aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/LiveInterval.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveInterval.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/LiveInterval.cpp958
1 files changed, 958 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveInterval.cpp b/contrib/llvm/lib/CodeGen/LiveInterval.cpp
new file mode 100644
index 000000000000..2b8feb8c3b45
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/LiveInterval.cpp
@@ -0,0 +1,958 @@
+//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveRange and LiveInterval classes. Given some
+// numbering of each the machine instructions an interval [i, j) is said to be a
+// live range for register v if there is no instruction with number j' >= j
+// such that v is live at j' and there is no instruction with number i' < i such
+// that v is live at i'. In this implementation ranges can have holes,
+// i.e. a range might look like [1,20), [50,65), [1000,1001). Each
+// individual segment is represented as an instance of LiveRange::Segment,
+// and the whole range is represented as an instance of LiveRange.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LiveInterval.h"
+#include "RegisterCoalescer.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <algorithm>
+using namespace llvm;
+
+LiveRange::iterator LiveRange::find(SlotIndex Pos) {
+ // This algorithm is basically std::upper_bound.
+ // Unfortunately, std::upper_bound cannot be used with mixed types until we
+ // adopt C++0x. Many libraries can do it, but not all.
+ if (empty() || Pos >= endIndex())
+ return end();
+ iterator I = begin();
+ size_t Len = size();
+ do {
+ size_t Mid = Len >> 1;
+ if (Pos < I[Mid].end)
+ Len = Mid;
+ else
+ I += Mid + 1, Len -= Mid + 1;
+ } while (Len);
+ return I;
+}
+
+VNInfo *LiveRange::createDeadDef(SlotIndex Def,
+ VNInfo::Allocator &VNInfoAllocator) {
+ assert(!Def.isDead() && "Cannot define a value at the dead slot");
+ iterator I = find(Def);
+ if (I == end()) {
+ VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
+ segments.push_back(Segment(Def, Def.getDeadSlot(), VNI));
+ return VNI;
+ }
+ if (SlotIndex::isSameInstr(Def, I->start)) {
+ assert(I->valno->def == I->start && "Inconsistent existing value def");
+
+ // It is possible to have both normal and early-clobber defs of the same
+ // register on an instruction. It doesn't make a lot of sense, but it is
+ // possible to specify in inline assembly.
+ //
+ // Just convert everything to early-clobber.
+ Def = std::min(Def, I->start);
+ if (Def != I->start)
+ I->start = I->valno->def = Def;
+ return I->valno;
+ }
+ assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
+ VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
+ segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI));
+ return VNI;
+}
+
+// overlaps - Return true if the intersection of the two live ranges is
+// not empty.
+//
+// An example for overlaps():
+//
+// 0: A = ...
+// 4: B = ...
+// 8: C = A + B ;; last use of A
+//
+// The live ranges should look like:
+//
+// A = [3, 11)
+// B = [7, x)
+// C = [11, y)
+//
+// A->overlaps(C) should return false since we want to be able to join
+// A and C.
+//
+bool LiveRange::overlapsFrom(const LiveRange& other,
+ const_iterator StartPos) const {
+ assert(!empty() && "empty range");
+ const_iterator i = begin();
+ const_iterator ie = end();
+ const_iterator j = StartPos;
+ const_iterator je = other.end();
+
+ assert((StartPos->start <= i->start || StartPos == other.begin()) &&
+ StartPos != other.end() && "Bogus start position hint!");
+
+ if (i->start < j->start) {
+ i = std::upper_bound(i, ie, j->start);
+ if (i != begin()) --i;
+ } else if (j->start < i->start) {
+ ++StartPos;
+ if (StartPos != other.end() && StartPos->start <= i->start) {
+ assert(StartPos < other.end() && i < end());
+ j = std::upper_bound(j, je, i->start);
+ if (j != other.begin()) --j;
+ }
+ } else {
+ return true;
+ }
+
+ if (j == je) return false;
+
+ while (i != ie) {
+ if (i->start > j->start) {
+ std::swap(i, j);
+ std::swap(ie, je);
+ }
+
+ if (i->end > j->start)
+ return true;
+ ++i;
+ }
+
+ return false;
+}
+
+bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
+ const SlotIndexes &Indexes) const {
+ assert(!empty() && "empty range");
+ if (Other.empty())
+ return false;
+
+ // Use binary searches to find initial positions.
+ const_iterator I = find(Other.beginIndex());
+ const_iterator IE = end();
+ if (I == IE)
+ return false;
+ const_iterator J = Other.find(I->start);
+ const_iterator JE = Other.end();
+ if (J == JE)
+ return false;
+
+ for (;;) {
+ // J has just been advanced to satisfy:
+ assert(J->end >= I->start);
+ // Check for an overlap.
+ if (J->start < I->end) {
+ // I and J are overlapping. Find the later start.
+ SlotIndex Def = std::max(I->start, J->start);
+ // Allow the overlap if Def is a coalescable copy.
+ if (Def.isBlock() ||
+ !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
+ return true;
+ }
+ // Advance the iterator that ends first to check for more overlaps.
+ if (J->end > I->end) {
+ std::swap(I, J);
+ std::swap(IE, JE);
+ }
+ // Advance J until J->end >= I->start.
+ do
+ if (++J == JE)
+ return false;
+ while (J->end < I->start);
+ }
+}
+
+/// overlaps - Return true if the live range overlaps an interval specified
+/// by [Start, End).
+bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
+ assert(Start < End && "Invalid range");
+ const_iterator I = std::lower_bound(begin(), end(), End);
+ return I != begin() && (--I)->end > Start;
+}
+
+
+/// ValNo is dead, remove it. If it is the largest value number, just nuke it
+/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
+/// it can be nuked later.
+void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
+ if (ValNo->id == getNumValNums()-1) {
+ do {
+ valnos.pop_back();
+ } while (!valnos.empty() && valnos.back()->isUnused());
+ } else {
+ ValNo->markUnused();
+ }
+}
+
+/// RenumberValues - Renumber all values in order of appearance and delete the
+/// remaining unused values.
+void LiveRange::RenumberValues() {
+ SmallPtrSet<VNInfo*, 8> Seen;
+ valnos.clear();
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
+ VNInfo *VNI = I->valno;
+ if (!Seen.insert(VNI))
+ continue;
+ assert(!VNI->isUnused() && "Unused valno used by live segment");
+ VNI->id = (unsigned)valnos.size();
+ valnos.push_back(VNI);
+ }
+}
+
+/// This method is used when we want to extend the segment specified by I to end
+/// at the specified endpoint. To do this, we should merge and eliminate all
+/// segments that this will overlap with. The iterator is not invalidated.
+void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
+ assert(I != end() && "Not a valid segment!");
+ VNInfo *ValNo = I->valno;
+
+ // Search for the first segment that we can't merge with.
+ iterator MergeTo = llvm::next(I);
+ for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) {
+ assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
+ }
+
+ // If NewEnd was in the middle of a segment, make sure to get its endpoint.
+ I->end = std::max(NewEnd, prior(MergeTo)->end);
+
+ // If the newly formed segment now touches the segment after it and if they
+ // have the same value number, merge the two segments into one segment.
+ if (MergeTo != end() && MergeTo->start <= I->end &&
+ MergeTo->valno == ValNo) {
+ I->end = MergeTo->end;
+ ++MergeTo;
+ }
+
+ // Erase any dead segments.
+ segments.erase(llvm::next(I), MergeTo);
+}
+
+
+/// This method is used when we want to extend the segment specified by I to
+/// start at the specified endpoint. To do this, we should merge and eliminate
+/// all segments that this will overlap with.
+LiveRange::iterator
+LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) {
+ assert(I != end() && "Not a valid segment!");
+ VNInfo *ValNo = I->valno;
+
+ // Search for the first segment that we can't merge with.
+ iterator MergeTo = I;
+ do {
+ if (MergeTo == begin()) {
+ I->start = NewStart;
+ segments.erase(MergeTo, I);
+ return I;
+ }
+ assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
+ --MergeTo;
+ } while (NewStart <= MergeTo->start);
+
+ // If we start in the middle of another segment, just delete a range and
+ // extend that segment.
+ if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
+ MergeTo->end = I->end;
+ } else {
+ // Otherwise, extend the segment right after.
+ ++MergeTo;
+ MergeTo->start = NewStart;
+ MergeTo->end = I->end;
+ }
+
+ segments.erase(llvm::next(MergeTo), llvm::next(I));
+ return MergeTo;
+}
+
+LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) {
+ SlotIndex Start = S.start, End = S.end;
+ iterator it = std::upper_bound(From, end(), Start);
+
+ // If the inserted segment starts in the middle or right at the end of
+ // another segment, just extend that segment to contain the segment of S.
+ if (it != begin()) {
+ iterator B = prior(it);
+ if (S.valno == B->valno) {
+ if (B->start <= Start && B->end >= Start) {
+ extendSegmentEndTo(B, End);
+ return B;
+ }
+ } else {
+ // Check to make sure that we are not overlapping two live segments with
+ // different valno's.
+ assert(B->end <= Start &&
+ "Cannot overlap two segments with differing ValID's"
+ " (did you def the same reg twice in a MachineInstr?)");
+ }
+ }
+
+ // Otherwise, if this segment ends in the middle of, or right next to, another
+ // segment, merge it into that segment.
+ if (it != end()) {
+ if (S.valno == it->valno) {
+ if (it->start <= End) {
+ it = extendSegmentStartTo(it, Start);
+
+ // If S is a complete superset of a segment, we may need to grow its
+ // endpoint as well.
+ if (End > it->end)
+ extendSegmentEndTo(it, End);
+ return it;
+ }
+ } else {
+ // Check to make sure that we are not overlapping two live segments with
+ // different valno's.
+ assert(it->start >= End &&
+ "Cannot overlap two segments with differing ValID's");
+ }
+ }
+
+ // Otherwise, this is just a new segment that doesn't interact with anything.
+ // Insert it.
+ return segments.insert(it, S);
+}
+
+/// extendInBlock - If this range is live before Kill in the basic
+/// block that starts at StartIdx, extend it to be live up to Kill and return
+/// the value. If there is no live range before Kill, return NULL.
+VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
+ if (empty())
+ return 0;
+ iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
+ if (I == begin())
+ return 0;
+ --I;
+ if (I->end <= StartIdx)
+ return 0;
+ if (I->end < Kill)
+ extendSegmentEndTo(I, Kill);
+ return I->valno;
+}
+
+/// Remove the specified segment from this range. Note that the segment must
+/// be in a single Segment in its entirety.
+void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
+ bool RemoveDeadValNo) {
+ // Find the Segment containing this span.
+ iterator I = find(Start);
+ assert(I != end() && "Segment is not in range!");
+ assert(I->containsInterval(Start, End)
+ && "Segment is not entirely in range!");
+
+ // If the span we are removing is at the start of the Segment, adjust it.
+ VNInfo *ValNo = I->valno;
+ if (I->start == Start) {
+ if (I->end == End) {
+ if (RemoveDeadValNo) {
+ // Check if val# is dead.
+ bool isDead = true;
+ for (const_iterator II = begin(), EE = end(); II != EE; ++II)
+ if (II != I && II->valno == ValNo) {
+ isDead = false;
+ break;
+ }
+ if (isDead) {
+ // Now that ValNo is dead, remove it.
+ markValNoForDeletion(ValNo);
+ }
+ }
+
+ segments.erase(I); // Removed the whole Segment.
+ } else
+ I->start = End;
+ return;
+ }
+
+ // Otherwise if the span we are removing is at the end of the Segment,
+ // adjust the other way.
+ if (I->end == End) {
+ I->end = Start;
+ return;
+ }
+
+ // Otherwise, we are splitting the Segment into two pieces.
+ SlotIndex OldEnd = I->end;
+ I->end = Start; // Trim the old segment.
+
+ // Insert the new one.
+ segments.insert(llvm::next(I), Segment(End, OldEnd, ValNo));
+}
+
+/// removeValNo - Remove all the segments defined by the specified value#.
+/// Also remove the value# from value# list.
+void LiveRange::removeValNo(VNInfo *ValNo) {
+ if (empty()) return;
+ iterator I = end();
+ iterator E = begin();
+ do {
+ --I;
+ if (I->valno == ValNo)
+ segments.erase(I);
+ } while (I != E);
+ // Now that ValNo is dead, remove it.
+ markValNoForDeletion(ValNo);
+}
+
+void LiveRange::join(LiveRange &Other,
+ const int *LHSValNoAssignments,
+ const int *RHSValNoAssignments,
+ SmallVectorImpl<VNInfo *> &NewVNInfo) {
+ verify();
+
+ // Determine if any of our values are mapped. This is uncommon, so we want
+ // to avoid the range scan if not.
+ bool MustMapCurValNos = false;
+ unsigned NumVals = getNumValNums();
+ unsigned NumNewVals = NewVNInfo.size();
+ for (unsigned i = 0; i != NumVals; ++i) {
+ unsigned LHSValID = LHSValNoAssignments[i];
+ if (i != LHSValID ||
+ (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
+ MustMapCurValNos = true;
+ break;
+ }
+ }
+
+ // If we have to apply a mapping to our base range assignment, rewrite it now.
+ if (MustMapCurValNos && !empty()) {
+ // Map the first live range.
+
+ iterator OutIt = begin();
+ OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
+ for (iterator I = llvm::next(OutIt), E = end(); I != E; ++I) {
+ VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
+ assert(nextValNo != 0 && "Huh?");
+
+ // If this live range has the same value # as its immediate predecessor,
+ // and if they are neighbors, remove one Segment. This happens when we
+ // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
+ if (OutIt->valno == nextValNo && OutIt->end == I->start) {
+ OutIt->end = I->end;
+ } else {
+ // Didn't merge. Move OutIt to the next segment,
+ ++OutIt;
+ OutIt->valno = nextValNo;
+ if (OutIt != I) {
+ OutIt->start = I->start;
+ OutIt->end = I->end;
+ }
+ }
+ }
+ // If we merge some segments, chop off the end.
+ ++OutIt;
+ segments.erase(OutIt, end());
+ }
+
+ // Rewrite Other values before changing the VNInfo ids.
+ // This can leave Other in an invalid state because we're not coalescing
+ // touching segments that now have identical values. That's OK since Other is
+ // not supposed to be valid after calling join();
+ for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
+ I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
+
+ // Update val# info. Renumber them and make sure they all belong to this
+ // LiveRange now. Also remove dead val#'s.
+ unsigned NumValNos = 0;
+ for (unsigned i = 0; i < NumNewVals; ++i) {
+ VNInfo *VNI = NewVNInfo[i];
+ if (VNI) {
+ if (NumValNos >= NumVals)
+ valnos.push_back(VNI);
+ else
+ valnos[NumValNos] = VNI;
+ VNI->id = NumValNos++; // Renumber val#.
+ }
+ }
+ if (NumNewVals < NumVals)
+ valnos.resize(NumNewVals); // shrinkify
+
+ // Okay, now insert the RHS live segments into the LHS.
+ LiveRangeUpdater Updater(this);
+ for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
+ Updater.add(*I);
+}
+
+/// Merge all of the segments in RHS into this live range as the specified
+/// value number. The segments in RHS are allowed to overlap with segments in
+/// the current range, but only if the overlapping segments have the
+/// specified value number.
+void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
+ VNInfo *LHSValNo) {
+ LiveRangeUpdater Updater(this);
+ for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
+ Updater.add(I->start, I->end, LHSValNo);
+}
+
+/// MergeValueInAsValue - Merge all of the live segments of a specific val#
+/// in RHS into this live range as the specified value number.
+/// The segments in RHS are allowed to overlap with segments in the
+/// current range, it will replace the value numbers of the overlaped
+/// segments with the specified value number.
+void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
+ const VNInfo *RHSValNo,
+ VNInfo *LHSValNo) {
+ LiveRangeUpdater Updater(this);
+ for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
+ if (I->valno == RHSValNo)
+ Updater.add(I->start, I->end, LHSValNo);
+}
+
+/// MergeValueNumberInto - This method is called when two value nubmers
+/// are found to be equivalent. This eliminates V1, replacing all
+/// segments with the V1 value number with the V2 value number. This can
+/// cause merging of V1/V2 values numbers and compaction of the value space.
+VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
+ assert(V1 != V2 && "Identical value#'s are always equivalent!");
+
+ // This code actually merges the (numerically) larger value number into the
+ // smaller value number, which is likely to allow us to compactify the value
+ // space. The only thing we have to be careful of is to preserve the
+ // instruction that defines the result value.
+
+ // Make sure V2 is smaller than V1.
+ if (V1->id < V2->id) {
+ V1->copyFrom(*V2);
+ std::swap(V1, V2);
+ }
+
+ // Merge V1 segments into V2.
+ for (iterator I = begin(); I != end(); ) {
+ iterator S = I++;
+ if (S->valno != V1) continue; // Not a V1 Segment.
+
+ // Okay, we found a V1 live range. If it had a previous, touching, V2 live
+ // range, extend it.
+ if (S != begin()) {
+ iterator Prev = S-1;
+ if (Prev->valno == V2 && Prev->end == S->start) {
+ Prev->end = S->end;
+
+ // Erase this live-range.
+ segments.erase(S);
+ I = Prev+1;
+ S = Prev;
+ }
+ }
+
+ // Okay, now we have a V1 or V2 live range that is maximally merged forward.
+ // Ensure that it is a V2 live-range.
+ S->valno = V2;
+
+ // If we can merge it into later V2 segments, do so now. We ignore any
+ // following V1 segments, as they will be merged in subsequent iterations
+ // of the loop.
+ if (I != end()) {
+ if (I->start == S->end && I->valno == V2) {
+ S->end = I->end;
+ segments.erase(I);
+ I = S+1;
+ }
+ }
+ }
+
+ // Now that V1 is dead, remove it.
+ markValNoForDeletion(V1);
+
+ return V2;
+}
+
+unsigned LiveInterval::getSize() const {
+ unsigned Sum = 0;
+ for (const_iterator I = begin(), E = end(); I != E; ++I)
+ Sum += I->start.distance(I->end);
+ return Sum;
+}
+
+raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
+ return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void LiveRange::Segment::dump() const {
+ dbgs() << *this << "\n";
+}
+#endif
+
+void LiveRange::print(raw_ostream &OS) const {
+ if (empty())
+ OS << "EMPTY";
+ else {
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
+ OS << *I;
+ assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
+ }
+ }
+
+ // Print value number info.
+ if (getNumValNums()) {
+ OS << " ";
+ unsigned vnum = 0;
+ for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
+ ++i, ++vnum) {
+ const VNInfo *vni = *i;
+ if (vnum) OS << " ";
+ OS << vnum << "@";
+ if (vni->isUnused()) {
+ OS << "x";
+ } else {
+ OS << vni->def;
+ if (vni->isPHIDef())
+ OS << "-phi";
+ }
+ }
+ }
+}
+
+void LiveInterval::print(raw_ostream &OS) const {
+ OS << PrintReg(reg) << ' ';
+ super::print(OS);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void LiveRange::dump() const {
+ dbgs() << *this << "\n";
+}
+
+void LiveInterval::dump() const {
+ dbgs() << *this << "\n";
+}
+#endif
+
+#ifndef NDEBUG
+void LiveRange::verify() const {
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
+ assert(I->start.isValid());
+ assert(I->end.isValid());
+ assert(I->start < I->end);
+ assert(I->valno != 0);
+ assert(I->valno->id < valnos.size());
+ assert(I->valno == valnos[I->valno->id]);
+ if (llvm::next(I) != E) {
+ assert(I->end <= llvm::next(I)->start);
+ if (I->end == llvm::next(I)->start)
+ assert(I->valno != llvm::next(I)->valno);
+ }
+ }
+}
+#endif
+
+
+//===----------------------------------------------------------------------===//
+// LiveRangeUpdater class
+//===----------------------------------------------------------------------===//
+//
+// The LiveRangeUpdater class always maintains these invariants:
+//
+// - When LastStart is invalid, Spills is empty and the iterators are invalid.
+// This is the initial state, and the state created by flush().
+// In this state, isDirty() returns false.
+//
+// Otherwise, segments are kept in three separate areas:
+//
+// 1. [begin; WriteI) at the front of LR.
+// 2. [ReadI; end) at the back of LR.
+// 3. Spills.
+//
+// - LR.begin() <= WriteI <= ReadI <= LR.end().
+// - Segments in all three areas are fully ordered and coalesced.
+// - Segments in area 1 precede and can't coalesce with segments in area 2.
+// - Segments in Spills precede and can't coalesce with segments in area 2.
+// - No coalescing is possible between segments in Spills and segments in area
+// 1, and there are no overlapping segments.
+//
+// The segments in Spills are not ordered with respect to the segments in area
+// 1. They need to be merged.
+//
+// When they exist, Spills.back().start <= LastStart,
+// and WriteI[-1].start <= LastStart.
+
+void LiveRangeUpdater::print(raw_ostream &OS) const {
+ if (!isDirty()) {
+ if (LR)
+ OS << "Clean updater: " << *LR << '\n';
+ else
+ OS << "Null updater.\n";
+ return;
+ }
+ assert(LR && "Can't have null LR in dirty updater.");
+ OS << " updater with gap = " << (ReadI - WriteI)
+ << ", last start = " << LastStart
+ << ":\n Area 1:";
+ for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I)
+ OS << ' ' << *I;
+ OS << "\n Spills:";
+ for (unsigned I = 0, E = Spills.size(); I != E; ++I)
+ OS << ' ' << Spills[I];
+ OS << "\n Area 2:";
+ for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I)
+ OS << ' ' << *I;
+ OS << '\n';
+}
+
+void LiveRangeUpdater::dump() const
+{
+ print(errs());
+}
+
+// Determine if A and B should be coalesced.
+static inline bool coalescable(const LiveRange::Segment &A,
+ const LiveRange::Segment &B) {
+ assert(A.start <= B.start && "Unordered live segments.");
+ if (A.end == B.start)
+ return A.valno == B.valno;
+ if (A.end < B.start)
+ return false;
+ assert(A.valno == B.valno && "Cannot overlap different values");
+ return true;
+}
+
+void LiveRangeUpdater::add(LiveRange::Segment Seg) {
+ assert(LR && "Cannot add to a null destination");
+
+ // Flush the state if Start moves backwards.
+ if (!LastStart.isValid() || LastStart > Seg.start) {
+ if (isDirty())
+ flush();
+ // This brings us to an uninitialized state. Reinitialize.
+ assert(Spills.empty() && "Leftover spilled segments");
+ WriteI = ReadI = LR->begin();
+ }
+
+ // Remember start for next time.
+ LastStart = Seg.start;
+
+ // Advance ReadI until it ends after Seg.start.
+ LiveRange::iterator E = LR->end();
+ if (ReadI != E && ReadI->end <= Seg.start) {
+ // First try to close the gap between WriteI and ReadI with spills.
+ if (ReadI != WriteI)
+ mergeSpills();
+ // Then advance ReadI.
+ if (ReadI == WriteI)
+ ReadI = WriteI = LR->find(Seg.start);
+ else
+ while (ReadI != E && ReadI->end <= Seg.start)
+ *WriteI++ = *ReadI++;
+ }
+
+ assert(ReadI == E || ReadI->end > Seg.start);
+
+ // Check if the ReadI segment begins early.
+ if (ReadI != E && ReadI->start <= Seg.start) {
+ assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
+ // Bail if Seg is completely contained in ReadI.
+ if (ReadI->end >= Seg.end)
+ return;
+ // Coalesce into Seg.
+ Seg.start = ReadI->start;
+ ++ReadI;
+ }
+
+ // Coalesce as much as possible from ReadI into Seg.
+ while (ReadI != E && coalescable(Seg, *ReadI)) {
+ Seg.end = std::max(Seg.end, ReadI->end);
+ ++ReadI;
+ }
+
+ // Try coalescing Spills.back() into Seg.
+ if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
+ Seg.start = Spills.back().start;
+ Seg.end = std::max(Spills.back().end, Seg.end);
+ Spills.pop_back();
+ }
+
+ // Try coalescing Seg into WriteI[-1].
+ if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
+ WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
+ return;
+ }
+
+ // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
+ if (WriteI != ReadI) {
+ *WriteI++ = Seg;
+ return;
+ }
+
+ // Finally, append to LR or Spills.
+ if (WriteI == E) {
+ LR->segments.push_back(Seg);
+ WriteI = ReadI = LR->end();
+ } else
+ Spills.push_back(Seg);
+}
+
+// Merge as many spilled segments as possible into the gap between WriteI
+// and ReadI. Advance WriteI to reflect the inserted instructions.
+void LiveRangeUpdater::mergeSpills() {
+ // Perform a backwards merge of Spills and [SpillI;WriteI).
+ size_t GapSize = ReadI - WriteI;
+ size_t NumMoved = std::min(Spills.size(), GapSize);
+ LiveRange::iterator Src = WriteI;
+ LiveRange::iterator Dst = Src + NumMoved;
+ LiveRange::iterator SpillSrc = Spills.end();
+ LiveRange::iterator B = LR->begin();
+
+ // This is the new WriteI position after merging spills.
+ WriteI = Dst;
+
+ // Now merge Src and Spills backwards.
+ while (Src != Dst) {
+ if (Src != B && Src[-1].start > SpillSrc[-1].start)
+ *--Dst = *--Src;
+ else
+ *--Dst = *--SpillSrc;
+ }
+ assert(NumMoved == size_t(Spills.end() - SpillSrc));
+ Spills.erase(SpillSrc, Spills.end());
+}
+
+void LiveRangeUpdater::flush() {
+ if (!isDirty())
+ return;
+ // Clear the dirty state.
+ LastStart = SlotIndex();
+
+ assert(LR && "Cannot add to a null destination");
+
+ // Nothing to merge?
+ if (Spills.empty()) {
+ LR->segments.erase(WriteI, ReadI);
+ LR->verify();
+ return;
+ }
+
+ // Resize the WriteI - ReadI gap to match Spills.
+ size_t GapSize = ReadI - WriteI;
+ if (GapSize < Spills.size()) {
+ // The gap is too small. Make some room.
+ size_t WritePos = WriteI - LR->begin();
+ LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
+ // This also invalidated ReadI, but it is recomputed below.
+ WriteI = LR->begin() + WritePos;
+ } else {
+ // Shrink the gap if necessary.
+ LR->segments.erase(WriteI + Spills.size(), ReadI);
+ }
+ ReadI = WriteI + Spills.size();
+ mergeSpills();
+ LR->verify();
+}
+
+unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
+ // Create initial equivalence classes.
+ EqClass.clear();
+ EqClass.grow(LI->getNumValNums());
+
+ const VNInfo *used = 0, *unused = 0;
+
+ // Determine connections.
+ for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
+ I != E; ++I) {
+ const VNInfo *VNI = *I;
+ // Group all unused values into one class.
+ if (VNI->isUnused()) {
+ if (unused)
+ EqClass.join(unused->id, VNI->id);
+ unused = VNI;
+ continue;
+ }
+ used = VNI;
+ if (VNI->isPHIDef()) {
+ const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
+ assert(MBB && "Phi-def has no defining MBB");
+ // Connect to values live out of predecessors.
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI)
+ if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
+ EqClass.join(VNI->id, PVNI->id);
+ } else {
+ // Normal value defined by an instruction. Check for two-addr redef.
+ // FIXME: This could be coincidental. Should we really check for a tied
+ // operand constraint?
+ // Note that VNI->def may be a use slot for an early clobber def.
+ if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
+ EqClass.join(VNI->id, UVNI->id);
+ }
+ }
+
+ // Lump all the unused values in with the last used value.
+ if (used && unused)
+ EqClass.join(used->id, unused->id);
+
+ EqClass.compress();
+ return EqClass.getNumClasses();
+}
+
+void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
+ MachineRegisterInfo &MRI) {
+ assert(LIV[0] && "LIV[0] must be set");
+ LiveInterval &LI = *LIV[0];
+
+ // Rewrite instructions.
+ for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
+ RE = MRI.reg_end(); RI != RE;) {
+ MachineOperand &MO = RI.getOperand();
+ MachineInstr *MI = MO.getParent();
+ ++RI;
+ // DBG_VALUE instructions don't have slot indexes, so get the index of the
+ // instruction before them.
+ // Normally, DBG_VALUE instructions are removed before this function is
+ // called, but it is not a requirement.
+ SlotIndex Idx;
+ if (MI->isDebugValue())
+ Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
+ else
+ Idx = LIS.getInstructionIndex(MI);
+ LiveQueryResult LRQ = LI.Query(Idx);
+ const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
+ // In the case of an <undef> use that isn't tied to any def, VNI will be
+ // NULL. If the use is tied to a def, VNI will be the defined value.
+ if (!VNI)
+ continue;
+ MO.setReg(LIV[getEqClass(VNI)]->reg);
+ }
+
+ // Move runs to new intervals.
+ LiveInterval::iterator J = LI.begin(), E = LI.end();
+ while (J != E && EqClass[J->valno->id] == 0)
+ ++J;
+ for (LiveInterval::iterator I = J; I != E; ++I) {
+ if (unsigned eq = EqClass[I->valno->id]) {
+ assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
+ "New intervals should be empty");
+ LIV[eq]->segments.push_back(*I);
+ } else
+ *J++ = *I;
+ }
+ LI.segments.erase(J, E);
+
+ // Transfer VNInfos to their new owners and renumber them.
+ unsigned j = 0, e = LI.getNumValNums();
+ while (j != e && EqClass[j] == 0)
+ ++j;
+ for (unsigned i = j; i != e; ++i) {
+ VNInfo *VNI = LI.getValNumInfo(i);
+ if (unsigned eq = EqClass[i]) {
+ VNI->id = LIV[eq]->getNumValNums();
+ LIV[eq]->valnos.push_back(VNI);
+ } else {
+ VNI->id = j;
+ LI.valnos[j++] = VNI;
+ }
+ }
+ LI.valnos.resize(j);
+}