aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h')
-rw-r--r--contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h75
1 files changed, 73 insertions, 2 deletions
diff --git a/contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h b/contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h
index a9d6725d86b0..4f4756238929 100644
--- a/contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h
+++ b/contrib/llvm/include/llvm/Analysis/TargetTransformInfo.h
@@ -29,6 +29,7 @@
namespace llvm {
class GlobalValue;
+class Loop;
class Type;
class User;
class Value;
@@ -171,6 +172,12 @@ public:
/// comments for a detailed explanation of the cost values.
virtual unsigned getUserCost(const User *U) const;
+ /// \brief hasBranchDivergence - Return true if branch divergence exists.
+ /// Branch divergence has a significantly negative impact on GPU performance
+ /// when threads in the same wavefront take different paths due to conditional
+ /// branches.
+ virtual bool hasBranchDivergence() const;
+
/// \brief Test whether calls to a function lower to actual program function
/// calls.
///
@@ -185,6 +192,36 @@ public:
/// incurs significant execution cost.
virtual bool isLoweredToCall(const Function *F) const;
+ /// Parameters that control the generic loop unrolling transformation.
+ struct UnrollingPreferences {
+ /// The cost threshold for the unrolled loop, compared to
+ /// CodeMetrics.NumInsts aggregated over all basic blocks in the loop body.
+ /// The unrolling factor is set such that the unrolled loop body does not
+ /// exceed this cost. Set this to UINT_MAX to disable the loop body cost
+ /// restriction.
+ unsigned Threshold;
+ /// The cost threshold for the unrolled loop when optimizing for size (set
+ /// to UINT_MAX to disable).
+ unsigned OptSizeThreshold;
+ /// A forced unrolling factor (the number of concatenated bodies of the
+ /// original loop in the unrolled loop body). When set to 0, the unrolling
+ /// transformation will select an unrolling factor based on the current cost
+ /// threshold and other factors.
+ unsigned Count;
+ /// Allow partial unrolling (unrolling of loops to expand the size of the
+ /// loop body, not only to eliminate small constant-trip-count loops).
+ bool Partial;
+ /// Allow runtime unrolling (unrolling of loops to expand the size of the
+ /// loop body even when the number of loop iterations is not known at compile
+ /// time).
+ bool Runtime;
+ };
+
+ /// \brief Get target-customized preferences for the generic loop unrolling
+ /// transformation. The caller will initialize UP with the current
+ /// target-independent defaults.
+ virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const;
+
/// @}
/// \name Scalar Target Information
@@ -225,6 +262,16 @@ public:
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale) const;
+ /// \brief Return the cost of the scaling factor used in the addressing
+ /// mode represented by AM for this target, for a load/store
+ /// of the specified type.
+ /// If the AM is supported, the return value must be >= 0.
+ /// If the AM is not supported, it returns a negative value.
+ /// TODO: Handle pre/postinc as well.
+ virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
+ int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) const;
+
/// isTruncateFree - Return true if it's free to truncate a value of
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
/// register EAX to i16 by referencing its sub-register AX.
@@ -246,6 +293,10 @@ public:
/// getPopcntSupport - Return hardware support for population count.
virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
+ /// haveFastSqrt -- Return true if the hardware has a fast square-root
+ /// instruction.
+ virtual bool haveFastSqrt(Type *Ty) const;
+
/// getIntImmCost - Return the expected cost of materializing the given
/// integer immediate of the specified type.
virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
@@ -263,7 +314,7 @@ public:
SK_ExtractSubvector ///< ExtractSubvector Index indicates start offset.
};
- /// \brief Additonal information about an operand's possible values.
+ /// \brief Additional information about an operand's possible values.
enum OperandValueKind {
OK_AnyValue, // Operand can have any value.
OK_UniformValue, // Operand is uniform (splat of a value).
@@ -317,6 +368,22 @@ public:
unsigned Alignment,
unsigned AddressSpace) const;
+ /// \brief Calculate the cost of performing a vector reduction.
+ ///
+ /// This is the cost of reducing the vector value of type \p Ty to a scalar
+ /// value using the operation denoted by \p Opcode. The form of the reduction
+ /// can either be a pairwise reduction or a reduction that splits the vector
+ /// at every reduction level.
+ ///
+ /// Pairwise:
+ /// (v0, v1, v2, v3)
+ /// ((v0+v1), (v2, v3), undef, undef)
+ /// Split:
+ /// (v0, v1, v2, v3)
+ /// ((v0+v2), (v1+v3), undef, undef)
+ virtual unsigned getReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwiseForm) const;
+
/// \returns The cost of Intrinsic instructions.
virtual unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Type *> Tys) const;
@@ -329,7 +396,11 @@ public:
/// merged into the instruction indexing mode. Some targets might want to
/// distinguish between address computation for memory operations on vector
/// types and scalar types. Such targets should override this function.
- virtual unsigned getAddressComputationCost(Type *Ty) const;
+ /// The 'IsComplex' parameter is a hint that the address computation is likely
+ /// to involve multiple instructions and as such unlikely to be merged into
+ /// the address indexing mode.
+ virtual unsigned getAddressComputationCost(Type *Ty,
+ bool IsComplex = false) const;
/// @}