aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp591
1 files changed, 591 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp
new file mode 100644
index 000000000000..ae061b64a38c
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp
@@ -0,0 +1,591 @@
+//===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implement an interface to specify and query how an illegal operation on a
+// given type should be expanded.
+//
+// Issues to be resolved:
+// + Make it fast.
+// + Support weird types like i3, <7 x i3>, ...
+// + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <map>
+
+using namespace llvm;
+using namespace LegalizeActions;
+
+#define DEBUG_TYPE "legalizer-info"
+
+cl::opt<bool> llvm::DisableGISelLegalityCheck(
+ "disable-gisel-legality-check",
+ cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
+ cl::Hidden);
+
+raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
+ OS << Opcode << ", Tys={";
+ for (const auto &Type : Types) {
+ OS << Type << ", ";
+ }
+ OS << "}, Opcode=";
+
+ OS << Opcode << ", MMOs={";
+ for (const auto &MMODescr : MMODescrs) {
+ OS << MMODescr.Size << ", ";
+ }
+ OS << "}";
+
+ return OS;
+}
+
+LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
+ LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
+ dbgs() << "\n");
+ if (Rules.empty()) {
+ LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
+ return {LegalizeAction::UseLegacyRules, 0, LLT{}};
+ }
+ for (const auto &Rule : Rules) {
+ if (Rule.match(Query)) {
+ LLVM_DEBUG(dbgs() << ".. match\n");
+ std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
+ LLVM_DEBUG(dbgs() << ".. .. " << (unsigned)Rule.getAction() << ", "
+ << Mutation.first << ", " << Mutation.second << "\n");
+ assert((Query.Types[Mutation.first] != Mutation.second ||
+ Rule.getAction() == Lower ||
+ Rule.getAction() == MoreElements ||
+ Rule.getAction() == FewerElements) &&
+ "Simple loop detected");
+ return {Rule.getAction(), Mutation.first, Mutation.second};
+ } else
+ LLVM_DEBUG(dbgs() << ".. no match\n");
+ }
+ LLVM_DEBUG(dbgs() << ".. unsupported\n");
+ return {LegalizeAction::Unsupported, 0, LLT{}};
+}
+
+bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
+#ifndef NDEBUG
+ if (Rules.empty()) {
+ LLVM_DEBUG(
+ dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
+ return true;
+ }
+ const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
+ if (FirstUncovered < 0) {
+ LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
+ " user-defined predicate detected\n");
+ return true;
+ }
+ const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
+ LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
+ << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
+ return AllCovered;
+#else
+ return true;
+#endif
+}
+
+LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
+ // Set defaults.
+ // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
+ // fundamental load/store Jakob proposed. Once loads & stores are supported.
+ setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
+
+ setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
+
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
+ setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
+}
+
+void LegalizerInfo::computeTables() {
+ assert(TablesInitialized == false);
+
+ for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
+ const unsigned Opcode = FirstOp + OpcodeIdx;
+ for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
+ ++TypeIdx) {
+ // 0. Collect information specified through the setAction API, i.e.
+ // for specific bit sizes.
+ // For scalar types:
+ SizeAndActionsVec ScalarSpecifiedActions;
+ // For pointer types:
+ std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
+ // For vector types:
+ std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
+ for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
+ const LLT Type = LLT2Action.first;
+ const LegalizeAction Action = LLT2Action.second;
+
+ auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
+ if (Type.isPointer())
+ AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
+ SizeAction);
+ else if (Type.isVector())
+ ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
+ .push_back(SizeAction);
+ else
+ ScalarSpecifiedActions.push_back(SizeAction);
+ }
+
+ // 1. Handle scalar types
+ {
+ // Decide how to handle bit sizes for which no explicit specification
+ // was given.
+ SizeChangeStrategy S = &unsupportedForDifferentSizes;
+ if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
+ ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
+ S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
+ llvm::sort(ScalarSpecifiedActions.begin(),
+ ScalarSpecifiedActions.end());
+ checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
+ setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
+ }
+
+ // 2. Handle pointer types
+ for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
+ llvm::sort(PointerSpecifiedActions.second.begin(),
+ PointerSpecifiedActions.second.end());
+ checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
+ // For pointer types, we assume that there isn't a meaningfull way
+ // to change the number of bits used in the pointer.
+ setPointerAction(
+ Opcode, TypeIdx, PointerSpecifiedActions.first,
+ unsupportedForDifferentSizes(PointerSpecifiedActions.second));
+ }
+
+ // 3. Handle vector types
+ SizeAndActionsVec ElementSizesSeen;
+ for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
+ llvm::sort(VectorSpecifiedActions.second.begin(),
+ VectorSpecifiedActions.second.end());
+ const uint16_t ElementSize = VectorSpecifiedActions.first;
+ ElementSizesSeen.push_back({ElementSize, Legal});
+ checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
+ // For vector types, we assume that the best way to adapt the number
+ // of elements is to the next larger number of elements type for which
+ // the vector type is legal, unless there is no such type. In that case,
+ // legalize towards a vector type with a smaller number of elements.
+ SizeAndActionsVec NumElementsActions;
+ for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
+ assert(BitsizeAndAction.first % ElementSize == 0);
+ const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
+ NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
+ }
+ setVectorNumElementAction(
+ Opcode, TypeIdx, ElementSize,
+ moreToWiderTypesAndLessToWidest(NumElementsActions));
+ }
+ llvm::sort(ElementSizesSeen.begin(), ElementSizesSeen.end());
+ SizeChangeStrategy VectorElementSizeChangeStrategy =
+ &unsupportedForDifferentSizes;
+ if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
+ VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
+ VectorElementSizeChangeStrategy =
+ VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
+ setScalarInVectorAction(
+ Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
+ }
+ }
+
+ TablesInitialized = true;
+}
+
+// FIXME: inefficient implementation for now. Without ComputeValueVTs we're
+// probably going to need specialized lookup structures for various types before
+// we have any hope of doing well with something like <13 x i3>. Even the common
+// cases should do better than what we have now.
+std::pair<LegalizeAction, LLT>
+LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
+ assert(TablesInitialized && "backend forgot to call computeTables");
+ // These *have* to be implemented for now, they're the fundamental basis of
+ // how everything else is transformed.
+ if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
+ return findScalarLegalAction(Aspect);
+ assert(Aspect.Type.isVector());
+ return findVectorLegalAction(Aspect);
+}
+
+/// Helper function to get LLT for the given type index.
+static LLT getTypeFromTypeIdx(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI, unsigned OpIdx,
+ unsigned TypeIdx) {
+ assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
+ // G_UNMERGE_VALUES has variable number of operands, but there is only
+ // one source type and one destination type as all destinations must be the
+ // same type. So, get the last operand if TypeIdx == 1.
+ if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
+ return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
+ return MRI.getType(MI.getOperand(OpIdx).getReg());
+}
+
+unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
+ assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
+ return Opcode - FirstOp;
+}
+
+unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
+ unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
+ if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
+ LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
+ << "\n");
+ OpcodeIdx = getOpcodeIdxForOpcode(Alias);
+ LLVM_DEBUG(dbgs() << ".. opcode " << Alias << " is aliased to "
+ << RulesForOpcode[OpcodeIdx].getAlias() << "\n");
+ assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
+ }
+
+ return OpcodeIdx;
+}
+
+const LegalizeRuleSet &
+LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
+ unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
+ return RulesForOpcode[OpcodeIdx];
+}
+
+LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
+ unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
+ auto &Result = RulesForOpcode[OpcodeIdx];
+ assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
+ return Result;
+}
+
+LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
+ std::initializer_list<unsigned> Opcodes) {
+ unsigned Representative = *Opcodes.begin();
+
+ assert(Opcodes.begin() != Opcodes.end() &&
+ Opcodes.begin() + 1 != Opcodes.end() &&
+ "Initializer list must have at least two opcodes");
+
+ for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
+ aliasActionDefinitions(Representative, *I);
+
+ auto &Return = getActionDefinitionsBuilder(Representative);
+ Return.setIsAliasedByAnother();
+ return Return;
+}
+
+void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
+ unsigned OpcodeFrom) {
+ assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
+ assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
+ const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
+ RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
+}
+
+LegalizeActionStep
+LegalizerInfo::getAction(const LegalityQuery &Query) const {
+ LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
+ if (Step.Action != LegalizeAction::UseLegacyRules) {
+ return Step;
+ }
+
+ for (unsigned i = 0; i < Query.Types.size(); ++i) {
+ auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
+ if (Action.first != Legal) {
+ LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i
+ << " Action=" << (unsigned)Action.first << ", "
+ << Action.second << "\n");
+ return {Action.first, i, Action.second};
+ } else
+ LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
+ }
+ LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
+ return {Legal, 0, LLT{}};
+}
+
+LegalizeActionStep
+LegalizerInfo::getAction(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) const {
+ SmallVector<LLT, 2> Types;
+ SmallBitVector SeenTypes(8);
+ const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
+ // FIXME: probably we'll need to cache the results here somehow?
+ for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
+ if (!OpInfo[i].isGenericType())
+ continue;
+
+ // We must only record actions once for each TypeIdx; otherwise we'd
+ // try to legalize operands multiple times down the line.
+ unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
+ if (SeenTypes[TypeIdx])
+ continue;
+
+ SeenTypes.set(TypeIdx);
+
+ LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
+ Types.push_back(Ty);
+ }
+
+ SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
+ for (const auto &MMO : MI.memoperands())
+ MemDescrs.push_back(
+ {MMO->getSize() /* in bytes */ * 8, MMO->getOrdering()});
+
+ return getAction({MI.getOpcode(), Types, MemDescrs});
+}
+
+bool LegalizerInfo::isLegal(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) const {
+ return getAction(MI, MRI).Action == Legal;
+}
+
+bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
+ MachineIRBuilder &MIRBuilder) const {
+ return false;
+}
+
+LegalizerInfo::SizeAndActionsVec
+LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
+ const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
+ LegalizeAction DecreaseAction) {
+ SizeAndActionsVec result;
+ unsigned LargestSizeSoFar = 0;
+ if (v.size() >= 1 && v[0].first != 1)
+ result.push_back({1, IncreaseAction});
+ for (size_t i = 0; i < v.size(); ++i) {
+ result.push_back(v[i]);
+ LargestSizeSoFar = v[i].first;
+ if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
+ result.push_back({LargestSizeSoFar + 1, IncreaseAction});
+ LargestSizeSoFar = v[i].first + 1;
+ }
+ }
+ result.push_back({LargestSizeSoFar + 1, DecreaseAction});
+ return result;
+}
+
+LegalizerInfo::SizeAndActionsVec
+LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
+ const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
+ LegalizeAction IncreaseAction) {
+ SizeAndActionsVec result;
+ if (v.size() == 0 || v[0].first != 1)
+ result.push_back({1, IncreaseAction});
+ for (size_t i = 0; i < v.size(); ++i) {
+ result.push_back(v[i]);
+ if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
+ result.push_back({v[i].first + 1, DecreaseAction});
+ }
+ }
+ return result;
+}
+
+LegalizerInfo::SizeAndAction
+LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
+ assert(Size >= 1);
+ // Find the last element in Vec that has a bitsize equal to or smaller than
+ // the requested bit size.
+ // That is the element just before the first element that is bigger than Size.
+ auto VecIt = std::upper_bound(
+ Vec.begin(), Vec.end(), Size,
+ [](const uint32_t Size, const SizeAndAction lhs) -> bool {
+ return Size < lhs.first;
+ });
+ assert(VecIt != Vec.begin() && "Does Vec not start with size 1?");
+ --VecIt;
+ int VecIdx = VecIt - Vec.begin();
+
+ LegalizeAction Action = Vec[VecIdx].second;
+ switch (Action) {
+ case Legal:
+ case Lower:
+ case Libcall:
+ case Custom:
+ return {Size, Action};
+ case FewerElements:
+ // FIXME: is this special case still needed and correct?
+ // Special case for scalarization:
+ if (Vec == SizeAndActionsVec({{1, FewerElements}}))
+ return {1, FewerElements};
+ LLVM_FALLTHROUGH;
+ case NarrowScalar: {
+ // The following needs to be a loop, as for now, we do allow needing to
+ // go over "Unsupported" bit sizes before finding a legalizable bit size.
+ // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
+ // we need to iterate over s9, and then to s32 to return (s32, Legal).
+ // If we want to get rid of the below loop, we should have stronger asserts
+ // when building the SizeAndActionsVecs, probably not allowing
+ // "Unsupported" unless at the ends of the vector.
+ for (int i = VecIdx - 1; i >= 0; --i)
+ if (!needsLegalizingToDifferentSize(Vec[i].second) &&
+ Vec[i].second != Unsupported)
+ return {Vec[i].first, Action};
+ llvm_unreachable("");
+ }
+ case WidenScalar:
+ case MoreElements: {
+ // See above, the following needs to be a loop, at least for now.
+ for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
+ if (!needsLegalizingToDifferentSize(Vec[i].second) &&
+ Vec[i].second != Unsupported)
+ return {Vec[i].first, Action};
+ llvm_unreachable("");
+ }
+ case Unsupported:
+ return {Size, Unsupported};
+ case NotFound:
+ case UseLegacyRules:
+ llvm_unreachable("NotFound");
+ }
+ llvm_unreachable("Action has an unknown enum value");
+}
+
+std::pair<LegalizeAction, LLT>
+LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
+ assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
+ if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
+ return {NotFound, LLT()};
+ const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
+ if (Aspect.Type.isPointer() &&
+ AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
+ AddrSpace2PointerActions[OpcodeIdx].end()) {
+ return {NotFound, LLT()};
+ }
+ const SmallVector<SizeAndActionsVec, 1> &Actions =
+ Aspect.Type.isPointer()
+ ? AddrSpace2PointerActions[OpcodeIdx]
+ .find(Aspect.Type.getAddressSpace())
+ ->second
+ : ScalarActions[OpcodeIdx];
+ if (Aspect.Idx >= Actions.size())
+ return {NotFound, LLT()};
+ const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
+ // FIXME: speed up this search, e.g. by using a results cache for repeated
+ // queries?
+ auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
+ return {SizeAndAction.second,
+ Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
+ : LLT::pointer(Aspect.Type.getAddressSpace(),
+ SizeAndAction.first)};
+}
+
+std::pair<LegalizeAction, LLT>
+LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
+ assert(Aspect.Type.isVector());
+ // First legalize the vector element size, then legalize the number of
+ // lanes in the vector.
+ if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
+ return {NotFound, Aspect.Type};
+ const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
+ const unsigned TypeIdx = Aspect.Idx;
+ if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
+ return {NotFound, Aspect.Type};
+ const SizeAndActionsVec &ElemSizeVec =
+ ScalarInVectorActions[OpcodeIdx][TypeIdx];
+
+ LLT IntermediateType;
+ auto ElementSizeAndAction =
+ findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
+ IntermediateType =
+ LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
+ if (ElementSizeAndAction.second != Legal)
+ return {ElementSizeAndAction.second, IntermediateType};
+
+ auto i = NumElements2Actions[OpcodeIdx].find(
+ IntermediateType.getScalarSizeInBits());
+ if (i == NumElements2Actions[OpcodeIdx].end()) {
+ return {NotFound, IntermediateType};
+ }
+ const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
+ auto NumElementsAndAction =
+ findAction(NumElementsVec, IntermediateType.getNumElements());
+ return {NumElementsAndAction.second,
+ LLT::vector(NumElementsAndAction.first,
+ IntermediateType.getScalarSizeInBits())};
+}
+
+/// \pre Type indices of every opcode form a dense set starting from 0.
+void LegalizerInfo::verify(const MCInstrInfo &MII) const {
+#ifndef NDEBUG
+ std::vector<unsigned> FailedOpcodes;
+ for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
+ const MCInstrDesc &MCID = MII.get(Opcode);
+ const unsigned NumTypeIdxs = std::accumulate(
+ MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
+ [](unsigned Acc, const MCOperandInfo &OpInfo) {
+ return OpInfo.isGenericType()
+ ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
+ : Acc;
+ });
+ LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
+ << "): " << NumTypeIdxs << " type ind"
+ << (NumTypeIdxs == 1 ? "ex" : "ices") << "\n");
+ const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
+ if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
+ FailedOpcodes.push_back(Opcode);
+ }
+ if (!FailedOpcodes.empty()) {
+ errs() << "The following opcodes have ill-defined legalization rules:";
+ for (unsigned Opcode : FailedOpcodes)
+ errs() << " " << MII.getName(Opcode);
+ errs() << "\n";
+
+ report_fatal_error("ill-defined LegalizerInfo"
+ ", try -debug-only=legalizer-info for details");
+ }
+#endif
+}
+
+#ifndef NDEBUG
+// FIXME: This should be in the MachineVerifier, but it can't use the
+// LegalizerInfo as it's currently in the separate GlobalISel library.
+// Note that RegBankSelected property already checked in the verifier
+// has the same layering problem, but we only use inline methods so
+// end up not needing to link against the GlobalISel library.
+const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
+ if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ for (const MachineBasicBlock &MBB : MF)
+ for (const MachineInstr &MI : MBB)
+ if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI))
+ return &MI;
+ }
+ return nullptr;
+}
+#endif