aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp2382
1 files changed, 2382 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
new file mode 100644
index 000000000000..f0affce7b6b8
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -0,0 +1,2382 @@
+//===- FastISel.cpp - Implementation of the FastISel class ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the FastISel class.
+//
+// "Fast" instruction selection is designed to emit very poor code quickly.
+// Also, it is not designed to be able to do much lowering, so most illegal
+// types (e.g. i64 on 32-bit targets) and operations are not supported. It is
+// also not intended to be able to do much optimization, except in a few cases
+// where doing optimizations reduces overall compile time. For example, folding
+// constants into immediate fields is often done, because it's cheap and it
+// reduces the number of instructions later phases have to examine.
+//
+// "Fast" instruction selection is able to fail gracefully and transfer
+// control to the SelectionDAG selector for operations that it doesn't
+// support. In many cases, this allows us to avoid duplicating a lot of
+// the complicated lowering logic that SelectionDAG currently has.
+//
+// The intended use for "fast" instruction selection is "-O0" mode
+// compilation, where the quality of the generated code is irrelevant when
+// weighed against the speed at which the code can be generated. Also,
+// at -O0, the LLVM optimizers are not running, and this makes the
+// compile time of codegen a much higher portion of the overall compile
+// time. Despite its limitations, "fast" instruction selection is able to
+// handle enough code on its own to provide noticeable overall speedups
+// in -O0 compiles.
+//
+// Basic operations are supported in a target-independent way, by reading
+// the same instruction descriptions that the SelectionDAG selector reads,
+// and identifying simple arithmetic operations that can be directly selected
+// from simple operators. More complicated operations currently require
+// target-specific code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineValueType.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <optional>
+#include <utility>
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "isel"
+
+STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
+ "target-independent selector");
+STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
+ "target-specific selector");
+STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
+
+/// Set the current block to which generated machine instructions will be
+/// appended.
+void FastISel::startNewBlock() {
+ assert(LocalValueMap.empty() &&
+ "local values should be cleared after finishing a BB");
+
+ // Instructions are appended to FuncInfo.MBB. If the basic block already
+ // contains labels or copies, use the last instruction as the last local
+ // value.
+ EmitStartPt = nullptr;
+ if (!FuncInfo.MBB->empty())
+ EmitStartPt = &FuncInfo.MBB->back();
+ LastLocalValue = EmitStartPt;
+}
+
+void FastISel::finishBasicBlock() { flushLocalValueMap(); }
+
+bool FastISel::lowerArguments() {
+ if (!FuncInfo.CanLowerReturn)
+ // Fallback to SDISel argument lowering code to deal with sret pointer
+ // parameter.
+ return false;
+
+ if (!fastLowerArguments())
+ return false;
+
+ // Enter arguments into ValueMap for uses in non-entry BBs.
+ for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
+ E = FuncInfo.Fn->arg_end();
+ I != E; ++I) {
+ DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
+ assert(VI != LocalValueMap.end() && "Missed an argument?");
+ FuncInfo.ValueMap[&*I] = VI->second;
+ }
+ return true;
+}
+
+/// Return the defined register if this instruction defines exactly one
+/// virtual register and uses no other virtual registers. Otherwise return 0.
+static Register findLocalRegDef(MachineInstr &MI) {
+ Register RegDef;
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg())
+ continue;
+ if (MO.isDef()) {
+ if (RegDef)
+ return Register();
+ RegDef = MO.getReg();
+ } else if (MO.getReg().isVirtual()) {
+ // This is another use of a vreg. Don't delete it.
+ return Register();
+ }
+ }
+ return RegDef;
+}
+
+static bool isRegUsedByPhiNodes(Register DefReg,
+ FunctionLoweringInfo &FuncInfo) {
+ for (auto &P : FuncInfo.PHINodesToUpdate)
+ if (P.second == DefReg)
+ return true;
+ return false;
+}
+
+void FastISel::flushLocalValueMap() {
+ // If FastISel bails out, it could leave local value instructions behind
+ // that aren't used for anything. Detect and erase those.
+ if (LastLocalValue != EmitStartPt) {
+ // Save the first instruction after local values, for later.
+ MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
+ ++FirstNonValue;
+
+ MachineBasicBlock::reverse_iterator RE =
+ EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
+ : FuncInfo.MBB->rend();
+ MachineBasicBlock::reverse_iterator RI(LastLocalValue);
+ for (MachineInstr &LocalMI :
+ llvm::make_early_inc_range(llvm::make_range(RI, RE))) {
+ Register DefReg = findLocalRegDef(LocalMI);
+ if (!DefReg)
+ continue;
+ if (FuncInfo.RegsWithFixups.count(DefReg))
+ continue;
+ bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
+ if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
+ if (EmitStartPt == &LocalMI)
+ EmitStartPt = EmitStartPt->getPrevNode();
+ LLVM_DEBUG(dbgs() << "removing dead local value materialization"
+ << LocalMI);
+ LocalMI.eraseFromParent();
+ }
+ }
+
+ if (FirstNonValue != FuncInfo.MBB->end()) {
+ // See if there are any local value instructions left. If so, we want to
+ // make sure the first one has a debug location; if it doesn't, use the
+ // first non-value instruction's debug location.
+
+ // If EmitStartPt is non-null, this block had copies at the top before
+ // FastISel started doing anything; it points to the last one, so the
+ // first local value instruction is the one after EmitStartPt.
+ // If EmitStartPt is null, the first local value instruction is at the
+ // top of the block.
+ MachineBasicBlock::iterator FirstLocalValue =
+ EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
+ : FuncInfo.MBB->begin();
+ if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
+ FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
+ }
+ }
+
+ LocalValueMap.clear();
+ LastLocalValue = EmitStartPt;
+ recomputeInsertPt();
+ SavedInsertPt = FuncInfo.InsertPt;
+}
+
+Register FastISel::getRegForValue(const Value *V) {
+ EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
+ // Don't handle non-simple values in FastISel.
+ if (!RealVT.isSimple())
+ return Register();
+
+ // Ignore illegal types. We must do this before looking up the value
+ // in ValueMap because Arguments are given virtual registers regardless
+ // of whether FastISel can handle them.
+ MVT VT = RealVT.getSimpleVT();
+ if (!TLI.isTypeLegal(VT)) {
+ // Handle integer promotions, though, because they're common and easy.
+ if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
+ VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
+ else
+ return Register();
+ }
+
+ // Look up the value to see if we already have a register for it.
+ Register Reg = lookUpRegForValue(V);
+ if (Reg)
+ return Reg;
+
+ // In bottom-up mode, just create the virtual register which will be used
+ // to hold the value. It will be materialized later.
+ if (isa<Instruction>(V) &&
+ (!isa<AllocaInst>(V) ||
+ !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
+ return FuncInfo.InitializeRegForValue(V);
+
+ SavePoint SaveInsertPt = enterLocalValueArea();
+
+ // Materialize the value in a register. Emit any instructions in the
+ // local value area.
+ Reg = materializeRegForValue(V, VT);
+
+ leaveLocalValueArea(SaveInsertPt);
+
+ return Reg;
+}
+
+Register FastISel::materializeConstant(const Value *V, MVT VT) {
+ Register Reg;
+ if (const auto *CI = dyn_cast<ConstantInt>(V)) {
+ if (CI->getValue().getActiveBits() <= 64)
+ Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
+ } else if (isa<AllocaInst>(V))
+ Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
+ else if (isa<ConstantPointerNull>(V))
+ // Translate this as an integer zero so that it can be
+ // local-CSE'd with actual integer zeros.
+ Reg =
+ getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
+ else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
+ if (CF->isNullValue())
+ Reg = fastMaterializeFloatZero(CF);
+ else
+ // Try to emit the constant directly.
+ Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
+
+ if (!Reg) {
+ // Try to emit the constant by using an integer constant with a cast.
+ const APFloat &Flt = CF->getValueAPF();
+ EVT IntVT = TLI.getPointerTy(DL);
+ uint32_t IntBitWidth = IntVT.getSizeInBits();
+ APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
+ bool isExact;
+ (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
+ if (isExact) {
+ Register IntegerReg =
+ getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
+ if (IntegerReg)
+ Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
+ IntegerReg);
+ }
+ }
+ } else if (const auto *Op = dyn_cast<Operator>(V)) {
+ if (!selectOperator(Op, Op->getOpcode()))
+ if (!isa<Instruction>(Op) ||
+ !fastSelectInstruction(cast<Instruction>(Op)))
+ return 0;
+ Reg = lookUpRegForValue(Op);
+ } else if (isa<UndefValue>(V)) {
+ Reg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
+ TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
+ }
+ return Reg;
+}
+
+/// Helper for getRegForValue. This function is called when the value isn't
+/// already available in a register and must be materialized with new
+/// instructions.
+Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
+ Register Reg;
+ // Give the target-specific code a try first.
+ if (isa<Constant>(V))
+ Reg = fastMaterializeConstant(cast<Constant>(V));
+
+ // If target-specific code couldn't or didn't want to handle the value, then
+ // give target-independent code a try.
+ if (!Reg)
+ Reg = materializeConstant(V, VT);
+
+ // Don't cache constant materializations in the general ValueMap.
+ // To do so would require tracking what uses they dominate.
+ if (Reg) {
+ LocalValueMap[V] = Reg;
+ LastLocalValue = MRI.getVRegDef(Reg);
+ }
+ return Reg;
+}
+
+Register FastISel::lookUpRegForValue(const Value *V) {
+ // Look up the value to see if we already have a register for it. We
+ // cache values defined by Instructions across blocks, and other values
+ // only locally. This is because Instructions already have the SSA
+ // def-dominates-use requirement enforced.
+ DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
+ if (I != FuncInfo.ValueMap.end())
+ return I->second;
+ return LocalValueMap[V];
+}
+
+void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
+ if (!isa<Instruction>(I)) {
+ LocalValueMap[I] = Reg;
+ return;
+ }
+
+ Register &AssignedReg = FuncInfo.ValueMap[I];
+ if (!AssignedReg)
+ // Use the new register.
+ AssignedReg = Reg;
+ else if (Reg != AssignedReg) {
+ // Arrange for uses of AssignedReg to be replaced by uses of Reg.
+ for (unsigned i = 0; i < NumRegs; i++) {
+ FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
+ FuncInfo.RegsWithFixups.insert(Reg + i);
+ }
+
+ AssignedReg = Reg;
+ }
+}
+
+Register FastISel::getRegForGEPIndex(const Value *Idx) {
+ Register IdxN = getRegForValue(Idx);
+ if (!IdxN)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return Register();
+
+ // If the index is smaller or larger than intptr_t, truncate or extend it.
+ MVT PtrVT = TLI.getPointerTy(DL);
+ EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
+ if (IdxVT.bitsLT(PtrVT)) {
+ IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
+ } else if (IdxVT.bitsGT(PtrVT)) {
+ IdxN =
+ fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
+ }
+ return IdxN;
+}
+
+void FastISel::recomputeInsertPt() {
+ if (getLastLocalValue()) {
+ FuncInfo.InsertPt = getLastLocalValue();
+ FuncInfo.MBB = FuncInfo.InsertPt->getParent();
+ ++FuncInfo.InsertPt;
+ } else
+ FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
+}
+
+void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator E) {
+ assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
+ "Invalid iterator!");
+ while (I != E) {
+ if (SavedInsertPt == I)
+ SavedInsertPt = E;
+ if (EmitStartPt == I)
+ EmitStartPt = E.isValid() ? &*E : nullptr;
+ if (LastLocalValue == I)
+ LastLocalValue = E.isValid() ? &*E : nullptr;
+
+ MachineInstr *Dead = &*I;
+ ++I;
+ Dead->eraseFromParent();
+ ++NumFastIselDead;
+ }
+ recomputeInsertPt();
+}
+
+FastISel::SavePoint FastISel::enterLocalValueArea() {
+ SavePoint OldInsertPt = FuncInfo.InsertPt;
+ recomputeInsertPt();
+ return OldInsertPt;
+}
+
+void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
+ if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
+ LastLocalValue = &*std::prev(FuncInfo.InsertPt);
+
+ // Restore the previous insert position.
+ FuncInfo.InsertPt = OldInsertPt;
+}
+
+bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
+ EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
+ if (VT == MVT::Other || !VT.isSimple())
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ // We only handle legal types. For example, on x86-32 the instruction
+ // selector contains all of the 64-bit instructions from x86-64,
+ // under the assumption that i64 won't be used if the target doesn't
+ // support it.
+ if (!TLI.isTypeLegal(VT)) {
+ // MVT::i1 is special. Allow AND, OR, or XOR because they
+ // don't require additional zeroing, which makes them easy.
+ if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode))
+ VT = TLI.getTypeToTransformTo(I->getContext(), VT);
+ else
+ return false;
+ }
+
+ // Check if the first operand is a constant, and handle it as "ri". At -O0,
+ // we don't have anything that canonicalizes operand order.
+ if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
+ if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
+ Register Op1 = getRegForValue(I->getOperand(1));
+ if (!Op1)
+ return false;
+
+ Register ResultReg =
+ fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
+ VT.getSimpleVT());
+ if (!ResultReg)
+ return false;
+
+ // We successfully emitted code for the given LLVM Instruction.
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ Register Op0 = getRegForValue(I->getOperand(0));
+ if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ // Check if the second operand is a constant and handle it appropriately.
+ if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint64_t Imm = CI->getSExtValue();
+
+ // Transform "sdiv exact X, 8" -> "sra X, 3".
+ if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
+ cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
+ Imm = Log2_64(Imm);
+ ISDOpcode = ISD::SRA;
+ }
+
+ // Transform "urem x, pow2" -> "and x, pow2-1".
+ if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
+ isPowerOf2_64(Imm)) {
+ --Imm;
+ ISDOpcode = ISD::AND;
+ }
+
+ Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
+ VT.getSimpleVT());
+ if (!ResultReg)
+ return false;
+
+ // We successfully emitted code for the given LLVM Instruction.
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ Register Op1 = getRegForValue(I->getOperand(1));
+ if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ // Now we have both operands in registers. Emit the instruction.
+ Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISDOpcode, Op0, Op1);
+ if (!ResultReg)
+ // Target-specific code wasn't able to find a machine opcode for
+ // the given ISD opcode and type. Halt "fast" selection and bail.
+ return false;
+
+ // We successfully emitted code for the given LLVM Instruction.
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool FastISel::selectGetElementPtr(const User *I) {
+ Register N = getRegForValue(I->getOperand(0));
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
+ // and bail.
+ if (isa<VectorType>(I->getType()))
+ return false;
+
+ // Keep a running tab of the total offset to coalesce multiple N = N + Offset
+ // into a single N = N + TotalOffset.
+ uint64_t TotalOffs = 0;
+ // FIXME: What's a good SWAG number for MaxOffs?
+ uint64_t MaxOffs = 2048;
+ MVT VT = TLI.getPointerTy(DL);
+ for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
+ GTI != E; ++GTI) {
+ const Value *Idx = GTI.getOperand();
+ if (StructType *StTy = GTI.getStructTypeOrNull()) {
+ uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
+ if (Field) {
+ // N = N + Offset
+ TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
+ if (TotalOffs >= MaxOffs) {
+ N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ TotalOffs = 0;
+ }
+ }
+ } else {
+ Type *Ty = GTI.getIndexedType();
+
+ // If this is a constant subscript, handle it quickly.
+ if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->isZero())
+ continue;
+ // N = N + Offset
+ uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
+ TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
+ if (TotalOffs >= MaxOffs) {
+ N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ TotalOffs = 0;
+ }
+ continue;
+ }
+ if (TotalOffs) {
+ N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ TotalOffs = 0;
+ }
+
+ // N = N + Idx * ElementSize;
+ uint64_t ElementSize = DL.getTypeAllocSize(Ty);
+ Register IdxN = getRegForGEPIndex(Idx);
+ if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ if (ElementSize != 1) {
+ IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
+ if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ }
+ N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ }
+ }
+ if (TotalOffs) {
+ N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ }
+
+ // We successfully emitted code for the given LLVM Instruction.
+ updateValueMap(I, N);
+ return true;
+}
+
+bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
+ const CallInst *CI, unsigned StartIdx) {
+ for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) {
+ Value *Val = CI->getArgOperand(i);
+ // Check for constants and encode them with a StackMaps::ConstantOp prefix.
+ if (const auto *C = dyn_cast<ConstantInt>(Val)) {
+ Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
+ Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
+ } else if (isa<ConstantPointerNull>(Val)) {
+ Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
+ Ops.push_back(MachineOperand::CreateImm(0));
+ } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
+ // Values coming from a stack location also require a special encoding,
+ // but that is added later on by the target specific frame index
+ // elimination implementation.
+ auto SI = FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end())
+ Ops.push_back(MachineOperand::CreateFI(SI->second));
+ else
+ return false;
+ } else {
+ Register Reg = getRegForValue(Val);
+ if (!Reg)
+ return false;
+ Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
+ }
+ }
+ return true;
+}
+
+bool FastISel::selectStackmap(const CallInst *I) {
+ // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
+ // [live variables...])
+ assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
+ "Stackmap cannot return a value.");
+
+ // The stackmap intrinsic only records the live variables (the arguments
+ // passed to it) and emits NOPS (if requested). Unlike the patchpoint
+ // intrinsic, this won't be lowered to a function call. This means we don't
+ // have to worry about calling conventions and target-specific lowering code.
+ // Instead we perform the call lowering right here.
+ //
+ // CALLSEQ_START(0, 0...)
+ // STACKMAP(id, nbytes, ...)
+ // CALLSEQ_END(0, 0)
+ //
+ SmallVector<MachineOperand, 32> Ops;
+
+ // Add the <id> and <numBytes> constants.
+ assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
+ "Expected a constant integer.");
+ const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
+ Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
+
+ assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
+ "Expected a constant integer.");
+ const auto *NumBytes =
+ cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
+ Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
+
+ // Push live variables for the stack map (skipping the first two arguments
+ // <id> and <numBytes>).
+ if (!addStackMapLiveVars(Ops, I, 2))
+ return false;
+
+ // We are not adding any register mask info here, because the stackmap doesn't
+ // clobber anything.
+
+ // Add scratch registers as implicit def and early clobber.
+ CallingConv::ID CC = I->getCallingConv();
+ const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
+ for (unsigned i = 0; ScratchRegs[i]; ++i)
+ Ops.push_back(MachineOperand::CreateReg(
+ ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
+ /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
+
+ // Issue CALLSEQ_START
+ unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+ auto Builder =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown));
+ const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
+ for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
+ Builder.addImm(0);
+
+ // Issue STACKMAP.
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
+ TII.get(TargetOpcode::STACKMAP));
+ for (auto const &MO : Ops)
+ MIB.add(MO);
+
+ // Issue CALLSEQ_END
+ unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
+ .addImm(0)
+ .addImm(0);
+
+ // Inform the Frame Information that we have a stackmap in this function.
+ FuncInfo.MF->getFrameInfo().setHasStackMap();
+
+ return true;
+}
+
+/// Lower an argument list according to the target calling convention.
+///
+/// This is a helper for lowering intrinsics that follow a target calling
+/// convention or require stack pointer adjustment. Only a subset of the
+/// intrinsic's operands need to participate in the calling convention.
+bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
+ unsigned NumArgs, const Value *Callee,
+ bool ForceRetVoidTy, CallLoweringInfo &CLI) {
+ ArgListTy Args;
+ Args.reserve(NumArgs);
+
+ // Populate the argument list.
+ for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
+ Value *V = CI->getOperand(ArgI);
+
+ assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
+
+ ArgListEntry Entry;
+ Entry.Val = V;
+ Entry.Ty = V->getType();
+ Entry.setAttributes(CI, ArgI);
+ Args.push_back(Entry);
+ }
+
+ Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
+ : CI->getType();
+ CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
+
+ return lowerCallTo(CLI);
+}
+
+FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
+ const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
+ StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
+ SmallString<32> MangledName;
+ Mangler::getNameWithPrefix(MangledName, Target, DL);
+ MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
+ return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
+}
+
+bool FastISel::selectPatchpoint(const CallInst *I) {
+ // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
+ // i32 <numBytes>,
+ // i8* <target>,
+ // i32 <numArgs>,
+ // [Args...],
+ // [live variables...])
+ CallingConv::ID CC = I->getCallingConv();
+ bool IsAnyRegCC = CC == CallingConv::AnyReg;
+ bool HasDef = !I->getType()->isVoidTy();
+ Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
+
+ // Get the real number of arguments participating in the call <numArgs>
+ assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
+ "Expected a constant integer.");
+ const auto *NumArgsVal =
+ cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
+ unsigned NumArgs = NumArgsVal->getZExtValue();
+
+ // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
+ // This includes all meta-operands up to but not including CC.
+ unsigned NumMetaOpers = PatchPointOpers::CCPos;
+ assert(I->arg_size() >= NumMetaOpers + NumArgs &&
+ "Not enough arguments provided to the patchpoint intrinsic");
+
+ // For AnyRegCC the arguments are lowered later on manually.
+ unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
+ CallLoweringInfo CLI;
+ CLI.setIsPatchPoint();
+ if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
+ return false;
+
+ assert(CLI.Call && "No call instruction specified.");
+
+ SmallVector<MachineOperand, 32> Ops;
+
+ // Add an explicit result reg if we use the anyreg calling convention.
+ if (IsAnyRegCC && HasDef) {
+ assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
+ CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
+ CLI.NumResultRegs = 1;
+ Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
+ }
+
+ // Add the <id> and <numBytes> constants.
+ assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
+ "Expected a constant integer.");
+ const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
+ Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
+
+ assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
+ "Expected a constant integer.");
+ const auto *NumBytes =
+ cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
+ Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
+
+ // Add the call target.
+ if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
+ uint64_t CalleeConstAddr =
+ cast<ConstantInt>(C->getOperand(0))->getZExtValue();
+ Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
+ } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
+ if (C->getOpcode() == Instruction::IntToPtr) {
+ uint64_t CalleeConstAddr =
+ cast<ConstantInt>(C->getOperand(0))->getZExtValue();
+ Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
+ } else
+ llvm_unreachable("Unsupported ConstantExpr.");
+ } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
+ Ops.push_back(MachineOperand::CreateGA(GV, 0));
+ } else if (isa<ConstantPointerNull>(Callee))
+ Ops.push_back(MachineOperand::CreateImm(0));
+ else
+ llvm_unreachable("Unsupported callee address.");
+
+ // Adjust <numArgs> to account for any arguments that have been passed on
+ // the stack instead.
+ unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
+ Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
+
+ // Add the calling convention
+ Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
+
+ // Add the arguments we omitted previously. The register allocator should
+ // place these in any free register.
+ if (IsAnyRegCC) {
+ for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
+ Register Reg = getRegForValue(I->getArgOperand(i));
+ if (!Reg)
+ return false;
+ Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
+ }
+ }
+
+ // Push the arguments from the call instruction.
+ for (auto Reg : CLI.OutRegs)
+ Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
+
+ // Push live variables for the stack map.
+ if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
+ return false;
+
+ // Push the register mask info.
+ Ops.push_back(MachineOperand::CreateRegMask(
+ TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
+
+ // Add scratch registers as implicit def and early clobber.
+ const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
+ for (unsigned i = 0; ScratchRegs[i]; ++i)
+ Ops.push_back(MachineOperand::CreateReg(
+ ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
+ /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
+
+ // Add implicit defs (return values).
+ for (auto Reg : CLI.InRegs)
+ Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
+ /*isImp=*/true));
+
+ // Insert the patchpoint instruction before the call generated by the target.
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD,
+ TII.get(TargetOpcode::PATCHPOINT));
+
+ for (auto &MO : Ops)
+ MIB.add(MO);
+
+ MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
+
+ // Delete the original call instruction.
+ CLI.Call->eraseFromParent();
+
+ // Inform the Frame Information that we have a patchpoint in this function.
+ FuncInfo.MF->getFrameInfo().setHasPatchPoint();
+
+ if (CLI.NumResultRegs)
+ updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
+ return true;
+}
+
+bool FastISel::selectXRayCustomEvent(const CallInst *I) {
+ const auto &Triple = TM.getTargetTriple();
+ if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
+ return true; // don't do anything to this instruction.
+ SmallVector<MachineOperand, 8> Ops;
+ Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
+ /*isDef=*/false));
+ Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
+ /*isDef=*/false));
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
+ TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
+ for (auto &MO : Ops)
+ MIB.add(MO);
+
+ // Insert the Patchable Event Call instruction, that gets lowered properly.
+ return true;
+}
+
+bool FastISel::selectXRayTypedEvent(const CallInst *I) {
+ const auto &Triple = TM.getTargetTriple();
+ if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
+ return true; // don't do anything to this instruction.
+ SmallVector<MachineOperand, 8> Ops;
+ Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
+ /*isDef=*/false));
+ Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
+ /*isDef=*/false));
+ Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
+ /*isDef=*/false));
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
+ TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
+ for (auto &MO : Ops)
+ MIB.add(MO);
+
+ // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
+ return true;
+}
+
+/// Returns an AttributeList representing the attributes applied to the return
+/// value of the given call.
+static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
+ SmallVector<Attribute::AttrKind, 2> Attrs;
+ if (CLI.RetSExt)
+ Attrs.push_back(Attribute::SExt);
+ if (CLI.RetZExt)
+ Attrs.push_back(Attribute::ZExt);
+ if (CLI.IsInReg)
+ Attrs.push_back(Attribute::InReg);
+
+ return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
+ Attrs);
+}
+
+bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
+ unsigned NumArgs) {
+ MCContext &Ctx = MF->getContext();
+ SmallString<32> MangledName;
+ Mangler::getNameWithPrefix(MangledName, SymName, DL);
+ MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
+ return lowerCallTo(CI, Sym, NumArgs);
+}
+
+bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
+ unsigned NumArgs) {
+ FunctionType *FTy = CI->getFunctionType();
+ Type *RetTy = CI->getType();
+
+ ArgListTy Args;
+ Args.reserve(NumArgs);
+
+ // Populate the argument list.
+ // Attributes for args start at offset 1, after the return attribute.
+ for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
+ Value *V = CI->getOperand(ArgI);
+
+ assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
+
+ ArgListEntry Entry;
+ Entry.Val = V;
+ Entry.Ty = V->getType();
+ Entry.setAttributes(CI, ArgI);
+ Args.push_back(Entry);
+ }
+ TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
+
+ CallLoweringInfo CLI;
+ CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
+
+ return lowerCallTo(CLI);
+}
+
+bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
+ // Handle the incoming return values from the call.
+ CLI.clearIns();
+ SmallVector<EVT, 4> RetTys;
+ ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
+
+ SmallVector<ISD::OutputArg, 4> Outs;
+ GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
+
+ bool CanLowerReturn = TLI.CanLowerReturn(
+ CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
+
+ // FIXME: sret demotion isn't supported yet - bail out.
+ if (!CanLowerReturn)
+ return false;
+
+ for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+ EVT VT = RetTys[I];
+ MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
+ unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ ISD::InputArg MyFlags;
+ MyFlags.VT = RegisterVT;
+ MyFlags.ArgVT = VT;
+ MyFlags.Used = CLI.IsReturnValueUsed;
+ if (CLI.RetSExt)
+ MyFlags.Flags.setSExt();
+ if (CLI.RetZExt)
+ MyFlags.Flags.setZExt();
+ if (CLI.IsInReg)
+ MyFlags.Flags.setInReg();
+ CLI.Ins.push_back(MyFlags);
+ }
+ }
+
+ // Handle all of the outgoing arguments.
+ CLI.clearOuts();
+ for (auto &Arg : CLI.getArgs()) {
+ Type *FinalType = Arg.Ty;
+ if (Arg.IsByVal)
+ FinalType = Arg.IndirectType;
+ bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
+ FinalType, CLI.CallConv, CLI.IsVarArg, DL);
+
+ ISD::ArgFlagsTy Flags;
+ if (Arg.IsZExt)
+ Flags.setZExt();
+ if (Arg.IsSExt)
+ Flags.setSExt();
+ if (Arg.IsInReg)
+ Flags.setInReg();
+ if (Arg.IsSRet)
+ Flags.setSRet();
+ if (Arg.IsSwiftSelf)
+ Flags.setSwiftSelf();
+ if (Arg.IsSwiftAsync)
+ Flags.setSwiftAsync();
+ if (Arg.IsSwiftError)
+ Flags.setSwiftError();
+ if (Arg.IsCFGuardTarget)
+ Flags.setCFGuardTarget();
+ if (Arg.IsByVal)
+ Flags.setByVal();
+ if (Arg.IsInAlloca) {
+ Flags.setInAlloca();
+ // Set the byval flag for CCAssignFn callbacks that don't know about
+ // inalloca. This way we can know how many bytes we should've allocated
+ // and how many bytes a callee cleanup function will pop. If we port
+ // inalloca to more targets, we'll have to add custom inalloca handling in
+ // the various CC lowering callbacks.
+ Flags.setByVal();
+ }
+ if (Arg.IsPreallocated) {
+ Flags.setPreallocated();
+ // Set the byval flag for CCAssignFn callbacks that don't know about
+ // preallocated. This way we can know how many bytes we should've
+ // allocated and how many bytes a callee cleanup function will pop. If we
+ // port preallocated to more targets, we'll have to add custom
+ // preallocated handling in the various CC lowering callbacks.
+ Flags.setByVal();
+ }
+ MaybeAlign MemAlign = Arg.Alignment;
+ if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
+ unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
+
+ // For ByVal, alignment should come from FE. BE will guess if this info
+ // is not there, but there are cases it cannot get right.
+ if (!MemAlign)
+ MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
+ Flags.setByValSize(FrameSize);
+ } else if (!MemAlign) {
+ MemAlign = DL.getABITypeAlign(Arg.Ty);
+ }
+ Flags.setMemAlign(*MemAlign);
+ if (Arg.IsNest)
+ Flags.setNest();
+ if (NeedsRegBlock)
+ Flags.setInConsecutiveRegs();
+ Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
+ CLI.OutVals.push_back(Arg.Val);
+ CLI.OutFlags.push_back(Flags);
+ }
+
+ if (!fastLowerCall(CLI))
+ return false;
+
+ // Set all unused physreg defs as dead.
+ assert(CLI.Call && "No call instruction specified.");
+ CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
+
+ if (CLI.NumResultRegs && CLI.CB)
+ updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
+
+ // Set labels for heapallocsite call.
+ if (CLI.CB)
+ if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
+ CLI.Call->setHeapAllocMarker(*MF, MD);
+
+ return true;
+}
+
+bool FastISel::lowerCall(const CallInst *CI) {
+ FunctionType *FuncTy = CI->getFunctionType();
+ Type *RetTy = CI->getType();
+
+ ArgListTy Args;
+ ArgListEntry Entry;
+ Args.reserve(CI->arg_size());
+
+ for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
+ Value *V = *i;
+
+ // Skip empty types
+ if (V->getType()->isEmptyTy())
+ continue;
+
+ Entry.Val = V;
+ Entry.Ty = V->getType();
+
+ // Skip the first return-type Attribute to get to params.
+ Entry.setAttributes(CI, i - CI->arg_begin());
+ Args.push_back(Entry);
+ }
+
+ // Check if target-independent constraints permit a tail call here.
+ // Target-dependent constraints are checked within fastLowerCall.
+ bool IsTailCall = CI->isTailCall();
+ if (IsTailCall && !isInTailCallPosition(*CI, TM))
+ IsTailCall = false;
+ if (IsTailCall && !CI->isMustTailCall() &&
+ MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool())
+ IsTailCall = false;
+
+ CallLoweringInfo CLI;
+ CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
+ .setTailCall(IsTailCall);
+
+ diagnoseDontCall(*CI);
+
+ return lowerCallTo(CLI);
+}
+
+bool FastISel::selectCall(const User *I) {
+ const CallInst *Call = cast<CallInst>(I);
+
+ // Handle simple inline asms.
+ if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
+ // Don't attempt to handle constraints.
+ if (!IA->getConstraintString().empty())
+ return false;
+
+ unsigned ExtraInfo = 0;
+ if (IA->hasSideEffects())
+ ExtraInfo |= InlineAsm::Extra_HasSideEffects;
+ if (IA->isAlignStack())
+ ExtraInfo |= InlineAsm::Extra_IsAlignStack;
+ if (Call->isConvergent())
+ ExtraInfo |= InlineAsm::Extra_IsConvergent;
+ ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
+
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
+ TII.get(TargetOpcode::INLINEASM));
+ MIB.addExternalSymbol(IA->getAsmString().c_str());
+ MIB.addImm(ExtraInfo);
+
+ const MDNode *SrcLoc = Call->getMetadata("srcloc");
+ if (SrcLoc)
+ MIB.addMetadata(SrcLoc);
+
+ return true;
+ }
+
+ // Handle intrinsic function calls.
+ if (const auto *II = dyn_cast<IntrinsicInst>(Call))
+ return selectIntrinsicCall(II);
+
+ return lowerCall(Call);
+}
+
+bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
+ switch (II->getIntrinsicID()) {
+ default:
+ break;
+ // At -O0 we don't care about the lifetime intrinsics.
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ // The donothing intrinsic does, well, nothing.
+ case Intrinsic::donothing:
+ // Neither does the sideeffect intrinsic.
+ case Intrinsic::sideeffect:
+ // Neither does the assume intrinsic; it's also OK not to codegen its operand.
+ case Intrinsic::assume:
+ // Neither does the llvm.experimental.noalias.scope.decl intrinsic
+ case Intrinsic::experimental_noalias_scope_decl:
+ return true;
+ case Intrinsic::dbg_declare: {
+ const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
+ assert(DI->getVariable() && "Missing variable");
+ if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
+ LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
+ << " (!hasDebugInfo)\n");
+ return true;
+ }
+
+ if (FuncInfo.PreprocessedDbgDeclares.contains(DI))
+ return true;
+
+ const Value *Address = DI->getAddress();
+ if (!Address || isa<UndefValue>(Address)) {
+ LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
+ << " (bad/undef address)\n");
+ return true;
+ }
+
+ std::optional<MachineOperand> Op;
+ if (Register Reg = lookUpRegForValue(Address))
+ Op = MachineOperand::CreateReg(Reg, false);
+
+ // If we have a VLA that has a "use" in a metadata node that's then used
+ // here but it has no other uses, then we have a problem. E.g.,
+ //
+ // int foo (const int *x) {
+ // char a[*x];
+ // return 0;
+ // }
+ //
+ // If we assign 'a' a vreg and fast isel later on has to use the selection
+ // DAG isel, it will want to copy the value to the vreg. However, there are
+ // no uses, which goes counter to what selection DAG isel expects.
+ if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
+ (!isa<AllocaInst>(Address) ||
+ !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
+ Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
+ false);
+
+ if (Op) {
+ assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) &&
+ "Expected inlined-at fields to agree");
+ if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) {
+ // If using instruction referencing, produce this as a DBG_INSTR_REF,
+ // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
+ // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
+ SmallVector<uint64_t, 3> Ops(
+ {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref});
+ auto *NewExpr = DIExpression::prependOpcodes(DI->getExpression(), Ops);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(),
+ TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op,
+ DI->getVariable(), NewExpr);
+ } else {
+ // A dbg.declare describes the address of a source variable, so lower it
+ // into an indirect DBG_VALUE.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(),
+ TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op,
+ DI->getVariable(), DI->getExpression());
+ }
+ } else {
+ // We can't yet handle anything else here because it would require
+ // generating code, thus altering codegen because of debug info.
+ LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
+ << " (no materialized reg for address)\n");
+ }
+ return true;
+ }
+ case Intrinsic::dbg_value: {
+ // This form of DBG_VALUE is target-independent.
+ const DbgValueInst *DI = cast<DbgValueInst>(II);
+ const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
+ const Value *V = DI->getValue();
+ DIExpression *Expr = DI->getExpression();
+ DILocalVariable *Var = DI->getVariable();
+ assert(Var->isValidLocationForIntrinsic(MIMD.getDL()) &&
+ "Expected inlined-at fields to agree");
+ if (!V || isa<UndefValue>(V) || DI->hasArgList()) {
+ // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
+ // undef DBG_VALUE to terminate any prior location.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II, false, 0U,
+ Var, Expr);
+ return true;
+ }
+ if (const auto *CI = dyn_cast<ConstantInt>(V)) {
+ // See if there's an expression to constant-fold.
+ if (Expr)
+ std::tie(Expr, CI) = Expr->constantFold(CI);
+ if (CI->getBitWidth() > 64)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addCImm(CI)
+ .addImm(0U)
+ .addMetadata(Var)
+ .addMetadata(Expr);
+ else
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addImm(CI->getZExtValue())
+ .addImm(0U)
+ .addMetadata(Var)
+ .addMetadata(Expr);
+ return true;
+ }
+ if (const auto *CF = dyn_cast<ConstantFP>(V)) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addFPImm(CF)
+ .addImm(0U)
+ .addMetadata(Var)
+ .addMetadata(Expr);
+ return true;
+ }
+ if (const auto *Arg = dyn_cast<Argument>(V);
+ Arg && Expr && Expr->isEntryValue()) {
+ // As per the Verifier, this case is only valid for swift async Args.
+ assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
+
+ Register Reg = getRegForValue(Arg);
+ for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
+ if (Reg == VirtReg || Reg == PhysReg) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II,
+ false /*IsIndirect*/, PhysReg, Var, Expr);
+ return true;
+ }
+
+ LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
+ "couldn't find a physical register\n"
+ << *DI << "\n");
+ return true;
+ }
+ if (Register Reg = lookUpRegForValue(V)) {
+ // FIXME: This does not handle register-indirect values at offset 0.
+ if (!FuncInfo.MF->useDebugInstrRef()) {
+ bool IsIndirect = false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II, IsIndirect,
+ Reg, Var, Expr);
+ return true;
+ }
+ // If using instruction referencing, produce this as a DBG_INSTR_REF,
+ // to be later patched up by finalizeDebugInstrRefs.
+ SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
+ /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
+ /* isKill */ false, /* isDead */ false,
+ /* isUndef */ false, /* isEarlyClobber */ false,
+ /* SubReg */ 0, /* isDebug */ true)});
+ SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
+ auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(),
+ TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs,
+ Var, NewExpr);
+ return true;
+ }
+ // We don't know how to handle other cases, so we drop.
+ LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
+ return true;
+ }
+ case Intrinsic::dbg_label: {
+ const DbgLabelInst *DI = cast<DbgLabelInst>(II);
+ assert(DI->getLabel() && "Missing label");
+ if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
+ LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
+ return true;
+ }
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
+ TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
+ return true;
+ }
+ case Intrinsic::objectsize:
+ llvm_unreachable("llvm.objectsize.* should have been lowered already");
+
+ case Intrinsic::is_constant:
+ llvm_unreachable("llvm.is.constant.* should have been lowered already");
+
+ case Intrinsic::launder_invariant_group:
+ case Intrinsic::strip_invariant_group:
+ case Intrinsic::expect: {
+ Register ResultReg = getRegForValue(II->getArgOperand(0));
+ if (!ResultReg)
+ return false;
+ updateValueMap(II, ResultReg);
+ return true;
+ }
+ case Intrinsic::experimental_stackmap:
+ return selectStackmap(II);
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ return selectPatchpoint(II);
+
+ case Intrinsic::xray_customevent:
+ return selectXRayCustomEvent(II);
+ case Intrinsic::xray_typedevent:
+ return selectXRayTypedEvent(II);
+ }
+
+ return fastLowerIntrinsicCall(II);
+}
+
+bool FastISel::selectCast(const User *I, unsigned Opcode) {
+ EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(DL, I->getType());
+
+ if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
+ !DstVT.isSimple())
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ // Check if the destination type is legal.
+ if (!TLI.isTypeLegal(DstVT))
+ return false;
+
+ // Check if the source operand is legal.
+ if (!TLI.isTypeLegal(SrcVT))
+ return false;
+
+ Register InputReg = getRegForValue(I->getOperand(0));
+ if (!InputReg)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
+ Opcode, InputReg);
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool FastISel::selectBitCast(const User *I) {
+ EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
+ EVT DstEVT = TLI.getValueType(DL, I->getType());
+ if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
+ !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ MVT DstVT = DstEVT.getSimpleVT();
+ Register Op0 = getRegForValue(I->getOperand(0));
+ if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ // If the bitcast doesn't change the type, just use the operand value.
+ if (SrcVT == DstVT) {
+ updateValueMap(I, Op0);
+ return true;
+ }
+
+ // Otherwise, select a BITCAST opcode.
+ Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool FastISel::selectFreeze(const User *I) {
+ Register Reg = getRegForValue(I->getOperand(0));
+ if (!Reg)
+ // Unhandled operand.
+ return false;
+
+ EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
+ if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
+ // Unhandled type, bail out.
+ return false;
+
+ MVT Ty = ETy.getSimpleVT();
+ const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
+ Register ResultReg = createResultReg(TyRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
+ TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+// Remove local value instructions starting from the instruction after
+// SavedLastLocalValue to the current function insert point.
+void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
+{
+ MachineInstr *CurLastLocalValue = getLastLocalValue();
+ if (CurLastLocalValue != SavedLastLocalValue) {
+ // Find the first local value instruction to be deleted.
+ // This is the instruction after SavedLastLocalValue if it is non-NULL.
+ // Otherwise it's the first instruction in the block.
+ MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
+ if (SavedLastLocalValue)
+ ++FirstDeadInst;
+ else
+ FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
+ setLastLocalValue(SavedLastLocalValue);
+ removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
+ }
+}
+
+bool FastISel::selectInstruction(const Instruction *I) {
+ // Flush the local value map before starting each instruction.
+ // This improves locality and debugging, and can reduce spills.
+ // Reuse of values across IR instructions is relatively uncommon.
+ flushLocalValueMap();
+
+ MachineInstr *SavedLastLocalValue = getLastLocalValue();
+ // Just before the terminator instruction, insert instructions to
+ // feed PHI nodes in successor blocks.
+ if (I->isTerminator()) {
+ if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
+ // PHI node handling may have generated local value instructions,
+ // even though it failed to handle all PHI nodes.
+ // We remove these instructions because SelectionDAGISel will generate
+ // them again.
+ removeDeadLocalValueCode(SavedLastLocalValue);
+ return false;
+ }
+ }
+
+ // FastISel does not handle any operand bundles except OB_funclet.
+ if (auto *Call = dyn_cast<CallBase>(I))
+ for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
+ if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
+ return false;
+
+ MIMD = MIMetadata(*I);
+
+ SavedInsertPt = FuncInfo.InsertPt;
+
+ if (const auto *Call = dyn_cast<CallInst>(I)) {
+ const Function *F = Call->getCalledFunction();
+ LibFunc Func;
+
+ // As a special case, don't handle calls to builtin library functions that
+ // may be translated directly to target instructions.
+ if (F && !F->hasLocalLinkage() && F->hasName() &&
+ LibInfo->getLibFunc(F->getName(), Func) &&
+ LibInfo->hasOptimizedCodeGen(Func))
+ return false;
+
+ // Don't handle Intrinsic::trap if a trap function is specified.
+ if (F && F->getIntrinsicID() == Intrinsic::trap &&
+ Call->hasFnAttr("trap-func-name"))
+ return false;
+ }
+
+ // First, try doing target-independent selection.
+ if (!SkipTargetIndependentISel) {
+ if (selectOperator(I, I->getOpcode())) {
+ ++NumFastIselSuccessIndependent;
+ MIMD = {};
+ return true;
+ }
+ // Remove dead code.
+ recomputeInsertPt();
+ if (SavedInsertPt != FuncInfo.InsertPt)
+ removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
+ SavedInsertPt = FuncInfo.InsertPt;
+ }
+ // Next, try calling the target to attempt to handle the instruction.
+ if (fastSelectInstruction(I)) {
+ ++NumFastIselSuccessTarget;
+ MIMD = {};
+ return true;
+ }
+ // Remove dead code.
+ recomputeInsertPt();
+ if (SavedInsertPt != FuncInfo.InsertPt)
+ removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
+
+ MIMD = {};
+ // Undo phi node updates, because they will be added again by SelectionDAG.
+ if (I->isTerminator()) {
+ // PHI node handling may have generated local value instructions.
+ // We remove them because SelectionDAGISel will generate them again.
+ removeDeadLocalValueCode(SavedLastLocalValue);
+ FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
+ }
+ return false;
+}
+
+/// Emit an unconditional branch to the given block, unless it is the immediate
+/// (fall-through) successor, and update the CFG.
+void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
+ const DebugLoc &DbgLoc) {
+ if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
+ FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
+ // For more accurate line information if this is the only non-debug
+ // instruction in the block then emit it, otherwise we have the
+ // unconditional fall-through case, which needs no instructions.
+ } else {
+ // The unconditional branch case.
+ TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
+ SmallVector<MachineOperand, 0>(), DbgLoc);
+ }
+ if (FuncInfo.BPI) {
+ auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
+ FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
+ } else
+ FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
+}
+
+void FastISel::finishCondBranch(const BasicBlock *BranchBB,
+ MachineBasicBlock *TrueMBB,
+ MachineBasicBlock *FalseMBB) {
+ // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
+ // happen in degenerate IR and MachineIR forbids to have a block twice in the
+ // successor/predecessor lists.
+ if (TrueMBB != FalseMBB) {
+ if (FuncInfo.BPI) {
+ auto BranchProbability =
+ FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
+ } else
+ FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
+ }
+
+ fastEmitBranch(FalseMBB, MIMD.getDL());
+}
+
+/// Emit an FNeg operation.
+bool FastISel::selectFNeg(const User *I, const Value *In) {
+ Register OpReg = getRegForValue(In);
+ if (!OpReg)
+ return false;
+
+ // If the target has ISD::FNEG, use it.
+ EVT VT = TLI.getValueType(DL, I->getType());
+ Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
+ OpReg);
+ if (ResultReg) {
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ // Bitcast the value to integer, twiddle the sign bit with xor,
+ // and then bitcast it back to floating-point.
+ if (VT.getSizeInBits() > 64)
+ return false;
+ EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
+ if (!TLI.isTypeLegal(IntVT))
+ return false;
+
+ Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
+ ISD::BITCAST, OpReg);
+ if (!IntReg)
+ return false;
+
+ Register IntResultReg = fastEmit_ri_(
+ IntVT.getSimpleVT(), ISD::XOR, IntReg,
+ UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
+ if (!IntResultReg)
+ return false;
+
+ ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
+ IntResultReg);
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool FastISel::selectExtractValue(const User *U) {
+ const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
+ if (!EVI)
+ return false;
+
+ // Make sure we only try to handle extracts with a legal result. But also
+ // allow i1 because it's easy.
+ EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
+ if (!RealVT.isSimple())
+ return false;
+ MVT VT = RealVT.getSimpleVT();
+ if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
+ return false;
+
+ const Value *Op0 = EVI->getOperand(0);
+ Type *AggTy = Op0->getType();
+
+ // Get the base result register.
+ unsigned ResultReg;
+ DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
+ if (I != FuncInfo.ValueMap.end())
+ ResultReg = I->second;
+ else if (isa<Instruction>(Op0))
+ ResultReg = FuncInfo.InitializeRegForValue(Op0);
+ else
+ return false; // fast-isel can't handle aggregate constants at the moment
+
+ // Get the actual result register, which is an offset from the base register.
+ unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
+
+ SmallVector<EVT, 4> AggValueVTs;
+ ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
+
+ for (unsigned i = 0; i < VTIndex; i++)
+ ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
+
+ updateValueMap(EVI, ResultReg);
+ return true;
+}
+
+bool FastISel::selectOperator(const User *I, unsigned Opcode) {
+ switch (Opcode) {
+ case Instruction::Add:
+ return selectBinaryOp(I, ISD::ADD);
+ case Instruction::FAdd:
+ return selectBinaryOp(I, ISD::FADD);
+ case Instruction::Sub:
+ return selectBinaryOp(I, ISD::SUB);
+ case Instruction::FSub:
+ return selectBinaryOp(I, ISD::FSUB);
+ case Instruction::Mul:
+ return selectBinaryOp(I, ISD::MUL);
+ case Instruction::FMul:
+ return selectBinaryOp(I, ISD::FMUL);
+ case Instruction::SDiv:
+ return selectBinaryOp(I, ISD::SDIV);
+ case Instruction::UDiv:
+ return selectBinaryOp(I, ISD::UDIV);
+ case Instruction::FDiv:
+ return selectBinaryOp(I, ISD::FDIV);
+ case Instruction::SRem:
+ return selectBinaryOp(I, ISD::SREM);
+ case Instruction::URem:
+ return selectBinaryOp(I, ISD::UREM);
+ case Instruction::FRem:
+ return selectBinaryOp(I, ISD::FREM);
+ case Instruction::Shl:
+ return selectBinaryOp(I, ISD::SHL);
+ case Instruction::LShr:
+ return selectBinaryOp(I, ISD::SRL);
+ case Instruction::AShr:
+ return selectBinaryOp(I, ISD::SRA);
+ case Instruction::And:
+ return selectBinaryOp(I, ISD::AND);
+ case Instruction::Or:
+ return selectBinaryOp(I, ISD::OR);
+ case Instruction::Xor:
+ return selectBinaryOp(I, ISD::XOR);
+
+ case Instruction::FNeg:
+ return selectFNeg(I, I->getOperand(0));
+
+ case Instruction::GetElementPtr:
+ return selectGetElementPtr(I);
+
+ case Instruction::Br: {
+ const BranchInst *BI = cast<BranchInst>(I);
+
+ if (BI->isUnconditional()) {
+ const BasicBlock *LLVMSucc = BI->getSuccessor(0);
+ MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
+ fastEmitBranch(MSucc, BI->getDebugLoc());
+ return true;
+ }
+
+ // Conditional branches are not handed yet.
+ // Halt "fast" selection and bail.
+ return false;
+ }
+
+ case Instruction::Unreachable:
+ if (TM.Options.TrapUnreachable)
+ return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
+ else
+ return true;
+
+ case Instruction::Alloca:
+ // FunctionLowering has the static-sized case covered.
+ if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
+ return true;
+
+ // Dynamic-sized alloca is not handled yet.
+ return false;
+
+ case Instruction::Call:
+ // On AIX, normal call lowering uses the DAG-ISEL path currently so that the
+ // callee of the direct function call instruction will be mapped to the
+ // symbol for the function's entry point, which is distinct from the
+ // function descriptor symbol. The latter is the symbol whose XCOFF symbol
+ // name is the C-linkage name of the source level function.
+ // But fast isel still has the ability to do selection for intrinsics.
+ if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I))
+ return false;
+ return selectCall(I);
+
+ case Instruction::BitCast:
+ return selectBitCast(I);
+
+ case Instruction::FPToSI:
+ return selectCast(I, ISD::FP_TO_SINT);
+ case Instruction::ZExt:
+ return selectCast(I, ISD::ZERO_EXTEND);
+ case Instruction::SExt:
+ return selectCast(I, ISD::SIGN_EXTEND);
+ case Instruction::Trunc:
+ return selectCast(I, ISD::TRUNCATE);
+ case Instruction::SIToFP:
+ return selectCast(I, ISD::SINT_TO_FP);
+
+ case Instruction::IntToPtr: // Deliberate fall-through.
+ case Instruction::PtrToInt: {
+ EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(DL, I->getType());
+ if (DstVT.bitsGT(SrcVT))
+ return selectCast(I, ISD::ZERO_EXTEND);
+ if (DstVT.bitsLT(SrcVT))
+ return selectCast(I, ISD::TRUNCATE);
+ Register Reg = getRegForValue(I->getOperand(0));
+ if (!Reg)
+ return false;
+ updateValueMap(I, Reg);
+ return true;
+ }
+
+ case Instruction::ExtractValue:
+ return selectExtractValue(I);
+
+ case Instruction::Freeze:
+ return selectFreeze(I);
+
+ case Instruction::PHI:
+ llvm_unreachable("FastISel shouldn't visit PHI nodes!");
+
+ default:
+ // Unhandled instruction. Halt "fast" selection and bail.
+ return false;
+ }
+}
+
+FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo,
+ bool SkipTargetIndependentISel)
+ : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
+ MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
+ TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
+ TII(*MF->getSubtarget().getInstrInfo()),
+ TLI(*MF->getSubtarget().getTargetLowering()),
+ TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
+ SkipTargetIndependentISel(SkipTargetIndependentISel) {}
+
+FastISel::~FastISel() = default;
+
+bool FastISel::fastLowerArguments() { return false; }
+
+bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
+
+bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
+ return false;
+}
+
+unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
+
+unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
+ return 0;
+}
+
+unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
+ unsigned /*Op1*/) {
+ return 0;
+}
+
+unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
+ return 0;
+}
+
+unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
+ const ConstantFP * /*FPImm*/) {
+ return 0;
+}
+
+unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
+ uint64_t /*Imm*/) {
+ return 0;
+}
+
+/// This method is a wrapper of fastEmit_ri. It first tries to emit an
+/// instruction with an immediate operand using fastEmit_ri.
+/// If that fails, it materializes the immediate into a register and try
+/// fastEmit_rr instead.
+Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
+ uint64_t Imm, MVT ImmType) {
+ // If this is a multiply by a power of two, emit this as a shift left.
+ if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
+ Opcode = ISD::SHL;
+ Imm = Log2_64(Imm);
+ } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
+ // div x, 8 -> srl x, 3
+ Opcode = ISD::SRL;
+ Imm = Log2_64(Imm);
+ }
+
+ // Horrible hack (to be removed), check to make sure shift amounts are
+ // in-range.
+ if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
+ Imm >= VT.getSizeInBits())
+ return 0;
+
+ // First check if immediate type is legal. If not, we can't use the ri form.
+ Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
+ if (ResultReg)
+ return ResultReg;
+ Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
+ if (!MaterialReg) {
+ // This is a bit ugly/slow, but failing here means falling out of
+ // fast-isel, which would be very slow.
+ IntegerType *ITy =
+ IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
+ MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
+ if (!MaterialReg)
+ return 0;
+ }
+ return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
+}
+
+Register FastISel::createResultReg(const TargetRegisterClass *RC) {
+ return MRI.createVirtualRegister(RC);
+}
+
+Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
+ unsigned OpNum) {
+ if (Op.isVirtual()) {
+ const TargetRegisterClass *RegClass =
+ TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
+ if (!MRI.constrainRegClass(Op, RegClass)) {
+ // If it's not legal to COPY between the register classes, something
+ // has gone very wrong before we got here.
+ Register NewOp = createResultReg(RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
+ TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
+ return NewOp;
+ }
+ }
+ return Op;
+}
+
+Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC) {
+ Register ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg);
+ return ResultReg;
+}
+
+Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0) {
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ Register ResultReg = createResultReg(RC);
+ Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
+ .addReg(Op0);
+ else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addReg(Op0);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
+ ResultReg)
+ .addReg(II.implicit_defs()[0]);
+ }
+
+ return ResultReg;
+}
+
+Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ unsigned Op1) {
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ Register ResultReg = createResultReg(RC);
+ Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
+ Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
+ .addReg(Op0)
+ .addReg(Op1);
+ else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addReg(Op0)
+ .addReg(Op1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
+ ResultReg)
+ .addReg(II.implicit_defs()[0]);
+ }
+ return ResultReg;
+}
+
+Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ unsigned Op1, unsigned Op2) {
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ Register ResultReg = createResultReg(RC);
+ Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
+ Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
+ Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
+ .addReg(Op0)
+ .addReg(Op1)
+ .addReg(Op2);
+ else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addReg(Op0)
+ .addReg(Op1)
+ .addReg(Op2);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
+ ResultReg)
+ .addReg(II.implicit_defs()[0]);
+ }
+ return ResultReg;
+}
+
+Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ uint64_t Imm) {
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ Register ResultReg = createResultReg(RC);
+ Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
+ .addReg(Op0)
+ .addImm(Imm);
+ else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addReg(Op0)
+ .addImm(Imm);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
+ ResultReg)
+ .addReg(II.implicit_defs()[0]);
+ }
+ return ResultReg;
+}
+
+Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ uint64_t Imm1, uint64_t Imm2) {
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ Register ResultReg = createResultReg(RC);
+ Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
+ .addReg(Op0)
+ .addImm(Imm1)
+ .addImm(Imm2);
+ else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addReg(Op0)
+ .addImm(Imm1)
+ .addImm(Imm2);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
+ ResultReg)
+ .addReg(II.implicit_defs()[0]);
+ }
+ return ResultReg;
+}
+
+Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ const ConstantFP *FPImm) {
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ Register ResultReg = createResultReg(RC);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
+ .addFPImm(FPImm);
+ else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addFPImm(FPImm);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
+ ResultReg)
+ .addReg(II.implicit_defs()[0]);
+ }
+ return ResultReg;
+}
+
+Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ unsigned Op1, uint64_t Imm) {
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ Register ResultReg = createResultReg(RC);
+ Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
+ Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
+ .addReg(Op0)
+ .addReg(Op1)
+ .addImm(Imm);
+ else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
+ .addReg(Op0)
+ .addReg(Op1)
+ .addImm(Imm);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
+ ResultReg)
+ .addReg(II.implicit_defs()[0]);
+ }
+ return ResultReg;
+}
+
+Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, uint64_t Imm) {
+ Register ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
+ .addImm(Imm);
+ else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
+ ResultReg)
+ .addReg(II.implicit_defs()[0]);
+ }
+ return ResultReg;
+}
+
+Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
+ uint32_t Idx) {
+ Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
+ assert(Register::isVirtualRegister(Op0) &&
+ "Cannot yet extract from physregs");
+ const TargetRegisterClass *RC = MRI.getRegClass(Op0);
+ MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(Op0, 0, Idx);
+ return ResultReg;
+}
+
+/// Emit MachineInstrs to compute the value of Op with all but the least
+/// significant bit set to zero.
+Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
+ return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
+}
+
+/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
+/// Emit code to ensure constants are copied into registers when needed.
+/// Remember the virtual registers that need to be added to the Machine PHI
+/// nodes as input. We cannot just directly add them, because expansion
+/// might result in multiple MBB's for one BB. As such, the start of the
+/// BB might correspond to a different MBB than the end.
+bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
+ const Instruction *TI = LLVMBB->getTerminator();
+
+ SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
+ FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
+
+ // Check successor nodes' PHI nodes that expect a constant to be available
+ // from this block.
+ for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
+ const BasicBlock *SuccBB = TI->getSuccessor(succ);
+ if (!isa<PHINode>(SuccBB->begin()))
+ continue;
+ MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
+
+ // If this terminator has multiple identical successors (common for
+ // switches), only handle each succ once.
+ if (!SuccsHandled.insert(SuccMBB).second)
+ continue;
+
+ MachineBasicBlock::iterator MBBI = SuccMBB->begin();
+
+ // At this point we know that there is a 1-1 correspondence between LLVM PHI
+ // nodes and Machine PHI nodes, but the incoming operands have not been
+ // emitted yet.
+ for (const PHINode &PN : SuccBB->phis()) {
+ // Ignore dead phi's.
+ if (PN.use_empty())
+ continue;
+
+ // Only handle legal types. Two interesting things to note here. First,
+ // by bailing out early, we may leave behind some dead instructions,
+ // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
+ // own moves. Second, this check is necessary because FastISel doesn't
+ // use CreateRegs to create registers, so it always creates
+ // exactly one register for each non-void instruction.
+ EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
+ if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
+ // Handle integer promotions, though, because they're common and easy.
+ if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
+ FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
+ return false;
+ }
+ }
+
+ const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
+
+ // Set the DebugLoc for the copy. Use the location of the operand if
+ // there is one; otherwise no location, flushLocalValueMap will fix it.
+ MIMD = {};
+ if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
+ MIMD = MIMetadata(*Inst);
+
+ Register Reg = getRegForValue(PHIOp);
+ if (!Reg) {
+ FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
+ return false;
+ }
+ FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
+ MIMD = {};
+ }
+ }
+
+ return true;
+}
+
+bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
+ assert(LI->hasOneUse() &&
+ "tryToFoldLoad expected a LoadInst with a single use");
+ // We know that the load has a single use, but don't know what it is. If it
+ // isn't one of the folded instructions, then we can't succeed here. Handle
+ // this by scanning the single-use users of the load until we get to FoldInst.
+ unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
+
+ const Instruction *TheUser = LI->user_back();
+ while (TheUser != FoldInst && // Scan up until we find FoldInst.
+ // Stay in the right block.
+ TheUser->getParent() == FoldInst->getParent() &&
+ --MaxUsers) { // Don't scan too far.
+ // If there are multiple or no uses of this instruction, then bail out.
+ if (!TheUser->hasOneUse())
+ return false;
+
+ TheUser = TheUser->user_back();
+ }
+
+ // If we didn't find the fold instruction, then we failed to collapse the
+ // sequence.
+ if (TheUser != FoldInst)
+ return false;
+
+ // Don't try to fold volatile loads. Target has to deal with alignment
+ // constraints.
+ if (LI->isVolatile())
+ return false;
+
+ // Figure out which vreg this is going into. If there is no assigned vreg yet
+ // then there actually was no reference to it. Perhaps the load is referenced
+ // by a dead instruction.
+ Register LoadReg = getRegForValue(LI);
+ if (!LoadReg)
+ return false;
+
+ // We can't fold if this vreg has no uses or more than one use. Multiple uses
+ // may mean that the instruction got lowered to multiple MIs, or the use of
+ // the loaded value ended up being multiple operands of the result.
+ if (!MRI.hasOneUse(LoadReg))
+ return false;
+
+ // If the register has fixups, there may be additional uses through a
+ // different alias of the register.
+ if (FuncInfo.RegsWithFixups.contains(LoadReg))
+ return false;
+
+ MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
+ MachineInstr *User = RI->getParent();
+
+ // Set the insertion point properly. Folding the load can cause generation of
+ // other random instructions (like sign extends) for addressing modes; make
+ // sure they get inserted in a logical place before the new instruction.
+ FuncInfo.InsertPt = User;
+ FuncInfo.MBB = User->getParent();
+
+ // Ask the target to try folding the load.
+ return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
+}
+
+bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
+ // Must be an add.
+ if (!isa<AddOperator>(Add))
+ return false;
+ // Type size needs to match.
+ if (DL.getTypeSizeInBits(GEP->getType()) !=
+ DL.getTypeSizeInBits(Add->getType()))
+ return false;
+ // Must be in the same basic block.
+ if (isa<Instruction>(Add) &&
+ FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
+ return false;
+ // Must have a constant operand.
+ return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
+}
+
+MachineMemOperand *
+FastISel::createMachineMemOperandFor(const Instruction *I) const {
+ const Value *Ptr;
+ Type *ValTy;
+ MaybeAlign Alignment;
+ MachineMemOperand::Flags Flags;
+ bool IsVolatile;
+
+ if (const auto *LI = dyn_cast<LoadInst>(I)) {
+ Alignment = LI->getAlign();
+ IsVolatile = LI->isVolatile();
+ Flags = MachineMemOperand::MOLoad;
+ Ptr = LI->getPointerOperand();
+ ValTy = LI->getType();
+ } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
+ Alignment = SI->getAlign();
+ IsVolatile = SI->isVolatile();
+ Flags = MachineMemOperand::MOStore;
+ Ptr = SI->getPointerOperand();
+ ValTy = SI->getValueOperand()->getType();
+ } else
+ return nullptr;
+
+ bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
+ bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
+ bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
+ const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
+
+ AAMDNodes AAInfo = I->getAAMetadata();
+
+ if (!Alignment) // Ensure that codegen never sees alignment 0.
+ Alignment = DL.getABITypeAlign(ValTy);
+
+ unsigned Size = DL.getTypeStoreSize(ValTy);
+
+ if (IsVolatile)
+ Flags |= MachineMemOperand::MOVolatile;
+ if (IsNonTemporal)
+ Flags |= MachineMemOperand::MONonTemporal;
+ if (IsDereferenceable)
+ Flags |= MachineMemOperand::MODereferenceable;
+ if (IsInvariant)
+ Flags |= MachineMemOperand::MOInvariant;
+
+ return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
+ *Alignment, AAInfo, Ranges);
+}
+
+CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
+ // If both operands are the same, then try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = CI->getPredicate();
+ if (CI->getOperand(0) != CI->getOperand(1))
+ return Predicate;
+
+ switch (Predicate) {
+ default: llvm_unreachable("Invalid predicate!");
+ case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
+
+ case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
+ }
+
+ return Predicate;
+}