aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineVerifier.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineVerifier.cpp1360
1 files changed, 1360 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineVerifier.cpp b/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
new file mode 100644
index 000000000000..74ba94d1fcc0
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
@@ -0,0 +1,1360 @@
+//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Pass to verify generated machine code. The following is checked:
+//
+// Operand counts: All explicit operands must be present.
+//
+// Register classes: All physical and virtual register operands must be
+// compatible with the register class required by the instruction descriptor.
+//
+// Register live intervals: Registers must be defined only once, and must be
+// defined before use.
+//
+// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
+// command-line option -verify-machineinstrs, or by defining the environment
+// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
+// the verifier errors.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Instructions.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+namespace {
+ struct MachineVerifier {
+
+ MachineVerifier(Pass *pass, const char *b) :
+ PASS(pass),
+ Banner(b),
+ OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
+ {}
+
+ bool runOnMachineFunction(MachineFunction &MF);
+
+ Pass *const PASS;
+ const char *Banner;
+ const char *const OutFileName;
+ raw_ostream *OS;
+ const MachineFunction *MF;
+ const TargetMachine *TM;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const MachineRegisterInfo *MRI;
+
+ unsigned foundErrors;
+
+ typedef SmallVector<unsigned, 16> RegVector;
+ typedef SmallVector<const uint32_t*, 4> RegMaskVector;
+ typedef DenseSet<unsigned> RegSet;
+ typedef DenseMap<unsigned, const MachineInstr*> RegMap;
+
+ const MachineInstr *FirstTerminator;
+
+ BitVector regsReserved;
+ BitVector regsAllocatable;
+ RegSet regsLive;
+ RegVector regsDefined, regsDead, regsKilled;
+ RegMaskVector regMasks;
+ RegSet regsLiveInButUnused;
+
+ SlotIndex lastIndex;
+
+ // Add Reg and any sub-registers to RV
+ void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
+ RV.push_back(Reg);
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ for (const uint16_t *R = TRI->getSubRegisters(Reg); *R; R++)
+ RV.push_back(*R);
+ }
+
+ struct BBInfo {
+ // Is this MBB reachable from the MF entry point?
+ bool reachable;
+
+ // Vregs that must be live in because they are used without being
+ // defined. Map value is the user.
+ RegMap vregsLiveIn;
+
+ // Regs killed in MBB. They may be defined again, and will then be in both
+ // regsKilled and regsLiveOut.
+ RegSet regsKilled;
+
+ // Regs defined in MBB and live out. Note that vregs passing through may
+ // be live out without being mentioned here.
+ RegSet regsLiveOut;
+
+ // Vregs that pass through MBB untouched. This set is disjoint from
+ // regsKilled and regsLiveOut.
+ RegSet vregsPassed;
+
+ // Vregs that must pass through MBB because they are needed by a successor
+ // block. This set is disjoint from regsLiveOut.
+ RegSet vregsRequired;
+
+ BBInfo() : reachable(false) {}
+
+ // Add register to vregsPassed if it belongs there. Return true if
+ // anything changed.
+ bool addPassed(unsigned Reg) {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return false;
+ if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
+ return false;
+ return vregsPassed.insert(Reg).second;
+ }
+
+ // Same for a full set.
+ bool addPassed(const RegSet &RS) {
+ bool changed = false;
+ for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
+ if (addPassed(*I))
+ changed = true;
+ return changed;
+ }
+
+ // Add register to vregsRequired if it belongs there. Return true if
+ // anything changed.
+ bool addRequired(unsigned Reg) {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return false;
+ if (regsLiveOut.count(Reg))
+ return false;
+ return vregsRequired.insert(Reg).second;
+ }
+
+ // Same for a full set.
+ bool addRequired(const RegSet &RS) {
+ bool changed = false;
+ for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
+ if (addRequired(*I))
+ changed = true;
+ return changed;
+ }
+
+ // Same for a full map.
+ bool addRequired(const RegMap &RM) {
+ bool changed = false;
+ for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
+ if (addRequired(I->first))
+ changed = true;
+ return changed;
+ }
+
+ // Live-out registers are either in regsLiveOut or vregsPassed.
+ bool isLiveOut(unsigned Reg) const {
+ return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
+ }
+ };
+
+ // Extra register info per MBB.
+ DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
+
+ bool isReserved(unsigned Reg) {
+ return Reg < regsReserved.size() && regsReserved.test(Reg);
+ }
+
+ bool isAllocatable(unsigned Reg) {
+ return Reg < regsAllocatable.size() && regsAllocatable.test(Reg);
+ }
+
+ // Analysis information if available
+ LiveVariables *LiveVars;
+ LiveIntervals *LiveInts;
+ LiveStacks *LiveStks;
+ SlotIndexes *Indexes;
+
+ void visitMachineFunctionBefore();
+ void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
+ void visitMachineInstrBefore(const MachineInstr *MI);
+ void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
+ void visitMachineInstrAfter(const MachineInstr *MI);
+ void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
+ void visitMachineFunctionAfter();
+
+ void report(const char *msg, const MachineFunction *MF);
+ void report(const char *msg, const MachineBasicBlock *MBB);
+ void report(const char *msg, const MachineInstr *MI);
+ void report(const char *msg, const MachineOperand *MO, unsigned MONum);
+
+ void checkLiveness(const MachineOperand *MO, unsigned MONum);
+ void markReachable(const MachineBasicBlock *MBB);
+ void calcRegsPassed();
+ void checkPHIOps(const MachineBasicBlock *MBB);
+
+ void calcRegsRequired();
+ void verifyLiveVariables();
+ void verifyLiveIntervals();
+ };
+
+ struct MachineVerifierPass : public MachineFunctionPass {
+ static char ID; // Pass ID, replacement for typeid
+ const char *const Banner;
+
+ MachineVerifierPass(const char *b = 0)
+ : MachineFunctionPass(ID), Banner(b) {
+ initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) {
+ MF.verify(this, Banner);
+ return false;
+ }
+ };
+
+}
+
+char MachineVerifierPass::ID = 0;
+INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
+ "Verify generated machine code", false, false)
+
+FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
+ return new MachineVerifierPass(Banner);
+}
+
+void MachineFunction::verify(Pass *p, const char *Banner) const {
+ MachineVerifier(p, Banner)
+ .runOnMachineFunction(const_cast<MachineFunction&>(*this));
+}
+
+bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
+ raw_ostream *OutFile = 0;
+ if (OutFileName) {
+ std::string ErrorInfo;
+ OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
+ raw_fd_ostream::F_Append);
+ if (!ErrorInfo.empty()) {
+ errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
+ exit(1);
+ }
+
+ OS = OutFile;
+ } else {
+ OS = &errs();
+ }
+
+ foundErrors = 0;
+
+ this->MF = &MF;
+ TM = &MF.getTarget();
+ TII = TM->getInstrInfo();
+ TRI = TM->getRegisterInfo();
+ MRI = &MF.getRegInfo();
+
+ LiveVars = NULL;
+ LiveInts = NULL;
+ LiveStks = NULL;
+ Indexes = NULL;
+ if (PASS) {
+ LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
+ // We don't want to verify LiveVariables if LiveIntervals is available.
+ if (!LiveInts)
+ LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
+ LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
+ Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
+ }
+
+ visitMachineFunctionBefore();
+ for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
+ MFI!=MFE; ++MFI) {
+ visitMachineBasicBlockBefore(MFI);
+ for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
+ MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
+ if (MBBI->getParent() != MFI) {
+ report("Bad instruction parent pointer", MFI);
+ *OS << "Instruction: " << *MBBI;
+ continue;
+ }
+ // Skip BUNDLE instruction for now. FIXME: We should add code to verify
+ // the BUNDLE's specifically.
+ if (MBBI->isBundle())
+ continue;
+ visitMachineInstrBefore(MBBI);
+ for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
+ visitMachineOperand(&MBBI->getOperand(I), I);
+ visitMachineInstrAfter(MBBI);
+ }
+ visitMachineBasicBlockAfter(MFI);
+ }
+ visitMachineFunctionAfter();
+
+ if (OutFile)
+ delete OutFile;
+ else if (foundErrors)
+ report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
+
+ // Clean up.
+ regsLive.clear();
+ regsDefined.clear();
+ regsDead.clear();
+ regsKilled.clear();
+ regMasks.clear();
+ regsLiveInButUnused.clear();
+ MBBInfoMap.clear();
+
+ return false; // no changes
+}
+
+void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
+ assert(MF);
+ *OS << '\n';
+ if (!foundErrors++) {
+ if (Banner)
+ *OS << "# " << Banner << '\n';
+ MF->print(*OS, Indexes);
+ }
+ *OS << "*** Bad machine code: " << msg << " ***\n"
+ << "- function: " << MF->getFunction()->getName() << "\n";
+}
+
+void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
+ assert(MBB);
+ report(msg, MBB->getParent());
+ *OS << "- basic block: " << MBB->getName()
+ << " " << (void*)MBB
+ << " (BB#" << MBB->getNumber() << ")";
+ if (Indexes)
+ *OS << " [" << Indexes->getMBBStartIdx(MBB)
+ << ';' << Indexes->getMBBEndIdx(MBB) << ')';
+ *OS << '\n';
+}
+
+void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
+ assert(MI);
+ report(msg, MI->getParent());
+ *OS << "- instruction: ";
+ if (Indexes && Indexes->hasIndex(MI))
+ *OS << Indexes->getInstructionIndex(MI) << '\t';
+ MI->print(*OS, TM);
+}
+
+void MachineVerifier::report(const char *msg,
+ const MachineOperand *MO, unsigned MONum) {
+ assert(MO);
+ report(msg, MO->getParent());
+ *OS << "- operand " << MONum << ": ";
+ MO->print(*OS, TM);
+ *OS << "\n";
+}
+
+void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
+ BBInfo &MInfo = MBBInfoMap[MBB];
+ if (!MInfo.reachable) {
+ MInfo.reachable = true;
+ for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
+ SuE = MBB->succ_end(); SuI != SuE; ++SuI)
+ markReachable(*SuI);
+ }
+}
+
+void MachineVerifier::visitMachineFunctionBefore() {
+ lastIndex = SlotIndex();
+ regsReserved = TRI->getReservedRegs(*MF);
+
+ // A sub-register of a reserved register is also reserved
+ for (int Reg = regsReserved.find_first(); Reg>=0;
+ Reg = regsReserved.find_next(Reg)) {
+ for (const uint16_t *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
+ // FIXME: This should probably be:
+ // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
+ regsReserved.set(*Sub);
+ }
+ }
+
+ regsAllocatable = TRI->getAllocatableSet(*MF);
+
+ markReachable(&MF->front());
+}
+
+// Does iterator point to a and b as the first two elements?
+static bool matchPair(MachineBasicBlock::const_succ_iterator i,
+ const MachineBasicBlock *a, const MachineBasicBlock *b) {
+ if (*i == a)
+ return *++i == b;
+ if (*i == b)
+ return *++i == a;
+ return false;
+}
+
+void
+MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
+ FirstTerminator = 0;
+
+ if (MRI->isSSA()) {
+ // If this block has allocatable physical registers live-in, check that
+ // it is an entry block or landing pad.
+ for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
+ LE = MBB->livein_end();
+ LI != LE; ++LI) {
+ unsigned reg = *LI;
+ if (isAllocatable(reg) && !MBB->isLandingPad() &&
+ MBB != MBB->getParent()->begin()) {
+ report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
+ }
+ }
+ }
+
+ // Count the number of landing pad successors.
+ SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
+ for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
+ E = MBB->succ_end(); I != E; ++I) {
+ if ((*I)->isLandingPad())
+ LandingPadSuccs.insert(*I);
+ }
+
+ const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
+ const BasicBlock *BB = MBB->getBasicBlock();
+ if (LandingPadSuccs.size() > 1 &&
+ !(AsmInfo &&
+ AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
+ BB && isa<SwitchInst>(BB->getTerminator())))
+ report("MBB has more than one landing pad successor", MBB);
+
+ // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
+ TBB, FBB, Cond)) {
+ // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
+ // check whether its answers match up with reality.
+ if (!TBB && !FBB) {
+ // Block falls through to its successor.
+ MachineFunction::const_iterator MBBI = MBB;
+ ++MBBI;
+ if (MBBI == MF->end()) {
+ // It's possible that the block legitimately ends with a noreturn
+ // call or an unreachable, in which case it won't actually fall
+ // out the bottom of the function.
+ } else if (MBB->succ_size() == LandingPadSuccs.size()) {
+ // It's possible that the block legitimately ends with a noreturn
+ // call or an unreachable, in which case it won't actuall fall
+ // out of the block.
+ } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
+ report("MBB exits via unconditional fall-through but doesn't have "
+ "exactly one CFG successor!", MBB);
+ } else if (!MBB->isSuccessor(MBBI)) {
+ report("MBB exits via unconditional fall-through but its successor "
+ "differs from its CFG successor!", MBB);
+ }
+ if (!MBB->empty() && MBB->back().isBarrier() &&
+ !TII->isPredicated(&MBB->back())) {
+ report("MBB exits via unconditional fall-through but ends with a "
+ "barrier instruction!", MBB);
+ }
+ if (!Cond.empty()) {
+ report("MBB exits via unconditional fall-through but has a condition!",
+ MBB);
+ }
+ } else if (TBB && !FBB && Cond.empty()) {
+ // Block unconditionally branches somewhere.
+ if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
+ report("MBB exits via unconditional branch but doesn't have "
+ "exactly one CFG successor!", MBB);
+ } else if (!MBB->isSuccessor(TBB)) {
+ report("MBB exits via unconditional branch but the CFG "
+ "successor doesn't match the actual successor!", MBB);
+ }
+ if (MBB->empty()) {
+ report("MBB exits via unconditional branch but doesn't contain "
+ "any instructions!", MBB);
+ } else if (!MBB->back().isBarrier()) {
+ report("MBB exits via unconditional branch but doesn't end with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().isTerminator()) {
+ report("MBB exits via unconditional branch but the branch isn't a "
+ "terminator instruction!", MBB);
+ }
+ } else if (TBB && !FBB && !Cond.empty()) {
+ // Block conditionally branches somewhere, otherwise falls through.
+ MachineFunction::const_iterator MBBI = MBB;
+ ++MBBI;
+ if (MBBI == MF->end()) {
+ report("MBB conditionally falls through out of function!", MBB);
+ } if (MBB->succ_size() != 2) {
+ report("MBB exits via conditional branch/fall-through but doesn't have "
+ "exactly two CFG successors!", MBB);
+ } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
+ report("MBB exits via conditional branch/fall-through but the CFG "
+ "successors don't match the actual successors!", MBB);
+ }
+ if (MBB->empty()) {
+ report("MBB exits via conditional branch/fall-through but doesn't "
+ "contain any instructions!", MBB);
+ } else if (MBB->back().isBarrier()) {
+ report("MBB exits via conditional branch/fall-through but ends with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().isTerminator()) {
+ report("MBB exits via conditional branch/fall-through but the branch "
+ "isn't a terminator instruction!", MBB);
+ }
+ } else if (TBB && FBB) {
+ // Block conditionally branches somewhere, otherwise branches
+ // somewhere else.
+ if (MBB->succ_size() != 2) {
+ report("MBB exits via conditional branch/branch but doesn't have "
+ "exactly two CFG successors!", MBB);
+ } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
+ report("MBB exits via conditional branch/branch but the CFG "
+ "successors don't match the actual successors!", MBB);
+ }
+ if (MBB->empty()) {
+ report("MBB exits via conditional branch/branch but doesn't "
+ "contain any instructions!", MBB);
+ } else if (!MBB->back().isBarrier()) {
+ report("MBB exits via conditional branch/branch but doesn't end with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().isTerminator()) {
+ report("MBB exits via conditional branch/branch but the branch "
+ "isn't a terminator instruction!", MBB);
+ }
+ if (Cond.empty()) {
+ report("MBB exits via conditinal branch/branch but there's no "
+ "condition!", MBB);
+ }
+ } else {
+ report("AnalyzeBranch returned invalid data!", MBB);
+ }
+ }
+
+ regsLive.clear();
+ for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
+ E = MBB->livein_end(); I != E; ++I) {
+ if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
+ report("MBB live-in list contains non-physical register", MBB);
+ continue;
+ }
+ regsLive.insert(*I);
+ for (const uint16_t *R = TRI->getSubRegisters(*I); *R; R++)
+ regsLive.insert(*R);
+ }
+ regsLiveInButUnused = regsLive;
+
+ const MachineFrameInfo *MFI = MF->getFrameInfo();
+ assert(MFI && "Function has no frame info");
+ BitVector PR = MFI->getPristineRegs(MBB);
+ for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
+ regsLive.insert(I);
+ for (const uint16_t *R = TRI->getSubRegisters(I); *R; R++)
+ regsLive.insert(*R);
+ }
+
+ regsKilled.clear();
+ regsDefined.clear();
+
+ if (Indexes)
+ lastIndex = Indexes->getMBBStartIdx(MBB);
+}
+
+void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MI->getNumOperands() < MCID.getNumOperands()) {
+ report("Too few operands", MI);
+ *OS << MCID.getNumOperands() << " operands expected, but "
+ << MI->getNumExplicitOperands() << " given.\n";
+ }
+
+ // Check the MachineMemOperands for basic consistency.
+ for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
+ E = MI->memoperands_end(); I != E; ++I) {
+ if ((*I)->isLoad() && !MI->mayLoad())
+ report("Missing mayLoad flag", MI);
+ if ((*I)->isStore() && !MI->mayStore())
+ report("Missing mayStore flag", MI);
+ }
+
+ // Debug values must not have a slot index.
+ // Other instructions must have one, unless they are inside a bundle.
+ if (LiveInts) {
+ bool mapped = !LiveInts->isNotInMIMap(MI);
+ if (MI->isDebugValue()) {
+ if (mapped)
+ report("Debug instruction has a slot index", MI);
+ } else if (MI->isInsideBundle()) {
+ if (mapped)
+ report("Instruction inside bundle has a slot index", MI);
+ } else {
+ if (!mapped)
+ report("Missing slot index", MI);
+ }
+ }
+
+ // Ensure non-terminators don't follow terminators.
+ // Ignore predicated terminators formed by if conversion.
+ // FIXME: If conversion shouldn't need to violate this rule.
+ if (MI->isTerminator() && !TII->isPredicated(MI)) {
+ if (!FirstTerminator)
+ FirstTerminator = MI;
+ } else if (FirstTerminator) {
+ report("Non-terminator instruction after the first terminator", MI);
+ *OS << "First terminator was:\t" << *FirstTerminator;
+ }
+
+ StringRef ErrorInfo;
+ if (!TII->verifyInstruction(MI, ErrorInfo))
+ report(ErrorInfo.data(), MI);
+}
+
+void
+MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
+ const MachineInstr *MI = MO->getParent();
+ const MCInstrDesc &MCID = MI->getDesc();
+ const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
+
+ // The first MCID.NumDefs operands must be explicit register defines
+ if (MONum < MCID.getNumDefs()) {
+ if (!MO->isReg())
+ report("Explicit definition must be a register", MO, MONum);
+ else if (!MO->isDef())
+ report("Explicit definition marked as use", MO, MONum);
+ else if (MO->isImplicit())
+ report("Explicit definition marked as implicit", MO, MONum);
+ } else if (MONum < MCID.getNumOperands()) {
+ // Don't check if it's the last operand in a variadic instruction. See,
+ // e.g., LDM_RET in the arm back end.
+ if (MO->isReg() &&
+ !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
+ if (MO->isDef() && !MCOI.isOptionalDef())
+ report("Explicit operand marked as def", MO, MONum);
+ if (MO->isImplicit())
+ report("Explicit operand marked as implicit", MO, MONum);
+ }
+ } else {
+ // ARM adds %reg0 operands to indicate predicates. We'll allow that.
+ if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
+ report("Extra explicit operand on non-variadic instruction", MO, MONum);
+ }
+
+ switch (MO->getType()) {
+ case MachineOperand::MO_Register: {
+ const unsigned Reg = MO->getReg();
+ if (!Reg)
+ return;
+ if (MRI->tracksLiveness() && !MI->isDebugValue())
+ checkLiveness(MO, MONum);
+
+
+ // Check register classes.
+ if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
+ unsigned SubIdx = MO->getSubReg();
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (SubIdx) {
+ report("Illegal subregister index for physical register", MO, MONum);
+ return;
+ }
+ if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
+ if (!DRC->contains(Reg)) {
+ report("Illegal physical register for instruction", MO, MONum);
+ *OS << TRI->getName(Reg) << " is not a "
+ << DRC->getName() << " register.\n";
+ }
+ }
+ } else {
+ // Virtual register.
+ const TargetRegisterClass *RC = MRI->getRegClass(Reg);
+ if (SubIdx) {
+ const TargetRegisterClass *SRC =
+ TRI->getSubClassWithSubReg(RC, SubIdx);
+ if (!SRC) {
+ report("Invalid subregister index for virtual register", MO, MONum);
+ *OS << "Register class " << RC->getName()
+ << " does not support subreg index " << SubIdx << "\n";
+ return;
+ }
+ if (RC != SRC) {
+ report("Invalid register class for subregister index", MO, MONum);
+ *OS << "Register class " << RC->getName()
+ << " does not fully support subreg index " << SubIdx << "\n";
+ return;
+ }
+ }
+ if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
+ if (SubIdx) {
+ const TargetRegisterClass *SuperRC =
+ TRI->getLargestLegalSuperClass(RC);
+ if (!SuperRC) {
+ report("No largest legal super class exists.", MO, MONum);
+ return;
+ }
+ DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
+ if (!DRC) {
+ report("No matching super-reg register class.", MO, MONum);
+ return;
+ }
+ }
+ if (!RC->hasSuperClassEq(DRC)) {
+ report("Illegal virtual register for instruction", MO, MONum);
+ *OS << "Expected a " << DRC->getName() << " register, but got a "
+ << RC->getName() << " register\n";
+ }
+ }
+ }
+ }
+ break;
+ }
+
+ case MachineOperand::MO_RegisterMask:
+ regMasks.push_back(MO->getRegMask());
+ break;
+
+ case MachineOperand::MO_MachineBasicBlock:
+ if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
+ report("PHI operand is not in the CFG", MO, MONum);
+ break;
+
+ case MachineOperand::MO_FrameIndex:
+ if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
+ LiveInts && !LiveInts->isNotInMIMap(MI)) {
+ LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
+ SlotIndex Idx = LiveInts->getInstructionIndex(MI);
+ if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
+ report("Instruction loads from dead spill slot", MO, MONum);
+ *OS << "Live stack: " << LI << '\n';
+ }
+ if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
+ report("Instruction stores to dead spill slot", MO, MONum);
+ *OS << "Live stack: " << LI << '\n';
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+}
+
+void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
+ const MachineInstr *MI = MO->getParent();
+ const unsigned Reg = MO->getReg();
+
+ // Both use and def operands can read a register.
+ if (MO->readsReg()) {
+ regsLiveInButUnused.erase(Reg);
+
+ bool isKill = false;
+ unsigned defIdx;
+ if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
+ // A two-addr use counts as a kill if use and def are the same.
+ unsigned DefReg = MI->getOperand(defIdx).getReg();
+ if (Reg == DefReg)
+ isKill = true;
+ else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ report("Two-address instruction operands must be identical", MO, MONum);
+ }
+ } else
+ isKill = MO->isKill();
+
+ if (isKill)
+ addRegWithSubRegs(regsKilled, Reg);
+
+ // Check that LiveVars knows this kill.
+ if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
+ MO->isKill()) {
+ LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
+ if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
+ report("Kill missing from LiveVariables", MO, MONum);
+ }
+
+ // Check LiveInts liveness and kill.
+ if (TargetRegisterInfo::isVirtualRegister(Reg) &&
+ LiveInts && !LiveInts->isNotInMIMap(MI)) {
+ SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getRegSlot(true);
+ if (LiveInts->hasInterval(Reg)) {
+ const LiveInterval &LI = LiveInts->getInterval(Reg);
+ if (!LI.liveAt(UseIdx)) {
+ report("No live range at use", MO, MONum);
+ *OS << UseIdx << " is not live in " << LI << '\n';
+ }
+ // Check for extra kill flags.
+ // Note that we allow missing kill flags for now.
+ if (MO->isKill() && !LI.killedAt(UseIdx.getRegSlot())) {
+ report("Live range continues after kill flag", MO, MONum);
+ *OS << "Live range: " << LI << '\n';
+ }
+ } else {
+ report("Virtual register has no Live interval", MO, MONum);
+ }
+ }
+
+ // Use of a dead register.
+ if (!regsLive.count(Reg)) {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ // Reserved registers may be used even when 'dead'.
+ if (!isReserved(Reg))
+ report("Using an undefined physical register", MO, MONum);
+ } else {
+ BBInfo &MInfo = MBBInfoMap[MI->getParent()];
+ // We don't know which virtual registers are live in, so only complain
+ // if vreg was killed in this MBB. Otherwise keep track of vregs that
+ // must be live in. PHI instructions are handled separately.
+ if (MInfo.regsKilled.count(Reg))
+ report("Using a killed virtual register", MO, MONum);
+ else if (!MI->isPHI())
+ MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
+ }
+ }
+ }
+
+ if (MO->isDef()) {
+ // Register defined.
+ // TODO: verify that earlyclobber ops are not used.
+ if (MO->isDead())
+ addRegWithSubRegs(regsDead, Reg);
+ else
+ addRegWithSubRegs(regsDefined, Reg);
+
+ // Verify SSA form.
+ if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
+ llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
+ report("Multiple virtual register defs in SSA form", MO, MONum);
+
+ // Check LiveInts for a live range, but only for virtual registers.
+ if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
+ !LiveInts->isNotInMIMap(MI)) {
+ SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getRegSlot();
+ if (LiveInts->hasInterval(Reg)) {
+ const LiveInterval &LI = LiveInts->getInterval(Reg);
+ if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
+ assert(VNI && "NULL valno is not allowed");
+ if (VNI->def != DefIdx && !MO->isEarlyClobber()) {
+ report("Inconsistent valno->def", MO, MONum);
+ *OS << "Valno " << VNI->id << " is not defined at "
+ << DefIdx << " in " << LI << '\n';
+ }
+ } else {
+ report("No live range at def", MO, MONum);
+ *OS << DefIdx << " is not live in " << LI << '\n';
+ }
+ } else {
+ report("Virtual register has no Live interval", MO, MONum);
+ }
+ }
+ }
+}
+
+void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
+ BBInfo &MInfo = MBBInfoMap[MI->getParent()];
+ set_union(MInfo.regsKilled, regsKilled);
+ set_subtract(regsLive, regsKilled); regsKilled.clear();
+ // Kill any masked registers.
+ while (!regMasks.empty()) {
+ const uint32_t *Mask = regMasks.pop_back_val();
+ for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
+ if (TargetRegisterInfo::isPhysicalRegister(*I) &&
+ MachineOperand::clobbersPhysReg(Mask, *I))
+ regsDead.push_back(*I);
+ }
+ set_subtract(regsLive, regsDead); regsDead.clear();
+ set_union(regsLive, regsDefined); regsDefined.clear();
+
+ if (Indexes && Indexes->hasIndex(MI)) {
+ SlotIndex idx = Indexes->getInstructionIndex(MI);
+ if (!(idx > lastIndex)) {
+ report("Instruction index out of order", MI);
+ *OS << "Last instruction was at " << lastIndex << '\n';
+ }
+ lastIndex = idx;
+ }
+}
+
+void
+MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
+ MBBInfoMap[MBB].regsLiveOut = regsLive;
+ regsLive.clear();
+
+ if (Indexes) {
+ SlotIndex stop = Indexes->getMBBEndIdx(MBB);
+ if (!(stop > lastIndex)) {
+ report("Block ends before last instruction index", MBB);
+ *OS << "Block ends at " << stop
+ << " last instruction was at " << lastIndex << '\n';
+ }
+ lastIndex = stop;
+ }
+}
+
+// Calculate the largest possible vregsPassed sets. These are the registers that
+// can pass through an MBB live, but may not be live every time. It is assumed
+// that all vregsPassed sets are empty before the call.
+void MachineVerifier::calcRegsPassed() {
+ // First push live-out regs to successors' vregsPassed. Remember the MBBs that
+ // have any vregsPassed.
+ SmallPtrSet<const MachineBasicBlock*, 8> todo;
+ for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
+ MFI != MFE; ++MFI) {
+ const MachineBasicBlock &MBB(*MFI);
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+ if (!MInfo.reachable)
+ continue;
+ for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
+ SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
+ BBInfo &SInfo = MBBInfoMap[*SuI];
+ if (SInfo.addPassed(MInfo.regsLiveOut))
+ todo.insert(*SuI);
+ }
+ }
+
+ // Iteratively push vregsPassed to successors. This will converge to the same
+ // final state regardless of DenseSet iteration order.
+ while (!todo.empty()) {
+ const MachineBasicBlock *MBB = *todo.begin();
+ todo.erase(MBB);
+ BBInfo &MInfo = MBBInfoMap[MBB];
+ for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
+ SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
+ if (*SuI == MBB)
+ continue;
+ BBInfo &SInfo = MBBInfoMap[*SuI];
+ if (SInfo.addPassed(MInfo.vregsPassed))
+ todo.insert(*SuI);
+ }
+ }
+}
+
+// Calculate the set of virtual registers that must be passed through each basic
+// block in order to satisfy the requirements of successor blocks. This is very
+// similar to calcRegsPassed, only backwards.
+void MachineVerifier::calcRegsRequired() {
+ // First push live-in regs to predecessors' vregsRequired.
+ SmallPtrSet<const MachineBasicBlock*, 8> todo;
+ for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
+ MFI != MFE; ++MFI) {
+ const MachineBasicBlock &MBB(*MFI);
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+ for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
+ PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
+ BBInfo &PInfo = MBBInfoMap[*PrI];
+ if (PInfo.addRequired(MInfo.vregsLiveIn))
+ todo.insert(*PrI);
+ }
+ }
+
+ // Iteratively push vregsRequired to predecessors. This will converge to the
+ // same final state regardless of DenseSet iteration order.
+ while (!todo.empty()) {
+ const MachineBasicBlock *MBB = *todo.begin();
+ todo.erase(MBB);
+ BBInfo &MInfo = MBBInfoMap[MBB];
+ for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
+ PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
+ if (*PrI == MBB)
+ continue;
+ BBInfo &SInfo = MBBInfoMap[*PrI];
+ if (SInfo.addRequired(MInfo.vregsRequired))
+ todo.insert(*PrI);
+ }
+ }
+}
+
+// Check PHI instructions at the beginning of MBB. It is assumed that
+// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
+void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
+ SmallPtrSet<const MachineBasicBlock*, 8> seen;
+ for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
+ BBI != BBE && BBI->isPHI(); ++BBI) {
+ seen.clear();
+
+ for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
+ unsigned Reg = BBI->getOperand(i).getReg();
+ const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
+ if (!Pre->isSuccessor(MBB))
+ continue;
+ seen.insert(Pre);
+ BBInfo &PrInfo = MBBInfoMap[Pre];
+ if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
+ report("PHI operand is not live-out from predecessor",
+ &BBI->getOperand(i), i);
+ }
+
+ // Did we see all predecessors?
+ for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
+ PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
+ if (!seen.count(*PrI)) {
+ report("Missing PHI operand", BBI);
+ *OS << "BB#" << (*PrI)->getNumber()
+ << " is a predecessor according to the CFG.\n";
+ }
+ }
+ }
+}
+
+void MachineVerifier::visitMachineFunctionAfter() {
+ calcRegsPassed();
+
+ for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
+ MFI != MFE; ++MFI) {
+ BBInfo &MInfo = MBBInfoMap[MFI];
+
+ // Skip unreachable MBBs.
+ if (!MInfo.reachable)
+ continue;
+
+ checkPHIOps(MFI);
+ }
+
+ // Now check liveness info if available
+ calcRegsRequired();
+
+ if (MRI->isSSA() && !MF->empty()) {
+ BBInfo &MInfo = MBBInfoMap[&MF->front()];
+ for (RegSet::iterator
+ I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
+ ++I)
+ report("Virtual register def doesn't dominate all uses.",
+ MRI->getVRegDef(*I));
+ }
+
+ if (LiveVars)
+ verifyLiveVariables();
+ if (LiveInts)
+ verifyLiveIntervals();
+}
+
+void MachineVerifier::verifyLiveVariables() {
+ assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
+ for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
+ MFI != MFE; ++MFI) {
+ BBInfo &MInfo = MBBInfoMap[MFI];
+
+ // Our vregsRequired should be identical to LiveVariables' AliveBlocks
+ if (MInfo.vregsRequired.count(Reg)) {
+ if (!VI.AliveBlocks.test(MFI->getNumber())) {
+ report("LiveVariables: Block missing from AliveBlocks", MFI);
+ *OS << "Virtual register " << PrintReg(Reg)
+ << " must be live through the block.\n";
+ }
+ } else {
+ if (VI.AliveBlocks.test(MFI->getNumber())) {
+ report("LiveVariables: Block should not be in AliveBlocks", MFI);
+ *OS << "Virtual register " << PrintReg(Reg)
+ << " is not needed live through the block.\n";
+ }
+ }
+ }
+ }
+}
+
+void MachineVerifier::verifyLiveIntervals() {
+ assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
+ for (LiveIntervals::const_iterator LVI = LiveInts->begin(),
+ LVE = LiveInts->end(); LVI != LVE; ++LVI) {
+ const LiveInterval &LI = *LVI->second;
+
+ // Spilling and splitting may leave unused registers around. Skip them.
+ if (MRI->use_empty(LI.reg))
+ continue;
+
+ // Physical registers have much weirdness going on, mostly from coalescing.
+ // We should probably fix it, but for now just ignore them.
+ if (TargetRegisterInfo::isPhysicalRegister(LI.reg))
+ continue;
+
+ assert(LVI->first == LI.reg && "Invalid reg to interval mapping");
+
+ for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
+ I!=E; ++I) {
+ VNInfo *VNI = *I;
+ const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
+
+ if (!DefVNI) {
+ if (!VNI->isUnused()) {
+ report("Valno not live at def and not marked unused", MF);
+ *OS << "Valno #" << VNI->id << " in " << LI << '\n';
+ }
+ continue;
+ }
+
+ if (VNI->isUnused())
+ continue;
+
+ if (DefVNI != VNI) {
+ report("Live range at def has different valno", MF);
+ *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
+ << " where valno #" << DefVNI->id << " is live in " << LI << '\n';
+ continue;
+ }
+
+ const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
+ if (!MBB) {
+ report("Invalid definition index", MF);
+ *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
+ << " in " << LI << '\n';
+ continue;
+ }
+
+ if (VNI->isPHIDef()) {
+ if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
+ report("PHIDef value is not defined at MBB start", MF);
+ *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
+ << ", not at the beginning of BB#" << MBB->getNumber()
+ << " in " << LI << '\n';
+ }
+ } else {
+ // Non-PHI def.
+ const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
+ if (!MI) {
+ report("No instruction at def index", MF);
+ *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
+ << " in " << LI << '\n';
+ continue;
+ }
+
+ bool hasDef = false;
+ bool isEarlyClobber = false;
+ for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
+ if (!MOI->isReg() || !MOI->isDef())
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
+ if (MOI->getReg() != LI.reg)
+ continue;
+ } else {
+ if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
+ !TRI->regsOverlap(LI.reg, MOI->getReg()))
+ continue;
+ }
+ hasDef = true;
+ if (MOI->isEarlyClobber())
+ isEarlyClobber = true;
+ }
+
+ if (!hasDef) {
+ report("Defining instruction does not modify register", MI);
+ *OS << "Valno #" << VNI->id << " in " << LI << '\n';
+ }
+
+ // Early clobber defs begin at USE slots, but other defs must begin at
+ // DEF slots.
+ if (isEarlyClobber) {
+ if (!VNI->def.isEarlyClobber()) {
+ report("Early clobber def must be at an early-clobber slot", MF);
+ *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
+ << " in " << LI << '\n';
+ }
+ } else if (!VNI->def.isRegister()) {
+ report("Non-PHI, non-early clobber def must be at a register slot",
+ MF);
+ *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
+ << " in " << LI << '\n';
+ }
+ }
+ }
+
+ for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) {
+ const VNInfo *VNI = I->valno;
+ assert(VNI && "Live range has no valno");
+
+ if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
+ report("Foreign valno in live range", MF);
+ I->print(*OS);
+ *OS << " has a valno not in " << LI << '\n';
+ }
+
+ if (VNI->isUnused()) {
+ report("Live range valno is marked unused", MF);
+ I->print(*OS);
+ *OS << " in " << LI << '\n';
+ }
+
+ const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
+ if (!MBB) {
+ report("Bad start of live segment, no basic block", MF);
+ I->print(*OS);
+ *OS << " in " << LI << '\n';
+ continue;
+ }
+ SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
+ if (I->start != MBBStartIdx && I->start != VNI->def) {
+ report("Live segment must begin at MBB entry or valno def", MBB);
+ I->print(*OS);
+ *OS << " in " << LI << '\n' << "Basic block starts at "
+ << MBBStartIdx << '\n';
+ }
+
+ const MachineBasicBlock *EndMBB =
+ LiveInts->getMBBFromIndex(I->end.getPrevSlot());
+ if (!EndMBB) {
+ report("Bad end of live segment, no basic block", MF);
+ I->print(*OS);
+ *OS << " in " << LI << '\n';
+ continue;
+ }
+
+ // No more checks for live-out segments.
+ if (I->end == LiveInts->getMBBEndIdx(EndMBB))
+ continue;
+
+ // The live segment is ending inside EndMBB
+ const MachineInstr *MI =
+ LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
+ if (!MI) {
+ report("Live segment doesn't end at a valid instruction", EndMBB);
+ I->print(*OS);
+ *OS << " in " << LI << '\n' << "Basic block starts at "
+ << MBBStartIdx << '\n';
+ continue;
+ }
+
+ // The block slot must refer to a basic block boundary.
+ if (I->end.isBlock()) {
+ report("Live segment ends at B slot of an instruction", MI);
+ I->print(*OS);
+ *OS << " in " << LI << '\n';
+ }
+
+ if (I->end.isDead()) {
+ // Segment ends on the dead slot.
+ // That means there must be a dead def.
+ if (!SlotIndex::isSameInstr(I->start, I->end)) {
+ report("Live segment ending at dead slot spans instructions", MI);
+ I->print(*OS);
+ *OS << " in " << LI << '\n';
+ }
+ }
+
+ // A live segment can only end at an early-clobber slot if it is being
+ // redefined by an early-clobber def.
+ if (I->end.isEarlyClobber()) {
+ if (I+1 == E || (I+1)->start != I->end) {
+ report("Live segment ending at early clobber slot must be "
+ "redefined by an EC def in the same instruction", MI);
+ I->print(*OS);
+ *OS << " in " << LI << '\n';
+ }
+ }
+
+ // The following checks only apply to virtual registers. Physreg liveness
+ // is too weird to check.
+ if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
+ // A live range can end with either a redefinition, a kill flag on a
+ // use, or a dead flag on a def.
+ bool hasRead = false;
+ bool hasDeadDef = false;
+ for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
+ if (!MOI->isReg() || MOI->getReg() != LI.reg)
+ continue;
+ if (MOI->readsReg())
+ hasRead = true;
+ if (MOI->isDef() && MOI->isDead())
+ hasDeadDef = true;
+ }
+
+ if (I->end.isDead()) {
+ if (!hasDeadDef) {
+ report("Instruction doesn't have a dead def operand", MI);
+ I->print(*OS);
+ *OS << " in " << LI << '\n';
+ }
+ } else {
+ if (!hasRead) {
+ report("Instruction ending live range doesn't read the register",
+ MI);
+ I->print(*OS);
+ *OS << " in " << LI << '\n';
+ }
+ }
+ }
+
+ // Now check all the basic blocks in this live segment.
+ MachineFunction::const_iterator MFI = MBB;
+ // Is this live range the beginning of a non-PHIDef VN?
+ if (I->start == VNI->def && !VNI->isPHIDef()) {
+ // Not live-in to any blocks.
+ if (MBB == EndMBB)
+ continue;
+ // Skip this block.
+ ++MFI;
+ }
+ for (;;) {
+ assert(LiveInts->isLiveInToMBB(LI, MFI));
+ // We don't know how to track physregs into a landing pad.
+ if (TargetRegisterInfo::isPhysicalRegister(LI.reg) &&
+ MFI->isLandingPad()) {
+ if (&*MFI == EndMBB)
+ break;
+ ++MFI;
+ continue;
+ }
+ // Check that VNI is live-out of all predecessors.
+ for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
+ PE = MFI->pred_end(); PI != PE; ++PI) {
+ SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
+ const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);
+
+ if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI))
+ continue;
+
+ if (!PVNI) {
+ report("Register not marked live out of predecessor", *PI);
+ *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
+ << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
+ << PEnd << " in " << LI << '\n';
+ continue;
+ }
+
+ if (PVNI != VNI) {
+ report("Different value live out of predecessor", *PI);
+ *OS << "Valno #" << PVNI->id << " live out of BB#"
+ << (*PI)->getNumber() << '@' << PEnd
+ << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
+ << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n';
+ }
+ }
+ if (&*MFI == EndMBB)
+ break;
+ ++MFI;
+ }
+ }
+
+ // Check the LI only has one connected component.
+ if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
+ ConnectedVNInfoEqClasses ConEQ(*LiveInts);
+ unsigned NumComp = ConEQ.Classify(&LI);
+ if (NumComp > 1) {
+ report("Multiple connected components in live interval", MF);
+ *OS << NumComp << " components in " << LI << '\n';
+ for (unsigned comp = 0; comp != NumComp; ++comp) {
+ *OS << comp << ": valnos";
+ for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
+ E = LI.vni_end(); I!=E; ++I)
+ if (comp == ConEQ.getEqClass(*I))
+ *OS << ' ' << (*I)->id;
+ *OS << '\n';
+ }
+ }
+ }
+ }
+}
+