aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/MachineSink.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineSink.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineSink.cpp812
1 files changed, 812 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineSink.cpp b/contrib/llvm/lib/CodeGen/MachineSink.cpp
new file mode 100644
index 000000000000..1b9be50068a9
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineSink.cpp
@@ -0,0 +1,812 @@
+//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass moves instructions into successor blocks when possible, so that
+// they aren't executed on paths where their results aren't needed.
+//
+// This pass is not intended to be a replacement or a complete alternative
+// for an LLVM-IR-level sinking pass. It is only designed to sink simple
+// constructs that are not exposed before lowering and instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SparseBitVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "machine-sink"
+
+static cl::opt<bool>
+SplitEdges("machine-sink-split",
+ cl::desc("Split critical edges during machine sinking"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+UseBlockFreqInfo("machine-sink-bfi",
+ cl::desc("Use block frequency info to find successors to sink"),
+ cl::init(true), cl::Hidden);
+
+
+STATISTIC(NumSunk, "Number of machine instructions sunk");
+STATISTIC(NumSplit, "Number of critical edges split");
+STATISTIC(NumCoalesces, "Number of copies coalesced");
+
+namespace {
+ class MachineSinking : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *MRI; // Machine register information
+ MachineDominatorTree *DT; // Machine dominator tree
+ MachinePostDominatorTree *PDT; // Machine post dominator tree
+ MachineLoopInfo *LI;
+ const MachineBlockFrequencyInfo *MBFI;
+ AliasAnalysis *AA;
+
+ // Remember which edges have been considered for breaking.
+ SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
+ CEBCandidates;
+ // Remember which edges we are about to split.
+ // This is different from CEBCandidates since those edges
+ // will be split.
+ SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
+
+ SparseBitVector<> RegsToClearKillFlags;
+
+ typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>
+ AllSuccsCache;
+
+ public:
+ static char ID; // Pass identification
+ MachineSinking() : MachineFunctionPass(ID) {
+ initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachinePostDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addPreserved<MachinePostDominatorTree>();
+ AU.addPreserved<MachineLoopInfo>();
+ if (UseBlockFreqInfo)
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ }
+
+ void releaseMemory() override {
+ CEBCandidates.clear();
+ }
+
+ private:
+ bool ProcessBlock(MachineBasicBlock &MBB);
+ bool isWorthBreakingCriticalEdge(MachineInstr *MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To);
+ /// \brief Postpone the splitting of the given critical
+ /// edge (\p From, \p To).
+ ///
+ /// We do not split the edges on the fly. Indeed, this invalidates
+ /// the dominance information and thus triggers a lot of updates
+ /// of that information underneath.
+ /// Instead, we postpone all the splits after each iteration of
+ /// the main loop. That way, the information is at least valid
+ /// for the lifetime of an iteration.
+ ///
+ /// \return True if the edge is marked as toSplit, false otherwise.
+ /// False can be returned if, for instance, this is not profitable.
+ bool PostponeSplitCriticalEdge(MachineInstr *MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To,
+ bool BreakPHIEdge);
+ bool SinkInstruction(MachineInstr *MI, bool &SawStore,
+ AllSuccsCache &AllSuccessors);
+ bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
+ MachineBasicBlock *DefMBB,
+ bool &BreakPHIEdge, bool &LocalUse) const;
+ MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
+ bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
+ bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *SuccToSinkTo,
+ AllSuccsCache &AllSuccessors);
+
+ bool PerformTrivialForwardCoalescing(MachineInstr *MI,
+ MachineBasicBlock *MBB);
+
+ SmallVector<MachineBasicBlock *, 4> &
+ GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
+ AllSuccsCache &AllSuccessors) const;
+ };
+} // end anonymous namespace
+
+char MachineSinking::ID = 0;
+char &llvm::MachineSinkingID = MachineSinking::ID;
+INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
+ "Machine code sinking", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(MachineSinking, "machine-sink",
+ "Machine code sinking", false, false)
+
+bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
+ MachineBasicBlock *MBB) {
+ if (!MI->isCopy())
+ return false;
+
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ unsigned DstReg = MI->getOperand(0).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
+ !TargetRegisterInfo::isVirtualRegister(DstReg) ||
+ !MRI->hasOneNonDBGUse(SrcReg))
+ return false;
+
+ const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
+ const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
+ if (SRC != DRC)
+ return false;
+
+ MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
+ if (DefMI->isCopyLike())
+ return false;
+ DEBUG(dbgs() << "Coalescing: " << *DefMI);
+ DEBUG(dbgs() << "*** to: " << *MI);
+ MRI->replaceRegWith(DstReg, SrcReg);
+ MI->eraseFromParent();
+
+ // Conservatively, clear any kill flags, since it's possible that they are no
+ // longer correct.
+ MRI->clearKillFlags(SrcReg);
+
+ ++NumCoalesces;
+ return true;
+}
+
+/// AllUsesDominatedByBlock - Return true if all uses of the specified register
+/// occur in blocks dominated by the specified block. If any use is in the
+/// definition block, then return false since it is never legal to move def
+/// after uses.
+bool
+MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *DefMBB,
+ bool &BreakPHIEdge,
+ bool &LocalUse) const {
+ assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
+ "Only makes sense for vregs");
+
+ // Ignore debug uses because debug info doesn't affect the code.
+ if (MRI->use_nodbg_empty(Reg))
+ return true;
+
+ // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
+ // into and they are all PHI nodes. In this case, machine-sink must break
+ // the critical edge first. e.g.
+ //
+ // BB#1: derived from LLVM BB %bb4.preheader
+ // Predecessors according to CFG: BB#0
+ // ...
+ // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
+ // ...
+ // JE_4 <BB#37>, %EFLAGS<imp-use>
+ // Successors according to CFG: BB#37 BB#2
+ //
+ // BB#2: derived from LLVM BB %bb.nph
+ // Predecessors according to CFG: BB#0 BB#1
+ // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
+ BreakPHIEdge = true;
+ for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
+ MachineInstr *UseInst = MO.getParent();
+ unsigned OpNo = &MO - &UseInst->getOperand(0);
+ MachineBasicBlock *UseBlock = UseInst->getParent();
+ if (!(UseBlock == MBB && UseInst->isPHI() &&
+ UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
+ BreakPHIEdge = false;
+ break;
+ }
+ }
+ if (BreakPHIEdge)
+ return true;
+
+ for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
+ // Determine the block of the use.
+ MachineInstr *UseInst = MO.getParent();
+ unsigned OpNo = &MO - &UseInst->getOperand(0);
+ MachineBasicBlock *UseBlock = UseInst->getParent();
+ if (UseInst->isPHI()) {
+ // PHI nodes use the operand in the predecessor block, not the block with
+ // the PHI.
+ UseBlock = UseInst->getOperand(OpNo+1).getMBB();
+ } else if (UseBlock == DefMBB) {
+ LocalUse = true;
+ return false;
+ }
+
+ // Check that it dominates.
+ if (!DT->dominates(MBB, UseBlock))
+ return false;
+ }
+
+ return true;
+}
+
+bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
+ if (skipOptnoneFunction(*MF.getFunction()))
+ return false;
+
+ DEBUG(dbgs() << "******** Machine Sinking ********\n");
+
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ MRI = &MF.getRegInfo();
+ DT = &getAnalysis<MachineDominatorTree>();
+ PDT = &getAnalysis<MachinePostDominatorTree>();
+ LI = &getAnalysis<MachineLoopInfo>();
+ MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
+ AA = &getAnalysis<AliasAnalysis>();
+
+ bool EverMadeChange = false;
+
+ while (1) {
+ bool MadeChange = false;
+
+ // Process all basic blocks.
+ CEBCandidates.clear();
+ ToSplit.clear();
+ for (auto &MBB: MF)
+ MadeChange |= ProcessBlock(MBB);
+
+ // If we have anything we marked as toSplit, split it now.
+ for (auto &Pair : ToSplit) {
+ auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
+ if (NewSucc != nullptr) {
+ DEBUG(dbgs() << " *** Splitting critical edge:"
+ " BB#" << Pair.first->getNumber()
+ << " -- BB#" << NewSucc->getNumber()
+ << " -- BB#" << Pair.second->getNumber() << '\n');
+ MadeChange = true;
+ ++NumSplit;
+ } else
+ DEBUG(dbgs() << " *** Not legal to break critical edge\n");
+ }
+ // If this iteration over the code changed anything, keep iterating.
+ if (!MadeChange) break;
+ EverMadeChange = true;
+ }
+
+ // Now clear any kill flags for recorded registers.
+ for (auto I : RegsToClearKillFlags)
+ MRI->clearKillFlags(I);
+ RegsToClearKillFlags.clear();
+
+ return EverMadeChange;
+}
+
+bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
+ // Can't sink anything out of a block that has less than two successors.
+ if (MBB.succ_size() <= 1 || MBB.empty()) return false;
+
+ // Don't bother sinking code out of unreachable blocks. In addition to being
+ // unprofitable, it can also lead to infinite looping, because in an
+ // unreachable loop there may be nowhere to stop.
+ if (!DT->isReachableFromEntry(&MBB)) return false;
+
+ bool MadeChange = false;
+
+ // Cache all successors, sorted by frequency info and loop depth.
+ AllSuccsCache AllSuccessors;
+
+ // Walk the basic block bottom-up. Remember if we saw a store.
+ MachineBasicBlock::iterator I = MBB.end();
+ --I;
+ bool ProcessedBegin, SawStore = false;
+ do {
+ MachineInstr *MI = I; // The instruction to sink.
+
+ // Predecrement I (if it's not begin) so that it isn't invalidated by
+ // sinking.
+ ProcessedBegin = I == MBB.begin();
+ if (!ProcessedBegin)
+ --I;
+
+ if (MI->isDebugValue())
+ continue;
+
+ bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
+ if (Joined) {
+ MadeChange = true;
+ continue;
+ }
+
+ if (SinkInstruction(MI, SawStore, AllSuccessors))
+ ++NumSunk, MadeChange = true;
+
+ // If we just processed the first instruction in the block, we're done.
+ } while (!ProcessedBegin);
+
+ return MadeChange;
+}
+
+bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To) {
+ // FIXME: Need much better heuristics.
+
+ // If the pass has already considered breaking this edge (during this pass
+ // through the function), then let's go ahead and break it. This means
+ // sinking multiple "cheap" instructions into the same block.
+ if (!CEBCandidates.insert(std::make_pair(From, To)).second)
+ return true;
+
+ if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
+ return true;
+
+ // MI is cheap, we probably don't want to break the critical edge for it.
+ // However, if this would allow some definitions of its source operands
+ // to be sunk then it's probably worth it.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ // We don't move live definitions of physical registers,
+ // so sinking their uses won't enable any opportunities.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ continue;
+
+ // If this instruction is the only user of a virtual register,
+ // check if breaking the edge will enable sinking
+ // both this instruction and the defining instruction.
+ if (MRI->hasOneNonDBGUse(Reg)) {
+ // If the definition resides in same MBB,
+ // claim it's likely we can sink these together.
+ // If definition resides elsewhere, we aren't
+ // blocking it from being sunk so don't break the edge.
+ MachineInstr *DefMI = MRI->getVRegDef(Reg);
+ if (DefMI->getParent() == MI->getParent())
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
+ MachineBasicBlock *FromBB,
+ MachineBasicBlock *ToBB,
+ bool BreakPHIEdge) {
+ if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
+ return false;
+
+ // Avoid breaking back edge. From == To means backedge for single BB loop.
+ if (!SplitEdges || FromBB == ToBB)
+ return false;
+
+ // Check for backedges of more "complex" loops.
+ if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
+ LI->isLoopHeader(ToBB))
+ return false;
+
+ // It's not always legal to break critical edges and sink the computation
+ // to the edge.
+ //
+ // BB#1:
+ // v1024
+ // Beq BB#3
+ // <fallthrough>
+ // BB#2:
+ // ... no uses of v1024
+ // <fallthrough>
+ // BB#3:
+ // ...
+ // = v1024
+ //
+ // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
+ //
+ // BB#1:
+ // ...
+ // Bne BB#2
+ // BB#4:
+ // v1024 =
+ // B BB#3
+ // BB#2:
+ // ... no uses of v1024
+ // <fallthrough>
+ // BB#3:
+ // ...
+ // = v1024
+ //
+ // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
+ // flow. We need to ensure the new basic block where the computation is
+ // sunk to dominates all the uses.
+ // It's only legal to break critical edge and sink the computation to the
+ // new block if all the predecessors of "To", except for "From", are
+ // not dominated by "From". Given SSA property, this means these
+ // predecessors are dominated by "To".
+ //
+ // There is no need to do this check if all the uses are PHI nodes. PHI
+ // sources are only defined on the specific predecessor edges.
+ if (!BreakPHIEdge) {
+ for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
+ E = ToBB->pred_end(); PI != E; ++PI) {
+ if (*PI == FromBB)
+ continue;
+ if (!DT->dominates(ToBB, *PI))
+ return false;
+ }
+ }
+
+ ToSplit.insert(std::make_pair(FromBB, ToBB));
+
+ return true;
+}
+
+static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
+ return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
+}
+
+/// collectDebgValues - Scan instructions following MI and collect any
+/// matching DBG_VALUEs.
+static void collectDebugValues(MachineInstr *MI,
+ SmallVectorImpl<MachineInstr *> &DbgValues) {
+ DbgValues.clear();
+ if (!MI->getOperand(0).isReg())
+ return;
+
+ MachineBasicBlock::iterator DI = MI; ++DI;
+ for (MachineBasicBlock::iterator DE = MI->getParent()->end();
+ DI != DE; ++DI) {
+ if (!DI->isDebugValue())
+ return;
+ if (DI->getOperand(0).isReg() &&
+ DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
+ DbgValues.push_back(DI);
+ }
+}
+
+/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
+bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *SuccToSinkTo,
+ AllSuccsCache &AllSuccessors) {
+ assert (MI && "Invalid MachineInstr!");
+ assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
+
+ if (MBB == SuccToSinkTo)
+ return false;
+
+ // It is profitable if SuccToSinkTo does not post dominate current block.
+ if (!PDT->dominates(SuccToSinkTo, MBB))
+ return true;
+
+ // It is profitable to sink an instruction from a deeper loop to a shallower
+ // loop, even if the latter post-dominates the former (PR21115).
+ if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
+ return true;
+
+ // Check if only use in post dominated block is PHI instruction.
+ bool NonPHIUse = false;
+ for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
+ MachineBasicBlock *UseBlock = UseInst.getParent();
+ if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
+ NonPHIUse = true;
+ }
+ if (!NonPHIUse)
+ return true;
+
+ // If SuccToSinkTo post dominates then also it may be profitable if MI
+ // can further profitably sinked into another block in next round.
+ bool BreakPHIEdge = false;
+ // FIXME - If finding successor is compile time expensive then cache results.
+ if (MachineBasicBlock *MBB2 =
+ FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
+ return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
+
+ // If SuccToSinkTo is final destination and it is a post dominator of current
+ // block then it is not profitable to sink MI into SuccToSinkTo block.
+ return false;
+}
+
+/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
+/// computing it if it was not already cached.
+SmallVector<MachineBasicBlock *, 4> &
+MachineSinking::GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
+ AllSuccsCache &AllSuccessors) const {
+
+ // Do we have the sorted successors in cache ?
+ auto Succs = AllSuccessors.find(MBB);
+ if (Succs != AllSuccessors.end())
+ return Succs->second;
+
+ SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
+ MBB->succ_end());
+
+ // Handle cases where sinking can happen but where the sink point isn't a
+ // successor. For example:
+ //
+ // x = computation
+ // if () {} else {}
+ // use x
+ //
+ const std::vector<MachineDomTreeNode *> &Children =
+ DT->getNode(MBB)->getChildren();
+ for (const auto &DTChild : Children)
+ // DomTree children of MBB that have MBB as immediate dominator are added.
+ if (DTChild->getIDom()->getBlock() == MI->getParent() &&
+ // Skip MBBs already added to the AllSuccs vector above.
+ !MBB->isSuccessor(DTChild->getBlock()))
+ AllSuccs.push_back(DTChild->getBlock());
+
+ // Sort Successors according to their loop depth or block frequency info.
+ std::stable_sort(
+ AllSuccs.begin(), AllSuccs.end(),
+ [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
+ uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
+ uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
+ bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
+ return HasBlockFreq ? LHSFreq < RHSFreq
+ : LI->getLoopDepth(L) < LI->getLoopDepth(R);
+ });
+
+ auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
+
+ return it.first->second;
+}
+
+/// FindSuccToSinkTo - Find a successor to sink this instruction to.
+MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ bool &BreakPHIEdge,
+ AllSuccsCache &AllSuccessors) {
+
+ assert (MI && "Invalid MachineInstr!");
+ assert (MBB && "Invalid MachineBasicBlock!");
+
+ // Loop over all the operands of the specified instruction. If there is
+ // anything we can't handle, bail out.
+
+ // SuccToSinkTo - This is the successor to sink this instruction to, once we
+ // decide.
+ MachineBasicBlock *SuccToSinkTo = nullptr;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue; // Ignore non-register operands.
+
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
+ return nullptr;
+ } else if (!MO.isDead()) {
+ // A def that isn't dead. We can't move it.
+ return nullptr;
+ }
+ } else {
+ // Virtual register uses are always safe to sink.
+ if (MO.isUse()) continue;
+
+ // If it's not safe to move defs of the register class, then abort.
+ if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
+ return nullptr;
+
+ // Virtual register defs can only be sunk if all their uses are in blocks
+ // dominated by one of the successors.
+ if (SuccToSinkTo) {
+ // If a previous operand picked a block to sink to, then this operand
+ // must be sinkable to the same block.
+ bool LocalUse = false;
+ if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
+ BreakPHIEdge, LocalUse))
+ return nullptr;
+
+ continue;
+ }
+
+ // Otherwise, we should look at all the successors and decide which one
+ // we should sink to. If we have reliable block frequency information
+ // (frequency != 0) available, give successors with smaller frequencies
+ // higher priority, otherwise prioritize smaller loop depths.
+ for (MachineBasicBlock *SuccBlock :
+ GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
+ bool LocalUse = false;
+ if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
+ BreakPHIEdge, LocalUse)) {
+ SuccToSinkTo = SuccBlock;
+ break;
+ }
+ if (LocalUse)
+ // Def is used locally, it's never safe to move this def.
+ return nullptr;
+ }
+
+ // If we couldn't find a block to sink to, ignore this instruction.
+ if (!SuccToSinkTo)
+ return nullptr;
+ if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
+ return nullptr;
+ }
+ }
+
+ // It is not possible to sink an instruction into its own block. This can
+ // happen with loops.
+ if (MBB == SuccToSinkTo)
+ return nullptr;
+
+ // It's not safe to sink instructions to EH landing pad. Control flow into
+ // landing pad is implicitly defined.
+ if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
+ return nullptr;
+
+ return SuccToSinkTo;
+}
+
+/// SinkInstruction - Determine whether it is safe to sink the specified machine
+/// instruction out of its current block into a successor.
+bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore,
+ AllSuccsCache &AllSuccessors) {
+ // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
+ // be close to the source to make it easier to coalesce.
+ if (AvoidsSinking(MI, MRI))
+ return false;
+
+ // Check if it's safe to move the instruction.
+ if (!MI->isSafeToMove(AA, SawStore))
+ return false;
+
+ // Convergent operations may only be moved to control equivalent locations.
+ if (MI->isConvergent())
+ return false;
+
+ // FIXME: This should include support for sinking instructions within the
+ // block they are currently in to shorten the live ranges. We often get
+ // instructions sunk into the top of a large block, but it would be better to
+ // also sink them down before their first use in the block. This xform has to
+ // be careful not to *increase* register pressure though, e.g. sinking
+ // "x = y + z" down if it kills y and z would increase the live ranges of y
+ // and z and only shrink the live range of x.
+
+ bool BreakPHIEdge = false;
+ MachineBasicBlock *ParentBlock = MI->getParent();
+ MachineBasicBlock *SuccToSinkTo =
+ FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
+
+ // If there are no outputs, it must have side-effects.
+ if (!SuccToSinkTo)
+ return false;
+
+
+ // If the instruction to move defines a dead physical register which is live
+ // when leaving the basic block, don't move it because it could turn into a
+ // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
+ for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = MI->getOperand(I);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
+ if (SuccToSinkTo->isLiveIn(Reg))
+ return false;
+ }
+
+ DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
+
+ // If the block has multiple predecessors, this is a critical edge.
+ // Decide if we can sink along it or need to break the edge.
+ if (SuccToSinkTo->pred_size() > 1) {
+ // We cannot sink a load across a critical edge - there may be stores in
+ // other code paths.
+ bool TryBreak = false;
+ bool store = true;
+ if (!MI->isSafeToMove(AA, store)) {
+ DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
+ TryBreak = true;
+ }
+
+ // We don't want to sink across a critical edge if we don't dominate the
+ // successor. We could be introducing calculations to new code paths.
+ if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
+ DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
+ TryBreak = true;
+ }
+
+ // Don't sink instructions into a loop.
+ if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
+ DEBUG(dbgs() << " *** NOTE: Loop header found\n");
+ TryBreak = true;
+ }
+
+ // Otherwise we are OK with sinking along a critical edge.
+ if (!TryBreak)
+ DEBUG(dbgs() << "Sinking along critical edge.\n");
+ else {
+ // Mark this edge as to be split.
+ // If the edge can actually be split, the next iteration of the main loop
+ // will sink MI in the newly created block.
+ bool Status =
+ PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
+ if (!Status)
+ DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
+ "break critical edge\n");
+ // The instruction will not be sunk this time.
+ return false;
+ }
+ }
+
+ if (BreakPHIEdge) {
+ // BreakPHIEdge is true if all the uses are in the successor MBB being
+ // sunken into and they are all PHI nodes. In this case, machine-sink must
+ // break the critical edge first.
+ bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
+ SuccToSinkTo, BreakPHIEdge);
+ if (!Status)
+ DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
+ "break critical edge\n");
+ // The instruction will not be sunk this time.
+ return false;
+ }
+
+ // Determine where to insert into. Skip phi nodes.
+ MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
+ while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
+ ++InsertPos;
+
+ // collect matching debug values.
+ SmallVector<MachineInstr *, 2> DbgValuesToSink;
+ collectDebugValues(MI, DbgValuesToSink);
+
+ // Move the instruction.
+ SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
+ ++MachineBasicBlock::iterator(MI));
+
+ // Move debug values.
+ for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
+ DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
+ MachineInstr *DbgMI = *DBI;
+ SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI,
+ ++MachineBasicBlock::iterator(DbgMI));
+ }
+
+ // Conservatively, clear any kill flags, since it's possible that they are no
+ // longer correct.
+ // Note that we have to clear the kill flags for any register this instruction
+ // uses as we may sink over another instruction which currently kills the
+ // used registers.
+ for (MachineOperand &MO : MI->operands()) {
+ if (MO.isReg() && MO.isUse())
+ RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
+ }
+
+ return true;
+}