aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp798
1 files changed, 798 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp b/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp
new file mode 100644
index 000000000000..031f19c135a9
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp
@@ -0,0 +1,798 @@
+//===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the execution dependency fix pass.
+//
+// Some X86 SSE instructions like mov, and, or, xor are available in different
+// variants for different operand types. These variant instructions are
+// equivalent, but on Nehalem and newer cpus there is extra latency
+// transferring data between integer and floating point domains. ARM cores
+// have similar issues when they are configured with both VFP and NEON
+// pipelines.
+//
+// This pass changes the variant instructions to minimize domain crossings.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "execution-fix"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/CodeGen/LiveRegUnits.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+/// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
+/// of execution domains.
+///
+/// An open DomainValue represents a set of instructions that can still switch
+/// execution domain. Multiple registers may refer to the same open
+/// DomainValue - they will eventually be collapsed to the same execution
+/// domain.
+///
+/// A collapsed DomainValue represents a single register that has been forced
+/// into one of more execution domains. There is a separate collapsed
+/// DomainValue for each register, but it may contain multiple execution
+/// domains. A register value is initially created in a single execution
+/// domain, but if we were forced to pay the penalty of a domain crossing, we
+/// keep track of the fact that the register is now available in multiple
+/// domains.
+namespace {
+struct DomainValue {
+ // Basic reference counting.
+ unsigned Refs;
+
+ // Bitmask of available domains. For an open DomainValue, it is the still
+ // possible domains for collapsing. For a collapsed DomainValue it is the
+ // domains where the register is available for free.
+ unsigned AvailableDomains;
+
+ // Pointer to the next DomainValue in a chain. When two DomainValues are
+ // merged, Victim.Next is set to point to Victor, so old DomainValue
+ // references can be updated by following the chain.
+ DomainValue *Next;
+
+ // Twiddleable instructions using or defining these registers.
+ SmallVector<MachineInstr*, 8> Instrs;
+
+ // A collapsed DomainValue has no instructions to twiddle - it simply keeps
+ // track of the domains where the registers are already available.
+ bool isCollapsed() const { return Instrs.empty(); }
+
+ // Is domain available?
+ bool hasDomain(unsigned domain) const {
+ return AvailableDomains & (1u << domain);
+ }
+
+ // Mark domain as available.
+ void addDomain(unsigned domain) {
+ AvailableDomains |= 1u << domain;
+ }
+
+ // Restrict to a single domain available.
+ void setSingleDomain(unsigned domain) {
+ AvailableDomains = 1u << domain;
+ }
+
+ // Return bitmask of domains that are available and in mask.
+ unsigned getCommonDomains(unsigned mask) const {
+ return AvailableDomains & mask;
+ }
+
+ // First domain available.
+ unsigned getFirstDomain() const {
+ return countTrailingZeros(AvailableDomains);
+ }
+
+ DomainValue() : Refs(0) { clear(); }
+
+ // Clear this DomainValue and point to next which has all its data.
+ void clear() {
+ AvailableDomains = 0;
+ Next = 0;
+ Instrs.clear();
+ }
+};
+}
+
+namespace {
+/// LiveReg - Information about a live register.
+struct LiveReg {
+ /// Value currently in this register, or NULL when no value is being tracked.
+ /// This counts as a DomainValue reference.
+ DomainValue *Value;
+
+ /// Instruction that defined this register, relative to the beginning of the
+ /// current basic block. When a LiveReg is used to represent a live-out
+ /// register, this value is relative to the end of the basic block, so it
+ /// will be a negative number.
+ int Def;
+};
+} // anonynous namespace
+
+namespace {
+class ExeDepsFix : public MachineFunctionPass {
+ static char ID;
+ SpecificBumpPtrAllocator<DomainValue> Allocator;
+ SmallVector<DomainValue*,16> Avail;
+
+ const TargetRegisterClass *const RC;
+ MachineFunction *MF;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ std::vector<int> AliasMap;
+ const unsigned NumRegs;
+ LiveReg *LiveRegs;
+ typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
+ LiveOutMap LiveOuts;
+
+ /// List of undefined register reads in this block in forward order.
+ std::vector<std::pair<MachineInstr*, unsigned> > UndefReads;
+
+ /// Storage for register unit liveness.
+ LiveRegUnits LiveUnits;
+
+ /// Current instruction number.
+ /// The first instruction in each basic block is 0.
+ int CurInstr;
+
+ /// True when the current block has a predecessor that hasn't been visited
+ /// yet.
+ bool SeenUnknownBackEdge;
+
+public:
+ ExeDepsFix(const TargetRegisterClass *rc)
+ : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual const char *getPassName() const {
+ return "Execution dependency fix";
+ }
+
+private:
+ // Register mapping.
+ int regIndex(unsigned Reg);
+
+ // DomainValue allocation.
+ DomainValue *alloc(int domain = -1);
+ DomainValue *retain(DomainValue *DV) {
+ if (DV) ++DV->Refs;
+ return DV;
+ }
+ void release(DomainValue*);
+ DomainValue *resolve(DomainValue*&);
+
+ // LiveRegs manipulations.
+ void setLiveReg(int rx, DomainValue *DV);
+ void kill(int rx);
+ void force(int rx, unsigned domain);
+ void collapse(DomainValue *dv, unsigned domain);
+ bool merge(DomainValue *A, DomainValue *B);
+
+ void enterBasicBlock(MachineBasicBlock*);
+ void leaveBasicBlock(MachineBasicBlock*);
+ void visitInstr(MachineInstr*);
+ void processDefs(MachineInstr*, bool Kill);
+ void visitSoftInstr(MachineInstr*, unsigned mask);
+ void visitHardInstr(MachineInstr*, unsigned domain);
+ bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref);
+ void processUndefReads(MachineBasicBlock*);
+};
+}
+
+char ExeDepsFix::ID = 0;
+
+/// Translate TRI register number to an index into our smaller tables of
+/// interesting registers. Return -1 for boring registers.
+int ExeDepsFix::regIndex(unsigned Reg) {
+ assert(Reg < AliasMap.size() && "Invalid register");
+ return AliasMap[Reg];
+}
+
+DomainValue *ExeDepsFix::alloc(int domain) {
+ DomainValue *dv = Avail.empty() ?
+ new(Allocator.Allocate()) DomainValue :
+ Avail.pop_back_val();
+ if (domain >= 0)
+ dv->addDomain(domain);
+ assert(dv->Refs == 0 && "Reference count wasn't cleared");
+ assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
+ return dv;
+}
+
+/// release - Release a reference to DV. When the last reference is released,
+/// collapse if needed.
+void ExeDepsFix::release(DomainValue *DV) {
+ while (DV) {
+ assert(DV->Refs && "Bad DomainValue");
+ if (--DV->Refs)
+ return;
+
+ // There are no more DV references. Collapse any contained instructions.
+ if (DV->AvailableDomains && !DV->isCollapsed())
+ collapse(DV, DV->getFirstDomain());
+
+ DomainValue *Next = DV->Next;
+ DV->clear();
+ Avail.push_back(DV);
+ // Also release the next DomainValue in the chain.
+ DV = Next;
+ }
+}
+
+/// resolve - Follow the chain of dead DomainValues until a live DomainValue is
+/// reached. Update the referenced pointer when necessary.
+DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) {
+ DomainValue *DV = DVRef;
+ if (!DV || !DV->Next)
+ return DV;
+
+ // DV has a chain. Find the end.
+ do DV = DV->Next;
+ while (DV->Next);
+
+ // Update DVRef to point to DV.
+ retain(DV);
+ release(DVRef);
+ DVRef = DV;
+ return DV;
+}
+
+/// Set LiveRegs[rx] = dv, updating reference counts.
+void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) {
+ assert(unsigned(rx) < NumRegs && "Invalid index");
+ assert(LiveRegs && "Must enter basic block first.");
+
+ if (LiveRegs[rx].Value == dv)
+ return;
+ if (LiveRegs[rx].Value)
+ release(LiveRegs[rx].Value);
+ LiveRegs[rx].Value = retain(dv);
+}
+
+// Kill register rx, recycle or collapse any DomainValue.
+void ExeDepsFix::kill(int rx) {
+ assert(unsigned(rx) < NumRegs && "Invalid index");
+ assert(LiveRegs && "Must enter basic block first.");
+ if (!LiveRegs[rx].Value)
+ return;
+
+ release(LiveRegs[rx].Value);
+ LiveRegs[rx].Value = 0;
+}
+
+/// Force register rx into domain.
+void ExeDepsFix::force(int rx, unsigned domain) {
+ assert(unsigned(rx) < NumRegs && "Invalid index");
+ assert(LiveRegs && "Must enter basic block first.");
+ if (DomainValue *dv = LiveRegs[rx].Value) {
+ if (dv->isCollapsed())
+ dv->addDomain(domain);
+ else if (dv->hasDomain(domain))
+ collapse(dv, domain);
+ else {
+ // This is an incompatible open DomainValue. Collapse it to whatever and
+ // force the new value into domain. This costs a domain crossing.
+ collapse(dv, dv->getFirstDomain());
+ assert(LiveRegs[rx].Value && "Not live after collapse?");
+ LiveRegs[rx].Value->addDomain(domain);
+ }
+ } else {
+ // Set up basic collapsed DomainValue.
+ setLiveReg(rx, alloc(domain));
+ }
+}
+
+/// Collapse open DomainValue into given domain. If there are multiple
+/// registers using dv, they each get a unique collapsed DomainValue.
+void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) {
+ assert(dv->hasDomain(domain) && "Cannot collapse");
+
+ // Collapse all the instructions.
+ while (!dv->Instrs.empty())
+ TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain);
+ dv->setSingleDomain(domain);
+
+ // If there are multiple users, give them new, unique DomainValues.
+ if (LiveRegs && dv->Refs > 1)
+ for (unsigned rx = 0; rx != NumRegs; ++rx)
+ if (LiveRegs[rx].Value == dv)
+ setLiveReg(rx, alloc(domain));
+}
+
+/// Merge - All instructions and registers in B are moved to A, and B is
+/// released.
+bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
+ assert(!A->isCollapsed() && "Cannot merge into collapsed");
+ assert(!B->isCollapsed() && "Cannot merge from collapsed");
+ if (A == B)
+ return true;
+ // Restrict to the domains that A and B have in common.
+ unsigned common = A->getCommonDomains(B->AvailableDomains);
+ if (!common)
+ return false;
+ A->AvailableDomains = common;
+ A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
+
+ // Clear the old DomainValue so we won't try to swizzle instructions twice.
+ B->clear();
+ // All uses of B are referred to A.
+ B->Next = retain(A);
+
+ for (unsigned rx = 0; rx != NumRegs; ++rx)
+ if (LiveRegs[rx].Value == B)
+ setLiveReg(rx, A);
+ return true;
+}
+
+// enterBasicBlock - Set up LiveRegs by merging predecessor live-out values.
+void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
+ // Detect back-edges from predecessors we haven't processed yet.
+ SeenUnknownBackEdge = false;
+
+ // Reset instruction counter in each basic block.
+ CurInstr = 0;
+
+ // Set up UndefReads to track undefined register reads.
+ UndefReads.clear();
+ LiveUnits.clear();
+
+ // Set up LiveRegs to represent registers entering MBB.
+ if (!LiveRegs)
+ LiveRegs = new LiveReg[NumRegs];
+
+ // Default values are 'nothing happened a long time ago'.
+ for (unsigned rx = 0; rx != NumRegs; ++rx) {
+ LiveRegs[rx].Value = 0;
+ LiveRegs[rx].Def = -(1 << 20);
+ }
+
+ // This is the entry block.
+ if (MBB->pred_empty()) {
+ for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(),
+ e = MBB->livein_end(); i != e; ++i) {
+ int rx = regIndex(*i);
+ if (rx < 0)
+ continue;
+ // Treat function live-ins as if they were defined just before the first
+ // instruction. Usually, function arguments are set up immediately
+ // before the call.
+ LiveRegs[rx].Def = -1;
+ }
+ DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
+ return;
+ }
+
+ // Try to coalesce live-out registers from predecessors.
+ for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
+ pe = MBB->pred_end(); pi != pe; ++pi) {
+ LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
+ if (fi == LiveOuts.end()) {
+ SeenUnknownBackEdge = true;
+ continue;
+ }
+ assert(fi->second && "Can't have NULL entries");
+
+ for (unsigned rx = 0; rx != NumRegs; ++rx) {
+ // Use the most recent predecessor def for each register.
+ LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def);
+
+ DomainValue *pdv = resolve(fi->second[rx].Value);
+ if (!pdv)
+ continue;
+ if (!LiveRegs[rx].Value) {
+ setLiveReg(rx, pdv);
+ continue;
+ }
+
+ // We have a live DomainValue from more than one predecessor.
+ if (LiveRegs[rx].Value->isCollapsed()) {
+ // We are already collapsed, but predecessor is not. Force him.
+ unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
+ if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
+ collapse(pdv, Domain);
+ continue;
+ }
+
+ // Currently open, merge in predecessor.
+ if (!pdv->isCollapsed())
+ merge(LiveRegs[rx].Value, pdv);
+ else
+ force(rx, pdv->getFirstDomain());
+ }
+ }
+ DEBUG(dbgs() << "BB#" << MBB->getNumber()
+ << (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n"));
+}
+
+void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
+ assert(LiveRegs && "Must enter basic block first.");
+ // Save live registers at end of MBB - used by enterBasicBlock().
+ // Also use LiveOuts as a visited set to detect back-edges.
+ bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second;
+
+ if (First) {
+ // LiveRegs was inserted in LiveOuts. Adjust all defs to be relative to
+ // the end of this block instead of the beginning.
+ for (unsigned i = 0, e = NumRegs; i != e; ++i)
+ LiveRegs[i].Def -= CurInstr;
+ } else {
+ // Insertion failed, this must be the second pass.
+ // Release all the DomainValues instead of keeping them.
+ for (unsigned i = 0, e = NumRegs; i != e; ++i)
+ release(LiveRegs[i].Value);
+ delete[] LiveRegs;
+ }
+ LiveRegs = 0;
+}
+
+void ExeDepsFix::visitInstr(MachineInstr *MI) {
+ if (MI->isDebugValue())
+ return;
+
+ // Update instructions with explicit execution domains.
+ std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(MI);
+ if (DomP.first) {
+ if (DomP.second)
+ visitSoftInstr(MI, DomP.second);
+ else
+ visitHardInstr(MI, DomP.first);
+ }
+
+ // Process defs to track register ages, and kill values clobbered by generic
+ // instructions.
+ processDefs(MI, !DomP.first);
+}
+
+/// \brief Return true to if it makes sense to break dependence on a partial def
+/// or undef use.
+bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
+ unsigned Pref) {
+ int rx = regIndex(MI->getOperand(OpIdx).getReg());
+ if (rx < 0)
+ return false;
+
+ unsigned Clearance = CurInstr - LiveRegs[rx].Def;
+ DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
+
+ if (Pref > Clearance) {
+ DEBUG(dbgs() << ": Break dependency.\n");
+ return true;
+ }
+ // The current clearance seems OK, but we may be ignoring a def from a
+ // back-edge.
+ if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
+ DEBUG(dbgs() << ": OK .\n");
+ return false;
+ }
+ // A def from an unprocessed back-edge may make us break this dependency.
+ DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
+ return false;
+}
+
+// Update def-ages for registers defined by MI.
+// If Kill is set, also kill off DomainValues clobbered by the defs.
+//
+// Also break dependencies on partial defs and undef uses.
+void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
+ assert(!MI->isDebugValue() && "Won't process debug values");
+
+ // Break dependence on undef uses. Do this before updating LiveRegs below.
+ unsigned OpNum;
+ unsigned Pref = TII->getUndefRegClearance(MI, OpNum, TRI);
+ if (Pref) {
+ if (shouldBreakDependence(MI, OpNum, Pref))
+ UndefReads.push_back(std::make_pair(MI, OpNum));
+ }
+ const MCInstrDesc &MCID = MI->getDesc();
+ for (unsigned i = 0,
+ e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
+ i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.isImplicit())
+ break;
+ if (MO.isUse())
+ continue;
+ int rx = regIndex(MO.getReg());
+ if (rx < 0)
+ continue;
+
+ // This instruction explicitly defines rx.
+ DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
+ << '\t' << *MI);
+
+ // Check clearance before partial register updates.
+ // Call breakDependence before setting LiveRegs[rx].Def.
+ unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
+ if (Pref && shouldBreakDependence(MI, i, Pref))
+ TII->breakPartialRegDependency(MI, i, TRI);
+
+ // How many instructions since rx was last written?
+ LiveRegs[rx].Def = CurInstr;
+
+ // Kill off domains redefined by generic instructions.
+ if (Kill)
+ kill(rx);
+ }
+ ++CurInstr;
+}
+
+/// \break Break false dependencies on undefined register reads.
+///
+/// Walk the block backward computing precise liveness. This is expensive, so we
+/// only do it on demand. Note that the occurrence of undefined register reads
+/// that should be broken is very rare, but when they occur we may have many in
+/// a single block.
+void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) {
+ if (UndefReads.empty())
+ return;
+
+ // Collect this block's live out register units.
+ LiveUnits.init(TRI);
+ for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI) {
+ LiveUnits.addLiveIns(*SI, *TRI);
+ }
+ MachineInstr *UndefMI = UndefReads.back().first;
+ unsigned OpIdx = UndefReads.back().second;
+
+ for (MachineBasicBlock::reverse_iterator I = MBB->rbegin(), E = MBB->rend();
+ I != E; ++I) {
+ // Update liveness, including the current instrucion's defs.
+ LiveUnits.stepBackward(*I, *TRI);
+
+ if (UndefMI == &*I) {
+ if (!LiveUnits.contains(UndefMI->getOperand(OpIdx).getReg(), *TRI))
+ TII->breakPartialRegDependency(UndefMI, OpIdx, TRI);
+
+ UndefReads.pop_back();
+ if (UndefReads.empty())
+ return;
+
+ UndefMI = UndefReads.back().first;
+ OpIdx = UndefReads.back().second;
+ }
+ }
+}
+
+// A hard instruction only works in one domain. All input registers will be
+// forced into that domain.
+void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
+ // Collapse all uses.
+ for (unsigned i = mi->getDesc().getNumDefs(),
+ e = mi->getDesc().getNumOperands(); i != e; ++i) {
+ MachineOperand &mo = mi->getOperand(i);
+ if (!mo.isReg()) continue;
+ int rx = regIndex(mo.getReg());
+ if (rx < 0) continue;
+ force(rx, domain);
+ }
+
+ // Kill all defs and force them.
+ for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
+ MachineOperand &mo = mi->getOperand(i);
+ if (!mo.isReg()) continue;
+ int rx = regIndex(mo.getReg());
+ if (rx < 0) continue;
+ kill(rx);
+ force(rx, domain);
+ }
+}
+
+// A soft instruction can be changed to work in other domains given by mask.
+void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
+ // Bitmask of available domains for this instruction after taking collapsed
+ // operands into account.
+ unsigned available = mask;
+
+ // Scan the explicit use operands for incoming domains.
+ SmallVector<int, 4> used;
+ if (LiveRegs)
+ for (unsigned i = mi->getDesc().getNumDefs(),
+ e = mi->getDesc().getNumOperands(); i != e; ++i) {
+ MachineOperand &mo = mi->getOperand(i);
+ if (!mo.isReg()) continue;
+ int rx = regIndex(mo.getReg());
+ if (rx < 0) continue;
+ if (DomainValue *dv = LiveRegs[rx].Value) {
+ // Bitmask of domains that dv and available have in common.
+ unsigned common = dv->getCommonDomains(available);
+ // Is it possible to use this collapsed register for free?
+ if (dv->isCollapsed()) {
+ // Restrict available domains to the ones in common with the operand.
+ // If there are no common domains, we must pay the cross-domain
+ // penalty for this operand.
+ if (common) available = common;
+ } else if (common)
+ // Open DomainValue is compatible, save it for merging.
+ used.push_back(rx);
+ else
+ // Open DomainValue is not compatible with instruction. It is useless
+ // now.
+ kill(rx);
+ }
+ }
+
+ // If the collapsed operands force a single domain, propagate the collapse.
+ if (isPowerOf2_32(available)) {
+ unsigned domain = countTrailingZeros(available);
+ TII->setExecutionDomain(mi, domain);
+ visitHardInstr(mi, domain);
+ return;
+ }
+
+ // Kill off any remaining uses that don't match available, and build a list of
+ // incoming DomainValues that we want to merge.
+ SmallVector<LiveReg, 4> Regs;
+ for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
+ int rx = *i;
+ const LiveReg &LR = LiveRegs[rx];
+ // This useless DomainValue could have been missed above.
+ if (!LR.Value->getCommonDomains(available)) {
+ kill(rx);
+ continue;
+ }
+ // Sorted insertion.
+ bool Inserted = false;
+ for (SmallVectorImpl<LiveReg>::iterator i = Regs.begin(), e = Regs.end();
+ i != e && !Inserted; ++i) {
+ if (LR.Def < i->Def) {
+ Inserted = true;
+ Regs.insert(i, LR);
+ }
+ }
+ if (!Inserted)
+ Regs.push_back(LR);
+ }
+
+ // doms are now sorted in order of appearance. Try to merge them all, giving
+ // priority to the latest ones.
+ DomainValue *dv = 0;
+ while (!Regs.empty()) {
+ if (!dv) {
+ dv = Regs.pop_back_val().Value;
+ // Force the first dv to match the current instruction.
+ dv->AvailableDomains = dv->getCommonDomains(available);
+ assert(dv->AvailableDomains && "Domain should have been filtered");
+ continue;
+ }
+
+ DomainValue *Latest = Regs.pop_back_val().Value;
+ // Skip already merged values.
+ if (Latest == dv || Latest->Next)
+ continue;
+ if (merge(dv, Latest))
+ continue;
+
+ // If latest didn't merge, it is useless now. Kill all registers using it.
+ for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i)
+ if (LiveRegs[*i].Value == Latest)
+ kill(*i);
+ }
+
+ // dv is the DomainValue we are going to use for this instruction.
+ if (!dv) {
+ dv = alloc();
+ dv->AvailableDomains = available;
+ }
+ dv->Instrs.push_back(mi);
+
+ // Finally set all defs and non-collapsed uses to dv. We must iterate through
+ // all the operators, including imp-def ones.
+ for (MachineInstr::mop_iterator ii = mi->operands_begin(),
+ ee = mi->operands_end();
+ ii != ee; ++ii) {
+ MachineOperand &mo = *ii;
+ if (!mo.isReg()) continue;
+ int rx = regIndex(mo.getReg());
+ if (rx < 0) continue;
+ if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
+ kill(rx);
+ setLiveReg(rx, dv);
+ }
+ }
+}
+
+bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
+ MF = &mf;
+ TII = MF->getTarget().getInstrInfo();
+ TRI = MF->getTarget().getRegisterInfo();
+ LiveRegs = 0;
+ assert(NumRegs == RC->getNumRegs() && "Bad regclass");
+
+ DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
+ << RC->getName() << " **********\n");
+
+ // If no relevant registers are used in the function, we can skip it
+ // completely.
+ bool anyregs = false;
+ for (TargetRegisterClass::const_iterator I = RC->begin(), E = RC->end();
+ I != E; ++I)
+ if (MF->getRegInfo().isPhysRegUsed(*I)) {
+ anyregs = true;
+ break;
+ }
+ if (!anyregs) return false;
+
+ // Initialize the AliasMap on the first use.
+ if (AliasMap.empty()) {
+ // Given a PhysReg, AliasMap[PhysReg] is either the relevant index into RC,
+ // or -1.
+ AliasMap.resize(TRI->getNumRegs(), -1);
+ for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
+ for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
+ AI.isValid(); ++AI)
+ AliasMap[*AI] = i;
+ }
+
+ MachineBasicBlock *Entry = MF->begin();
+ ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
+ SmallVector<MachineBasicBlock*, 16> Loops;
+ for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
+ MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
+ MachineBasicBlock *MBB = *MBBI;
+ enterBasicBlock(MBB);
+ if (SeenUnknownBackEdge)
+ Loops.push_back(MBB);
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
+ ++I)
+ visitInstr(I);
+ processUndefReads(MBB);
+ leaveBasicBlock(MBB);
+ }
+
+ // Visit all the loop blocks again in order to merge DomainValues from
+ // back-edges.
+ for (unsigned i = 0, e = Loops.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = Loops[i];
+ enterBasicBlock(MBB);
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
+ ++I)
+ if (!I->isDebugValue())
+ processDefs(I, false);
+ processUndefReads(MBB);
+ leaveBasicBlock(MBB);
+ }
+
+ // Clear the LiveOuts vectors and collapse any remaining DomainValues.
+ for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
+ MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
+ LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI);
+ if (FI == LiveOuts.end() || !FI->second)
+ continue;
+ for (unsigned i = 0, e = NumRegs; i != e; ++i)
+ if (FI->second[i].Value)
+ release(FI->second[i].Value);
+ delete[] FI->second;
+ }
+ LiveOuts.clear();
+ UndefReads.clear();
+ Avail.clear();
+ Allocator.DestroyAll();
+
+ return false;
+}
+
+FunctionPass *
+llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
+ return new ExeDepsFix(RC);
+}