aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/include/llvm/ADT/SparseSet.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/include/llvm/ADT/SparseSet.h')
-rw-r--r--contrib/llvm/include/llvm/ADT/SparseSet.h268
1 files changed, 268 insertions, 0 deletions
diff --git a/contrib/llvm/include/llvm/ADT/SparseSet.h b/contrib/llvm/include/llvm/ADT/SparseSet.h
new file mode 100644
index 000000000000..923c6a5954d0
--- /dev/null
+++ b/contrib/llvm/include/llvm/ADT/SparseSet.h
@@ -0,0 +1,268 @@
+//===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the SparseSet class derived from the version described in
+// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
+// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
+//
+// A sparse set holds a small number of objects identified by integer keys from
+// a moderately sized universe. The sparse set uses more memory than other
+// containers in order to provide faster operations.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_SPARSESET_H
+#define LLVM_ADT_SPARSESET_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/DataTypes.h"
+#include <limits>
+
+namespace llvm {
+
+/// SparseSetFunctor - Objects in a SparseSet are identified by small integer
+/// keys. A functor object is used to compute the key of an object. The
+/// functor's operator() must return an unsigned smaller than the universe.
+///
+/// The default functor implementation forwards to a getSparseSetKey() method
+/// on the object. It is intended for sparse sets holding ad-hoc structs.
+///
+template<typename ValueT>
+struct SparseSetFunctor {
+ unsigned operator()(const ValueT &Val) {
+ return Val.getSparseSetKey();
+ }
+};
+
+/// SparseSetFunctor<unsigned> - Provide a trivial identity functor for
+/// SparseSet<unsigned>.
+///
+template<> struct SparseSetFunctor<unsigned> {
+ unsigned operator()(unsigned Val) { return Val; }
+};
+
+/// SparseSet - Fast set implementation for objects that can be identified by
+/// small unsigned keys.
+///
+/// SparseSet allocates memory proportional to the size of the key universe, so
+/// it is not recommended for building composite data structures. It is useful
+/// for algorithms that require a single set with fast operations.
+///
+/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
+/// clear() and iteration as fast as a vector. The find(), insert(), and
+/// erase() operations are all constant time, and typically faster than a hash
+/// table. The iteration order doesn't depend on numerical key values, it only
+/// depends on the order of insert() and erase() operations. When no elements
+/// have been erased, the iteration order is the insertion order.
+///
+/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
+/// offers constant-time clear() and size() operations as well as fast
+/// iteration independent on the size of the universe.
+///
+/// SparseSet contains a dense vector holding all the objects and a sparse
+/// array holding indexes into the dense vector. Most of the memory is used by
+/// the sparse array which is the size of the key universe. The SparseT
+/// template parameter provides a space/speed tradeoff for sets holding many
+/// elements.
+///
+/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
+/// array uses 4 x Universe bytes.
+///
+/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
+/// lines, but the sparse array is 4x smaller. N is the number of elements in
+/// the set.
+///
+/// For sets that may grow to thousands of elements, SparseT should be set to
+/// uint16_t or uint32_t.
+///
+/// @param ValueT The type of objects in the set.
+/// @param SparseT An unsigned integer type. See above.
+/// @param KeyFunctorT A functor that computes the unsigned key of a ValueT.
+///
+template<typename ValueT,
+ typename SparseT = uint8_t,
+ typename KeyFunctorT = SparseSetFunctor<ValueT> >
+class SparseSet {
+ typedef SmallVector<ValueT, 8> DenseT;
+ DenseT Dense;
+ SparseT *Sparse;
+ unsigned Universe;
+ KeyFunctorT KeyOf;
+
+ // Disable copy construction and assignment.
+ // This data structure is not meant to be used that way.
+ SparseSet(const SparseSet&); // DO NOT IMPLEMENT.
+ SparseSet &operator=(const SparseSet&); // DO NOT IMPLEMENT.
+
+public:
+ typedef ValueT value_type;
+ typedef ValueT &reference;
+ typedef const ValueT &const_reference;
+ typedef ValueT *pointer;
+ typedef const ValueT *const_pointer;
+
+ SparseSet() : Sparse(0), Universe(0) {}
+ ~SparseSet() { free(Sparse); }
+
+ /// setUniverse - Set the universe size which determines the largest key the
+ /// set can hold. The universe must be sized before any elements can be
+ /// added.
+ ///
+ /// @param U Universe size. All object keys must be less than U.
+ ///
+ void setUniverse(unsigned U) {
+ // It's not hard to resize the universe on a non-empty set, but it doesn't
+ // seem like a likely use case, so we can add that code when we need it.
+ assert(empty() && "Can only resize universe on an empty map");
+ // Hysteresis prevents needless reallocations.
+ if (U >= Universe/4 && U <= Universe)
+ return;
+ free(Sparse);
+ // The Sparse array doesn't actually need to be initialized, so malloc
+ // would be enough here, but that will cause tools like valgrind to
+ // complain about branching on uninitialized data.
+ Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
+ Universe = U;
+ }
+
+ // Import trivial vector stuff from DenseT.
+ typedef typename DenseT::iterator iterator;
+ typedef typename DenseT::const_iterator const_iterator;
+
+ const_iterator begin() const { return Dense.begin(); }
+ const_iterator end() const { return Dense.end(); }
+ iterator begin() { return Dense.begin(); }
+ iterator end() { return Dense.end(); }
+
+ /// empty - Returns true if the set is empty.
+ ///
+ /// This is not the same as BitVector::empty().
+ ///
+ bool empty() const { return Dense.empty(); }
+
+ /// size - Returns the number of elements in the set.
+ ///
+ /// This is not the same as BitVector::size() which returns the size of the
+ /// universe.
+ ///
+ unsigned size() const { return Dense.size(); }
+
+ /// clear - Clears the set. This is a very fast constant time operation.
+ ///
+ void clear() {
+ // Sparse does not need to be cleared, see find().
+ Dense.clear();
+ }
+
+ /// find - Find an element by its key.
+ ///
+ /// @param Key A valid key to find.
+ /// @returns An iterator to the element identified by key, or end().
+ ///
+ iterator find(unsigned Key) {
+ assert(Key < Universe && "Key out of range");
+ assert(std::numeric_limits<SparseT>::is_integer &&
+ !std::numeric_limits<SparseT>::is_signed &&
+ "SparseT must be an unsigned integer type");
+ const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
+ for (unsigned i = Sparse[Key], e = size(); i < e; i += Stride) {
+ const unsigned FoundKey = KeyOf(Dense[i]);
+ assert(FoundKey < Universe && "Invalid key in set. Did object mutate?");
+ if (Key == FoundKey)
+ return begin() + i;
+ // Stride is 0 when SparseT >= unsigned. We don't need to loop.
+ if (!Stride)
+ break;
+ }
+ return end();
+ }
+
+ const_iterator find(unsigned Key) const {
+ return const_cast<SparseSet*>(this)->find(Key);
+ }
+
+ /// count - Returns true if this set contains an element identified by Key.
+ ///
+ bool count(unsigned Key) const {
+ return find(Key) != end();
+ }
+
+ /// insert - Attempts to insert a new element.
+ ///
+ /// If Val is successfully inserted, return (I, true), where I is an iterator
+ /// pointing to the newly inserted element.
+ ///
+ /// If the set already contains an element with the same key as Val, return
+ /// (I, false), where I is an iterator pointing to the existing element.
+ ///
+ /// Insertion invalidates all iterators.
+ ///
+ std::pair<iterator, bool> insert(const ValueT &Val) {
+ unsigned Key = KeyOf(Val);
+ iterator I = find(Key);
+ if (I != end())
+ return std::make_pair(I, false);
+ Sparse[Key] = size();
+ Dense.push_back(Val);
+ return std::make_pair(end() - 1, true);
+ }
+
+ /// array subscript - If an element already exists with this key, return it.
+ /// Otherwise, automatically construct a new value from Key, insert it,
+ /// and return the newly inserted element.
+ ValueT &operator[](unsigned Key) {
+ return *insert(ValueT(Key)).first;
+ }
+
+ /// erase - Erases an existing element identified by a valid iterator.
+ ///
+ /// This invalidates all iterators, but erase() returns an iterator pointing
+ /// to the next element. This makes it possible to erase selected elements
+ /// while iterating over the set:
+ ///
+ /// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
+ /// if (test(*I))
+ /// I = Set.erase(I);
+ /// else
+ /// ++I;
+ ///
+ /// Note that end() changes when elements are erased, unlike std::list.
+ ///
+ iterator erase(iterator I) {
+ assert(unsigned(I - begin()) < size() && "Invalid iterator");
+ if (I != end() - 1) {
+ *I = Dense.back();
+ unsigned BackKey = KeyOf(Dense.back());
+ assert(BackKey < Universe && "Invalid key in set. Did object mutate?");
+ Sparse[BackKey] = I - begin();
+ }
+ // This depends on SmallVector::pop_back() not invalidating iterators.
+ // std::vector::pop_back() doesn't give that guarantee.
+ Dense.pop_back();
+ return I;
+ }
+
+ /// erase - Erases an element identified by Key, if it exists.
+ ///
+ /// @param Key The key identifying the element to erase.
+ /// @returns True when an element was erased, false if no element was found.
+ ///
+ bool erase(unsigned Key) {
+ iterator I = find(Key);
+ if (I == end())
+ return false;
+ erase(I);
+ return true;
+ }
+
+};
+
+} // end namespace llvm
+
+#endif