diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp | 591 |
1 files changed, 591 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp new file mode 100644 index 000000000000..ae061b64a38c --- /dev/null +++ b/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp @@ -0,0 +1,591 @@ +//===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Implement an interface to specify and query how an illegal operation on a +// given type should be expanded. +// +// Issues to be resolved: +// + Make it fast. +// + Support weird types like i3, <7 x i3>, ... +// + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...) +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <map> + +using namespace llvm; +using namespace LegalizeActions; + +#define DEBUG_TYPE "legalizer-info" + +cl::opt<bool> llvm::DisableGISelLegalityCheck( + "disable-gisel-legality-check", + cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"), + cl::Hidden); + +raw_ostream &LegalityQuery::print(raw_ostream &OS) const { + OS << Opcode << ", Tys={"; + for (const auto &Type : Types) { + OS << Type << ", "; + } + OS << "}, Opcode="; + + OS << Opcode << ", MMOs={"; + for (const auto &MMODescr : MMODescrs) { + OS << MMODescr.Size << ", "; + } + OS << "}"; + + return OS; +} + +LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const { + LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs()); + dbgs() << "\n"); + if (Rules.empty()) { + LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n"); + return {LegalizeAction::UseLegacyRules, 0, LLT{}}; + } + for (const auto &Rule : Rules) { + if (Rule.match(Query)) { + LLVM_DEBUG(dbgs() << ".. match\n"); + std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query); + LLVM_DEBUG(dbgs() << ".. .. " << (unsigned)Rule.getAction() << ", " + << Mutation.first << ", " << Mutation.second << "\n"); + assert((Query.Types[Mutation.first] != Mutation.second || + Rule.getAction() == Lower || + Rule.getAction() == MoreElements || + Rule.getAction() == FewerElements) && + "Simple loop detected"); + return {Rule.getAction(), Mutation.first, Mutation.second}; + } else + LLVM_DEBUG(dbgs() << ".. no match\n"); + } + LLVM_DEBUG(dbgs() << ".. unsupported\n"); + return {LegalizeAction::Unsupported, 0, LLT{}}; +} + +bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const { +#ifndef NDEBUG + if (Rules.empty()) { + LLVM_DEBUG( + dbgs() << ".. type index coverage check SKIPPED: no rules defined\n"); + return true; + } + const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset(); + if (FirstUncovered < 0) { + LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:" + " user-defined predicate detected\n"); + return true; + } + const bool AllCovered = (FirstUncovered >= NumTypeIdxs); + LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered + << ", " << (AllCovered ? "OK" : "FAIL") << "\n"); + return AllCovered; +#else + return true; +#endif +} + +LegalizerInfo::LegalizerInfo() : TablesInitialized(false) { + // Set defaults. + // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the + // fundamental load/store Jakob proposed. Once loads & stores are supported. + setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}}); + setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}}); + setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}}); + setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}}); + setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}}); + + setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}}); + setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}}); + + setLegalizeScalarToDifferentSizeStrategy( + TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall); + setLegalizeScalarToDifferentSizeStrategy( + TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest); + setLegalizeScalarToDifferentSizeStrategy( + TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest); + setLegalizeScalarToDifferentSizeStrategy( + TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall); + setLegalizeScalarToDifferentSizeStrategy( + TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall); + + setLegalizeScalarToDifferentSizeStrategy( + TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise); + setLegalizeScalarToDifferentSizeStrategy( + TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall); + setLegalizeScalarToDifferentSizeStrategy( + TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall); + setLegalizeScalarToDifferentSizeStrategy( + TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall); + setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}}); +} + +void LegalizerInfo::computeTables() { + assert(TablesInitialized == false); + + for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) { + const unsigned Opcode = FirstOp + OpcodeIdx; + for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size(); + ++TypeIdx) { + // 0. Collect information specified through the setAction API, i.e. + // for specific bit sizes. + // For scalar types: + SizeAndActionsVec ScalarSpecifiedActions; + // For pointer types: + std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions; + // For vector types: + std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions; + for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) { + const LLT Type = LLT2Action.first; + const LegalizeAction Action = LLT2Action.second; + + auto SizeAction = std::make_pair(Type.getSizeInBits(), Action); + if (Type.isPointer()) + AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back( + SizeAction); + else if (Type.isVector()) + ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()] + .push_back(SizeAction); + else + ScalarSpecifiedActions.push_back(SizeAction); + } + + // 1. Handle scalar types + { + // Decide how to handle bit sizes for which no explicit specification + // was given. + SizeChangeStrategy S = &unsupportedForDifferentSizes; + if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() && + ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) + S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx]; + llvm::sort(ScalarSpecifiedActions.begin(), + ScalarSpecifiedActions.end()); + checkPartialSizeAndActionsVector(ScalarSpecifiedActions); + setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions)); + } + + // 2. Handle pointer types + for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) { + llvm::sort(PointerSpecifiedActions.second.begin(), + PointerSpecifiedActions.second.end()); + checkPartialSizeAndActionsVector(PointerSpecifiedActions.second); + // For pointer types, we assume that there isn't a meaningfull way + // to change the number of bits used in the pointer. + setPointerAction( + Opcode, TypeIdx, PointerSpecifiedActions.first, + unsupportedForDifferentSizes(PointerSpecifiedActions.second)); + } + + // 3. Handle vector types + SizeAndActionsVec ElementSizesSeen; + for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) { + llvm::sort(VectorSpecifiedActions.second.begin(), + VectorSpecifiedActions.second.end()); + const uint16_t ElementSize = VectorSpecifiedActions.first; + ElementSizesSeen.push_back({ElementSize, Legal}); + checkPartialSizeAndActionsVector(VectorSpecifiedActions.second); + // For vector types, we assume that the best way to adapt the number + // of elements is to the next larger number of elements type for which + // the vector type is legal, unless there is no such type. In that case, + // legalize towards a vector type with a smaller number of elements. + SizeAndActionsVec NumElementsActions; + for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) { + assert(BitsizeAndAction.first % ElementSize == 0); + const uint16_t NumElements = BitsizeAndAction.first / ElementSize; + NumElementsActions.push_back({NumElements, BitsizeAndAction.second}); + } + setVectorNumElementAction( + Opcode, TypeIdx, ElementSize, + moreToWiderTypesAndLessToWidest(NumElementsActions)); + } + llvm::sort(ElementSizesSeen.begin(), ElementSizesSeen.end()); + SizeChangeStrategy VectorElementSizeChangeStrategy = + &unsupportedForDifferentSizes; + if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() && + VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) + VectorElementSizeChangeStrategy = + VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx]; + setScalarInVectorAction( + Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen)); + } + } + + TablesInitialized = true; +} + +// FIXME: inefficient implementation for now. Without ComputeValueVTs we're +// probably going to need specialized lookup structures for various types before +// we have any hope of doing well with something like <13 x i3>. Even the common +// cases should do better than what we have now. +std::pair<LegalizeAction, LLT> +LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const { + assert(TablesInitialized && "backend forgot to call computeTables"); + // These *have* to be implemented for now, they're the fundamental basis of + // how everything else is transformed. + if (Aspect.Type.isScalar() || Aspect.Type.isPointer()) + return findScalarLegalAction(Aspect); + assert(Aspect.Type.isVector()); + return findVectorLegalAction(Aspect); +} + +/// Helper function to get LLT for the given type index. +static LLT getTypeFromTypeIdx(const MachineInstr &MI, + const MachineRegisterInfo &MRI, unsigned OpIdx, + unsigned TypeIdx) { + assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx"); + // G_UNMERGE_VALUES has variable number of operands, but there is only + // one source type and one destination type as all destinations must be the + // same type. So, get the last operand if TypeIdx == 1. + if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1) + return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg()); + return MRI.getType(MI.getOperand(OpIdx).getReg()); +} + +unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const { + assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode"); + return Opcode - FirstOp; +} + +unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const { + unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode); + if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) { + LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias + << "\n"); + OpcodeIdx = getOpcodeIdxForOpcode(Alias); + LLVM_DEBUG(dbgs() << ".. opcode " << Alias << " is aliased to " + << RulesForOpcode[OpcodeIdx].getAlias() << "\n"); + assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases"); + } + + return OpcodeIdx; +} + +const LegalizeRuleSet & +LegalizerInfo::getActionDefinitions(unsigned Opcode) const { + unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); + return RulesForOpcode[OpcodeIdx]; +} + +LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) { + unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); + auto &Result = RulesForOpcode[OpcodeIdx]; + assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases"); + return Result; +} + +LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder( + std::initializer_list<unsigned> Opcodes) { + unsigned Representative = *Opcodes.begin(); + + assert(Opcodes.begin() != Opcodes.end() && + Opcodes.begin() + 1 != Opcodes.end() && + "Initializer list must have at least two opcodes"); + + for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I) + aliasActionDefinitions(Representative, *I); + + auto &Return = getActionDefinitionsBuilder(Representative); + Return.setIsAliasedByAnother(); + return Return; +} + +void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo, + unsigned OpcodeFrom) { + assert(OpcodeTo != OpcodeFrom && "Cannot alias to self"); + assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode"); + const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom); + RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo); +} + +LegalizeActionStep +LegalizerInfo::getAction(const LegalityQuery &Query) const { + LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query); + if (Step.Action != LegalizeAction::UseLegacyRules) { + return Step; + } + + for (unsigned i = 0; i < Query.Types.size(); ++i) { + auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]}); + if (Action.first != Legal) { + LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i + << " Action=" << (unsigned)Action.first << ", " + << Action.second << "\n"); + return {Action.first, i, Action.second}; + } else + LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n"); + } + LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n"); + return {Legal, 0, LLT{}}; +} + +LegalizeActionStep +LegalizerInfo::getAction(const MachineInstr &MI, + const MachineRegisterInfo &MRI) const { + SmallVector<LLT, 2> Types; + SmallBitVector SeenTypes(8); + const MCOperandInfo *OpInfo = MI.getDesc().OpInfo; + // FIXME: probably we'll need to cache the results here somehow? + for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) { + if (!OpInfo[i].isGenericType()) + continue; + + // We must only record actions once for each TypeIdx; otherwise we'd + // try to legalize operands multiple times down the line. + unsigned TypeIdx = OpInfo[i].getGenericTypeIndex(); + if (SeenTypes[TypeIdx]) + continue; + + SeenTypes.set(TypeIdx); + + LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx); + Types.push_back(Ty); + } + + SmallVector<LegalityQuery::MemDesc, 2> MemDescrs; + for (const auto &MMO : MI.memoperands()) + MemDescrs.push_back( + {MMO->getSize() /* in bytes */ * 8, MMO->getOrdering()}); + + return getAction({MI.getOpcode(), Types, MemDescrs}); +} + +bool LegalizerInfo::isLegal(const MachineInstr &MI, + const MachineRegisterInfo &MRI) const { + return getAction(MI, MRI).Action == Legal; +} + +bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, + MachineIRBuilder &MIRBuilder) const { + return false; +} + +LegalizerInfo::SizeAndActionsVec +LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest( + const SizeAndActionsVec &v, LegalizeAction IncreaseAction, + LegalizeAction DecreaseAction) { + SizeAndActionsVec result; + unsigned LargestSizeSoFar = 0; + if (v.size() >= 1 && v[0].first != 1) + result.push_back({1, IncreaseAction}); + for (size_t i = 0; i < v.size(); ++i) { + result.push_back(v[i]); + LargestSizeSoFar = v[i].first; + if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) { + result.push_back({LargestSizeSoFar + 1, IncreaseAction}); + LargestSizeSoFar = v[i].first + 1; + } + } + result.push_back({LargestSizeSoFar + 1, DecreaseAction}); + return result; +} + +LegalizerInfo::SizeAndActionsVec +LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest( + const SizeAndActionsVec &v, LegalizeAction DecreaseAction, + LegalizeAction IncreaseAction) { + SizeAndActionsVec result; + if (v.size() == 0 || v[0].first != 1) + result.push_back({1, IncreaseAction}); + for (size_t i = 0; i < v.size(); ++i) { + result.push_back(v[i]); + if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) { + result.push_back({v[i].first + 1, DecreaseAction}); + } + } + return result; +} + +LegalizerInfo::SizeAndAction +LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) { + assert(Size >= 1); + // Find the last element in Vec that has a bitsize equal to or smaller than + // the requested bit size. + // That is the element just before the first element that is bigger than Size. + auto VecIt = std::upper_bound( + Vec.begin(), Vec.end(), Size, + [](const uint32_t Size, const SizeAndAction lhs) -> bool { + return Size < lhs.first; + }); + assert(VecIt != Vec.begin() && "Does Vec not start with size 1?"); + --VecIt; + int VecIdx = VecIt - Vec.begin(); + + LegalizeAction Action = Vec[VecIdx].second; + switch (Action) { + case Legal: + case Lower: + case Libcall: + case Custom: + return {Size, Action}; + case FewerElements: + // FIXME: is this special case still needed and correct? + // Special case for scalarization: + if (Vec == SizeAndActionsVec({{1, FewerElements}})) + return {1, FewerElements}; + LLVM_FALLTHROUGH; + case NarrowScalar: { + // The following needs to be a loop, as for now, we do allow needing to + // go over "Unsupported" bit sizes before finding a legalizable bit size. + // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8, + // we need to iterate over s9, and then to s32 to return (s32, Legal). + // If we want to get rid of the below loop, we should have stronger asserts + // when building the SizeAndActionsVecs, probably not allowing + // "Unsupported" unless at the ends of the vector. + for (int i = VecIdx - 1; i >= 0; --i) + if (!needsLegalizingToDifferentSize(Vec[i].second) && + Vec[i].second != Unsupported) + return {Vec[i].first, Action}; + llvm_unreachable(""); + } + case WidenScalar: + case MoreElements: { + // See above, the following needs to be a loop, at least for now. + for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i) + if (!needsLegalizingToDifferentSize(Vec[i].second) && + Vec[i].second != Unsupported) + return {Vec[i].first, Action}; + llvm_unreachable(""); + } + case Unsupported: + return {Size, Unsupported}; + case NotFound: + case UseLegacyRules: + llvm_unreachable("NotFound"); + } + llvm_unreachable("Action has an unknown enum value"); +} + +std::pair<LegalizeAction, LLT> +LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const { + assert(Aspect.Type.isScalar() || Aspect.Type.isPointer()); + if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) + return {NotFound, LLT()}; + const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); + if (Aspect.Type.isPointer() && + AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) == + AddrSpace2PointerActions[OpcodeIdx].end()) { + return {NotFound, LLT()}; + } + const SmallVector<SizeAndActionsVec, 1> &Actions = + Aspect.Type.isPointer() + ? AddrSpace2PointerActions[OpcodeIdx] + .find(Aspect.Type.getAddressSpace()) + ->second + : ScalarActions[OpcodeIdx]; + if (Aspect.Idx >= Actions.size()) + return {NotFound, LLT()}; + const SizeAndActionsVec &Vec = Actions[Aspect.Idx]; + // FIXME: speed up this search, e.g. by using a results cache for repeated + // queries? + auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits()); + return {SizeAndAction.second, + Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first) + : LLT::pointer(Aspect.Type.getAddressSpace(), + SizeAndAction.first)}; +} + +std::pair<LegalizeAction, LLT> +LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const { + assert(Aspect.Type.isVector()); + // First legalize the vector element size, then legalize the number of + // lanes in the vector. + if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) + return {NotFound, Aspect.Type}; + const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); + const unsigned TypeIdx = Aspect.Idx; + if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size()) + return {NotFound, Aspect.Type}; + const SizeAndActionsVec &ElemSizeVec = + ScalarInVectorActions[OpcodeIdx][TypeIdx]; + + LLT IntermediateType; + auto ElementSizeAndAction = + findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits()); + IntermediateType = + LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first); + if (ElementSizeAndAction.second != Legal) + return {ElementSizeAndAction.second, IntermediateType}; + + auto i = NumElements2Actions[OpcodeIdx].find( + IntermediateType.getScalarSizeInBits()); + if (i == NumElements2Actions[OpcodeIdx].end()) { + return {NotFound, IntermediateType}; + } + const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx]; + auto NumElementsAndAction = + findAction(NumElementsVec, IntermediateType.getNumElements()); + return {NumElementsAndAction.second, + LLT::vector(NumElementsAndAction.first, + IntermediateType.getScalarSizeInBits())}; +} + +/// \pre Type indices of every opcode form a dense set starting from 0. +void LegalizerInfo::verify(const MCInstrInfo &MII) const { +#ifndef NDEBUG + std::vector<unsigned> FailedOpcodes; + for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) { + const MCInstrDesc &MCID = MII.get(Opcode); + const unsigned NumTypeIdxs = std::accumulate( + MCID.opInfo_begin(), MCID.opInfo_end(), 0U, + [](unsigned Acc, const MCOperandInfo &OpInfo) { + return OpInfo.isGenericType() + ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc) + : Acc; + }); + LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode + << "): " << NumTypeIdxs << " type ind" + << (NumTypeIdxs == 1 ? "ex" : "ices") << "\n"); + const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode); + if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs)) + FailedOpcodes.push_back(Opcode); + } + if (!FailedOpcodes.empty()) { + errs() << "The following opcodes have ill-defined legalization rules:"; + for (unsigned Opcode : FailedOpcodes) + errs() << " " << MII.getName(Opcode); + errs() << "\n"; + + report_fatal_error("ill-defined LegalizerInfo" + ", try -debug-only=legalizer-info for details"); + } +#endif +} + +#ifndef NDEBUG +// FIXME: This should be in the MachineVerifier, but it can't use the +// LegalizerInfo as it's currently in the separate GlobalISel library. +// Note that RegBankSelected property already checked in the verifier +// has the same layering problem, but we only use inline methods so +// end up not needing to link against the GlobalISel library. +const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) { + if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) { + const MachineRegisterInfo &MRI = MF.getRegInfo(); + for (const MachineBasicBlock &MBB : MF) + for (const MachineInstr &MI : MBB) + if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) + return &MI; + } + return nullptr; +} +#endif |