || ValNo->isUnused())
+ return false;
+ MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
+ if (!DefMI)
+ return false;
+ if (DefMI->isCopyLike()) {
+ IsDefCopy = true;
+ return false;
+ }
+ if (!TII->isAsCheapAsAMove(*DefMI))
+ return false;
+ if (!TII->isTriviallyReMaterializable(*DefMI, AA))
+ return false;
+ if (!definesFullReg(*DefMI, SrcReg))
+ return false;
+ bool SawStore = false;
+ if (!DefMI->isSafeToMove(AA, SawStore))
+ return false;
+ const MCInstrDesc &MCID = DefMI->getDesc();
+ if (MCID.getNumDefs() != 1)
+ return false;
+ // Only support subregister destinations when the def is read-undef.
+ MachineOperand &DstOperand = CopyMI->getOperand(0);
+ unsigned CopyDstReg = DstOperand.getReg();
+ if (DstOperand.getSubReg() && !DstOperand.isUndef())
+ return false;
+
+ // If both SrcIdx and DstIdx are set, correct rematerialization would widen
+ // the register substantially (beyond both source and dest size). This is bad
+ // for performance since it can cascade through a function, introducing many
+ // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
+ // around after a few subreg copies).
+ if (SrcIdx && DstIdx)
+ return false;
+
+ const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
+ if (!DefMI->isImplicitDef()) {
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
+ unsigned NewDstReg = DstReg;
+
+ unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
+ DefMI->getOperand(0).getSubReg());
+ if (NewDstIdx)
+ NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
+
+ // Finally, make sure that the physical subregister that will be
+ // constructed later is permitted for the instruction.
+ if (!DefRC->contains(NewDstReg))
+ return false;
+ } else {
+ // Theoretically, some stack frame reference could exist. Just make sure
+ // it hasn't actually happened.
+ assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
+ "Only expect to deal with virtual or physical registers");
+ }
+ }
+
+ DebugLoc DL = CopyMI->getDebugLoc();
+ MachineBasicBlock *MBB = CopyMI->getParent();
+ MachineBasicBlock::iterator MII =
+ std::next(MachineBasicBlock::iterator(CopyMI));
+ TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
+ MachineInstr &NewMI = *std::prev(MII);
+ NewMI.setDebugLoc(DL);
+
+ // In a situation like the following:
+ // %vreg0:subreg = instr ; DefMI, subreg = DstIdx
+ // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0
+ // instead of widening %vreg1 to the register class of %vreg0 simply do:
+ // %vreg1 = instr
+ const TargetRegisterClass *NewRC = CP.getNewRC();
+ if (DstIdx != 0) {
+ MachineOperand &DefMO = NewMI.getOperand(0);
+ if (DefMO.getSubReg() == DstIdx) {
+ assert(SrcIdx == 0 && CP.isFlipped()
+ && "Shouldn't have SrcIdx+DstIdx at this point");
+ const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
+ const TargetRegisterClass *CommonRC =
+ TRI->getCommonSubClass(DefRC, DstRC);
+ if (CommonRC != nullptr) {
+ NewRC = CommonRC;
+ DstIdx = 0;
+ DefMO.setSubReg(0);
+ }
+ }
+ }
+
+ // CopyMI may have implicit operands, save them so that we can transfer them
+ // over to the newly materialized instruction after CopyMI is removed.
+ SmallVector<MachineOperand, 4> ImplicitOps;
+ ImplicitOps.reserve(CopyMI->getNumOperands() -
+ CopyMI->getDesc().getNumOperands());
+ for (unsigned I = CopyMI->getDesc().getNumOperands(),
+ E = CopyMI->getNumOperands();
+ I != E; ++I) {
+ MachineOperand &MO = CopyMI->getOperand(I);
+ if (MO.isReg()) {
+ assert(MO.isImplicit() && "No explicit operands after implict operands.");
+ // Discard VReg implicit defs.
+ if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
+ ImplicitOps.push_back(MO);
+ }
+ }
+
+ LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
+ CopyMI->eraseFromParent();
+ ErasedInstrs.insert(CopyMI);
+
+ // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
+ // We need to remember these so we can add intervals once we insert
+ // NewMI into SlotIndexes.
+ SmallVector<unsigned, 4> NewMIImplDefs;
+ for (unsigned i = NewMI.getDesc().getNumOperands(),
+ e = NewMI.getNumOperands();
+ i != e; ++i) {
+ MachineOperand &MO = NewMI.getOperand(i);
+ if (MO.isReg() && MO.isDef()) {
+ assert(MO.isImplicit() && MO.isDead() &&
+ TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
+ NewMIImplDefs.push_back(MO.getReg());
+ }
+ }
+
+ if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ unsigned NewIdx = NewMI.getOperand(0).getSubReg();
+
+ if (DefRC != nullptr) {
+ if (NewIdx)
+ NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
+ else
+ NewRC = TRI->getCommonSubClass(NewRC, DefRC);
+ assert(NewRC && "subreg chosen for remat incompatible with instruction");
+ }
+ // Remap subranges to new lanemask and change register class.
+ LiveInterval &DstInt = LIS->getInterval(DstReg);
+ for (LiveInterval::SubRange &SR : DstInt.subranges()) {
+ SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
+ }
+ MRI->setRegClass(DstReg, NewRC);
+
+ // Update machine operands and add flags.
+ updateRegDefsUses(DstReg, DstReg, DstIdx);
+ NewMI.getOperand(0).setSubReg(NewIdx);
+ // Add dead subregister definitions if we are defining the whole register
+ // but only part of it is live.
+ // This could happen if the rematerialization instruction is rematerializing
+ // more than actually is used in the register.
+ // An example would be:
+ // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
+ // ; Copying only part of the register here, but the rest is undef.
+ // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit
+ // ==>
+ // ; Materialize all the constants but only using one
+ // vreg2 = LOAD_CONSTANTS 5, 8
+ //
+ // at this point for the part that wasn't defined before we could have
+ // subranges missing the definition.
+ if (NewIdx == 0 && DstInt.hasSubRanges()) {
+ SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
+ SlotIndex DefIndex =
+ CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
+ LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
+ VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
+ for (LiveInterval::SubRange &SR : DstInt.subranges()) {
+ if (!SR.liveAt(DefIndex))
+ SR.createDeadDef(DefIndex, Alloc);
+ MaxMask &= ~SR.LaneMask;
+ }
+ if (MaxMask != 0) {
+ LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
+ SR->createDeadDef(DefIndex, Alloc);
+ }
+ }
+ } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
+ // The New instruction may be defining a sub-register of what's actually
+ // been asked for. If so it must implicitly define the whole thing.
+ assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
+ "Only expect virtual or physical registers in remat");
+ NewMI.getOperand(0).setIsDead(true);
+ NewMI.addOperand(MachineOperand::CreateReg(
+ CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
+ // Record small dead def live-ranges for all the subregisters
+ // of the destination register.
+ // Otherwise, variables that live through may miss some
+ // interferences, thus creating invalid allocation.
+ // E.g., i386 code:
+ // vreg1 = somedef ; vreg1 GR8
+ // vreg2 = remat ; vreg2 GR32
+ // CL = COPY vreg2.sub_8bit
+ // = somedef vreg1 ; vreg1 GR8
+ // =>
+ // vreg1 = somedef ; vreg1 GR8
+ // ECX<def, dead> = remat ; CL<imp-def>
+ // = somedef vreg1 ; vreg1 GR8
+ // vreg1 will see the inteferences with CL but not with CH since
+ // no live-ranges would have been created for ECX.
+ // Fix that!
+ SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
+ for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
+ Units.isValid(); ++Units)
+ if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
+ LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
+ }
+
+ if (NewMI.getOperand(0).getSubReg())
+ NewMI.getOperand(0).setIsUndef();
+
+ // Transfer over implicit operands to the rematerialized instruction.
+ for (MachineOperand &MO : ImplicitOps)
+ NewMI.addOperand(MO);
+
+ SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
+ for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
+ unsigned Reg = NewMIImplDefs[i];
+ for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
+ if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
+ LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
+ }
+
+ DEBUG(dbgs() << "Remat: " << NewMI);
+ ++NumReMats;
+
+ // The source interval can become smaller because we removed a use.
+ shrinkToUses(&SrcInt, &DeadDefs);
+ if (!DeadDefs.empty()) {
+ // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
+ // to describe DstReg instead.
+ for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
+ MachineInstr *UseMI = UseMO.getParent();
+ if (UseMI->isDebugValue()) {
+ UseMO.setReg(DstReg);
+ DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
+ }
+ }
+ eliminateDeadDefs();
+ }
+
+ return true;
+}
+
+bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
+ // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
+ // local variables. When we have a copy like:
+ //
+ // %vreg1 = COPY %vreg2<undef>
+ //
+ // We delete the copy and remove the corresponding value number from %vreg1.
+ // Any uses of that value number are marked as <undef>.
+
+ // Note that we do not query CoalescerPair here but redo isMoveInstr as the
+ // CoalescerPair may have a new register class with adjusted subreg indices
+ // at this point.
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
+
+ SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
+ const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
+ // CopyMI is undef iff SrcReg is not live before the instruction.
+ if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
+ LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
+ for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
+ if ((SR.LaneMask & SrcMask) == 0)
+ continue;
+ if (SR.liveAt(Idx))
+ return false;
+ }
+ } else if (SrcLI.liveAt(Idx))
+ return false;
+
+ DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
+
+ // Remove any DstReg segments starting at the instruction.
+ LiveInterval &DstLI = LIS->getInterval(DstReg);
+ SlotIndex RegIndex = Idx.getRegSlot();
+ // Remove value or merge with previous one in case of a subregister def.
+ if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
+ VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
+ DstLI.MergeValueNumberInto(VNI, PrevVNI);
+
+ // The affected subregister segments can be removed.
+ LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
+ for (LiveInterval::SubRange &SR : DstLI.subranges()) {
+ if ((SR.LaneMask & DstMask) == 0)
+ continue;
+
+ VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
+ assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
+ SR.removeValNo(SVNI);
+ }
+ DstLI.removeEmptySubRanges();
+ } else
+ LIS->removeVRegDefAt(DstLI, RegIndex);
+
+ // Mark uses as undef.
+ for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
+ if (MO.isDef() /*|| MO.isUndef()*/)
+ continue;
+ const MachineInstr &MI = *MO.getParent();
+ SlotIndex UseIdx = LIS->getInstructionIndex(MI);
+ LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
+ bool isLive;
+ if (UseMask != ~0u && DstLI.hasSubRanges()) {
+ isLive = false;
+ for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
+ if ((SR.LaneMask & UseMask) == 0)
+ continue;
+ if (SR.liveAt(UseIdx)) {
+ isLive = true;
+ break;
+ }
+ }
+ } else
+ isLive = DstLI.liveAt(UseIdx);
+ if (isLive)
+ continue;
+ MO.setIsUndef(true);
+ DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
+ }
+ return true;
+}
+
+void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
+ MachineOperand &MO, unsigned SubRegIdx) {
+ LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
+ if (MO.isDef())
+ Mask = ~Mask;
+ bool IsUndef = true;
+ for (const LiveInterval::SubRange &S : Int.subranges()) {
+ if ((S.LaneMask & Mask) == 0)
+ continue;
+ if (S.liveAt(UseIdx)) {
+ IsUndef = false;
+ break;
+ }
+ }
+ if (IsUndef) {
+ MO.setIsUndef(true);
+ // We found out some subregister use is actually reading an undefined
+ // value. In some cases the whole vreg has become undefined at this
+ // point so we have to potentially shrink the main range if the
+ // use was ending a live segment there.
+ LiveQueryResult Q = Int.Query(UseIdx);
+ if (Q.valueOut() == nullptr)
+ ShrinkMainRange = true;
+ }
+}
+
+void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
+ unsigned DstReg,
+ unsigned SubIdx) {
+ bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
+
+ if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
+ for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg == 0 || MO.isUndef())
+ continue;
+ MachineInstr &MI = *MO.getParent();
+ if (MI.isDebugValue())
+ continue;
+ SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
+ addUndefFlag(*DstInt, UseIdx, MO, SubReg);
+ }
+ }
+
+ SmallPtrSet<MachineInstr*, 8> Visited;
+ for (MachineRegisterInfo::reg_instr_iterator
+ I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
+ I != E; ) {
+ MachineInstr *UseMI = &*(I++);
+
+ // Each instruction can only be rewritten once because sub-register
+ // composition is not always idempotent. When SrcReg != DstReg, rewriting
+ // the UseMI operands removes them from the SrcReg use-def chain, but when
+ // SrcReg is DstReg we could encounter UseMI twice if it has multiple
+ // operands mentioning the virtual register.
+ if (SrcReg == DstReg && !Visited.insert(UseMI).second)
+ continue;
+
+ SmallVector<unsigned,8> Ops;
+ bool Reads, Writes;
+ std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
+
+ // If SrcReg wasn't read, it may still be the case that DstReg is live-in
+ // because SrcReg is a sub-register.
+ if (DstInt && !Reads && SubIdx)
+ Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
+
+ // Replace SrcReg with DstReg in all UseMI operands.
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ MachineOperand &MO = UseMI->getOperand(Ops[i]);
+
+ // Adjust <undef> flags in case of sub-register joins. We don't want to
+ // turn a full def into a read-modify-write sub-register def and vice
+ // versa.
+ if (SubIdx && MO.isDef())
+ MO.setIsUndef(!Reads);
+
+ // A subreg use of a partially undef (super) register may be a complete
+ // undef use now and then has to be marked that way.
+ if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
+ if (!DstInt->hasSubRanges()) {
+ BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
+ LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
+ DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
+ }
+ SlotIndex MIIdx = UseMI->isDebugValue()
+ ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
+ : LIS->getInstructionIndex(*UseMI);
+ SlotIndex UseIdx = MIIdx.getRegSlot(true);
+ addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
+ }
+
+ if (DstIsPhys)
+ MO.substPhysReg(DstReg, *TRI);
+ else
+ MO.substVirtReg(DstReg, SubIdx, *TRI);
+ }
+
+ DEBUG({
+ dbgs() << "\t\tupdated: ";
+ if (!UseMI->isDebugValue())
+ dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
+ dbgs() << *UseMI;
+ });
+ }
+}
+
+bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
+ // Always join simple intervals that are defined by a single copy from a
+ // reserved register. This doesn't increase register pressure, so it is
+ // always beneficial.
+ if (!MRI->isReserved(CP.getDstReg())) {
+ DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
+ return false;
+ }
+
+ LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
+ if (JoinVInt.containsOneValue())
+ return true;
+
+ DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n");
+ return false;
+}
+
+bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
+
+ Again = false;
+ DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
+
+ CoalescerPair CP(*TRI);
+ if (!CP.setRegisters(CopyMI)) {
+ DEBUG(dbgs() << "\tNot coalescable.\n");
+ return false;
+ }
+
+ if (CP.getNewRC()) {
+ auto SrcRC = MRI->getRegClass(CP.getSrcReg());
+ auto DstRC = MRI->getRegClass(CP.getDstReg());
+ unsigned SrcIdx = CP.getSrcIdx();
+ unsigned DstIdx = CP.getDstIdx();
+ if (CP.isFlipped()) {
+ std::swap(SrcIdx, DstIdx);
+ std::swap(SrcRC, DstRC);
+ }
+ if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
+ CP.getNewRC())) {
+ DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
+ return false;
+ }
+ }
+
+ // Dead code elimination. This really should be handled by MachineDCE, but
+ // sometimes dead copies slip through, and we can't generate invalid live
+ // ranges.
+ if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
+ DEBUG(dbgs() << "\tCopy is dead.\n");
+ DeadDefs.push_back(CopyMI);
+ eliminateDeadDefs();
+ return true;
+ }
+
+ // Eliminate undefs.
+ if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
+ LIS->RemoveMachineInstrFromMaps(*CopyMI);
+ CopyMI->eraseFromParent();
+ return false; // Not coalescable.
+ }
+
+ // Coalesced copies are normally removed immediately, but transformations
+ // like removeCopyByCommutingDef() can inadvertently create identity copies.
+ // When that happens, just join the values and remove the copy.
+ if (CP.getSrcReg() == CP.getDstReg()) {
+ LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
+ DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
+ const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
+ LiveQueryResult LRQ = LI.Query(CopyIdx);
+ if (VNInfo *DefVNI = LRQ.valueDefined()) {
+ VNInfo *ReadVNI = LRQ.valueIn();
+ assert(ReadVNI && "No value before copy and no <undef> flag.");
+ assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
+ LI.MergeValueNumberInto(DefVNI, ReadVNI);
+
+ // Process subregister liveranges.
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ LiveQueryResult SLRQ = S.Query(CopyIdx);
+ if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
+ VNInfo *SReadVNI = SLRQ.valueIn();
+ S.MergeValueNumberInto(SDefVNI, SReadVNI);
+ }
+ }
+ DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
+ }
+ LIS->RemoveMachineInstrFromMaps(*CopyMI);
+ CopyMI->eraseFromParent();
+ return true;
+ }
+
+ // Enforce policies.
+ if (CP.isPhys()) {
+ DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
+ << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
+ << '\n');
+ if (!canJoinPhys(CP)) {
+ // Before giving up coalescing, if definition of source is defined by
+ // trivial computation, try rematerializing it.
+ bool IsDefCopy;
+ if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
+ return true;
+ if (IsDefCopy)
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+ } else {
+ // When possible, let DstReg be the larger interval.
+ if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
+ LIS->getInterval(CP.getDstReg()).size())
+ CP.flip();
+
+ DEBUG({
+ dbgs() << "\tConsidering merging to "
+ << TRI->getRegClassName(CP.getNewRC()) << " with ";
+ if (CP.getDstIdx() && CP.getSrcIdx())
+ dbgs() << PrintReg(CP.getDstReg()) << " in "
+ << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
+ << PrintReg(CP.getSrcReg()) << " in "
+ << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
+ else
+ dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
+ << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
+ });
+ }
+
+ ShrinkMask = 0;
+ ShrinkMainRange = false;
+
+ // Okay, attempt to join these two intervals. On failure, this returns false.
+ // Otherwise, if one of the intervals being joined is a physreg, this method
+ // always canonicalizes DstInt to be it. The output "SrcInt" will not have
+ // been modified, so we can use this information below to update aliases.
+ if (!joinIntervals(CP)) {
+ // Coalescing failed.
+
+ // If definition of source is defined by trivial computation, try
+ // rematerializing it.
+ bool IsDefCopy;
+ if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
+ return true;
+
+ // If we can eliminate the copy without merging the live segments, do so
+ // now.
+ if (!CP.isPartial() && !CP.isPhys()) {
+ if (adjustCopiesBackFrom(CP, CopyMI) ||
+ removeCopyByCommutingDef(CP, CopyMI)) {
+ LIS->RemoveMachineInstrFromMaps(*CopyMI);
+ CopyMI->eraseFromParent();
+ DEBUG(dbgs() << "\tTrivial!\n");
+ return true;
+ }
+ }
+
+ // Otherwise, we are unable to join the intervals.
+ DEBUG(dbgs() << "\tInterference!\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+
+ // Coalescing to a virtual register that is of a sub-register class of the
+ // other. Make sure the resulting register is set to the right register class.
+ if (CP.isCrossClass()) {
+ ++numCrossRCs;
+ MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
+ }
+
+ // Removing sub-register copies can ease the register class constraints.
+ // Make sure we attempt to inflate the register class of DstReg.
+ if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
+ InflateRegs.push_back(CP.getDstReg());
+
+ // CopyMI has been erased by joinIntervals at this point. Remove it from
+ // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
+ // to the work list. This keeps ErasedInstrs from growing needlessly.
+ ErasedInstrs.erase(CopyMI);
+
+ // Rewrite all SrcReg operands to DstReg.
+ // Also update DstReg operands to include DstIdx if it is set.
+ if (CP.getDstIdx())
+ updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
+ updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
+
+ // Shrink subregister ranges if necessary.
+ if (ShrinkMask != 0) {
+ LiveInterval &LI = LIS->getInterval(CP.getDstReg());
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if ((S.LaneMask & ShrinkMask) == 0)
+ continue;
+ DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
+ << ")\n");
+ LIS->shrinkToUses(S, LI.reg);
+ }
+ LI.removeEmptySubRanges();
+ }
+ if (ShrinkMainRange) {
+ LiveInterval &LI = LIS->getInterval(CP.getDstReg());
+ shrinkToUses(&LI);
+ }
+
+ // SrcReg is guaranteed to be the register whose live interval that is
+ // being merged.
+ LIS->removeInterval(CP.getSrcReg());
+
+ // Update regalloc hint.
+ TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
+
+ DEBUG({
+ dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
+ << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
+ dbgs() << "\tResult = ";
+ if (CP.isPhys())
+ dbgs() << PrintReg(CP.getDstReg(), TRI);
+ else
+ dbgs() << LIS->getInterval(CP.getDstReg());
+ dbgs() << '\n';
+ });
+
+ ++numJoins;
+ return true;
+}
+
+bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
+ unsigned DstReg = CP.getDstReg();
+ assert(CP.isPhys() && "Must be a physreg copy");
+ assert(MRI->isReserved(DstReg) && "Not a reserved register");
+ LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
+ DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
+
+ assert(RHS.containsOneValue() && "Invalid join with reserved register");
+
+ // Optimization for reserved registers like ESP. We can only merge with a
+ // reserved physreg if RHS has a single value that is a copy of DstReg.
+ // The live range of the reserved register will look like a set of dead defs
+ // - we don't properly track the live range of reserved registers.
+
+ // Deny any overlapping intervals. This depends on all the reserved
+ // register live ranges to look like dead defs.
+ for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
+ if (RHS.overlaps(LIS->getRegUnit(*UI))) {
+ DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
+ return false;
+ }
+
+ // Skip any value computations, we are not adding new values to the
+ // reserved register. Also skip merging the live ranges, the reserved
+ // register live range doesn't need to be accurate as long as all the
+ // defs are there.
+
+ // Delete the identity copy.
+ MachineInstr *CopyMI;
+ if (CP.isFlipped()) {
+ CopyMI = MRI->getVRegDef(RHS.reg);
+ } else {
+ if (!MRI->hasOneNonDBGUse(RHS.reg)) {
+ DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
+ return false;
+ }
+
+ MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
+ CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
+ const SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
+ const SlotIndex DestRegIdx = LIS->getInstructionIndex(*DestMI).getRegSlot();
+
+ // We checked above that there are no interfering defs of the physical
+ // register. However, for this case, where we intent to move up the def of
+ // the physical register, we also need to check for interfering uses.
+ SlotIndexes *Indexes = LIS->getSlotIndexes();
+ for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
+ SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
+ MachineInstr *MI = LIS->getInstructionFromIndex(SI);
+ if (MI->readsRegister(DstReg, TRI)) {
+ DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
+ return false;
+ }
+
+ // We must also check for clobbers caused by regmasks.
+ for (const auto &MO : MI->operands()) {
+ if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) {
+ DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI);
+ return false;
+ }
+ }
+ }
+
+ // We're going to remove the copy which defines a physical reserved
+ // register, so remove its valno, etc.
+ DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
+ << CopyRegIdx << "\n");
+
+ LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
+ // Create a new dead def at the new def location.
+ for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
+ LiveRange &LR = LIS->getRegUnit(*UI);
+ LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
+ }
+ }
+
+ LIS->RemoveMachineInstrFromMaps(*CopyMI);
+ CopyMI->eraseFromParent();
+
+ // We don't track kills for reserved registers.
+ MRI->clearKillFlags(CP.getSrcReg());
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Interference checking and interval joining
+//===----------------------------------------------------------------------===//
+//
+// In the easiest case, the two live ranges being joined are disjoint, and
+// there is no interference to consider. It is quite common, though, to have
+// overlapping live ranges, and we need to check if the interference can be
+// resolved.
+//
+// The live range of a single SSA value forms a sub-tree of the dominator tree.
+// This means that two SSA values overlap if and only if the def of one value
+// is contained in the live range of the other value. As a special case, the
+// overlapping values can be defined at the same index.
+//
+// The interference from an overlapping def can be resolved in these cases:
+//
+// 1. Coalescable copies. The value is defined by a copy that would become an
+// identity copy after joining SrcReg and DstReg. The copy instruction will
+// be removed, and the value will be merged with the source value.
+//
+// There can be several copies back and forth, causing many values to be
+// merged into one. We compute a list of ultimate values in the joined live
+// range as well as a mappings from the old value numbers.
+//
+// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
+// predecessors have a live out value. It doesn't cause real interference,
+// and can be merged into the value it overlaps. Like a coalescable copy, it
+// can be erased after joining.
+//
+// 3. Copy of external value. The overlapping def may be a copy of a value that
+// is already in the other register. This is like a coalescable copy, but
+// the live range of the source register must be trimmed after erasing the
+// copy instruction:
+//
+// %src = COPY %ext
+// %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
+//
+// 4. Clobbering undefined lanes. Vector registers are sometimes built by
+// defining one lane at a time:
+//
+// %dst:ssub0<def,read-undef> = FOO
+// %src = BAR
+// %dst:ssub1<def> = COPY %src
+//
+// The live range of %src overlaps the %dst value defined by FOO, but
+// merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
+// which was undef anyway.
+//
+// The value mapping is more complicated in this case. The final live range
+// will have different value numbers for both FOO and BAR, but there is no
+// simple mapping from old to new values. It may even be necessary to add
+// new PHI values.
+//
+// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
+// is live, but never read. This can happen because we don't compute
+// individual live ranges per lane.
+//
+// %dst<def> = FOO
+// %src = BAR
+// %dst:ssub1<def> = COPY %src
+//
+// This kind of interference is only resolved locally. If the clobbered
+// lane value escapes the block, the join is aborted.
+
+namespace {
+/// Track information about values in a single virtual register about to be
+/// joined. Objects of this class are always created in pairs - one for each
+/// side of the CoalescerPair (or one for each lane of a side of the coalescer
+/// pair)
+class JoinVals {
+ /// Live range we work on.
+ LiveRange &LR;
+ /// (Main) register we work on.
+ const unsigned Reg;
+
+ /// Reg (and therefore the values in this liverange) will end up as
+ /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
+ /// CP.SrcIdx.
+ const unsigned SubIdx;
+ /// The LaneMask that this liverange will occupy the coalesced register. May
+ /// be smaller than the lanemask produced by SubIdx when merging subranges.
+ const LaneBitmask LaneMask;
+
+ /// This is true when joining sub register ranges, false when joining main
+ /// ranges.
+ const bool SubRangeJoin;
+ /// Whether the current LiveInterval tracks subregister liveness.
+ const bool TrackSubRegLiveness;
+
+ /// Values that will be present in the final live range.
+ SmallVectorImpl<VNInfo*> &NewVNInfo;
+
+ const CoalescerPair &CP;
+ LiveIntervals *LIS;
+ SlotIndexes *Indexes;
+ const TargetRegisterInfo *TRI;
+
+ /// Value number assignments. Maps value numbers in LI to entries in
+ /// NewVNInfo. This is suitable for passing to LiveInterval::join().
+ SmallVector<int, 8> Assignments;
+
+ /// Conflict resolution for overlapping values.
+ enum ConflictResolution {
+ /// No overlap, simply keep this value.
+ CR_Keep,
+
+ /// Merge this value into OtherVNI and erase the defining instruction.
+ /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
+ /// values.
+ CR_Erase,
+
+ /// Merge this value into OtherVNI but keep the defining instruction.
+ /// This is for the special case where OtherVNI is defined by the same
+ /// instruction.
+ CR_Merge,
+
+ /// Keep this value, and have it replace OtherVNI where possible. This
+ /// complicates value mapping since OtherVNI maps to two different values
+ /// before and after this def.
+ /// Used when clobbering undefined or dead lanes.
+ CR_Replace,
+
+ /// Unresolved conflict. Visit later when all values have been mapped.
+ CR_Unresolved,
+
+ /// Unresolvable conflict. Abort the join.
+ CR_Impossible
+ };
+
+ /// Per-value info for LI. The lane bit masks are all relative to the final
+ /// joined register, so they can be compared directly between SrcReg and
+ /// DstReg.
+ struct Val {
+ ConflictResolution Resolution;
+
+ /// Lanes written by this def, 0 for unanalyzed values.
+ LaneBitmask WriteLanes;
+
+ /// Lanes with defined values in this register. Other lanes are undef and
+ /// safe to clobber.
+ LaneBitmask ValidLanes;
+
+ /// Value in LI being redefined by this def.
+ VNInfo *RedefVNI;
+
+ /// Value in the other live range that overlaps this def, if any.
+ VNInfo *OtherVNI;
+
+ /// Is this value an IMPLICIT_DEF that can be erased?
+ ///
+ /// IMPLICIT_DEF values should only exist at the end of a basic block that
+ /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
+ /// safely erased if they are overlapping a live value in the other live
+ /// interval.
+ ///
+ /// Weird control flow graphs and incomplete PHI handling in
+ /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
+ /// longer live ranges. Such IMPLICIT_DEF values should be treated like
+ /// normal values.
+ bool ErasableImplicitDef;
+
+ /// True when the live range of this value will be pruned because of an
+ /// overlapping CR_Replace value in the other live range.
+ bool Pruned;
+
+ /// True once Pruned above has been computed.
+ bool PrunedComputed;
+
+ Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
+ RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
+ Pruned(false), PrunedComputed(false) {}
+
+ bool isAnalyzed() const { return WriteLanes != 0; }
+ };
+
+ /// One entry per value number in LI.
+ SmallVector<Val, 8> Vals;
+
+ /// Compute the bitmask of lanes actually written by DefMI.
+ /// Set Redef if there are any partial register definitions that depend on the
+ /// previous value of the register.
+ LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
+
+ /// Find the ultimate value that VNI was copied from.
+ std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
+
+ bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
+
+ /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
+ /// Return a conflict resolution when possible, but leave the hard cases as
+ /// CR_Unresolved.
+ /// Recursively calls computeAssignment() on this and Other, guaranteeing that
+ /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
+ /// The recursion always goes upwards in the dominator tree, making loops
+ /// impossible.
+ ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
+
+ /// Compute the value assignment for ValNo in RI.
+ /// This may be called recursively by analyzeValue(), but never for a ValNo on
+ /// the stack.
+ void computeAssignment(unsigned ValNo, JoinVals &Other);
+
+ /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
+ /// the extent of the tainted lanes in the block.
+ ///
+ /// Multiple values in Other.LR can be affected since partial redefinitions
+ /// can preserve previously tainted lanes.
+ ///
+ /// 1 %dst = VLOAD <-- Define all lanes in %dst
+ /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
+ /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
+ /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
+ ///
+ /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
+ /// entry to TaintedVals.
+ ///
+ /// Returns false if the tainted lanes extend beyond the basic block.
+ bool taintExtent(unsigned, LaneBitmask, JoinVals&,
+ SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&);
+
+ /// Return true if MI uses any of the given Lanes from Reg.
+ /// This does not include partial redefinitions of Reg.
+ bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
+
+ /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
+ /// be pruned:
+ ///
+ /// %dst = COPY %src
+ /// %src = COPY %dst <-- This value to be pruned.
+ /// %dst = COPY %src <-- This value is a copy of a pruned value.
+ bool isPrunedValue(unsigned ValNo, JoinVals &Other);
+
+public:
+ JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
+ SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
+ LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
+ bool TrackSubRegLiveness)
+ : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
+ SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
+ NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
+ TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
+ {}
+
+ /// Analyze defs in LR and compute a value mapping in NewVNInfo.
+ /// Returns false if any conflicts were impossible to resolve.
+ bool mapValues(JoinVals &Other);
+
+ /// Try to resolve conflicts that require all values to be mapped.
+ /// Returns false if any conflicts were impossible to resolve.
+ bool resolveConflicts(JoinVals &Other);
+
+ /// Prune the live range of values in Other.LR where they would conflict with
+ /// CR_Replace values in LR. Collect end points for restoring the live range
+ /// after joining.
+ void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
+ bool changeInstrs);
+
+ /// Removes subranges starting at copies that get removed. This sometimes
+ /// happens when undefined subranges are copied around. These ranges contain
+ /// no useful information and can be removed.
+ void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
+
+ /// Erase any machine instructions that have been coalesced away.
+ /// Add erased instructions to ErasedInstrs.
+ /// Add foreign virtual registers to ShrinkRegs if their live range ended at
+ /// the erased instrs.
+ void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
+ SmallVectorImpl<unsigned> &ShrinkRegs);
+
+ /// Remove liverange defs at places where implicit defs will be removed.
+ void removeImplicitDefs();
+
+ /// Get the value assignments suitable for passing to LiveInterval::join.
+ const int *getAssignments() const { return Assignments.data(); }
+};
+} // end anonymous namespace
+
+LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
+ const {
+ LaneBitmask L = 0;
+ for (const MachineOperand &MO : DefMI->operands()) {
+ if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
+ continue;
+ L |= TRI->getSubRegIndexLaneMask(
+ TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
+ if (MO.readsReg())
+ Redef = true;
+ }
+ return L;
+}
+
+std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
+ const VNInfo *VNI) const {
+ unsigned Reg = this->Reg;
+
+ while (!VNI->isPHIDef()) {
+ SlotIndex Def = VNI->def;
+ MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
+ assert(MI && "No defining instruction");
+ if (!MI->isFullCopy())
+ return std::make_pair(VNI, Reg);
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ return std::make_pair(VNI, Reg);
+
+ const LiveInterval &LI = LIS->getInterval(SrcReg);
+ const VNInfo *ValueIn;
+ // No subrange involved.
+ if (!SubRangeJoin || !LI.hasSubRanges()) {
+ LiveQueryResult LRQ = LI.Query(Def);
+ ValueIn = LRQ.valueIn();
+ } else {
+ // Query subranges. Pick the first matching one.
+ ValueIn = nullptr;
+ for (const LiveInterval::SubRange &S : LI.subranges()) {
+ // Transform lanemask to a mask in the joined live interval.
+ LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
+ if ((SMask & LaneMask) == 0)
+ continue;
+ LiveQueryResult LRQ = S.Query(Def);
+ ValueIn = LRQ.valueIn();
+ break;
+ }
+ }
+ if (ValueIn == nullptr)
+ break;
+ VNI = ValueIn;
+ Reg = SrcReg;
+ }
+ return std::make_pair(VNI, Reg);
+}
+
+bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
+ const JoinVals &Other) const {
+ const VNInfo *Orig0;
+ unsigned Reg0;
+ std::tie(Orig0, Reg0) = followCopyChain(Value0);
+ if (Orig0 == Value1)
+ return true;
+
+ const VNInfo *Orig1;
+ unsigned Reg1;
+ std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
+
+ // The values are equal if they are defined at the same place and use the
+ // same register. Note that we cannot compare VNInfos directly as some of
+ // them might be from a copy created in mergeSubRangeInto() while the other
+ // is from the original LiveInterval.
+ return Orig0->def == Orig1->def && Reg0 == Reg1;
+}
+
+JoinVals::ConflictResolution
+JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
+ Val &V = Vals[ValNo];
+ assert(!V.isAnalyzed() && "Value has already been analyzed!");
+ VNInfo *VNI = LR.getValNumInfo(ValNo);
+ if (VNI->isUnused()) {
+ V.WriteLanes = ~0u;
+ return CR_Keep;
+ }
+
+ // Get the instruction defining this value, compute the lanes written.
+ const MachineInstr *DefMI = nullptr;
+ if (VNI->isPHIDef()) {
+ // Conservatively assume that all lanes in a PHI are valid.
+ LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
+ V.ValidLanes = V.WriteLanes = Lanes;
+ } else {
+ DefMI = Indexes->getInstructionFromIndex(VNI->def);
+ assert(DefMI != nullptr);
+ if (SubRangeJoin) {
+ // We don't care about the lanes when joining subregister ranges.
+ V.WriteLanes = V.ValidLanes = 1;
+ if (DefMI->isImplicitDef()) {
+ V.ValidLanes = 0;
+ V.ErasableImplicitDef = true;
+ }
+ } else {
+ bool Redef = false;
+ V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
+
+ // If this is a read-modify-write instruction, there may be more valid
+ // lanes than the ones written by this instruction.
+ // This only covers partial redef operands. DefMI may have normal use
+ // operands reading the register. They don't contribute valid lanes.
+ //
+ // This adds ssub1 to the set of valid lanes in %src:
+ //
+ // %src:ssub1<def> = FOO
+ //
+ // This leaves only ssub1 valid, making any other lanes undef:
+ //
+ // %src:ssub1<def,read-undef> = FOO %src:ssub2
+ //
+ // The <read-undef> flag on the def operand means that old lane values are
+ // not important.
+ if (Redef) {
+ V.RedefVNI = LR.Query(VNI->def).valueIn();
+ assert((TrackSubRegLiveness || V.RedefVNI) &&
+ "Instruction is reading nonexistent value");
+ if (V.RedefVNI != nullptr) {
+ computeAssignment(V.RedefVNI->id, Other);
+ V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
+ }
+ }
+
+ // An IMPLICIT_DEF writes undef values.
+ if (DefMI->isImplicitDef()) {
+ // We normally expect IMPLICIT_DEF values to be live only until the end
+ // of their block. If the value is really live longer and gets pruned in
+ // another block, this flag is cleared again.
+ V.ErasableImplicitDef = true;
+ V.ValidLanes &= ~V.WriteLanes;
+ }
+ }
+ }
+
+ // Find the value in Other that overlaps VNI->def, if any.
+ LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
+
+ // It is possible that both values are defined by the same instruction, or
+ // the values are PHIs defined in the same block. When that happens, the two
+ // values should be merged into one, but not into any preceding value.
+ // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
+ if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
+ assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
+
+ // One value stays, the other is merged. Keep the earlier one, or the first
+ // one we see.
+ if (OtherVNI->def < VNI->def)
+ Other.computeAssignment(OtherVNI->id, *this);
+ else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
+ // This is an early-clobber def overlapping a live-in value in the other
+ // register. Not mergeable.
+ V.OtherVNI = OtherLRQ.valueIn();
+ return CR_Impossible;
+ }
+ V.OtherVNI = OtherVNI;
+ Val &OtherV = Other.Vals[OtherVNI->id];
+ // Keep this value, check for conflicts when analyzing OtherVNI.
+ if (!OtherV.isAnalyzed())
+ return CR_Keep;
+ // Both sides have been analyzed now.
+ // Allow overlapping PHI values. Any real interference would show up in a
+ // predecessor, the PHI itself can't introduce any conflicts.
+ if (VNI->isPHIDef())
+ return CR_Merge;
+ if (V.ValidLanes & OtherV.ValidLanes)
+ // Overlapping lanes can't be resolved.
+ return CR_Impossible;
+ else
+ return CR_Merge;
+ }
+
+ // No simultaneous def. Is Other live at the def?
+ V.OtherVNI = OtherLRQ.valueIn();
+ if (!V.OtherVNI)
+ // No overlap, no conflict.
+ return CR_Keep;
+
+ assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
+
+ // We have overlapping values, or possibly a kill of Other.
+ // Recursively compute assignments up the dominator tree.
+ Other.computeAssignment(V.OtherVNI->id, *this);
+ Val &OtherV = Other.Vals[V.OtherVNI->id];
+
+ // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
+ // This shouldn't normally happen, but ProcessImplicitDefs can leave such
+ // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
+ // technically.
+ //
+ // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
+ // to erase the IMPLICIT_DEF instruction.
+ if (OtherV.ErasableImplicitDef && DefMI &&
+ DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
+ DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
+ << " extends into BB#" << DefMI->getParent()->getNumber()
+ << ", keeping it.\n");
+ OtherV.ErasableImplicitDef = false;
+ }
+
+ // Allow overlapping PHI values. Any real interference would show up in a
+ // predecessor, the PHI itself can't introduce any conflicts.
+ if (VNI->isPHIDef())
+ return CR_Replace;
+
+ // Check for simple erasable conflicts.
+ if (DefMI->isImplicitDef()) {
+ // We need the def for the subregister if there is nothing else live at the
+ // subrange at this point.
+ if (TrackSubRegLiveness
+ && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
+ return CR_Replace;
+ return CR_Erase;
+ }
+
+ // Include the non-conflict where DefMI is a coalescable copy that kills
+ // OtherVNI. We still want the copy erased and value numbers merged.
+ if (CP.isCoalescable(DefMI)) {
+ // Some of the lanes copied from OtherVNI may be undef, making them undef
+ // here too.
+ V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
+ return CR_Erase;
+ }
+
+ // This may not be a real conflict if DefMI simply kills Other and defines
+ // VNI.
+ if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
+ return CR_Keep;
+
+ // Handle the case where VNI and OtherVNI can be proven to be identical:
+ //
+ // %other = COPY %ext
+ // %this = COPY %ext <-- Erase this copy
+ //
+ if (DefMI->isFullCopy() && !CP.isPartial()
+ && valuesIdentical(VNI, V.OtherVNI, Other))
+ return CR_Erase;
+
+ // If the lanes written by this instruction were all undef in OtherVNI, it is
+ // still safe to join the live ranges. This can't be done with a simple value
+ // mapping, though - OtherVNI will map to multiple values:
+ //
+ // 1 %dst:ssub0 = FOO <-- OtherVNI
+ // 2 %src = BAR <-- VNI
+ // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy.
+ // 4 BAZ %dst<kill>
+ // 5 QUUX %src<kill>
+ //
+ // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
+ // handles this complex value mapping.
+ if ((V.WriteLanes & OtherV.ValidLanes) == 0)
+ return CR_Replace;
+
+ // If the other live range is killed by DefMI and the live ranges are still
+ // overlapping, it must be because we're looking at an early clobber def:
+ //
+ // %dst<def,early-clobber> = ASM %src<kill>
+ //
+ // In this case, it is illegal to merge the two live ranges since the early
+ // clobber def would clobber %src before it was read.
+ if (OtherLRQ.isKill()) {
+ // This case where the def doesn't overlap the kill is handled above.
+ assert(VNI->def.isEarlyClobber() &&
+ "Only early clobber defs can overlap a kill");
+ return CR_Impossible;
+ }
+
+ // VNI is clobbering live lanes in OtherVNI, but there is still the
+ // possibility that no instructions actually read the clobbered lanes.
+ // If we're clobbering all the lanes in OtherVNI, at least one must be read.
+ // Otherwise Other.RI wouldn't be live here.
+ if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
+ return CR_Impossible;
+
+ // We need to verify that no instructions are reading the clobbered lanes. To
+ // save compile time, we'll only check that locally. Don't allow the tainted
+ // value to escape the basic block.
+ MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
+ if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
+ return CR_Impossible;
+
+ // There are still some things that could go wrong besides clobbered lanes
+ // being read, for example OtherVNI may be only partially redefined in MBB,
+ // and some clobbered lanes could escape the block. Save this analysis for
+ // resolveConflicts() when all values have been mapped. We need to know
+ // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
+ // that now - the recursive analyzeValue() calls must go upwards in the
+ // dominator tree.
+ return CR_Unresolved;
+}
+
+void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
+ Val &V = Vals[ValNo];
+ if (V.isAnalyzed()) {
+ // Recursion should always move up the dominator tree, so ValNo is not
+ // supposed to reappear before it has been assigned.
+ assert(Assignments[ValNo] != -1 && "Bad recursion?");
+ return;
+ }
+ switch ((V.Resolution = analyzeValue(ValNo, Other))) {
+ case CR_Erase:
+ case CR_Merge:
+ // Merge this ValNo into OtherVNI.
+ assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
+ assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
+ Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
+ DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
+ << LR.getValNumInfo(ValNo)->def << " into "
+ << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
+ << V.OtherVNI->def << " --> @"
+ << NewVNInfo[Assignments[ValNo]]->def << '\n');
+ break;
+ case CR_Replace:
+ case CR_Unresolved: {
+ // The other value is going to be pruned if this join is successful.
+ assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
+ Val &OtherV = Other.Vals[V.OtherVNI->id];
+ // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
+ // its lanes.
+ if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
+ OtherV.ErasableImplicitDef = false;
+ OtherV.Pruned = true;
+ }
+ // Fall through.
+ default:
+ // This value number needs to go in the final joined live range.
+ Assignments[ValNo] = NewVNInfo.size();
+ NewVNInfo.push_back(LR.getValNumInfo(ValNo));
+ break;
+ }
+}
+
+bool JoinVals::mapValues(JoinVals &Other) {
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
+ computeAssignment(i, Other);
+ if (Vals[i].Resolution == CR_Impossible) {
+ DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
+ << '@' << LR.getValNumInfo(i)->def << '\n');
+ return false;
+ }
+ }
+ return true;
+}
+
+bool JoinVals::
+taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
+ SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) {
+ VNInfo *VNI = LR.getValNumInfo(ValNo);
+ MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
+ SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
+
+ // Scan Other.LR from VNI.def to MBBEnd.
+ LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
+ assert(OtherI != Other.LR.end() && "No conflict?");
+ do {
+ // OtherI is pointing to a tainted value. Abort the join if the tainted
+ // lanes escape the block.
+ SlotIndex End = OtherI->end;
+ if (End >= MBBEnd) {
+ DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
+ << OtherI->valno->id << '@' << OtherI->start << '\n');
+ return false;
+ }
+ DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
+ << OtherI->valno->id << '@' << OtherI->start
+ << " to " << End << '\n');
+ // A dead def is not a problem.
+ if (End.isDead())
+ break;
+ TaintExtent.push_back(std::make_pair(End, TaintedLanes));
+
+ // Check for another def in the MBB.
+ if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
+ break;
+
+ // Lanes written by the new def are no longer tainted.
+ const Val &OV = Other.Vals[OtherI->valno->id];
+ TaintedLanes &= ~OV.WriteLanes;
+ if (!OV.RedefVNI)
+ break;
+ } while (TaintedLanes);
+ return true;
+}
+
+bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
+ LaneBitmask Lanes) const {
+ if (MI.isDebugValue())
+ return false;
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
+ continue;
+ if (!MO.readsReg())
+ continue;
+ if (Lanes & TRI->getSubRegIndexLaneMask(
+ TRI->composeSubRegIndices(SubIdx, MO.getSubReg())))
+ return true;
+ }
+ return false;
+}
+
+bool JoinVals::resolveConflicts(JoinVals &Other) {
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
+ Val &V = Vals[i];
+ assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
+ if (V.Resolution != CR_Unresolved)
+ continue;
+ DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
+ << '@' << LR.getValNumInfo(i)->def << '\n');
+ if (SubRangeJoin)
+ return false;
+
+ ++NumLaneConflicts;
+ assert(V.OtherVNI && "Inconsistent conflict resolution.");
+ VNInfo *VNI = LR.getValNumInfo(i);
+ const Val &OtherV = Other.Vals[V.OtherVNI->id];
+
+ // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
+ // join, those lanes will be tainted with a wrong value. Get the extent of
+ // the tainted lanes.
+ LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
+ SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
+ if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
+ // Tainted lanes would extend beyond the basic block.
+ return false;
+
+ assert(!TaintExtent.empty() && "There should be at least one conflict.");
+
+ // Now look at the instructions from VNI->def to TaintExtent (inclusive).
+ MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
+ MachineBasicBlock::iterator MI = MBB->begin();
+ if (!VNI->isPHIDef()) {
+ MI = Indexes->getInstructionFromIndex(VNI->def);
+ // No need to check the instruction defining VNI for reads.
+ ++MI;
+ }
+ assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
+ "Interference ends on VNI->def. Should have been handled earlier");
+ MachineInstr *LastMI =
+ Indexes->getInstructionFromIndex(TaintExtent.front().first);
+ assert(LastMI && "Range must end at a proper instruction");
+ unsigned TaintNum = 0;
+ for(;;) {
+ assert(MI != MBB->end() && "Bad LastMI");
+ if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
+ DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
+ return false;
+ }
+ // LastMI is the last instruction to use the current value.
+ if (&*MI == LastMI) {
+ if (++TaintNum == TaintExtent.size())
+ break;
+ LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
+ assert(LastMI && "Range must end at a proper instruction");
+ TaintedLanes = TaintExtent[TaintNum].second;
+ }
+ ++MI;
+ }
+
+ // The tainted lanes are unused.
+ V.Resolution = CR_Replace;
+ ++NumLaneResolves;
+ }
+ return true;
+}
+
+bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
+ Val &V = Vals[ValNo];
+ if (V.Pruned || V.PrunedComputed)
+ return V.Pruned;
+
+ if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
+ return V.Pruned;
+
+ // Follow copies up the dominator tree and check if any intermediate value
+ // has been pruned.
+ V.PrunedComputed = true;
+ V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
+ return V.Pruned;
+}
+
+void JoinVals::pruneValues(JoinVals &Other,
+ SmallVectorImpl<SlotIndex> &EndPoints,
+ bool changeInstrs) {
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
+ SlotIndex Def = LR.getValNumInfo(i)->def;
+ switch (Vals[i].Resolution) {
+ case CR_Keep:
+ break;
+ case CR_Replace: {
+ // This value takes precedence over the value in Other.LR.
+ LIS->pruneValue(Other.LR, Def, &EndPoints);
+ // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
+ // instructions are only inserted to provide a live-out value for PHI
+ // predecessors, so the instruction should simply go away once its value
+ // has been replaced.
+ Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
+ bool EraseImpDef = OtherV.ErasableImplicitDef &&
+ OtherV.Resolution == CR_Keep;
+ if (!Def.isBlock()) {
+ if (changeInstrs) {
+ // Remove <def,read-undef> flags. This def is now a partial redef.
+ // Also remove <def,dead> flags since the joined live range will
+ // continue past this instruction.
+ for (MachineOperand &MO :
+ Indexes->getInstructionFromIndex(Def)->operands()) {
+ if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
+ MO.setIsUndef(EraseImpDef);
+ MO.setIsDead(false);
+ }
+ }
+ }
+ // This value will reach instructions below, but we need to make sure
+ // the live range also reaches the instruction at Def.
+ if (!EraseImpDef)
+ EndPoints.push_back(Def);
+ }
+ DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
+ << ": " << Other.LR << '\n');
+ break;
+ }
+ case CR_Erase:
+ case CR_Merge:
+ if (isPrunedValue(i, Other)) {
+ // This value is ultimately a copy of a pruned value in LR or Other.LR.
+ // We can no longer trust the value mapping computed by
+ // computeAssignment(), the value that was originally copied could have
+ // been replaced.
+ LIS->pruneValue(LR, Def, &EndPoints);
+ DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
+ << Def << ": " << LR << '\n');
+ }
+ break;
+ case CR_Unresolved:
+ case CR_Impossible:
+ llvm_unreachable("Unresolved conflicts");
+ }
+ }
+}
+
+void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask)
+{
+ // Look for values being erased.
+ bool DidPrune = false;
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
+ if (Vals[i].Resolution != CR_Erase)
+ continue;
+
+ // Check subranges at the point where the copy will be removed.
+ SlotIndex Def = LR.getValNumInfo(i)->def;
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ LiveQueryResult Q = S.Query(Def);
+
+ // If a subrange starts at the copy then an undefined value has been
+ // copied and we must remove that subrange value as well.
+ VNInfo *ValueOut = Q.valueOutOrDead();
+ if (ValueOut != nullptr && Q.valueIn() == nullptr) {
+ DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
+ << " at " << Def << "\n");
+ LIS->pruneValue(S, Def, nullptr);
+ DidPrune = true;
+ // Mark value number as unused.
+ ValueOut->markUnused();
+ continue;
+ }
+ // If a subrange ends at the copy, then a value was copied but only
+ // partially used later. Shrink the subregister range appropriately.
+ if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
+ DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask)
+ << " at " << Def << "\n");
+ ShrinkMask |= S.LaneMask;
+ }
+ }
+ }
+ if (DidPrune)
+ LI.removeEmptySubRanges();
+}
+
+void JoinVals::removeImplicitDefs() {
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
+ Val &V = Vals[i];
+ if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
+ continue;
+
+ VNInfo *VNI = LR.getValNumInfo(i);
+ VNI->markUnused();
+ LR.removeValNo(VNI);
+ }
+}
+
+void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
+ SmallVectorImpl<unsigned> &ShrinkRegs) {
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
+ // Get the def location before markUnused() below invalidates it.
+ SlotIndex Def = LR.getValNumInfo(i)->def;
+ switch (Vals[i].Resolution) {
+ case CR_Keep: {
+ // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
+ // longer. The IMPLICIT_DEF instructions are only inserted by
+ // PHIElimination to guarantee that all PHI predecessors have a value.
+ if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
+ break;
+ // Remove value number i from LR.
+ VNInfo *VNI = LR.getValNumInfo(i);
+ LR.removeValNo(VNI);
+ // Note that this VNInfo is reused and still referenced in NewVNInfo,
+ // make it appear like an unused value number.
+ VNI->markUnused();
+ DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
+ // FALL THROUGH.
+ }
+
+ case CR_Erase: {
+ MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
+ assert(MI && "No instruction to erase");
+ if (MI->isCopy()) {
+ unsigned Reg = MI->getOperand(1).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg) &&
+ Reg != CP.getSrcReg() && Reg != CP.getDstReg())
+ ShrinkRegs.push_back(Reg);
+ }
+ ErasedInstrs.insert(MI);
+ DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
+ LIS->RemoveMachineInstrFromMaps(*MI);
+ MI->eraseFromParent();
+ break;
+ }
+ default:
+ break;
+ }
+ }
+}
+
+void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
+ LaneBitmask LaneMask,
+ const CoalescerPair &CP) {
+ SmallVector<VNInfo*, 16> NewVNInfo;
+ JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
+ NewVNInfo, CP, LIS, TRI, true, true);
+ JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
+ NewVNInfo, CP, LIS, TRI, true, true);
+
+ // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
+ // We should be able to resolve all conflicts here as we could successfully do
+ // it on the mainrange already. There is however a problem when multiple
+ // ranges get mapped to the "overflow" lane mask bit which creates unexpected
+ // interferences.
+ if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
+ // We already determined that it is legal to merge the intervals, so this
+ // should never fail.
+ llvm_unreachable("*** Couldn't join subrange!\n");
+ }
+ if (!LHSVals.resolveConflicts(RHSVals) ||
+ !RHSVals.resolveConflicts(LHSVals)) {
+ // We already determined that it is legal to merge the intervals, so this
+ // should never fail.
+ llvm_unreachable("*** Couldn't join subrange!\n");
+ }
+
+ // The merging algorithm in LiveInterval::join() can't handle conflicting
+ // value mappings, so we need to remove any live ranges that overlap a
+ // CR_Replace resolution. Collect a set of end points that can be used to
+ // restore the live range after joining.
+ SmallVector<SlotIndex, 8> EndPoints;
+ LHSVals.pruneValues(RHSVals, EndPoints, false);
+ RHSVals.pruneValues(LHSVals, EndPoints, false);
+
+ LHSVals.removeImplicitDefs();
+ RHSVals.removeImplicitDefs();
+
+ LRange.verify();
+ RRange.verify();
+
+ // Join RRange into LHS.
+ LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
+ NewVNInfo);
+
+ DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
+ if (EndPoints.empty())
+ return;
+
+ // Recompute the parts of the live range we had to remove because of
+ // CR_Replace conflicts.
+ DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
+ << " points: " << LRange << '\n');
+ LIS->extendToIndices(LRange, EndPoints);
+}
+
+void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
+ const LiveRange &ToMerge,
+ LaneBitmask LaneMask,
+ CoalescerPair &CP) {
+ BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
+ for (LiveInterval::SubRange &R : LI.subranges()) {
+ LaneBitmask RMask = R.LaneMask;
+ // LaneMask of subregisters common to subrange R and ToMerge.
+ LaneBitmask Common = RMask & LaneMask;
+ // There is nothing to do without common subregs.
+ if (Common == 0)
+ continue;
+
+ DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into "
+ << PrintLaneMask(Common) << '\n');
+ // LaneMask of subregisters contained in the R range but not in ToMerge,
+ // they have to split into their own subrange.
+ LaneBitmask LRest = RMask & ~LaneMask;
+ LiveInterval::SubRange *CommonRange;
+ if (LRest != 0) {
+ R.LaneMask = LRest;
+ DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n');
+ // Duplicate SubRange for newly merged common stuff.
+ CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
+ } else {
+ // Reuse the existing range.
+ R.LaneMask = Common;
+ CommonRange = &R;
+ }
+ LiveRange RangeCopy(ToMerge, Allocator);
+ joinSubRegRanges(*CommonRange, RangeCopy, Common, CP);
+ LaneMask &= ~RMask;
+ }
+
+ if (LaneMask != 0) {
+ DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n');
+ LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
+ }
+}
+
+bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
+ SmallVector<VNInfo*, 16> NewVNInfo;
+ LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
+ LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
+ bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
+ JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
+ TRI, false, TrackSubRegLiveness);
+ JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
+ TRI, false, TrackSubRegLiveness);
+
+ DEBUG(dbgs() << "\t\tRHS = " << RHS
+ << "\n\t\tLHS = " << LHS
+ << '\n');
+
+ // First compute NewVNInfo and the simple value mappings.
+ // Detect impossible conflicts early.
+ if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
+ return false;
+
+ // Some conflicts can only be resolved after all values have been mapped.
+ if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
+ return false;
+
+ // All clear, the live ranges can be merged.
+ if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
+ BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
+
+ // Transform lanemasks from the LHS to masks in the coalesced register and
+ // create initial subranges if necessary.
+ unsigned DstIdx = CP.getDstIdx();
+ if (!LHS.hasSubRanges()) {
+ LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
+ : TRI->getSubRegIndexLaneMask(DstIdx);
+ // LHS must support subregs or we wouldn't be in this codepath.
+ assert(Mask != 0);
+ LHS.createSubRangeFrom(Allocator, Mask, LHS);
+ } else if (DstIdx != 0) {
+ // Transform LHS lanemasks to new register class if necessary.
+ for (LiveInterval::SubRange &R : LHS.subranges()) {
+ LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
+ R.LaneMask = Mask;
+ }
+ }
+ DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
+ << ' ' << LHS << '\n');
+
+ // Determine lanemasks of RHS in the coalesced register and merge subranges.
+ unsigned SrcIdx = CP.getSrcIdx();
+ if (!RHS.hasSubRanges()) {
+ LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
+ : TRI->getSubRegIndexLaneMask(SrcIdx);
+ mergeSubRangeInto(LHS, RHS, Mask, CP);
+ } else {
+ // Pair up subranges and merge.
+ for (LiveInterval::SubRange &R : RHS.subranges()) {
+ LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
+ mergeSubRangeInto(LHS, R, Mask, CP);
+ }
+ }
+ DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
+
+ LHSVals.pruneSubRegValues(LHS, ShrinkMask);
+ RHSVals.pruneSubRegValues(LHS, ShrinkMask);
+ }
+
+ // The merging algorithm in LiveInterval::join() can't handle conflicting
+ // value mappings, so we need to remove any live ranges that overlap a
+ // CR_Replace resolution. Collect a set of end points that can be used to
+ // restore the live range after joining.
+ SmallVector<SlotIndex, 8> EndPoints;
+ LHSVals.pruneValues(RHSVals, EndPoints, true);
+ RHSVals.pruneValues(LHSVals, EndPoints, true);
+
+ // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
+ // registers to require trimming.
+ SmallVector<unsigned, 8> ShrinkRegs;
+ LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
+ RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
+ while (!ShrinkRegs.empty())
+ shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
+
+ // Join RHS into LHS.
+ LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
+
+ // Kill flags are going to be wrong if the live ranges were overlapping.
+ // Eventually, we should simply clear all kill flags when computing live
+ // ranges. They are reinserted after register allocation.
+ MRI->clearKillFlags(LHS.reg);
+ MRI->clearKillFlags(RHS.reg);
+
+ if (!EndPoints.empty()) {
+ // Recompute the parts of the live range we had to remove because of
+ // CR_Replace conflicts.
+ DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
+ << " points: " << LHS << '\n');
+ LIS->extendToIndices((LiveRange&)LHS, EndPoints);
+ }
+
+ return true;
+}
+
+bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
+ return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
+}
+
+namespace {
+/// Information concerning MBB coalescing priority.
+struct MBBPriorityInfo {
+ MachineBasicBlock *MBB;
+ unsigned Depth;
+ bool IsSplit;
+
+ MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
+ : MBB(mbb), Depth(depth), IsSplit(issplit) {}
+};
+}
+
+/// C-style comparator that sorts first based on the loop depth of the basic
+/// block (the unsigned), and then on the MBB number.
+///
+/// EnableGlobalCopies assumes that the primary sort key is loop depth.
+static int compareMBBPriority(const MBBPriorityInfo *LHS,
+ const MBBPriorityInfo *RHS) {
+ // Deeper loops first
+ if (LHS->Depth != RHS->Depth)
+ return LHS->Depth > RHS->Depth ? -1 : 1;
+
+ // Try to unsplit critical edges next.
+ if (LHS->IsSplit != RHS->IsSplit)
+ return LHS->IsSplit ? -1 : 1;
+
+ // Prefer blocks that are more connected in the CFG. This takes care of
+ // the most difficult copies first while intervals are short.
+ unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
+ unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
+ if (cl != cr)
+ return cl > cr ? -1 : 1;
+
+ // As a last resort, sort by block number.
+ return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
+}
+
+/// \returns true if the given copy uses or defines a local live range.
+static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
+ if (!Copy->isCopy())
+ return false;
+
+ if (Copy->getOperand(1).isUndef())
+ return false;
+
+ unsigned SrcReg = Copy->getOperand(1).getReg();
+ unsigned DstReg = Copy->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
+ || TargetRegisterInfo::isPhysicalRegister(DstReg))
+ return false;
+
+ return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
+ || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
+}
+
+bool RegisterCoalescer::
+copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
+ bool Progress = false;
+ for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
+ if (!CurrList[i])
+ continue;
+ // Skip instruction pointers that have already been erased, for example by
+ // dead code elimination.
+ if (ErasedInstrs.erase(CurrList[i])) {
+ CurrList[i] = nullptr;
+ continue;
+ }
+ bool Again = false;
+ bool Success = joinCopy(CurrList[i], Again);
+ Progress |= Success;
+ if (Success || !Again)
+ CurrList[i] = nullptr;
+ }
+ return Progress;
+}
+
+/// Check if DstReg is a terminal node.
+/// I.e., it does not have any affinity other than \p Copy.
+static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
+ const MachineRegisterInfo *MRI) {
+ assert(Copy.isCopyLike());
+ // Check if the destination of this copy as any other affinity.
+ for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
+ if (&MI != &Copy && MI.isCopyLike())
+ return false;
+ return true;
+}
+
+bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
+ assert(Copy.isCopyLike());
+ if (!UseTerminalRule)
+ return false;
+ unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
+ isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
+ // Check if the destination of this copy has any other affinity.
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
+ // If SrcReg is a physical register, the copy won't be coalesced.
+ // Ignoring it may have other side effect (like missing
+ // rematerialization). So keep it.
+ TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
+ !isTerminalReg(DstReg, Copy, MRI))
+ return false;
+
+ // DstReg is a terminal node. Check if it interferes with any other
+ // copy involving SrcReg.
+ const MachineBasicBlock *OrigBB = Copy.getParent();
+ const LiveInterval &DstLI = LIS->getInterval(DstReg);
+ for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
+ // Technically we should check if the weight of the new copy is
+ // interesting compared to the other one and update the weight
+ // of the copies accordingly. However, this would only work if
+ // we would gather all the copies first then coalesce, whereas
+ // right now we interleave both actions.
+ // For now, just consider the copies that are in the same block.
+ if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
+ continue;
+ unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
+ isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
+ OtherSubReg);
+ if (OtherReg == SrcReg)
+ OtherReg = OtherSrcReg;
+ // Check if OtherReg is a non-terminal.
+ if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
+ isTerminalReg(OtherReg, MI, MRI))
+ continue;
+ // Check that OtherReg interfere with DstReg.
+ if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
+ DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n');
+ return true;
+ }
+ }
+ return false;
+}
+
+void
+RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
+ DEBUG(dbgs() << MBB->getName() << ":\n");
+
+ // Collect all copy-like instructions in MBB. Don't start coalescing anything
+ // yet, it might invalidate the iterator.
+ const unsigned PrevSize = WorkList.size();
+ if (JoinGlobalCopies) {
+ SmallVector<MachineInstr*, 2> LocalTerminals;
+ SmallVector<MachineInstr*, 2> GlobalTerminals;
+ // Coalesce copies bottom-up to coalesce local defs before local uses. They
+ // are not inherently easier to resolve, but slightly preferable until we
+ // have local live range splitting. In particular this is required by
+ // cmp+jmp macro fusion.
+ for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
+ MII != E; ++MII) {
+ if (!MII->isCopyLike())
+ continue;
+ bool ApplyTerminalRule = applyTerminalRule(*MII);
+ if (isLocalCopy(&(*MII), LIS)) {
+ if (ApplyTerminalRule)
+ LocalTerminals.push_back(&(*MII));
+ else
+ LocalWorkList.push_back(&(*MII));
+ } else {
+ if (ApplyTerminalRule)
+ GlobalTerminals.push_back(&(*MII));
+ else
+ WorkList.push_back(&(*MII));
+ }
+ }
+ // Append the copies evicted by the terminal rule at the end of the list.
+ LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
+ WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
+ }
+ else {
+ SmallVector<MachineInstr*, 2> Terminals;
+ for (MachineInstr &MII : *MBB)
+ if (MII.isCopyLike()) {
+ if (applyTerminalRule(MII))
+ Terminals.push_back(&MII);
+ else
+ WorkList.push_back(&MII);
+ }
+ // Append the copies evicted by the terminal rule at the end of the list.
+ WorkList.append(Terminals.begin(), Terminals.end());
+ }
+ // Try coalescing the collected copies immediately, and remove the nulls.
+ // This prevents the WorkList from getting too large since most copies are
+ // joinable on the first attempt.
+ MutableArrayRef<MachineInstr*>
+ CurrList(WorkList.begin() + PrevSize, WorkList.end());
+ if (copyCoalesceWorkList(CurrList))
+ WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
+ (MachineInstr*)nullptr), WorkList.end());
+}
+
+void RegisterCoalescer::coalesceLocals() {
+ copyCoalesceWorkList(LocalWorkList);
+ for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
+ if (LocalWorkList[j])
+ WorkList.push_back(LocalWorkList[j]);
+ }
+ LocalWorkList.clear();
+}
+
+void RegisterCoalescer::joinAllIntervals() {
+ DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
+ assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
+
+ std::vector<MBBPriorityInfo> MBBs;
+ MBBs.reserve(MF->size());
+ for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
+ MachineBasicBlock *MBB = &*I;
+ MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
+ JoinSplitEdges && isSplitEdge(MBB)));
+ }
+ array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
+
+ // Coalesce intervals in MBB priority order.
+ unsigned CurrDepth = UINT_MAX;
+ for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
+ // Try coalescing the collected local copies for deeper loops.
+ if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
+ coalesceLocals();
+ CurrDepth = MBBs[i].Depth;
+ }
+ copyCoalesceInMBB(MBBs[i].MBB);
+ }
+ coalesceLocals();
+
+ // Joining intervals can allow other intervals to be joined. Iteratively join
+ // until we make no progress.
+ while (copyCoalesceWorkList(WorkList))
+ /* empty */ ;
+}
+
+void RegisterCoalescer::releaseMemory() {
+ ErasedInstrs.clear();
+ WorkList.clear();
+ DeadDefs.clear();
+ InflateRegs.clear();
+}
+
+bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
+ MF = &fn;
+ MRI = &fn.getRegInfo();
+ TM = &fn.getTarget();
+ const TargetSubtargetInfo &STI = fn.getSubtarget();
+ TRI = STI.getRegisterInfo();
+ TII = STI.getInstrInfo();
+ LIS = &getAnalysis<LiveIntervals>();
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ Loops = &getAnalysis<MachineLoopInfo>();
+ if (EnableGlobalCopies == cl::BOU_UNSET)
+ JoinGlobalCopies = STI.enableJoinGlobalCopies();
+ else
+ JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
+
+ // The MachineScheduler does not currently require JoinSplitEdges. This will
+ // either be enabled unconditionally or replaced by a more general live range
+ // splitting optimization.
+ JoinSplitEdges = EnableJoinSplits;
+
+ DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
+ << "********** Function: " << MF->getName() << '\n');
+
+ if (VerifyCoalescing)
+ MF->verify(this, "Before register coalescing");
+
+ RegClassInfo.runOnMachineFunction(fn);
+
+ // Join (coalesce) intervals if requested.
+ if (EnableJoining)
+ joinAllIntervals();
+
+ // After deleting a lot of copies, register classes may be less constrained.
+ // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
+ // DPR inflation.
+ array_pod_sort(InflateRegs.begin(), InflateRegs.end());
+ InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
+ InflateRegs.end());
+ DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
+ for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
+ unsigned Reg = InflateRegs[i];
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ if (MRI->recomputeRegClass(Reg)) {
+ DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
+ << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
+ ++NumInflated;
+
+ LiveInterval &LI = LIS->getInterval(Reg);
+ if (LI.hasSubRanges()) {
+ // If the inflated register class does not support subregisters anymore
+ // remove the subranges.
+ if (!MRI->shouldTrackSubRegLiveness(Reg)) {
+ LI.clearSubRanges();
+ } else {
+#ifndef NDEBUG
+ LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
+ // If subranges are still supported, then the same subregs
+ // should still be supported.
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ assert((S.LaneMask & ~MaxMask) == 0);
+ }
+#endif
+ }
+ }
+ }
+ }
+
+ DEBUG(dump());
+ if (VerifyCoalescing)
+ MF->verify(this, "After register coalescing");
+ return true;
+}
+
+void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
+ LIS->print(O, m);
+}