aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp593
1 files changed, 593 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp b/contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp
new file mode 100644
index 000000000000..5e0ff9d9092c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp
@@ -0,0 +1,593 @@
+//===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the VirtRegMap class.
+//
+// It also contains implementations of the Spiller interface, which, given a
+// virtual register map and a machine function, eliminates all virtual
+// references by replacing them with physical register references - adding spill
+// code as necessary.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "LiveDebugVariables.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/LiveStacks.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+STATISTIC(NumSpillSlots, "Number of spill slots allocated");
+STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
+
+//===----------------------------------------------------------------------===//
+// VirtRegMap implementation
+//===----------------------------------------------------------------------===//
+
+char VirtRegMap::ID = 0;
+
+INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
+
+bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
+ MRI = &mf.getRegInfo();
+ TII = mf.getSubtarget().getInstrInfo();
+ TRI = mf.getSubtarget().getRegisterInfo();
+ MF = &mf;
+
+ Virt2PhysMap.clear();
+ Virt2StackSlotMap.clear();
+ Virt2SplitMap.clear();
+ Virt2ShapeMap.clear();
+
+ grow();
+ return false;
+}
+
+void VirtRegMap::grow() {
+ unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
+ Virt2PhysMap.resize(NumRegs);
+ Virt2StackSlotMap.resize(NumRegs);
+ Virt2SplitMap.resize(NumRegs);
+}
+
+void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
+ assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
+ assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
+ "attempt to assign physical register to already mapped "
+ "virtual register");
+ assert(!getRegInfo().isReserved(physReg) &&
+ "Attempt to map virtReg to a reserved physReg");
+ Virt2PhysMap[virtReg.id()] = physReg;
+}
+
+unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
+ unsigned Size = TRI->getSpillSize(*RC);
+ Align Alignment = TRI->getSpillAlign(*RC);
+ int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
+ ++NumSpillSlots;
+ return SS;
+}
+
+bool VirtRegMap::hasPreferredPhys(Register VirtReg) {
+ Register Hint = MRI->getSimpleHint(VirtReg);
+ if (!Hint.isValid())
+ return false;
+ if (Hint.isVirtual())
+ Hint = getPhys(Hint);
+ return Register(getPhys(VirtReg)) == Hint;
+}
+
+bool VirtRegMap::hasKnownPreference(Register VirtReg) {
+ std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
+ if (Register::isPhysicalRegister(Hint.second))
+ return true;
+ if (Register::isVirtualRegister(Hint.second))
+ return hasPhys(Hint.second);
+ return false;
+}
+
+int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
+ assert(virtReg.isVirtual());
+ assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
+ "attempt to assign stack slot to already spilled register");
+ const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
+ return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
+}
+
+void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
+ assert(virtReg.isVirtual());
+ assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
+ "attempt to assign stack slot to already spilled register");
+ assert((SS >= 0 ||
+ (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
+ "illegal fixed frame index");
+ Virt2StackSlotMap[virtReg.id()] = SS;
+}
+
+void VirtRegMap::print(raw_ostream &OS, const Module*) const {
+ OS << "********** REGISTER MAP **********\n";
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = Register::index2VirtReg(i);
+ if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
+ OS << '[' << printReg(Reg, TRI) << " -> "
+ << printReg(Virt2PhysMap[Reg], TRI) << "] "
+ << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
+ }
+ }
+
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = Register::index2VirtReg(i);
+ if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
+ OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
+ << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
+ }
+ }
+ OS << '\n';
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void VirtRegMap::dump() const {
+ print(dbgs());
+}
+#endif
+
+//===----------------------------------------------------------------------===//
+// VirtRegRewriter
+//===----------------------------------------------------------------------===//
+//
+// The VirtRegRewriter is the last of the register allocator passes.
+// It rewrites virtual registers to physical registers as specified in the
+// VirtRegMap analysis. It also updates live-in information on basic blocks
+// according to LiveIntervals.
+//
+namespace {
+
+class VirtRegRewriter : public MachineFunctionPass {
+ MachineFunction *MF;
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+ MachineRegisterInfo *MRI;
+ SlotIndexes *Indexes;
+ LiveIntervals *LIS;
+ VirtRegMap *VRM;
+
+ void rewrite();
+ void addMBBLiveIns();
+ bool readsUndefSubreg(const MachineOperand &MO) const;
+ void addLiveInsForSubRanges(const LiveInterval &LI, Register PhysReg) const;
+ void handleIdentityCopy(MachineInstr &MI) const;
+ void expandCopyBundle(MachineInstr &MI) const;
+ bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
+
+public:
+ static char ID;
+
+ VirtRegRewriter() : MachineFunctionPass(ID) {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+ bool runOnMachineFunction(MachineFunction&) override;
+
+ MachineFunctionProperties getSetProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+};
+
+} // end anonymous namespace
+
+char VirtRegRewriter::ID = 0;
+
+char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
+
+INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
+ "Virtual Register Rewriter", false, false)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
+INITIALIZE_PASS_DEPENDENCY(LiveStacks)
+INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
+INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
+ "Virtual Register Rewriter", false, false)
+
+void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<LiveIntervals>();
+ AU.addRequired<SlotIndexes>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<LiveDebugVariables>();
+ AU.addRequired<LiveStacks>();
+ AU.addPreserved<LiveStacks>();
+ AU.addRequired<VirtRegMap>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
+ MF = &fn;
+ TRI = MF->getSubtarget().getRegisterInfo();
+ TII = MF->getSubtarget().getInstrInfo();
+ MRI = &MF->getRegInfo();
+ Indexes = &getAnalysis<SlotIndexes>();
+ LIS = &getAnalysis<LiveIntervals>();
+ VRM = &getAnalysis<VirtRegMap>();
+ LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
+ << "********** Function: " << MF->getName() << '\n');
+ LLVM_DEBUG(VRM->dump());
+
+ // Add kill flags while we still have virtual registers.
+ LIS->addKillFlags(VRM);
+
+ // Live-in lists on basic blocks are required for physregs.
+ addMBBLiveIns();
+
+ // Rewrite virtual registers.
+ rewrite();
+
+ // Write out new DBG_VALUE instructions.
+ getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
+
+ // All machine operands and other references to virtual registers have been
+ // replaced. Remove the virtual registers and release all the transient data.
+ VRM->clearAllVirt();
+ MRI->clearVirtRegs();
+ return true;
+}
+
+void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
+ Register PhysReg) const {
+ assert(!LI.empty());
+ assert(LI.hasSubRanges());
+
+ using SubRangeIteratorPair =
+ std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
+
+ SmallVector<SubRangeIteratorPair, 4> SubRanges;
+ SlotIndex First;
+ SlotIndex Last;
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ SubRanges.push_back(std::make_pair(&SR, SR.begin()));
+ if (!First.isValid() || SR.segments.front().start < First)
+ First = SR.segments.front().start;
+ if (!Last.isValid() || SR.segments.back().end > Last)
+ Last = SR.segments.back().end;
+ }
+
+ // Check all mbb start positions between First and Last while
+ // simulatenously advancing an iterator for each subrange.
+ for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
+ MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
+ SlotIndex MBBBegin = MBBI->first;
+ // Advance all subrange iterators so that their end position is just
+ // behind MBBBegin (or the iterator is at the end).
+ LaneBitmask LaneMask;
+ for (auto &RangeIterPair : SubRanges) {
+ const LiveInterval::SubRange *SR = RangeIterPair.first;
+ LiveInterval::const_iterator &SRI = RangeIterPair.second;
+ while (SRI != SR->end() && SRI->end <= MBBBegin)
+ ++SRI;
+ if (SRI == SR->end())
+ continue;
+ if (SRI->start <= MBBBegin)
+ LaneMask |= SR->LaneMask;
+ }
+ if (LaneMask.none())
+ continue;
+ MachineBasicBlock *MBB = MBBI->second;
+ MBB->addLiveIn(PhysReg, LaneMask);
+ }
+}
+
+// Compute MBB live-in lists from virtual register live ranges and their
+// assignments.
+void VirtRegRewriter::addMBBLiveIns() {
+ for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
+ Register VirtReg = Register::index2VirtReg(Idx);
+ if (MRI->reg_nodbg_empty(VirtReg))
+ continue;
+ LiveInterval &LI = LIS->getInterval(VirtReg);
+ if (LI.empty() || LIS->intervalIsInOneMBB(LI))
+ continue;
+ // This is a virtual register that is live across basic blocks. Its
+ // assigned PhysReg must be marked as live-in to those blocks.
+ Register PhysReg = VRM->getPhys(VirtReg);
+ assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
+
+ if (LI.hasSubRanges()) {
+ addLiveInsForSubRanges(LI, PhysReg);
+ } else {
+ // Go over MBB begin positions and see if we have segments covering them.
+ // The following works because segments and the MBBIndex list are both
+ // sorted by slot indexes.
+ SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
+ for (const auto &Seg : LI) {
+ I = Indexes->advanceMBBIndex(I, Seg.start);
+ for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
+ MachineBasicBlock *MBB = I->second;
+ MBB->addLiveIn(PhysReg);
+ }
+ }
+ }
+ }
+
+ // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
+ // each MBB's LiveIns set before calling addLiveIn on them.
+ for (MachineBasicBlock &MBB : *MF)
+ MBB.sortUniqueLiveIns();
+}
+
+/// Returns true if the given machine operand \p MO only reads undefined lanes.
+/// The function only works for use operands with a subregister set.
+bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
+ // Shortcut if the operand is already marked undef.
+ if (MO.isUndef())
+ return true;
+
+ Register Reg = MO.getReg();
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ const MachineInstr &MI = *MO.getParent();
+ SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
+ // This code is only meant to handle reading undefined subregisters which
+ // we couldn't properly detect before.
+ assert(LI.liveAt(BaseIndex) &&
+ "Reads of completely dead register should be marked undef already");
+ unsigned SubRegIdx = MO.getSubReg();
+ assert(SubRegIdx != 0 && LI.hasSubRanges());
+ LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
+ // See if any of the relevant subregister liveranges is defined at this point.
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
+ return false;
+ }
+ return true;
+}
+
+void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
+ if (!MI.isIdentityCopy())
+ return;
+ LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
+ ++NumIdCopies;
+
+ // Copies like:
+ // %r0 = COPY undef %r0
+ // %al = COPY %al, implicit-def %eax
+ // give us additional liveness information: The target (super-)register
+ // must not be valid before this point. Replace the COPY with a KILL
+ // instruction to maintain this information.
+ if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
+ MI.setDesc(TII->get(TargetOpcode::KILL));
+ LLVM_DEBUG(dbgs() << " replace by: " << MI);
+ return;
+ }
+
+ if (Indexes)
+ Indexes->removeSingleMachineInstrFromMaps(MI);
+ MI.eraseFromBundle();
+ LLVM_DEBUG(dbgs() << " deleted.\n");
+}
+
+/// The liverange splitting logic sometimes produces bundles of copies when
+/// subregisters are involved. Expand these into a sequence of copy instructions
+/// after processing the last in the bundle. Does not update LiveIntervals
+/// which we shouldn't need for this instruction anymore.
+void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
+ if (!MI.isCopy() && !MI.isKill())
+ return;
+
+ if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
+ SmallVector<MachineInstr *, 2> MIs({&MI});
+
+ // Only do this when the complete bundle is made out of COPYs and KILLs.
+ MachineBasicBlock &MBB = *MI.getParent();
+ for (MachineBasicBlock::reverse_instr_iterator I =
+ std::next(MI.getReverseIterator()), E = MBB.instr_rend();
+ I != E && I->isBundledWithSucc(); ++I) {
+ if (!I->isCopy() && !I->isKill())
+ return;
+ MIs.push_back(&*I);
+ }
+ MachineInstr *FirstMI = MIs.back();
+
+ auto anyRegsAlias = [](const MachineInstr *Dst,
+ ArrayRef<MachineInstr *> Srcs,
+ const TargetRegisterInfo *TRI) {
+ for (const MachineInstr *Src : Srcs)
+ if (Src != Dst)
+ if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
+ Src->getOperand(1).getReg()))
+ return true;
+ return false;
+ };
+
+ // If any of the destination registers in the bundle of copies alias any of
+ // the source registers, try to schedule the instructions to avoid any
+ // clobbering.
+ for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
+ for (int I = E; I--; )
+ if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
+ if (I + 1 != E)
+ std::swap(MIs[I], MIs[E - 1]);
+ --E;
+ }
+ if (PrevE == E) {
+ MF->getFunction().getContext().emitError(
+ "register rewriting failed: cycle in copy bundle");
+ break;
+ }
+ }
+
+ MachineInstr *BundleStart = FirstMI;
+ for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
+ // If instruction is in the middle of the bundle, move it before the
+ // bundle starts, otherwise, just unbundle it. When we get to the last
+ // instruction, the bundle will have been completely undone.
+ if (BundledMI != BundleStart) {
+ BundledMI->removeFromBundle();
+ MBB.insert(BundleStart, BundledMI);
+ } else if (BundledMI->isBundledWithSucc()) {
+ BundledMI->unbundleFromSucc();
+ BundleStart = &*std::next(BundledMI->getIterator());
+ }
+
+ if (Indexes && BundledMI != FirstMI)
+ Indexes->insertMachineInstrInMaps(*BundledMI);
+ }
+ }
+}
+
+/// Check whether (part of) \p SuperPhysReg is live through \p MI.
+/// \pre \p MI defines a subregister of a virtual register that
+/// has been assigned to \p SuperPhysReg.
+bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
+ MCRegister SuperPhysReg) const {
+ SlotIndex MIIndex = LIS->getInstructionIndex(MI);
+ SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
+ SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
+ for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
+ const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
+ // If the regunit is live both before and after MI,
+ // we assume it is live through.
+ // Generally speaking, this is not true, because something like
+ // "RU = op RU" would match that description.
+ // However, we know that we are trying to assess whether
+ // a def of a virtual reg, vreg, is live at the same time of RU.
+ // If we are in the "RU = op RU" situation, that means that vreg
+ // is defined at the same time as RU (i.e., "vreg, RU = op RU").
+ // Thus, vreg and RU interferes and vreg cannot be assigned to
+ // SuperPhysReg. Therefore, this situation cannot happen.
+ if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
+ return true;
+ }
+ return false;
+}
+
+void VirtRegRewriter::rewrite() {
+ bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
+ SmallVector<Register, 8> SuperDeads;
+ SmallVector<Register, 8> SuperDefs;
+ SmallVector<Register, 8> SuperKills;
+
+ for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
+ MBBI != MBBE; ++MBBI) {
+ LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
+ for (MachineBasicBlock::instr_iterator
+ MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
+ MachineInstr *MI = &*MII;
+ ++MII;
+
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end(); MOI != MOE; ++MOI) {
+ MachineOperand &MO = *MOI;
+
+ // Make sure MRI knows about registers clobbered by regmasks.
+ if (MO.isRegMask())
+ MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
+
+ if (!MO.isReg() || !MO.getReg().isVirtual())
+ continue;
+ Register VirtReg = MO.getReg();
+ MCRegister PhysReg = VRM->getPhys(VirtReg);
+ assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
+ "Instruction uses unmapped VirtReg");
+ assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
+
+ // Preserve semantics of sub-register operands.
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0) {
+ if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
+ // A virtual register kill refers to the whole register, so we may
+ // have to add implicit killed operands for the super-register. A
+ // partial redef always kills and redefines the super-register.
+ if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
+ (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
+ SuperKills.push_back(PhysReg);
+
+ if (MO.isDef()) {
+ // Also add implicit defs for the super-register.
+ if (MO.isDead())
+ SuperDeads.push_back(PhysReg);
+ else
+ SuperDefs.push_back(PhysReg);
+ }
+ } else {
+ if (MO.isUse()) {
+ if (readsUndefSubreg(MO))
+ // We need to add an <undef> flag if the subregister is
+ // completely undefined (and we are not adding super-register
+ // defs).
+ MO.setIsUndef(true);
+ } else if (!MO.isDead()) {
+ assert(MO.isDef());
+ }
+ }
+
+ // The def undef and def internal flags only make sense for
+ // sub-register defs, and we are substituting a full physreg. An
+ // implicit killed operand from the SuperKills list will represent the
+ // partial read of the super-register.
+ if (MO.isDef()) {
+ MO.setIsUndef(false);
+ MO.setIsInternalRead(false);
+ }
+
+ // PhysReg operands cannot have subregister indexes.
+ PhysReg = TRI->getSubReg(PhysReg, SubReg);
+ assert(PhysReg.isValid() && "Invalid SubReg for physical register");
+ MO.setSubReg(0);
+ }
+ // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
+ // we need the inlining here.
+ MO.setReg(PhysReg);
+ MO.setIsRenamable(true);
+ }
+
+ // Add any missing super-register kills after rewriting the whole
+ // instruction.
+ while (!SuperKills.empty())
+ MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
+
+ while (!SuperDeads.empty())
+ MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
+
+ while (!SuperDefs.empty())
+ MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
+
+ LLVM_DEBUG(dbgs() << "> " << *MI);
+
+ expandCopyBundle(*MI);
+
+ // We can remove identity copies right now.
+ handleIdentityCopy(*MI);
+ }
+ }
+}