aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Analysis/MemorySSA.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/MemorySSA.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/MemorySSA.cpp2059
1 files changed, 2059 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/MemorySSA.cpp b/contrib/llvm/lib/Analysis/MemorySSA.cpp
new file mode 100644
index 000000000000..910170561abf
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/MemorySSA.cpp
@@ -0,0 +1,2059 @@
+//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------===//
+//
+// This file implements the MemorySSA class.
+//
+//===----------------------------------------------------------------===//
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/IteratedDominanceFrontier.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/PHITransAddr.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Transforms/Scalar.h"
+#include <algorithm>
+
+#define DEBUG_TYPE "memoryssa"
+using namespace llvm;
+INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
+ true)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
+ true)
+
+INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
+ "Memory SSA Printer", false, false)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
+ "Memory SSA Printer", false, false)
+
+static cl::opt<unsigned> MaxCheckLimit(
+ "memssa-check-limit", cl::Hidden, cl::init(100),
+ cl::desc("The maximum number of stores/phis MemorySSA"
+ "will consider trying to walk past (default = 100)"));
+
+static cl::opt<bool>
+ VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
+ cl::desc("Verify MemorySSA in legacy printer pass."));
+
+namespace llvm {
+/// \brief An assembly annotator class to print Memory SSA information in
+/// comments.
+class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
+ friend class MemorySSA;
+ const MemorySSA *MSSA;
+
+public:
+ MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
+
+ virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
+ formatted_raw_ostream &OS) {
+ if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
+ OS << "; " << *MA << "\n";
+ }
+
+ virtual void emitInstructionAnnot(const Instruction *I,
+ formatted_raw_ostream &OS) {
+ if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
+ OS << "; " << *MA << "\n";
+ }
+};
+}
+
+namespace {
+/// Our current alias analysis API differentiates heavily between calls and
+/// non-calls, and functions called on one usually assert on the other.
+/// This class encapsulates the distinction to simplify other code that wants
+/// "Memory affecting instructions and related data" to use as a key.
+/// For example, this class is used as a densemap key in the use optimizer.
+class MemoryLocOrCall {
+public:
+ MemoryLocOrCall() : IsCall(false) {}
+ MemoryLocOrCall(MemoryUseOrDef *MUD)
+ : MemoryLocOrCall(MUD->getMemoryInst()) {}
+ MemoryLocOrCall(const MemoryUseOrDef *MUD)
+ : MemoryLocOrCall(MUD->getMemoryInst()) {}
+
+ MemoryLocOrCall(Instruction *Inst) {
+ if (ImmutableCallSite(Inst)) {
+ IsCall = true;
+ CS = ImmutableCallSite(Inst);
+ } else {
+ IsCall = false;
+ // There is no such thing as a memorylocation for a fence inst, and it is
+ // unique in that regard.
+ if (!isa<FenceInst>(Inst))
+ Loc = MemoryLocation::get(Inst);
+ }
+ }
+
+ explicit MemoryLocOrCall(const MemoryLocation &Loc)
+ : IsCall(false), Loc(Loc) {}
+
+ bool IsCall;
+ ImmutableCallSite getCS() const {
+ assert(IsCall);
+ return CS;
+ }
+ MemoryLocation getLoc() const {
+ assert(!IsCall);
+ return Loc;
+ }
+
+ bool operator==(const MemoryLocOrCall &Other) const {
+ if (IsCall != Other.IsCall)
+ return false;
+
+ if (IsCall)
+ return CS.getCalledValue() == Other.CS.getCalledValue();
+ return Loc == Other.Loc;
+ }
+
+private:
+ union {
+ ImmutableCallSite CS;
+ MemoryLocation Loc;
+ };
+};
+}
+
+namespace llvm {
+template <> struct DenseMapInfo<MemoryLocOrCall> {
+ static inline MemoryLocOrCall getEmptyKey() {
+ return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
+ }
+ static inline MemoryLocOrCall getTombstoneKey() {
+ return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
+ }
+ static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
+ if (MLOC.IsCall)
+ return hash_combine(MLOC.IsCall,
+ DenseMapInfo<const Value *>::getHashValue(
+ MLOC.getCS().getCalledValue()));
+ return hash_combine(
+ MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
+ }
+ static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
+ return LHS == RHS;
+ }
+};
+
+enum class Reorderability { Always, IfNoAlias, Never };
+
+/// This does one-way checks to see if Use could theoretically be hoisted above
+/// MayClobber. This will not check the other way around.
+///
+/// This assumes that, for the purposes of MemorySSA, Use comes directly after
+/// MayClobber, with no potentially clobbering operations in between them.
+/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
+static Reorderability getLoadReorderability(const LoadInst *Use,
+ const LoadInst *MayClobber) {
+ bool VolatileUse = Use->isVolatile();
+ bool VolatileClobber = MayClobber->isVolatile();
+ // Volatile operations may never be reordered with other volatile operations.
+ if (VolatileUse && VolatileClobber)
+ return Reorderability::Never;
+
+ // The lang ref allows reordering of volatile and non-volatile operations.
+ // Whether an aliasing nonvolatile load and volatile load can be reordered,
+ // though, is ambiguous. Because it may not be best to exploit this ambiguity,
+ // we only allow volatile/non-volatile reordering if the volatile and
+ // non-volatile operations don't alias.
+ Reorderability Result = VolatileUse || VolatileClobber
+ ? Reorderability::IfNoAlias
+ : Reorderability::Always;
+
+ // If a load is seq_cst, it cannot be moved above other loads. If its ordering
+ // is weaker, it can be moved above other loads. We just need to be sure that
+ // MayClobber isn't an acquire load, because loads can't be moved above
+ // acquire loads.
+ //
+ // Note that this explicitly *does* allow the free reordering of monotonic (or
+ // weaker) loads of the same address.
+ bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
+ bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
+ AtomicOrdering::Acquire);
+ if (SeqCstUse || MayClobberIsAcquire)
+ return Reorderability::Never;
+ return Result;
+}
+
+static bool instructionClobbersQuery(MemoryDef *MD,
+ const MemoryLocation &UseLoc,
+ const Instruction *UseInst,
+ AliasAnalysis &AA) {
+ Instruction *DefInst = MD->getMemoryInst();
+ assert(DefInst && "Defining instruction not actually an instruction");
+ ImmutableCallSite UseCS(UseInst);
+
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
+ // These intrinsics will show up as affecting memory, but they are just
+ // markers.
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::lifetime_start:
+ if (UseCS)
+ return false;
+ return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc);
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::assume:
+ return false;
+ default:
+ break;
+ }
+ }
+
+ if (UseCS) {
+ ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
+ return I != MRI_NoModRef;
+ }
+
+ if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) {
+ if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) {
+ switch (getLoadReorderability(UseLoad, DefLoad)) {
+ case Reorderability::Always:
+ return false;
+ case Reorderability::Never:
+ return true;
+ case Reorderability::IfNoAlias:
+ return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad));
+ }
+ }
+ }
+
+ return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod;
+}
+
+static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
+ const MemoryLocOrCall &UseMLOC,
+ AliasAnalysis &AA) {
+ // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
+ // to exist while MemoryLocOrCall is pushed through places.
+ if (UseMLOC.IsCall)
+ return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
+ AA);
+ return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
+ AA);
+}
+
+// Return true when MD may alias MU, return false otherwise.
+bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
+ AliasAnalysis &AA) {
+ return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
+}
+}
+
+namespace {
+struct UpwardsMemoryQuery {
+ // True if our original query started off as a call
+ bool IsCall;
+ // The pointer location we started the query with. This will be empty if
+ // IsCall is true.
+ MemoryLocation StartingLoc;
+ // This is the instruction we were querying about.
+ const Instruction *Inst;
+ // The MemoryAccess we actually got called with, used to test local domination
+ const MemoryAccess *OriginalAccess;
+
+ UpwardsMemoryQuery()
+ : IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {}
+
+ UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
+ : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
+ if (!IsCall)
+ StartingLoc = MemoryLocation::get(Inst);
+ }
+};
+
+static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
+ AliasAnalysis &AA) {
+ Instruction *Inst = MD->getMemoryInst();
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::lifetime_end:
+ return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
+ default:
+ return false;
+ }
+ }
+ return false;
+}
+
+static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
+ const Instruction *I) {
+ // If the memory can't be changed, then loads of the memory can't be
+ // clobbered.
+ //
+ // FIXME: We should handle invariant groups, as well. It's a bit harder,
+ // because we need to pay close attention to invariant group barriers.
+ return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
+ AA.pointsToConstantMemory(cast<LoadInst>(I)->
+ getPointerOperand()));
+}
+
+/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
+/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
+///
+/// This is meant to be as simple and self-contained as possible. Because it
+/// uses no cache, etc., it can be relatively expensive.
+///
+/// \param Start The MemoryAccess that we want to walk from.
+/// \param ClobberAt A clobber for Start.
+/// \param StartLoc The MemoryLocation for Start.
+/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
+/// \param Query The UpwardsMemoryQuery we used for our search.
+/// \param AA The AliasAnalysis we used for our search.
+static void LLVM_ATTRIBUTE_UNUSED
+checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
+ const MemoryLocation &StartLoc, const MemorySSA &MSSA,
+ const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
+ assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
+
+ if (MSSA.isLiveOnEntryDef(Start)) {
+ assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
+ "liveOnEntry must clobber itself");
+ return;
+ }
+
+ bool FoundClobber = false;
+ DenseSet<MemoryAccessPair> VisitedPhis;
+ SmallVector<MemoryAccessPair, 8> Worklist;
+ Worklist.emplace_back(Start, StartLoc);
+ // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
+ // is found, complain.
+ while (!Worklist.empty()) {
+ MemoryAccessPair MAP = Worklist.pop_back_val();
+ // All we care about is that nothing from Start to ClobberAt clobbers Start.
+ // We learn nothing from revisiting nodes.
+ if (!VisitedPhis.insert(MAP).second)
+ continue;
+
+ for (MemoryAccess *MA : def_chain(MAP.first)) {
+ if (MA == ClobberAt) {
+ if (auto *MD = dyn_cast<MemoryDef>(MA)) {
+ // instructionClobbersQuery isn't essentially free, so don't use `|=`,
+ // since it won't let us short-circuit.
+ //
+ // Also, note that this can't be hoisted out of the `Worklist` loop,
+ // since MD may only act as a clobber for 1 of N MemoryLocations.
+ FoundClobber =
+ FoundClobber || MSSA.isLiveOnEntryDef(MD) ||
+ instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
+ }
+ break;
+ }
+
+ // We should never hit liveOnEntry, unless it's the clobber.
+ assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
+
+ if (auto *MD = dyn_cast<MemoryDef>(MA)) {
+ (void)MD;
+ assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
+ "Found clobber before reaching ClobberAt!");
+ continue;
+ }
+
+ assert(isa<MemoryPhi>(MA));
+ Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
+ }
+ }
+
+ // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
+ // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
+ assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
+ "ClobberAt never acted as a clobber");
+}
+
+/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
+/// in one class.
+class ClobberWalker {
+ /// Save a few bytes by using unsigned instead of size_t.
+ using ListIndex = unsigned;
+
+ /// Represents a span of contiguous MemoryDefs, potentially ending in a
+ /// MemoryPhi.
+ struct DefPath {
+ MemoryLocation Loc;
+ // Note that, because we always walk in reverse, Last will always dominate
+ // First. Also note that First and Last are inclusive.
+ MemoryAccess *First;
+ MemoryAccess *Last;
+ Optional<ListIndex> Previous;
+
+ DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
+ Optional<ListIndex> Previous)
+ : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
+
+ DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
+ Optional<ListIndex> Previous)
+ : DefPath(Loc, Init, Init, Previous) {}
+ };
+
+ const MemorySSA &MSSA;
+ AliasAnalysis &AA;
+ DominatorTree &DT;
+ UpwardsMemoryQuery *Query;
+
+ // Phi optimization bookkeeping
+ SmallVector<DefPath, 32> Paths;
+ DenseSet<ConstMemoryAccessPair> VisitedPhis;
+
+ /// Find the nearest def or phi that `From` can legally be optimized to.
+ const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
+ assert(From->getNumOperands() && "Phi with no operands?");
+
+ BasicBlock *BB = From->getBlock();
+ MemoryAccess *Result = MSSA.getLiveOnEntryDef();
+ DomTreeNode *Node = DT.getNode(BB);
+ while ((Node = Node->getIDom())) {
+ auto *Defs = MSSA.getBlockDefs(Node->getBlock());
+ if (Defs)
+ return &*Defs->rbegin();
+ }
+ return Result;
+ }
+
+ /// Result of calling walkToPhiOrClobber.
+ struct UpwardsWalkResult {
+ /// The "Result" of the walk. Either a clobber, the last thing we walked, or
+ /// both.
+ MemoryAccess *Result;
+ bool IsKnownClobber;
+ };
+
+ /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
+ /// This will update Desc.Last as it walks. It will (optionally) also stop at
+ /// StopAt.
+ ///
+ /// This does not test for whether StopAt is a clobber
+ UpwardsWalkResult
+ walkToPhiOrClobber(DefPath &Desc,
+ const MemoryAccess *StopAt = nullptr) const {
+ assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
+
+ for (MemoryAccess *Current : def_chain(Desc.Last)) {
+ Desc.Last = Current;
+ if (Current == StopAt)
+ return {Current, false};
+
+ if (auto *MD = dyn_cast<MemoryDef>(Current))
+ if (MSSA.isLiveOnEntryDef(MD) ||
+ instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA))
+ return {MD, true};
+ }
+
+ assert(isa<MemoryPhi>(Desc.Last) &&
+ "Ended at a non-clobber that's not a phi?");
+ return {Desc.Last, false};
+ }
+
+ void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
+ ListIndex PriorNode) {
+ auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
+ upward_defs_end());
+ for (const MemoryAccessPair &P : UpwardDefs) {
+ PausedSearches.push_back(Paths.size());
+ Paths.emplace_back(P.second, P.first, PriorNode);
+ }
+ }
+
+ /// Represents a search that terminated after finding a clobber. This clobber
+ /// may or may not be present in the path of defs from LastNode..SearchStart,
+ /// since it may have been retrieved from cache.
+ struct TerminatedPath {
+ MemoryAccess *Clobber;
+ ListIndex LastNode;
+ };
+
+ /// Get an access that keeps us from optimizing to the given phi.
+ ///
+ /// PausedSearches is an array of indices into the Paths array. Its incoming
+ /// value is the indices of searches that stopped at the last phi optimization
+ /// target. It's left in an unspecified state.
+ ///
+ /// If this returns None, NewPaused is a vector of searches that terminated
+ /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
+ Optional<TerminatedPath>
+ getBlockingAccess(const MemoryAccess *StopWhere,
+ SmallVectorImpl<ListIndex> &PausedSearches,
+ SmallVectorImpl<ListIndex> &NewPaused,
+ SmallVectorImpl<TerminatedPath> &Terminated) {
+ assert(!PausedSearches.empty() && "No searches to continue?");
+
+ // BFS vs DFS really doesn't make a difference here, so just do a DFS with
+ // PausedSearches as our stack.
+ while (!PausedSearches.empty()) {
+ ListIndex PathIndex = PausedSearches.pop_back_val();
+ DefPath &Node = Paths[PathIndex];
+
+ // If we've already visited this path with this MemoryLocation, we don't
+ // need to do so again.
+ //
+ // NOTE: That we just drop these paths on the ground makes caching
+ // behavior sporadic. e.g. given a diamond:
+ // A
+ // B C
+ // D
+ //
+ // ...If we walk D, B, A, C, we'll only cache the result of phi
+ // optimization for A, B, and D; C will be skipped because it dies here.
+ // This arguably isn't the worst thing ever, since:
+ // - We generally query things in a top-down order, so if we got below D
+ // without needing cache entries for {C, MemLoc}, then chances are
+ // that those cache entries would end up ultimately unused.
+ // - We still cache things for A, so C only needs to walk up a bit.
+ // If this behavior becomes problematic, we can fix without a ton of extra
+ // work.
+ if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
+ continue;
+
+ UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
+ if (Res.IsKnownClobber) {
+ assert(Res.Result != StopWhere);
+ // If this wasn't a cache hit, we hit a clobber when walking. That's a
+ // failure.
+ TerminatedPath Term{Res.Result, PathIndex};
+ if (!MSSA.dominates(Res.Result, StopWhere))
+ return Term;
+
+ // Otherwise, it's a valid thing to potentially optimize to.
+ Terminated.push_back(Term);
+ continue;
+ }
+
+ if (Res.Result == StopWhere) {
+ // We've hit our target. Save this path off for if we want to continue
+ // walking.
+ NewPaused.push_back(PathIndex);
+ continue;
+ }
+
+ assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
+ addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
+ }
+
+ return None;
+ }
+
+ template <typename T, typename Walker>
+ struct generic_def_path_iterator
+ : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
+ std::forward_iterator_tag, T *> {
+ generic_def_path_iterator() : W(nullptr), N(None) {}
+ generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
+
+ T &operator*() const { return curNode(); }
+
+ generic_def_path_iterator &operator++() {
+ N = curNode().Previous;
+ return *this;
+ }
+
+ bool operator==(const generic_def_path_iterator &O) const {
+ if (N.hasValue() != O.N.hasValue())
+ return false;
+ return !N.hasValue() || *N == *O.N;
+ }
+
+ private:
+ T &curNode() const { return W->Paths[*N]; }
+
+ Walker *W;
+ Optional<ListIndex> N;
+ };
+
+ using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
+ using const_def_path_iterator =
+ generic_def_path_iterator<const DefPath, const ClobberWalker>;
+
+ iterator_range<def_path_iterator> def_path(ListIndex From) {
+ return make_range(def_path_iterator(this, From), def_path_iterator());
+ }
+
+ iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
+ return make_range(const_def_path_iterator(this, From),
+ const_def_path_iterator());
+ }
+
+ struct OptznResult {
+ /// The path that contains our result.
+ TerminatedPath PrimaryClobber;
+ /// The paths that we can legally cache back from, but that aren't
+ /// necessarily the result of the Phi optimization.
+ SmallVector<TerminatedPath, 4> OtherClobbers;
+ };
+
+ ListIndex defPathIndex(const DefPath &N) const {
+ // The assert looks nicer if we don't need to do &N
+ const DefPath *NP = &N;
+ assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
+ "Out of bounds DefPath!");
+ return NP - &Paths.front();
+ }
+
+ /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
+ /// that act as legal clobbers. Note that this won't return *all* clobbers.
+ ///
+ /// Phi optimization algorithm tl;dr:
+ /// - Find the earliest def/phi, A, we can optimize to
+ /// - Find if all paths from the starting memory access ultimately reach A
+ /// - If not, optimization isn't possible.
+ /// - Otherwise, walk from A to another clobber or phi, A'.
+ /// - If A' is a def, we're done.
+ /// - If A' is a phi, try to optimize it.
+ ///
+ /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
+ /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
+ OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
+ const MemoryLocation &Loc) {
+ assert(Paths.empty() && VisitedPhis.empty() &&
+ "Reset the optimization state.");
+
+ Paths.emplace_back(Loc, Start, Phi, None);
+ // Stores how many "valid" optimization nodes we had prior to calling
+ // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
+ auto PriorPathsSize = Paths.size();
+
+ SmallVector<ListIndex, 16> PausedSearches;
+ SmallVector<ListIndex, 8> NewPaused;
+ SmallVector<TerminatedPath, 4> TerminatedPaths;
+
+ addSearches(Phi, PausedSearches, 0);
+
+ // Moves the TerminatedPath with the "most dominated" Clobber to the end of
+ // Paths.
+ auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
+ assert(!Paths.empty() && "Need a path to move");
+ auto Dom = Paths.begin();
+ for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
+ if (!MSSA.dominates(I->Clobber, Dom->Clobber))
+ Dom = I;
+ auto Last = Paths.end() - 1;
+ if (Last != Dom)
+ std::iter_swap(Last, Dom);
+ };
+
+ MemoryPhi *Current = Phi;
+ while (1) {
+ assert(!MSSA.isLiveOnEntryDef(Current) &&
+ "liveOnEntry wasn't treated as a clobber?");
+
+ const auto *Target = getWalkTarget(Current);
+ // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
+ // optimization for the prior phi.
+ assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
+ return MSSA.dominates(P.Clobber, Target);
+ }));
+
+ // FIXME: This is broken, because the Blocker may be reported to be
+ // liveOnEntry, and we'll happily wait for that to disappear (read: never)
+ // For the moment, this is fine, since we do nothing with blocker info.
+ if (Optional<TerminatedPath> Blocker = getBlockingAccess(
+ Target, PausedSearches, NewPaused, TerminatedPaths)) {
+
+ // Find the node we started at. We can't search based on N->Last, since
+ // we may have gone around a loop with a different MemoryLocation.
+ auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
+ return defPathIndex(N) < PriorPathsSize;
+ });
+ assert(Iter != def_path_iterator());
+
+ DefPath &CurNode = *Iter;
+ assert(CurNode.Last == Current);
+
+ // Two things:
+ // A. We can't reliably cache all of NewPaused back. Consider a case
+ // where we have two paths in NewPaused; one of which can't optimize
+ // above this phi, whereas the other can. If we cache the second path
+ // back, we'll end up with suboptimal cache entries. We can handle
+ // cases like this a bit better when we either try to find all
+ // clobbers that block phi optimization, or when our cache starts
+ // supporting unfinished searches.
+ // B. We can't reliably cache TerminatedPaths back here without doing
+ // extra checks; consider a case like:
+ // T
+ // / \
+ // D C
+ // \ /
+ // S
+ // Where T is our target, C is a node with a clobber on it, D is a
+ // diamond (with a clobber *only* on the left or right node, N), and
+ // S is our start. Say we walk to D, through the node opposite N
+ // (read: ignoring the clobber), and see a cache entry in the top
+ // node of D. That cache entry gets put into TerminatedPaths. We then
+ // walk up to C (N is later in our worklist), find the clobber, and
+ // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
+ // the bottom part of D to the cached clobber, ignoring the clobber
+ // in N. Again, this problem goes away if we start tracking all
+ // blockers for a given phi optimization.
+ TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
+ return {Result, {}};
+ }
+
+ // If there's nothing left to search, then all paths led to valid clobbers
+ // that we got from our cache; pick the nearest to the start, and allow
+ // the rest to be cached back.
+ if (NewPaused.empty()) {
+ MoveDominatedPathToEnd(TerminatedPaths);
+ TerminatedPath Result = TerminatedPaths.pop_back_val();
+ return {Result, std::move(TerminatedPaths)};
+ }
+
+ MemoryAccess *DefChainEnd = nullptr;
+ SmallVector<TerminatedPath, 4> Clobbers;
+ for (ListIndex Paused : NewPaused) {
+ UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
+ if (WR.IsKnownClobber)
+ Clobbers.push_back({WR.Result, Paused});
+ else
+ // Micro-opt: If we hit the end of the chain, save it.
+ DefChainEnd = WR.Result;
+ }
+
+ if (!TerminatedPaths.empty()) {
+ // If we couldn't find the dominating phi/liveOnEntry in the above loop,
+ // do it now.
+ if (!DefChainEnd)
+ for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
+ DefChainEnd = MA;
+
+ // If any of the terminated paths don't dominate the phi we'll try to
+ // optimize, we need to figure out what they are and quit.
+ const BasicBlock *ChainBB = DefChainEnd->getBlock();
+ for (const TerminatedPath &TP : TerminatedPaths) {
+ // Because we know that DefChainEnd is as "high" as we can go, we
+ // don't need local dominance checks; BB dominance is sufficient.
+ if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
+ Clobbers.push_back(TP);
+ }
+ }
+
+ // If we have clobbers in the def chain, find the one closest to Current
+ // and quit.
+ if (!Clobbers.empty()) {
+ MoveDominatedPathToEnd(Clobbers);
+ TerminatedPath Result = Clobbers.pop_back_val();
+ return {Result, std::move(Clobbers)};
+ }
+
+ assert(all_of(NewPaused,
+ [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
+
+ // Because liveOnEntry is a clobber, this must be a phi.
+ auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
+
+ PriorPathsSize = Paths.size();
+ PausedSearches.clear();
+ for (ListIndex I : NewPaused)
+ addSearches(DefChainPhi, PausedSearches, I);
+ NewPaused.clear();
+
+ Current = DefChainPhi;
+ }
+ }
+
+ void verifyOptResult(const OptznResult &R) const {
+ assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
+ return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
+ }));
+ }
+
+ void resetPhiOptznState() {
+ Paths.clear();
+ VisitedPhis.clear();
+ }
+
+public:
+ ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
+ : MSSA(MSSA), AA(AA), DT(DT) {}
+
+ void reset() {}
+
+ /// Finds the nearest clobber for the given query, optimizing phis if
+ /// possible.
+ MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
+ Query = &Q;
+
+ MemoryAccess *Current = Start;
+ // This walker pretends uses don't exist. If we're handed one, silently grab
+ // its def. (This has the nice side-effect of ensuring we never cache uses)
+ if (auto *MU = dyn_cast<MemoryUse>(Start))
+ Current = MU->getDefiningAccess();
+
+ DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
+ // Fast path for the overly-common case (no crazy phi optimization
+ // necessary)
+ UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
+ MemoryAccess *Result;
+ if (WalkResult.IsKnownClobber) {
+ Result = WalkResult.Result;
+ } else {
+ OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
+ Current, Q.StartingLoc);
+ verifyOptResult(OptRes);
+ resetPhiOptznState();
+ Result = OptRes.PrimaryClobber.Clobber;
+ }
+
+#ifdef EXPENSIVE_CHECKS
+ checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
+#endif
+ return Result;
+ }
+
+ void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
+};
+
+struct RenamePassData {
+ DomTreeNode *DTN;
+ DomTreeNode::const_iterator ChildIt;
+ MemoryAccess *IncomingVal;
+
+ RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
+ MemoryAccess *M)
+ : DTN(D), ChildIt(It), IncomingVal(M) {}
+ void swap(RenamePassData &RHS) {
+ std::swap(DTN, RHS.DTN);
+ std::swap(ChildIt, RHS.ChildIt);
+ std::swap(IncomingVal, RHS.IncomingVal);
+ }
+};
+} // anonymous namespace
+
+namespace llvm {
+/// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no
+/// longer does caching on its own,
+/// but the name has been retained for the moment.
+class MemorySSA::CachingWalker final : public MemorySSAWalker {
+ ClobberWalker Walker;
+ bool AutoResetWalker;
+
+ MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
+ void verifyRemoved(MemoryAccess *);
+
+public:
+ CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
+ ~CachingWalker() override;
+
+ using MemorySSAWalker::getClobberingMemoryAccess;
+ MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
+ MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
+ const MemoryLocation &) override;
+ void invalidateInfo(MemoryAccess *) override;
+
+ /// Whether we call resetClobberWalker() after each time we *actually* walk to
+ /// answer a clobber query.
+ void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; }
+
+ /// Drop the walker's persistent data structures.
+ void resetClobberWalker() { Walker.reset(); }
+
+ void verify(const MemorySSA *MSSA) override {
+ MemorySSAWalker::verify(MSSA);
+ Walker.verify(MSSA);
+ }
+};
+
+void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
+ bool RenameAllUses) {
+ // Pass through values to our successors
+ for (const BasicBlock *S : successors(BB)) {
+ auto It = PerBlockAccesses.find(S);
+ // Rename the phi nodes in our successor block
+ if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
+ continue;
+ AccessList *Accesses = It->second.get();
+ auto *Phi = cast<MemoryPhi>(&Accesses->front());
+ if (RenameAllUses) {
+ int PhiIndex = Phi->getBasicBlockIndex(BB);
+ assert(PhiIndex != -1 && "Incomplete phi during partial rename");
+ Phi->setIncomingValue(PhiIndex, IncomingVal);
+ } else
+ Phi->addIncoming(IncomingVal, BB);
+ }
+}
+
+/// \brief Rename a single basic block into MemorySSA form.
+/// Uses the standard SSA renaming algorithm.
+/// \returns The new incoming value.
+MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
+ bool RenameAllUses) {
+ auto It = PerBlockAccesses.find(BB);
+ // Skip most processing if the list is empty.
+ if (It != PerBlockAccesses.end()) {
+ AccessList *Accesses = It->second.get();
+ for (MemoryAccess &L : *Accesses) {
+ if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
+ if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
+ MUD->setDefiningAccess(IncomingVal);
+ if (isa<MemoryDef>(&L))
+ IncomingVal = &L;
+ } else {
+ IncomingVal = &L;
+ }
+ }
+ }
+ return IncomingVal;
+}
+
+/// \brief This is the standard SSA renaming algorithm.
+///
+/// We walk the dominator tree in preorder, renaming accesses, and then filling
+/// in phi nodes in our successors.
+void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
+ SmallPtrSetImpl<BasicBlock *> &Visited,
+ bool SkipVisited, bool RenameAllUses) {
+ SmallVector<RenamePassData, 32> WorkStack;
+ // Skip everything if we already renamed this block and we are skipping.
+ // Note: You can't sink this into the if, because we need it to occur
+ // regardless of whether we skip blocks or not.
+ bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
+ if (SkipVisited && AlreadyVisited)
+ return;
+
+ IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
+ renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
+ WorkStack.push_back({Root, Root->begin(), IncomingVal});
+
+ while (!WorkStack.empty()) {
+ DomTreeNode *Node = WorkStack.back().DTN;
+ DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
+ IncomingVal = WorkStack.back().IncomingVal;
+
+ if (ChildIt == Node->end()) {
+ WorkStack.pop_back();
+ } else {
+ DomTreeNode *Child = *ChildIt;
+ ++WorkStack.back().ChildIt;
+ BasicBlock *BB = Child->getBlock();
+ // Note: You can't sink this into the if, because we need it to occur
+ // regardless of whether we skip blocks or not.
+ AlreadyVisited = !Visited.insert(BB).second;
+ if (SkipVisited && AlreadyVisited) {
+ // We already visited this during our renaming, which can happen when
+ // being asked to rename multiple blocks. Figure out the incoming val,
+ // which is the last def.
+ // Incoming value can only change if there is a block def, and in that
+ // case, it's the last block def in the list.
+ if (auto *BlockDefs = getWritableBlockDefs(BB))
+ IncomingVal = &*BlockDefs->rbegin();
+ } else
+ IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
+ renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
+ WorkStack.push_back({Child, Child->begin(), IncomingVal});
+ }
+ }
+}
+
+/// \brief This handles unreachable block accesses by deleting phi nodes in
+/// unreachable blocks, and marking all other unreachable MemoryAccess's as
+/// being uses of the live on entry definition.
+void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
+ assert(!DT->isReachableFromEntry(BB) &&
+ "Reachable block found while handling unreachable blocks");
+
+ // Make sure phi nodes in our reachable successors end up with a
+ // LiveOnEntryDef for our incoming edge, even though our block is forward
+ // unreachable. We could just disconnect these blocks from the CFG fully,
+ // but we do not right now.
+ for (const BasicBlock *S : successors(BB)) {
+ if (!DT->isReachableFromEntry(S))
+ continue;
+ auto It = PerBlockAccesses.find(S);
+ // Rename the phi nodes in our successor block
+ if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
+ continue;
+ AccessList *Accesses = It->second.get();
+ auto *Phi = cast<MemoryPhi>(&Accesses->front());
+ Phi->addIncoming(LiveOnEntryDef.get(), BB);
+ }
+
+ auto It = PerBlockAccesses.find(BB);
+ if (It == PerBlockAccesses.end())
+ return;
+
+ auto &Accesses = It->second;
+ for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
+ auto Next = std::next(AI);
+ // If we have a phi, just remove it. We are going to replace all
+ // users with live on entry.
+ if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
+ UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
+ else
+ Accesses->erase(AI);
+ AI = Next;
+ }
+}
+
+MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
+ : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
+ NextID(INVALID_MEMORYACCESS_ID) {
+ buildMemorySSA();
+}
+
+MemorySSA::~MemorySSA() {
+ // Drop all our references
+ for (const auto &Pair : PerBlockAccesses)
+ for (MemoryAccess &MA : *Pair.second)
+ MA.dropAllReferences();
+}
+
+MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
+ auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
+
+ if (Res.second)
+ Res.first->second = make_unique<AccessList>();
+ return Res.first->second.get();
+}
+MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
+ auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
+
+ if (Res.second)
+ Res.first->second = make_unique<DefsList>();
+ return Res.first->second.get();
+}
+
+/// This class is a batch walker of all MemoryUse's in the program, and points
+/// their defining access at the thing that actually clobbers them. Because it
+/// is a batch walker that touches everything, it does not operate like the
+/// other walkers. This walker is basically performing a top-down SSA renaming
+/// pass, where the version stack is used as the cache. This enables it to be
+/// significantly more time and memory efficient than using the regular walker,
+/// which is walking bottom-up.
+class MemorySSA::OptimizeUses {
+public:
+ OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
+ DominatorTree *DT)
+ : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
+ Walker = MSSA->getWalker();
+ }
+
+ void optimizeUses();
+
+private:
+ /// This represents where a given memorylocation is in the stack.
+ struct MemlocStackInfo {
+ // This essentially is keeping track of versions of the stack. Whenever
+ // the stack changes due to pushes or pops, these versions increase.
+ unsigned long StackEpoch;
+ unsigned long PopEpoch;
+ // This is the lower bound of places on the stack to check. It is equal to
+ // the place the last stack walk ended.
+ // Note: Correctness depends on this being initialized to 0, which densemap
+ // does
+ unsigned long LowerBound;
+ const BasicBlock *LowerBoundBlock;
+ // This is where the last walk for this memory location ended.
+ unsigned long LastKill;
+ bool LastKillValid;
+ };
+ void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
+ SmallVectorImpl<MemoryAccess *> &,
+ DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
+ MemorySSA *MSSA;
+ MemorySSAWalker *Walker;
+ AliasAnalysis *AA;
+ DominatorTree *DT;
+};
+
+/// Optimize the uses in a given block This is basically the SSA renaming
+/// algorithm, with one caveat: We are able to use a single stack for all
+/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
+/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
+/// going to be some position in that stack of possible ones.
+///
+/// We track the stack positions that each MemoryLocation needs
+/// to check, and last ended at. This is because we only want to check the
+/// things that changed since last time. The same MemoryLocation should
+/// get clobbered by the same store (getModRefInfo does not use invariantness or
+/// things like this, and if they start, we can modify MemoryLocOrCall to
+/// include relevant data)
+void MemorySSA::OptimizeUses::optimizeUsesInBlock(
+ const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
+ SmallVectorImpl<MemoryAccess *> &VersionStack,
+ DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
+
+ /// If no accesses, nothing to do.
+ MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
+ if (Accesses == nullptr)
+ return;
+
+ // Pop everything that doesn't dominate the current block off the stack,
+ // increment the PopEpoch to account for this.
+ while (true) {
+ assert(
+ !VersionStack.empty() &&
+ "Version stack should have liveOnEntry sentinel dominating everything");
+ BasicBlock *BackBlock = VersionStack.back()->getBlock();
+ if (DT->dominates(BackBlock, BB))
+ break;
+ while (VersionStack.back()->getBlock() == BackBlock)
+ VersionStack.pop_back();
+ ++PopEpoch;
+ }
+
+ for (MemoryAccess &MA : *Accesses) {
+ auto *MU = dyn_cast<MemoryUse>(&MA);
+ if (!MU) {
+ VersionStack.push_back(&MA);
+ ++StackEpoch;
+ continue;
+ }
+
+ if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
+ MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true);
+ continue;
+ }
+
+ MemoryLocOrCall UseMLOC(MU);
+ auto &LocInfo = LocStackInfo[UseMLOC];
+ // If the pop epoch changed, it means we've removed stuff from top of
+ // stack due to changing blocks. We may have to reset the lower bound or
+ // last kill info.
+ if (LocInfo.PopEpoch != PopEpoch) {
+ LocInfo.PopEpoch = PopEpoch;
+ LocInfo.StackEpoch = StackEpoch;
+ // If the lower bound was in something that no longer dominates us, we
+ // have to reset it.
+ // We can't simply track stack size, because the stack may have had
+ // pushes/pops in the meantime.
+ // XXX: This is non-optimal, but only is slower cases with heavily
+ // branching dominator trees. To get the optimal number of queries would
+ // be to make lowerbound and lastkill a per-loc stack, and pop it until
+ // the top of that stack dominates us. This does not seem worth it ATM.
+ // A much cheaper optimization would be to always explore the deepest
+ // branch of the dominator tree first. This will guarantee this resets on
+ // the smallest set of blocks.
+ if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
+ !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
+ // Reset the lower bound of things to check.
+ // TODO: Some day we should be able to reset to last kill, rather than
+ // 0.
+ LocInfo.LowerBound = 0;
+ LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
+ LocInfo.LastKillValid = false;
+ }
+ } else if (LocInfo.StackEpoch != StackEpoch) {
+ // If all that has changed is the StackEpoch, we only have to check the
+ // new things on the stack, because we've checked everything before. In
+ // this case, the lower bound of things to check remains the same.
+ LocInfo.PopEpoch = PopEpoch;
+ LocInfo.StackEpoch = StackEpoch;
+ }
+ if (!LocInfo.LastKillValid) {
+ LocInfo.LastKill = VersionStack.size() - 1;
+ LocInfo.LastKillValid = true;
+ }
+
+ // At this point, we should have corrected last kill and LowerBound to be
+ // in bounds.
+ assert(LocInfo.LowerBound < VersionStack.size() &&
+ "Lower bound out of range");
+ assert(LocInfo.LastKill < VersionStack.size() &&
+ "Last kill info out of range");
+ // In any case, the new upper bound is the top of the stack.
+ unsigned long UpperBound = VersionStack.size() - 1;
+
+ if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
+ DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
+ << *(MU->getMemoryInst()) << ")"
+ << " because there are " << UpperBound - LocInfo.LowerBound
+ << " stores to disambiguate\n");
+ // Because we did not walk, LastKill is no longer valid, as this may
+ // have been a kill.
+ LocInfo.LastKillValid = false;
+ continue;
+ }
+ bool FoundClobberResult = false;
+ while (UpperBound > LocInfo.LowerBound) {
+ if (isa<MemoryPhi>(VersionStack[UpperBound])) {
+ // For phis, use the walker, see where we ended up, go there
+ Instruction *UseInst = MU->getMemoryInst();
+ MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
+ // We are guaranteed to find it or something is wrong
+ while (VersionStack[UpperBound] != Result) {
+ assert(UpperBound != 0);
+ --UpperBound;
+ }
+ FoundClobberResult = true;
+ break;
+ }
+
+ MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
+ // If the lifetime of the pointer ends at this instruction, it's live on
+ // entry.
+ if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
+ // Reset UpperBound to liveOnEntryDef's place in the stack
+ UpperBound = 0;
+ FoundClobberResult = true;
+ break;
+ }
+ if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
+ FoundClobberResult = true;
+ break;
+ }
+ --UpperBound;
+ }
+ // At the end of this loop, UpperBound is either a clobber, or lower bound
+ // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
+ if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
+ MU->setDefiningAccess(VersionStack[UpperBound], true);
+ // We were last killed now by where we got to
+ LocInfo.LastKill = UpperBound;
+ } else {
+ // Otherwise, we checked all the new ones, and now we know we can get to
+ // LastKill.
+ MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
+ }
+ LocInfo.LowerBound = VersionStack.size() - 1;
+ LocInfo.LowerBoundBlock = BB;
+ }
+}
+
+/// Optimize uses to point to their actual clobbering definitions.
+void MemorySSA::OptimizeUses::optimizeUses() {
+ SmallVector<MemoryAccess *, 16> VersionStack;
+ DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
+ VersionStack.push_back(MSSA->getLiveOnEntryDef());
+
+ unsigned long StackEpoch = 1;
+ unsigned long PopEpoch = 1;
+ // We perform a non-recursive top-down dominator tree walk.
+ for (const auto *DomNode : depth_first(DT->getRootNode()))
+ optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
+ LocStackInfo);
+}
+
+void MemorySSA::placePHINodes(
+ const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
+ const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
+ // Determine where our MemoryPhi's should go
+ ForwardIDFCalculator IDFs(*DT);
+ IDFs.setDefiningBlocks(DefiningBlocks);
+ SmallVector<BasicBlock *, 32> IDFBlocks;
+ IDFs.calculate(IDFBlocks);
+
+ std::sort(IDFBlocks.begin(), IDFBlocks.end(),
+ [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
+ return BBNumbers.lookup(A) < BBNumbers.lookup(B);
+ });
+
+ // Now place MemoryPhi nodes.
+ for (auto &BB : IDFBlocks)
+ createMemoryPhi(BB);
+}
+
+void MemorySSA::buildMemorySSA() {
+ // We create an access to represent "live on entry", for things like
+ // arguments or users of globals, where the memory they use is defined before
+ // the beginning of the function. We do not actually insert it into the IR.
+ // We do not define a live on exit for the immediate uses, and thus our
+ // semantics do *not* imply that something with no immediate uses can simply
+ // be removed.
+ BasicBlock &StartingPoint = F.getEntryBlock();
+ LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr,
+ &StartingPoint, NextID++);
+ DenseMap<const BasicBlock *, unsigned int> BBNumbers;
+ unsigned NextBBNum = 0;
+
+ // We maintain lists of memory accesses per-block, trading memory for time. We
+ // could just look up the memory access for every possible instruction in the
+ // stream.
+ SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
+ SmallPtrSet<BasicBlock *, 32> DefUseBlocks;
+ // Go through each block, figure out where defs occur, and chain together all
+ // the accesses.
+ for (BasicBlock &B : F) {
+ BBNumbers[&B] = NextBBNum++;
+ bool InsertIntoDef = false;
+ AccessList *Accesses = nullptr;
+ DefsList *Defs = nullptr;
+ for (Instruction &I : B) {
+ MemoryUseOrDef *MUD = createNewAccess(&I);
+ if (!MUD)
+ continue;
+
+ if (!Accesses)
+ Accesses = getOrCreateAccessList(&B);
+ Accesses->push_back(MUD);
+ if (isa<MemoryDef>(MUD)) {
+ InsertIntoDef = true;
+ if (!Defs)
+ Defs = getOrCreateDefsList(&B);
+ Defs->push_back(*MUD);
+ }
+ }
+ if (InsertIntoDef)
+ DefiningBlocks.insert(&B);
+ if (Accesses)
+ DefUseBlocks.insert(&B);
+ }
+ placePHINodes(DefiningBlocks, BBNumbers);
+
+ // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
+ // filled in with all blocks.
+ SmallPtrSet<BasicBlock *, 16> Visited;
+ renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
+
+ CachingWalker *Walker = getWalkerImpl();
+
+ // We're doing a batch of updates; don't drop useful caches between them.
+ Walker->setAutoResetWalker(false);
+ OptimizeUses(this, Walker, AA, DT).optimizeUses();
+ Walker->setAutoResetWalker(true);
+ Walker->resetClobberWalker();
+
+ // Mark the uses in unreachable blocks as live on entry, so that they go
+ // somewhere.
+ for (auto &BB : F)
+ if (!Visited.count(&BB))
+ markUnreachableAsLiveOnEntry(&BB);
+}
+
+MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
+
+MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
+ if (Walker)
+ return Walker.get();
+
+ Walker = make_unique<CachingWalker>(this, AA, DT);
+ return Walker.get();
+}
+
+// This is a helper function used by the creation routines. It places NewAccess
+// into the access and defs lists for a given basic block, at the given
+// insertion point.
+void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
+ const BasicBlock *BB,
+ InsertionPlace Point) {
+ auto *Accesses = getOrCreateAccessList(BB);
+ if (Point == Beginning) {
+ // If it's a phi node, it goes first, otherwise, it goes after any phi
+ // nodes.
+ if (isa<MemoryPhi>(NewAccess)) {
+ Accesses->push_front(NewAccess);
+ auto *Defs = getOrCreateDefsList(BB);
+ Defs->push_front(*NewAccess);
+ } else {
+ auto AI = find_if_not(
+ *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
+ Accesses->insert(AI, NewAccess);
+ if (!isa<MemoryUse>(NewAccess)) {
+ auto *Defs = getOrCreateDefsList(BB);
+ auto DI = find_if_not(
+ *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
+ Defs->insert(DI, *NewAccess);
+ }
+ }
+ } else {
+ Accesses->push_back(NewAccess);
+ if (!isa<MemoryUse>(NewAccess)) {
+ auto *Defs = getOrCreateDefsList(BB);
+ Defs->push_back(*NewAccess);
+ }
+ }
+ BlockNumberingValid.erase(BB);
+}
+
+void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
+ AccessList::iterator InsertPt) {
+ auto *Accesses = getWritableBlockAccesses(BB);
+ bool WasEnd = InsertPt == Accesses->end();
+ Accesses->insert(AccessList::iterator(InsertPt), What);
+ if (!isa<MemoryUse>(What)) {
+ auto *Defs = getOrCreateDefsList(BB);
+ // If we got asked to insert at the end, we have an easy job, just shove it
+ // at the end. If we got asked to insert before an existing def, we also get
+ // an terator. If we got asked to insert before a use, we have to hunt for
+ // the next def.
+ if (WasEnd) {
+ Defs->push_back(*What);
+ } else if (isa<MemoryDef>(InsertPt)) {
+ Defs->insert(InsertPt->getDefsIterator(), *What);
+ } else {
+ while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
+ ++InsertPt;
+ // Either we found a def, or we are inserting at the end
+ if (InsertPt == Accesses->end())
+ Defs->push_back(*What);
+ else
+ Defs->insert(InsertPt->getDefsIterator(), *What);
+ }
+ }
+ BlockNumberingValid.erase(BB);
+}
+
+// Move What before Where in the IR. The end result is taht What will belong to
+// the right lists and have the right Block set, but will not otherwise be
+// correct. It will not have the right defining access, and if it is a def,
+// things below it will not properly be updated.
+void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
+ AccessList::iterator Where) {
+ // Keep it in the lookup tables, remove from the lists
+ removeFromLists(What, false);
+ What->setBlock(BB);
+ insertIntoListsBefore(What, BB, Where);
+}
+
+void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
+ InsertionPlace Point) {
+ removeFromLists(What, false);
+ What->setBlock(BB);
+ insertIntoListsForBlock(What, BB, Point);
+}
+
+MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
+ assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
+ MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
+ // Phi's always are placed at the front of the block.
+ insertIntoListsForBlock(Phi, BB, Beginning);
+ ValueToMemoryAccess[BB] = Phi;
+ return Phi;
+}
+
+MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
+ MemoryAccess *Definition) {
+ assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
+ MemoryUseOrDef *NewAccess = createNewAccess(I);
+ assert(
+ NewAccess != nullptr &&
+ "Tried to create a memory access for a non-memory touching instruction");
+ NewAccess->setDefiningAccess(Definition);
+ return NewAccess;
+}
+
+// Return true if the instruction has ordering constraints.
+// Note specifically that this only considers stores and loads
+// because others are still considered ModRef by getModRefInfo.
+static inline bool isOrdered(const Instruction *I) {
+ if (auto *SI = dyn_cast<StoreInst>(I)) {
+ if (!SI->isUnordered())
+ return true;
+ } else if (auto *LI = dyn_cast<LoadInst>(I)) {
+ if (!LI->isUnordered())
+ return true;
+ }
+ return false;
+}
+/// \brief Helper function to create new memory accesses
+MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
+ // The assume intrinsic has a control dependency which we model by claiming
+ // that it writes arbitrarily. Ignore that fake memory dependency here.
+ // FIXME: Replace this special casing with a more accurate modelling of
+ // assume's control dependency.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ if (II->getIntrinsicID() == Intrinsic::assume)
+ return nullptr;
+
+ // Find out what affect this instruction has on memory.
+ ModRefInfo ModRef = AA->getModRefInfo(I);
+ // The isOrdered check is used to ensure that volatiles end up as defs
+ // (atomics end up as ModRef right now anyway). Until we separate the
+ // ordering chain from the memory chain, this enables people to see at least
+ // some relative ordering to volatiles. Note that getClobberingMemoryAccess
+ // will still give an answer that bypasses other volatile loads. TODO:
+ // Separate memory aliasing and ordering into two different chains so that we
+ // can precisely represent both "what memory will this read/write/is clobbered
+ // by" and "what instructions can I move this past".
+ bool Def = bool(ModRef & MRI_Mod) || isOrdered(I);
+ bool Use = bool(ModRef & MRI_Ref);
+
+ // It's possible for an instruction to not modify memory at all. During
+ // construction, we ignore them.
+ if (!Def && !Use)
+ return nullptr;
+
+ assert((Def || Use) &&
+ "Trying to create a memory access with a non-memory instruction");
+
+ MemoryUseOrDef *MUD;
+ if (Def)
+ MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
+ else
+ MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
+ ValueToMemoryAccess[I] = MUD;
+ return MUD;
+}
+
+/// \brief Returns true if \p Replacer dominates \p Replacee .
+bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
+ const MemoryAccess *Replacee) const {
+ if (isa<MemoryUseOrDef>(Replacee))
+ return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
+ const auto *MP = cast<MemoryPhi>(Replacee);
+ // For a phi node, the use occurs in the predecessor block of the phi node.
+ // Since we may occur multiple times in the phi node, we have to check each
+ // operand to ensure Replacer dominates each operand where Replacee occurs.
+ for (const Use &Arg : MP->operands()) {
+ if (Arg.get() != Replacee &&
+ !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
+ return false;
+ }
+ return true;
+}
+
+/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
+void MemorySSA::removeFromLookups(MemoryAccess *MA) {
+ assert(MA->use_empty() &&
+ "Trying to remove memory access that still has uses");
+ BlockNumbering.erase(MA);
+ if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
+ MUD->setDefiningAccess(nullptr);
+ // Invalidate our walker's cache if necessary
+ if (!isa<MemoryUse>(MA))
+ Walker->invalidateInfo(MA);
+ // The call below to erase will destroy MA, so we can't change the order we
+ // are doing things here
+ Value *MemoryInst;
+ if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
+ MemoryInst = MUD->getMemoryInst();
+ } else {
+ MemoryInst = MA->getBlock();
+ }
+ auto VMA = ValueToMemoryAccess.find(MemoryInst);
+ if (VMA->second == MA)
+ ValueToMemoryAccess.erase(VMA);
+}
+
+/// \brief Properly remove \p MA from all of MemorySSA's lists.
+///
+/// Because of the way the intrusive list and use lists work, it is important to
+/// do removal in the right order.
+/// ShouldDelete defaults to true, and will cause the memory access to also be
+/// deleted, not just removed.
+void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
+ // The access list owns the reference, so we erase it from the non-owning list
+ // first.
+ if (!isa<MemoryUse>(MA)) {
+ auto DefsIt = PerBlockDefs.find(MA->getBlock());
+ std::unique_ptr<DefsList> &Defs = DefsIt->second;
+ Defs->remove(*MA);
+ if (Defs->empty())
+ PerBlockDefs.erase(DefsIt);
+ }
+
+ // The erase call here will delete it. If we don't want it deleted, we call
+ // remove instead.
+ auto AccessIt = PerBlockAccesses.find(MA->getBlock());
+ std::unique_ptr<AccessList> &Accesses = AccessIt->second;
+ if (ShouldDelete)
+ Accesses->erase(MA);
+ else
+ Accesses->remove(MA);
+
+ if (Accesses->empty())
+ PerBlockAccesses.erase(AccessIt);
+}
+
+void MemorySSA::print(raw_ostream &OS) const {
+ MemorySSAAnnotatedWriter Writer(this);
+ F.print(OS, &Writer);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
+#endif
+
+void MemorySSA::verifyMemorySSA() const {
+ verifyDefUses(F);
+ verifyDomination(F);
+ verifyOrdering(F);
+ Walker->verify(this);
+}
+
+/// \brief Verify that the order and existence of MemoryAccesses matches the
+/// order and existence of memory affecting instructions.
+void MemorySSA::verifyOrdering(Function &F) const {
+ // Walk all the blocks, comparing what the lookups think and what the access
+ // lists think, as well as the order in the blocks vs the order in the access
+ // lists.
+ SmallVector<MemoryAccess *, 32> ActualAccesses;
+ SmallVector<MemoryAccess *, 32> ActualDefs;
+ for (BasicBlock &B : F) {
+ const AccessList *AL = getBlockAccesses(&B);
+ const auto *DL = getBlockDefs(&B);
+ MemoryAccess *Phi = getMemoryAccess(&B);
+ if (Phi) {
+ ActualAccesses.push_back(Phi);
+ ActualDefs.push_back(Phi);
+ }
+
+ for (Instruction &I : B) {
+ MemoryAccess *MA = getMemoryAccess(&I);
+ assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
+ "We have memory affecting instructions "
+ "in this block but they are not in the "
+ "access list or defs list");
+ if (MA) {
+ ActualAccesses.push_back(MA);
+ if (isa<MemoryDef>(MA))
+ ActualDefs.push_back(MA);
+ }
+ }
+ // Either we hit the assert, really have no accesses, or we have both
+ // accesses and an access list.
+ // Same with defs.
+ if (!AL && !DL)
+ continue;
+ assert(AL->size() == ActualAccesses.size() &&
+ "We don't have the same number of accesses in the block as on the "
+ "access list");
+ assert((DL || ActualDefs.size() == 0) &&
+ "Either we should have a defs list, or we should have no defs");
+ assert((!DL || DL->size() == ActualDefs.size()) &&
+ "We don't have the same number of defs in the block as on the "
+ "def list");
+ auto ALI = AL->begin();
+ auto AAI = ActualAccesses.begin();
+ while (ALI != AL->end() && AAI != ActualAccesses.end()) {
+ assert(&*ALI == *AAI && "Not the same accesses in the same order");
+ ++ALI;
+ ++AAI;
+ }
+ ActualAccesses.clear();
+ if (DL) {
+ auto DLI = DL->begin();
+ auto ADI = ActualDefs.begin();
+ while (DLI != DL->end() && ADI != ActualDefs.end()) {
+ assert(&*DLI == *ADI && "Not the same defs in the same order");
+ ++DLI;
+ ++ADI;
+ }
+ }
+ ActualDefs.clear();
+ }
+}
+
+/// \brief Verify the domination properties of MemorySSA by checking that each
+/// definition dominates all of its uses.
+void MemorySSA::verifyDomination(Function &F) const {
+#ifndef NDEBUG
+ for (BasicBlock &B : F) {
+ // Phi nodes are attached to basic blocks
+ if (MemoryPhi *MP = getMemoryAccess(&B))
+ for (const Use &U : MP->uses())
+ assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
+
+ for (Instruction &I : B) {
+ MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
+ if (!MD)
+ continue;
+
+ for (const Use &U : MD->uses())
+ assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
+ }
+ }
+#endif
+}
+
+/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
+/// appears in the use list of \p Def.
+
+void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
+#ifndef NDEBUG
+ // The live on entry use may cause us to get a NULL def here
+ if (!Def)
+ assert(isLiveOnEntryDef(Use) &&
+ "Null def but use not point to live on entry def");
+ else
+ assert(is_contained(Def->users(), Use) &&
+ "Did not find use in def's use list");
+#endif
+}
+
+/// \brief Verify the immediate use information, by walking all the memory
+/// accesses and verifying that, for each use, it appears in the
+/// appropriate def's use list
+void MemorySSA::verifyDefUses(Function &F) const {
+ for (BasicBlock &B : F) {
+ // Phi nodes are attached to basic blocks
+ if (MemoryPhi *Phi = getMemoryAccess(&B)) {
+ assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
+ pred_begin(&B), pred_end(&B))) &&
+ "Incomplete MemoryPhi Node");
+ for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
+ verifyUseInDefs(Phi->getIncomingValue(I), Phi);
+ }
+
+ for (Instruction &I : B) {
+ if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
+ verifyUseInDefs(MA->getDefiningAccess(), MA);
+ }
+ }
+ }
+}
+
+MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
+ return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
+}
+
+MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
+ return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
+}
+
+/// Perform a local numbering on blocks so that instruction ordering can be
+/// determined in constant time.
+/// TODO: We currently just number in order. If we numbered by N, we could
+/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
+/// log2(N) sequences of mixed before and after) without needing to invalidate
+/// the numbering.
+void MemorySSA::renumberBlock(const BasicBlock *B) const {
+ // The pre-increment ensures the numbers really start at 1.
+ unsigned long CurrentNumber = 0;
+ const AccessList *AL = getBlockAccesses(B);
+ assert(AL != nullptr && "Asking to renumber an empty block");
+ for (const auto &I : *AL)
+ BlockNumbering[&I] = ++CurrentNumber;
+ BlockNumberingValid.insert(B);
+}
+
+/// \brief Determine, for two memory accesses in the same block,
+/// whether \p Dominator dominates \p Dominatee.
+/// \returns True if \p Dominator dominates \p Dominatee.
+bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
+ const MemoryAccess *Dominatee) const {
+
+ const BasicBlock *DominatorBlock = Dominator->getBlock();
+
+ assert((DominatorBlock == Dominatee->getBlock()) &&
+ "Asking for local domination when accesses are in different blocks!");
+ // A node dominates itself.
+ if (Dominatee == Dominator)
+ return true;
+
+ // When Dominatee is defined on function entry, it is not dominated by another
+ // memory access.
+ if (isLiveOnEntryDef(Dominatee))
+ return false;
+
+ // When Dominator is defined on function entry, it dominates the other memory
+ // access.
+ if (isLiveOnEntryDef(Dominator))
+ return true;
+
+ if (!BlockNumberingValid.count(DominatorBlock))
+ renumberBlock(DominatorBlock);
+
+ unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
+ // All numbers start with 1
+ assert(DominatorNum != 0 && "Block was not numbered properly");
+ unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
+ assert(DominateeNum != 0 && "Block was not numbered properly");
+ return DominatorNum < DominateeNum;
+}
+
+bool MemorySSA::dominates(const MemoryAccess *Dominator,
+ const MemoryAccess *Dominatee) const {
+ if (Dominator == Dominatee)
+ return true;
+
+ if (isLiveOnEntryDef(Dominatee))
+ return false;
+
+ if (Dominator->getBlock() != Dominatee->getBlock())
+ return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
+ return locallyDominates(Dominator, Dominatee);
+}
+
+bool MemorySSA::dominates(const MemoryAccess *Dominator,
+ const Use &Dominatee) const {
+ if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
+ BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
+ // The def must dominate the incoming block of the phi.
+ if (UseBB != Dominator->getBlock())
+ return DT->dominates(Dominator->getBlock(), UseBB);
+ // If the UseBB and the DefBB are the same, compare locally.
+ return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
+ }
+ // If it's not a PHI node use, the normal dominates can already handle it.
+ return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
+}
+
+const static char LiveOnEntryStr[] = "liveOnEntry";
+
+void MemoryDef::print(raw_ostream &OS) const {
+ MemoryAccess *UO = getDefiningAccess();
+
+ OS << getID() << " = MemoryDef(";
+ if (UO && UO->getID())
+ OS << UO->getID();
+ else
+ OS << LiveOnEntryStr;
+ OS << ')';
+}
+
+void MemoryPhi::print(raw_ostream &OS) const {
+ bool First = true;
+ OS << getID() << " = MemoryPhi(";
+ for (const auto &Op : operands()) {
+ BasicBlock *BB = getIncomingBlock(Op);
+ MemoryAccess *MA = cast<MemoryAccess>(Op);
+ if (!First)
+ OS << ',';
+ else
+ First = false;
+
+ OS << '{';
+ if (BB->hasName())
+ OS << BB->getName();
+ else
+ BB->printAsOperand(OS, false);
+ OS << ',';
+ if (unsigned ID = MA->getID())
+ OS << ID;
+ else
+ OS << LiveOnEntryStr;
+ OS << '}';
+ }
+ OS << ')';
+}
+
+MemoryAccess::~MemoryAccess() {}
+
+void MemoryUse::print(raw_ostream &OS) const {
+ MemoryAccess *UO = getDefiningAccess();
+ OS << "MemoryUse(";
+ if (UO && UO->getID())
+ OS << UO->getID();
+ else
+ OS << LiveOnEntryStr;
+ OS << ')';
+}
+
+void MemoryAccess::dump() const {
+// Cannot completely remove virtual function even in release mode.
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ print(dbgs());
+ dbgs() << "\n";
+#endif
+}
+
+char MemorySSAPrinterLegacyPass::ID = 0;
+
+MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
+ initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
+}
+
+void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addPreserved<MemorySSAWrapperPass>();
+}
+
+bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
+ auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
+ MSSA.print(dbgs());
+ if (VerifyMemorySSA)
+ MSSA.verifyMemorySSA();
+ return false;
+}
+
+AnalysisKey MemorySSAAnalysis::Key;
+
+MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &AA = AM.getResult<AAManager>(F);
+ return MemorySSAAnalysis::Result(make_unique<MemorySSA>(F, &AA, &DT));
+}
+
+PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ OS << "MemorySSA for function: " << F.getName() << "\n";
+ AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
+
+ return PreservedAnalyses::all();
+}
+
+PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
+
+ return PreservedAnalyses::all();
+}
+
+char MemorySSAWrapperPass::ID = 0;
+
+MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
+ initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
+
+void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequiredTransitive<DominatorTreeWrapperPass>();
+ AU.addRequiredTransitive<AAResultsWrapperPass>();
+}
+
+bool MemorySSAWrapperPass::runOnFunction(Function &F) {
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+ MSSA.reset(new MemorySSA(F, &AA, &DT));
+ return false;
+}
+
+void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
+
+void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
+ MSSA->print(OS);
+}
+
+MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
+
+MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
+ DominatorTree *D)
+ : MemorySSAWalker(M), Walker(*M, *A, *D), AutoResetWalker(true) {}
+
+MemorySSA::CachingWalker::~CachingWalker() {}
+
+void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
+ if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
+ MUD->resetOptimized();
+}
+
+/// \brief Walk the use-def chains starting at \p MA and find
+/// the MemoryAccess that actually clobbers Loc.
+///
+/// \returns our clobbering memory access
+MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
+ MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
+ MemoryAccess *New = Walker.findClobber(StartingAccess, Q);
+#ifdef EXPENSIVE_CHECKS
+ MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q);
+ assert(NewNoCache == New && "Cache made us hand back a different result?");
+#endif
+ if (AutoResetWalker)
+ resetClobberWalker();
+ return New;
+}
+
+MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
+ MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
+ if (isa<MemoryPhi>(StartingAccess))
+ return StartingAccess;
+
+ auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
+ if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
+ return StartingUseOrDef;
+
+ Instruction *I = StartingUseOrDef->getMemoryInst();
+
+ // Conservatively, fences are always clobbers, so don't perform the walk if we
+ // hit a fence.
+ if (!ImmutableCallSite(I) && I->isFenceLike())
+ return StartingUseOrDef;
+
+ UpwardsMemoryQuery Q;
+ Q.OriginalAccess = StartingUseOrDef;
+ Q.StartingLoc = Loc;
+ Q.Inst = I;
+ Q.IsCall = false;
+
+ // Unlike the other function, do not walk to the def of a def, because we are
+ // handed something we already believe is the clobbering access.
+ MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
+ ? StartingUseOrDef->getDefiningAccess()
+ : StartingUseOrDef;
+
+ MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
+ DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
+ DEBUG(dbgs() << *StartingUseOrDef << "\n");
+ DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
+ DEBUG(dbgs() << *Clobber << "\n");
+ return Clobber;
+}
+
+MemoryAccess *
+MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
+ auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
+ // If this is a MemoryPhi, we can't do anything.
+ if (!StartingAccess)
+ return MA;
+
+ // If this is an already optimized use or def, return the optimized result.
+ // Note: Currently, we do not store the optimized def result because we'd need
+ // a separate field, since we can't use it as the defining access.
+ if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
+ if (MUD->isOptimized())
+ return MUD->getOptimized();
+
+ const Instruction *I = StartingAccess->getMemoryInst();
+ UpwardsMemoryQuery Q(I, StartingAccess);
+ // We can't sanely do anything with a fences, they conservatively
+ // clobber all memory, and have no locations to get pointers from to
+ // try to disambiguate.
+ if (!Q.IsCall && I->isFenceLike())
+ return StartingAccess;
+
+ if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
+ MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
+ if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
+ MUD->setOptimized(LiveOnEntry);
+ return LiveOnEntry;
+ }
+
+ // Start with the thing we already think clobbers this location
+ MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
+
+ // At this point, DefiningAccess may be the live on entry def.
+ // If it is, we will not get a better result.
+ if (MSSA->isLiveOnEntryDef(DefiningAccess))
+ return DefiningAccess;
+
+ MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
+ DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
+ DEBUG(dbgs() << *DefiningAccess << "\n");
+ DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
+ DEBUG(dbgs() << *Result << "\n");
+ if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
+ MUD->setOptimized(Result);
+
+ return Result;
+}
+
+MemoryAccess *
+DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
+ if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
+ return Use->getDefiningAccess();
+ return MA;
+}
+
+MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
+ MemoryAccess *StartingAccess, const MemoryLocation &) {
+ if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
+ return Use->getDefiningAccess();
+ return StartingAccess;
+}
+} // namespace llvm