diff options
Diffstat (limited to 'contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h')
-rw-r--r-- | contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h | 75 |
1 files changed, 73 insertions, 2 deletions
diff --git a/contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h b/contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h index a9d6725d86b0..4f4756238929 100644 --- a/contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h +++ b/contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h @@ -29,6 +29,7 @@ namespace llvm { class GlobalValue; +class Loop; class Type; class User; class Value; @@ -171,6 +172,12 @@ public: /// comments for a detailed explanation of the cost values. virtual unsigned getUserCost(const User *U) const; + /// \brief hasBranchDivergence - Return true if branch divergence exists. + /// Branch divergence has a significantly negative impact on GPU performance + /// when threads in the same wavefront take different paths due to conditional + /// branches. + virtual bool hasBranchDivergence() const; + /// \brief Test whether calls to a function lower to actual program function /// calls. /// @@ -185,6 +192,36 @@ public: /// incurs significant execution cost. virtual bool isLoweredToCall(const Function *F) const; + /// Parameters that control the generic loop unrolling transformation. + struct UnrollingPreferences { + /// The cost threshold for the unrolled loop, compared to + /// CodeMetrics.NumInsts aggregated over all basic blocks in the loop body. + /// The unrolling factor is set such that the unrolled loop body does not + /// exceed this cost. Set this to UINT_MAX to disable the loop body cost + /// restriction. + unsigned Threshold; + /// The cost threshold for the unrolled loop when optimizing for size (set + /// to UINT_MAX to disable). + unsigned OptSizeThreshold; + /// A forced unrolling factor (the number of concatenated bodies of the + /// original loop in the unrolled loop body). When set to 0, the unrolling + /// transformation will select an unrolling factor based on the current cost + /// threshold and other factors. + unsigned Count; + /// Allow partial unrolling (unrolling of loops to expand the size of the + /// loop body, not only to eliminate small constant-trip-count loops). + bool Partial; + /// Allow runtime unrolling (unrolling of loops to expand the size of the + /// loop body even when the number of loop iterations is not known at compile + /// time). + bool Runtime; + }; + + /// \brief Get target-customized preferences for the generic loop unrolling + /// transformation. The caller will initialize UP with the current + /// target-independent defaults. + virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const; + /// @} /// \name Scalar Target Information @@ -225,6 +262,16 @@ public: int64_t BaseOffset, bool HasBaseReg, int64_t Scale) const; + /// \brief Return the cost of the scaling factor used in the addressing + /// mode represented by AM for this target, for a load/store + /// of the specified type. + /// If the AM is supported, the return value must be >= 0. + /// If the AM is not supported, it returns a negative value. + /// TODO: Handle pre/postinc as well. + virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, + int64_t BaseOffset, bool HasBaseReg, + int64_t Scale) const; + /// isTruncateFree - Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in /// register EAX to i16 by referencing its sub-register AX. @@ -246,6 +293,10 @@ public: /// getPopcntSupport - Return hardware support for population count. virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; + /// haveFastSqrt -- Return true if the hardware has a fast square-root + /// instruction. + virtual bool haveFastSqrt(Type *Ty) const; + /// getIntImmCost - Return the expected cost of materializing the given /// integer immediate of the specified type. virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const; @@ -263,7 +314,7 @@ public: SK_ExtractSubvector ///< ExtractSubvector Index indicates start offset. }; - /// \brief Additonal information about an operand's possible values. + /// \brief Additional information about an operand's possible values. enum OperandValueKind { OK_AnyValue, // Operand can have any value. OK_UniformValue, // Operand is uniform (splat of a value). @@ -317,6 +368,22 @@ public: unsigned Alignment, unsigned AddressSpace) const; + /// \brief Calculate the cost of performing a vector reduction. + /// + /// This is the cost of reducing the vector value of type \p Ty to a scalar + /// value using the operation denoted by \p Opcode. The form of the reduction + /// can either be a pairwise reduction or a reduction that splits the vector + /// at every reduction level. + /// + /// Pairwise: + /// (v0, v1, v2, v3) + /// ((v0+v1), (v2, v3), undef, undef) + /// Split: + /// (v0, v1, v2, v3) + /// ((v0+v2), (v1+v3), undef, undef) + virtual unsigned getReductionCost(unsigned Opcode, Type *Ty, + bool IsPairwiseForm) const; + /// \returns The cost of Intrinsic instructions. virtual unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys) const; @@ -329,7 +396,11 @@ public: /// merged into the instruction indexing mode. Some targets might want to /// distinguish between address computation for memory operations on vector /// types and scalar types. Such targets should override this function. - virtual unsigned getAddressComputationCost(Type *Ty) const; + /// The 'IsComplex' parameter is a hint that the address computation is likely + /// to involve multiple instructions and as such unlikely to be merged into + /// the address indexing mode. + virtual unsigned getAddressComputationCost(Type *Ty, + bool IsComplex = false) const; /// @} |