aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp893
1 files changed, 893 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp b/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp
new file mode 100644
index 000000000000..d1221ec59bd4
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp
@@ -0,0 +1,893 @@
+//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
+// register allocator for LLVM. This allocator works by constructing a PBQP
+// problem representing the register allocation problem under consideration,
+// solving this using a PBQP solver, and mapping the solution back to a
+// register assignment. If any variables are selected for spilling then spill
+// code is inserted and the process repeated.
+//
+// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
+// for register allocation. For more information on PBQP for register
+// allocation, see the following papers:
+//
+// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
+// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
+// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
+//
+// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
+// architectures. In Proceedings of the Joint Conference on Languages,
+// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
+// NY, USA, 139-148.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/RegAllocPBQP.h"
+#include "RegisterCoalescer.h"
+#include "Spiller.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveRangeEdit.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Printable.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <limits>
+#include <memory>
+#include <queue>
+#include <set>
+#include <sstream>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+static RegisterRegAlloc
+RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
+ createDefaultPBQPRegisterAllocator);
+
+static cl::opt<bool>
+PBQPCoalescing("pbqp-coalescing",
+ cl::desc("Attempt coalescing during PBQP register allocation."),
+ cl::init(false), cl::Hidden);
+
+#ifndef NDEBUG
+static cl::opt<bool>
+PBQPDumpGraphs("pbqp-dump-graphs",
+ cl::desc("Dump graphs for each function/round in the compilation unit."),
+ cl::init(false), cl::Hidden);
+#endif
+
+namespace {
+
+///
+/// PBQP based allocators solve the register allocation problem by mapping
+/// register allocation problems to Partitioned Boolean Quadratic
+/// Programming problems.
+class RegAllocPBQP : public MachineFunctionPass {
+public:
+
+ static char ID;
+
+ /// Construct a PBQP register allocator.
+ RegAllocPBQP(char *cPassID = nullptr)
+ : MachineFunctionPass(ID), customPassID(cPassID) {
+ initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
+ initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+ initializeLiveStacksPass(*PassRegistry::getPassRegistry());
+ initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
+ }
+
+ /// Return the pass name.
+ const char* getPassName() const override {
+ return "PBQP Register Allocator";
+ }
+
+ /// PBQP analysis usage.
+ void getAnalysisUsage(AnalysisUsage &au) const override;
+
+ /// Perform register allocation
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+private:
+
+ typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
+ typedef std::vector<const LiveInterval*> Node2LIMap;
+ typedef std::vector<unsigned> AllowedSet;
+ typedef std::vector<AllowedSet> AllowedSetMap;
+ typedef std::pair<unsigned, unsigned> RegPair;
+ typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
+ typedef std::set<unsigned> RegSet;
+
+ char *customPassID;
+
+ RegSet VRegsToAlloc, EmptyIntervalVRegs;
+
+ /// Inst which is a def of an original reg and whose defs are already all
+ /// dead after remat is saved in DeadRemats. The deletion of such inst is
+ /// postponed till all the allocations are done, so its remat expr is
+ /// always available for the remat of all the siblings of the original reg.
+ SmallPtrSet<MachineInstr *, 32> DeadRemats;
+
+ /// \brief Finds the initial set of vreg intervals to allocate.
+ void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
+
+ /// \brief Constructs an initial graph.
+ void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
+
+ /// \brief Spill the given VReg.
+ void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
+ MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
+ Spiller &VRegSpiller);
+
+ /// \brief Given a solved PBQP problem maps this solution back to a register
+ /// assignment.
+ bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
+ const PBQP::Solution &Solution,
+ VirtRegMap &VRM,
+ Spiller &VRegSpiller);
+
+ /// \brief Postprocessing before final spilling. Sets basic block "live in"
+ /// variables.
+ void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
+ VirtRegMap &VRM) const;
+
+ void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
+};
+
+char RegAllocPBQP::ID = 0;
+
+/// @brief Set spill costs for each node in the PBQP reg-alloc graph.
+class SpillCosts : public PBQPRAConstraint {
+public:
+ void apply(PBQPRAGraph &G) override {
+ LiveIntervals &LIS = G.getMetadata().LIS;
+
+ // A minimum spill costs, so that register constraints can can be set
+ // without normalization in the [0.0:MinSpillCost( interval.
+ const PBQP::PBQPNum MinSpillCost = 10.0;
+
+ for (auto NId : G.nodeIds()) {
+ PBQP::PBQPNum SpillCost =
+ LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
+ if (SpillCost == 0.0)
+ SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
+ else
+ SpillCost += MinSpillCost;
+ PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
+ NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
+ G.setNodeCosts(NId, std::move(NodeCosts));
+ }
+ }
+};
+
+/// @brief Add interference edges between overlapping vregs.
+class Interference : public PBQPRAConstraint {
+private:
+
+ typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
+ typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey;
+ typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
+ typedef DenseSet<IKey> DisjointAllowedRegsCache;
+ typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey;
+ typedef DenseSet<IEdgeKey> IEdgeCache;
+
+ bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
+ PBQPRAGraph::NodeId MId,
+ const DisjointAllowedRegsCache &D) const {
+ const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
+ const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
+
+ if (NRegs == MRegs)
+ return false;
+
+ if (NRegs < MRegs)
+ return D.count(IKey(NRegs, MRegs)) > 0;
+
+ return D.count(IKey(MRegs, NRegs)) > 0;
+ }
+
+ void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
+ PBQPRAGraph::NodeId MId,
+ DisjointAllowedRegsCache &D) {
+ const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
+ const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
+
+ assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
+
+ if (NRegs < MRegs)
+ D.insert(IKey(NRegs, MRegs));
+ else
+ D.insert(IKey(MRegs, NRegs));
+ }
+
+ // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
+ // for the fast interference graph construction algorithm. The last is there
+ // to save us from looking up node ids via the VRegToNode map in the graph
+ // metadata.
+ typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
+ IntervalInfo;
+
+ static SlotIndex getStartPoint(const IntervalInfo &I) {
+ return std::get<0>(I)->segments[std::get<1>(I)].start;
+ }
+
+ static SlotIndex getEndPoint(const IntervalInfo &I) {
+ return std::get<0>(I)->segments[std::get<1>(I)].end;
+ }
+
+ static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
+ return std::get<2>(I);
+ }
+
+ static bool lowestStartPoint(const IntervalInfo &I1,
+ const IntervalInfo &I2) {
+ // Condition reversed because priority queue has the *highest* element at
+ // the front, rather than the lowest.
+ return getStartPoint(I1) > getStartPoint(I2);
+ }
+
+ static bool lowestEndPoint(const IntervalInfo &I1,
+ const IntervalInfo &I2) {
+ SlotIndex E1 = getEndPoint(I1);
+ SlotIndex E2 = getEndPoint(I2);
+
+ if (E1 < E2)
+ return true;
+
+ if (E1 > E2)
+ return false;
+
+ // If two intervals end at the same point, we need a way to break the tie or
+ // the set will assume they're actually equal and refuse to insert a
+ // "duplicate". Just compare the vregs - fast and guaranteed unique.
+ return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
+ }
+
+ static bool isAtLastSegment(const IntervalInfo &I) {
+ return std::get<1>(I) == std::get<0>(I)->size() - 1;
+ }
+
+ static IntervalInfo nextSegment(const IntervalInfo &I) {
+ return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
+ }
+
+public:
+
+ void apply(PBQPRAGraph &G) override {
+ // The following is loosely based on the linear scan algorithm introduced in
+ // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
+ // isn't linear, because the size of the active set isn't bound by the
+ // number of registers, but rather the size of the largest clique in the
+ // graph. Still, we expect this to be better than N^2.
+ LiveIntervals &LIS = G.getMetadata().LIS;
+
+ // Interferenc matrices are incredibly regular - they're only a function of
+ // the allowed sets, so we cache them to avoid the overhead of constructing
+ // and uniquing them.
+ IMatrixCache C;
+
+ // Finding an edge is expensive in the worst case (O(max_clique(G))). So
+ // cache locally edges we have already seen.
+ IEdgeCache EC;
+
+ // Cache known disjoint allowed registers pairs
+ DisjointAllowedRegsCache D;
+
+ typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
+ typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
+ decltype(&lowestStartPoint)> IntervalQueue;
+ IntervalSet Active(lowestEndPoint);
+ IntervalQueue Inactive(lowestStartPoint);
+
+ // Start by building the inactive set.
+ for (auto NId : G.nodeIds()) {
+ unsigned VReg = G.getNodeMetadata(NId).getVReg();
+ LiveInterval &LI = LIS.getInterval(VReg);
+ assert(!LI.empty() && "PBQP graph contains node for empty interval");
+ Inactive.push(std::make_tuple(&LI, 0, NId));
+ }
+
+ while (!Inactive.empty()) {
+ // Tentatively grab the "next" interval - this choice may be overriden
+ // below.
+ IntervalInfo Cur = Inactive.top();
+
+ // Retire any active intervals that end before Cur starts.
+ IntervalSet::iterator RetireItr = Active.begin();
+ while (RetireItr != Active.end() &&
+ (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
+ // If this interval has subsequent segments, add the next one to the
+ // inactive list.
+ if (!isAtLastSegment(*RetireItr))
+ Inactive.push(nextSegment(*RetireItr));
+
+ ++RetireItr;
+ }
+ Active.erase(Active.begin(), RetireItr);
+
+ // One of the newly retired segments may actually start before the
+ // Cur segment, so re-grab the front of the inactive list.
+ Cur = Inactive.top();
+ Inactive.pop();
+
+ // At this point we know that Cur overlaps all active intervals. Add the
+ // interference edges.
+ PBQP::GraphBase::NodeId NId = getNodeId(Cur);
+ for (const auto &A : Active) {
+ PBQP::GraphBase::NodeId MId = getNodeId(A);
+
+ // Do not add an edge when the nodes' allowed registers do not
+ // intersect: there is obviously no interference.
+ if (haveDisjointAllowedRegs(G, NId, MId, D))
+ continue;
+
+ // Check that we haven't already added this edge
+ IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
+ if (EC.count(EK))
+ continue;
+
+ // This is a new edge - add it to the graph.
+ if (!createInterferenceEdge(G, NId, MId, C))
+ setDisjointAllowedRegs(G, NId, MId, D);
+ else
+ EC.insert(EK);
+ }
+
+ // Finally, add Cur to the Active set.
+ Active.insert(Cur);
+ }
+ }
+
+private:
+
+ // Create an Interference edge and add it to the graph, unless it is
+ // a null matrix, meaning the nodes' allowed registers do not have any
+ // interference. This case occurs frequently between integer and floating
+ // point registers for example.
+ // return true iff both nodes interferes.
+ bool createInterferenceEdge(PBQPRAGraph &G,
+ PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
+ IMatrixCache &C) {
+
+ const TargetRegisterInfo &TRI =
+ *G.getMetadata().MF.getSubtarget().getRegisterInfo();
+ const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
+ const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
+
+ // Try looking the edge costs up in the IMatrixCache first.
+ IKey K(&NRegs, &MRegs);
+ IMatrixCache::iterator I = C.find(K);
+ if (I != C.end()) {
+ G.addEdgeBypassingCostAllocator(NId, MId, I->second);
+ return true;
+ }
+
+ PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
+ bool NodesInterfere = false;
+ for (unsigned I = 0; I != NRegs.size(); ++I) {
+ unsigned PRegN = NRegs[I];
+ for (unsigned J = 0; J != MRegs.size(); ++J) {
+ unsigned PRegM = MRegs[J];
+ if (TRI.regsOverlap(PRegN, PRegM)) {
+ M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
+ NodesInterfere = true;
+ }
+ }
+ }
+
+ if (!NodesInterfere)
+ return false;
+
+ PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
+ C[K] = G.getEdgeCostsPtr(EId);
+
+ return true;
+ }
+};
+
+
+class Coalescing : public PBQPRAConstraint {
+public:
+ void apply(PBQPRAGraph &G) override {
+ MachineFunction &MF = G.getMetadata().MF;
+ MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
+ CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
+
+ // Scan the machine function and add a coalescing cost whenever CoalescerPair
+ // gives the Ok.
+ for (const auto &MBB : MF) {
+ for (const auto &MI : MBB) {
+
+ // Skip not-coalescable or already coalesced copies.
+ if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
+ continue;
+
+ unsigned DstReg = CP.getDstReg();
+ unsigned SrcReg = CP.getSrcReg();
+
+ const float Scale = 1.0f / MBFI.getEntryFreq();
+ PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
+
+ if (CP.isPhys()) {
+ if (!MF.getRegInfo().isAllocatable(DstReg))
+ continue;
+
+ PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
+
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
+ G.getNodeMetadata(NId).getAllowedRegs();
+
+ unsigned PRegOpt = 0;
+ while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
+ ++PRegOpt;
+
+ if (PRegOpt < Allowed.size()) {
+ PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
+ NewCosts[PRegOpt + 1] -= CBenefit;
+ G.setNodeCosts(NId, std::move(NewCosts));
+ }
+ } else {
+ PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
+ PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
+ &G.getNodeMetadata(N1Id).getAllowedRegs();
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
+ &G.getNodeMetadata(N2Id).getAllowedRegs();
+
+ PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
+ if (EId == G.invalidEdgeId()) {
+ PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
+ Allowed2->size() + 1, 0);
+ addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
+ G.addEdge(N1Id, N2Id, std::move(Costs));
+ } else {
+ if (G.getEdgeNode1Id(EId) == N2Id) {
+ std::swap(N1Id, N2Id);
+ std::swap(Allowed1, Allowed2);
+ }
+ PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
+ addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
+ G.updateEdgeCosts(EId, std::move(Costs));
+ }
+ }
+ }
+ }
+ }
+
+private:
+
+ void addVirtRegCoalesce(
+ PBQPRAGraph::RawMatrix &CostMat,
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
+ PBQP::PBQPNum Benefit) {
+ assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
+ assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
+ for (unsigned I = 0; I != Allowed1.size(); ++I) {
+ unsigned PReg1 = Allowed1[I];
+ for (unsigned J = 0; J != Allowed2.size(); ++J) {
+ unsigned PReg2 = Allowed2[J];
+ if (PReg1 == PReg2)
+ CostMat[I + 1][J + 1] -= Benefit;
+ }
+ }
+ }
+
+};
+
+} // End anonymous namespace.
+
+// Out-of-line destructor/anchor for PBQPRAConstraint.
+PBQPRAConstraint::~PBQPRAConstraint() {}
+void PBQPRAConstraint::anchor() {}
+void PBQPRAConstraintList::anchor() {}
+
+void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
+ au.setPreservesCFG();
+ au.addRequired<AAResultsWrapperPass>();
+ au.addPreserved<AAResultsWrapperPass>();
+ au.addRequired<SlotIndexes>();
+ au.addPreserved<SlotIndexes>();
+ au.addRequired<LiveIntervals>();
+ au.addPreserved<LiveIntervals>();
+ //au.addRequiredID(SplitCriticalEdgesID);
+ if (customPassID)
+ au.addRequiredID(*customPassID);
+ au.addRequired<LiveStacks>();
+ au.addPreserved<LiveStacks>();
+ au.addRequired<MachineBlockFrequencyInfo>();
+ au.addPreserved<MachineBlockFrequencyInfo>();
+ au.addRequired<MachineLoopInfo>();
+ au.addPreserved<MachineLoopInfo>();
+ au.addRequired<MachineDominatorTree>();
+ au.addPreserved<MachineDominatorTree>();
+ au.addRequired<VirtRegMap>();
+ au.addPreserved<VirtRegMap>();
+ MachineFunctionPass::getAnalysisUsage(au);
+}
+
+void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
+ LiveIntervals &LIS) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Iterate over all live ranges.
+ for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
+ if (MRI.reg_nodbg_empty(Reg))
+ continue;
+ LiveInterval &LI = LIS.getInterval(Reg);
+
+ // If this live interval is non-empty we will use pbqp to allocate it.
+ // Empty intervals we allocate in a simple post-processing stage in
+ // finalizeAlloc.
+ if (!LI.empty()) {
+ VRegsToAlloc.insert(LI.reg);
+ } else {
+ EmptyIntervalVRegs.insert(LI.reg);
+ }
+ }
+}
+
+static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
+ const MachineFunction &MF) {
+ const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
+ for (unsigned i = 0; CSR[i] != 0; ++i)
+ if (TRI.regsOverlap(reg, CSR[i]))
+ return true;
+ return false;
+}
+
+void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
+ Spiller &VRegSpiller) {
+ MachineFunction &MF = G.getMetadata().MF;
+
+ LiveIntervals &LIS = G.getMetadata().LIS;
+ const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
+ const TargetRegisterInfo &TRI =
+ *G.getMetadata().MF.getSubtarget().getRegisterInfo();
+
+ std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
+
+ while (!Worklist.empty()) {
+ unsigned VReg = Worklist.back();
+ Worklist.pop_back();
+
+ const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
+ LiveInterval &VRegLI = LIS.getInterval(VReg);
+
+ // Record any overlaps with regmask operands.
+ BitVector RegMaskOverlaps;
+ LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
+
+ // Compute an initial allowed set for the current vreg.
+ std::vector<unsigned> VRegAllowed;
+ ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
+ for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
+ unsigned PReg = RawPRegOrder[I];
+ if (MRI.isReserved(PReg))
+ continue;
+
+ // vregLI crosses a regmask operand that clobbers preg.
+ if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
+ continue;
+
+ // vregLI overlaps fixed regunit interference.
+ bool Interference = false;
+ for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
+ if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
+ Interference = true;
+ break;
+ }
+ }
+ if (Interference)
+ continue;
+
+ // preg is usable for this virtual register.
+ VRegAllowed.push_back(PReg);
+ }
+
+ // Check for vregs that have no allowed registers. These should be
+ // pre-spilled and the new vregs added to the worklist.
+ if (VRegAllowed.empty()) {
+ SmallVector<unsigned, 8> NewVRegs;
+ spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
+ Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
+ continue;
+ }
+
+ PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
+
+ // Tweak cost of callee saved registers, as using then force spilling and
+ // restoring them. This would only happen in the prologue / epilogue though.
+ for (unsigned i = 0; i != VRegAllowed.size(); ++i)
+ if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
+ NodeCosts[1 + i] += 1.0;
+
+ PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
+ G.getNodeMetadata(NId).setVReg(VReg);
+ G.getNodeMetadata(NId).setAllowedRegs(
+ G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
+ G.getMetadata().setNodeIdForVReg(VReg, NId);
+ }
+}
+
+void RegAllocPBQP::spillVReg(unsigned VReg,
+ SmallVectorImpl<unsigned> &NewIntervals,
+ MachineFunction &MF, LiveIntervals &LIS,
+ VirtRegMap &VRM, Spiller &VRegSpiller) {
+
+ VRegsToAlloc.erase(VReg);
+ LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
+ nullptr, &DeadRemats);
+ VRegSpiller.spill(LRE);
+
+ const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
+ (void)TRI;
+ DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
+ << LRE.getParent().weight << ", New vregs: ");
+
+ // Copy any newly inserted live intervals into the list of regs to
+ // allocate.
+ for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
+ I != E; ++I) {
+ const LiveInterval &LI = LIS.getInterval(*I);
+ assert(!LI.empty() && "Empty spill range.");
+ DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
+ VRegsToAlloc.insert(LI.reg);
+ }
+
+ DEBUG(dbgs() << ")\n");
+}
+
+bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
+ const PBQP::Solution &Solution,
+ VirtRegMap &VRM,
+ Spiller &VRegSpiller) {
+ MachineFunction &MF = G.getMetadata().MF;
+ LiveIntervals &LIS = G.getMetadata().LIS;
+ const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
+ (void)TRI;
+
+ // Set to true if we have any spills
+ bool AnotherRoundNeeded = false;
+
+ // Clear the existing allocation.
+ VRM.clearAllVirt();
+
+ // Iterate over the nodes mapping the PBQP solution to a register
+ // assignment.
+ for (auto NId : G.nodeIds()) {
+ unsigned VReg = G.getNodeMetadata(NId).getVReg();
+ unsigned AllocOption = Solution.getSelection(NId);
+
+ if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
+ unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
+ DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
+ << TRI.getName(PReg) << "\n");
+ assert(PReg != 0 && "Invalid preg selected.");
+ VRM.assignVirt2Phys(VReg, PReg);
+ } else {
+ // Spill VReg. If this introduces new intervals we'll need another round
+ // of allocation.
+ SmallVector<unsigned, 8> NewVRegs;
+ spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
+ AnotherRoundNeeded |= !NewVRegs.empty();
+ }
+ }
+
+ return !AnotherRoundNeeded;
+}
+
+void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
+ LiveIntervals &LIS,
+ VirtRegMap &VRM) const {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // First allocate registers for the empty intervals.
+ for (RegSet::const_iterator
+ I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
+ I != E; ++I) {
+ LiveInterval &LI = LIS.getInterval(*I);
+
+ unsigned PReg = MRI.getSimpleHint(LI.reg);
+
+ if (PReg == 0) {
+ const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
+ PReg = RC.getRawAllocationOrder(MF).front();
+ }
+
+ VRM.assignVirt2Phys(LI.reg, PReg);
+ }
+}
+
+void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
+ VRegSpiller.postOptimization();
+ /// Remove dead defs because of rematerialization.
+ for (auto DeadInst : DeadRemats) {
+ LIS.RemoveMachineInstrFromMaps(*DeadInst);
+ DeadInst->eraseFromParent();
+ }
+ DeadRemats.clear();
+}
+
+static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
+ unsigned NumInstr) {
+ // All intervals have a spill weight that is mostly proportional to the number
+ // of uses, with uses in loops having a bigger weight.
+ return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
+}
+
+bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
+ LiveIntervals &LIS = getAnalysis<LiveIntervals>();
+ MachineBlockFrequencyInfo &MBFI =
+ getAnalysis<MachineBlockFrequencyInfo>();
+
+ VirtRegMap &VRM = getAnalysis<VirtRegMap>();
+
+ calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
+ MBFI, normalizePBQPSpillWeight);
+
+ std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
+
+ MF.getRegInfo().freezeReservedRegs(MF);
+
+ DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
+
+ // Allocator main loop:
+ //
+ // * Map current regalloc problem to a PBQP problem
+ // * Solve the PBQP problem
+ // * Map the solution back to a register allocation
+ // * Spill if necessary
+ //
+ // This process is continued till no more spills are generated.
+
+ // Find the vreg intervals in need of allocation.
+ findVRegIntervalsToAlloc(MF, LIS);
+
+#ifndef NDEBUG
+ const Function &F = *MF.getFunction();
+ std::string FullyQualifiedName =
+ F.getParent()->getModuleIdentifier() + "." + F.getName().str();
+#endif
+
+ // If there are non-empty intervals allocate them using pbqp.
+ if (!VRegsToAlloc.empty()) {
+
+ const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
+ std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
+ llvm::make_unique<PBQPRAConstraintList>();
+ ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
+ ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
+ if (PBQPCoalescing)
+ ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
+ ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
+
+ bool PBQPAllocComplete = false;
+ unsigned Round = 0;
+
+ while (!PBQPAllocComplete) {
+ DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n");
+
+ PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
+ initializeGraph(G, VRM, *VRegSpiller);
+ ConstraintsRoot->apply(G);
+
+#ifndef NDEBUG
+ if (PBQPDumpGraphs) {
+ std::ostringstream RS;
+ RS << Round;
+ std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
+ ".pbqpgraph";
+ std::error_code EC;
+ raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
+ DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
+ << GraphFileName << "\"\n");
+ G.dump(OS);
+ }
+#endif
+
+ PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
+ PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
+ ++Round;
+ }
+ }
+
+ // Finalise allocation, allocate empty ranges.
+ finalizeAlloc(MF, LIS, VRM);
+ postOptimization(*VRegSpiller, LIS);
+ VRegsToAlloc.clear();
+ EmptyIntervalVRegs.clear();
+
+ DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
+
+ return true;
+}
+
+/// Create Printable object for node and register info.
+static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
+ const PBQP::RegAlloc::PBQPRAGraph &G) {
+ return Printable([NId, &G](raw_ostream &OS) {
+ const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
+ const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
+ unsigned VReg = G.getNodeMetadata(NId).getVReg();
+ const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
+ OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')';
+ });
+}
+
+void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
+ for (auto NId : nodeIds()) {
+ const Vector &Costs = getNodeCosts(NId);
+ assert(Costs.getLength() != 0 && "Empty vector in graph.");
+ OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
+ }
+ OS << '\n';
+
+ for (auto EId : edgeIds()) {
+ NodeId N1Id = getEdgeNode1Id(EId);
+ NodeId N2Id = getEdgeNode2Id(EId);
+ assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
+ const Matrix &M = getEdgeCosts(EId);
+ assert(M.getRows() != 0 && "No rows in matrix.");
+ assert(M.getCols() != 0 && "No cols in matrix.");
+ OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
+ OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
+ OS << M << '\n';
+ }
+}
+
+LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); }
+
+void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
+ OS << "graph {\n";
+ for (auto NId : nodeIds()) {
+ OS << " node" << NId << " [ label=\""
+ << PrintNodeInfo(NId, *this) << "\\n"
+ << getNodeCosts(NId) << "\" ]\n";
+ }
+
+ OS << " edge [ len=" << nodeIds().size() << " ]\n";
+ for (auto EId : edgeIds()) {
+ OS << " node" << getEdgeNode1Id(EId)
+ << " -- node" << getEdgeNode2Id(EId)
+ << " [ label=\"";
+ const Matrix &EdgeCosts = getEdgeCosts(EId);
+ for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
+ OS << EdgeCosts.getRowAsVector(i) << "\\n";
+ }
+ OS << "\" ]\n";
+ }
+ OS << "}\n";
+}
+
+FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
+ return new RegAllocPBQP(customPassID);
+}
+
+FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
+ return createPBQPRegisterAllocator();
+}
+
+#undef DEBUG_TYPE