aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp759
1 files changed, 759 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp b/contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp
new file mode 100644
index 000000000000..dbb9a9ffdf60
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp
@@ -0,0 +1,759 @@
+//===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass eliminates machine instruction PHI nodes by inserting copy
+// instructions. This destroys SSA information, but is the desired input for
+// some register allocators.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PHIEliminationUtils.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "phi-node-elimination"
+
+static cl::opt<bool>
+DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
+ cl::Hidden, cl::desc("Disable critical edge splitting "
+ "during PHI elimination"));
+
+static cl::opt<bool>
+SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
+ cl::Hidden, cl::desc("Split all critical edges during "
+ "PHI elimination"));
+
+static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
+ "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
+ cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
+
+namespace {
+
+ class PHIElimination : public MachineFunctionPass {
+ MachineRegisterInfo *MRI = nullptr; // Machine register information
+ LiveVariables *LV = nullptr;
+ LiveIntervals *LIS = nullptr;
+
+ public:
+ static char ID; // Pass identification, replacement for typeid
+
+ PHIElimination() : MachineFunctionPass(ID) {
+ initializePHIEliminationPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+ private:
+ /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
+ /// in predecessor basic blocks.
+ bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
+
+ void LowerPHINode(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator LastPHIIt);
+
+ /// analyzePHINodes - Gather information about the PHI nodes in
+ /// here. In particular, we want to map the number of uses of a virtual
+ /// register which is used in a PHI node. We map that to the BB the
+ /// vreg is coming from. This is used later to determine when the vreg
+ /// is killed in the BB.
+ void analyzePHINodes(const MachineFunction& MF);
+
+ /// Split critical edges where necessary for good coalescer performance.
+ bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineLoopInfo *MLI,
+ std::vector<SparseBitVector<>> *LiveInSets);
+
+ // These functions are temporary abstractions around LiveVariables and
+ // LiveIntervals, so they can go away when LiveVariables does.
+ bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
+ bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
+
+ using BBVRegPair = std::pair<unsigned, Register>;
+ using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
+
+ // Count the number of non-undef PHI uses of each register in each BB.
+ VRegPHIUse VRegPHIUseCount;
+
+ // Defs of PHI sources which are implicit_def.
+ SmallPtrSet<MachineInstr*, 4> ImpDefs;
+
+ // Map reusable lowered PHI node -> incoming join register.
+ using LoweredPHIMap =
+ DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
+ LoweredPHIMap LoweredPHIs;
+ };
+
+} // end anonymous namespace
+
+STATISTIC(NumLowered, "Number of phis lowered");
+STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
+STATISTIC(NumReused, "Number of reused lowered phis");
+
+char PHIElimination::ID = 0;
+
+char& llvm::PHIEliminationID = PHIElimination::ID;
+
+INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
+ "Eliminate PHI nodes for register allocation",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveVariables)
+INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
+ "Eliminate PHI nodes for register allocation", false, false)
+
+void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addUsedIfAvailable<LiveVariables>();
+ AU.addPreserved<LiveVariables>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addPreserved<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
+ MRI = &MF.getRegInfo();
+ LV = getAnalysisIfAvailable<LiveVariables>();
+ LIS = getAnalysisIfAvailable<LiveIntervals>();
+
+ bool Changed = false;
+
+ // Split critical edges to help the coalescer.
+ if (!DisableEdgeSplitting && (LV || LIS)) {
+ // A set of live-in regs for each MBB which is used to update LV
+ // efficiently also with large functions.
+ std::vector<SparseBitVector<>> LiveInSets;
+ if (LV) {
+ LiveInSets.resize(MF.size());
+ for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
+ // Set the bit for this register for each MBB where it is
+ // live-through or live-in (killed).
+ Register VirtReg = Register::index2VirtReg(Index);
+ MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
+ if (!DefMI)
+ continue;
+ LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
+ SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
+ SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
+ while (AliveBlockItr != EndItr) {
+ unsigned BlockNum = *(AliveBlockItr++);
+ LiveInSets[BlockNum].set(Index);
+ }
+ // The register is live into an MBB in which it is killed but not
+ // defined. See comment for VarInfo in LiveVariables.h.
+ MachineBasicBlock *DefMBB = DefMI->getParent();
+ if (VI.Kills.size() > 1 ||
+ (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
+ for (auto *MI : VI.Kills)
+ LiveInSets[MI->getParent()->getNumber()].set(Index);
+ }
+ }
+
+ MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
+ for (auto &MBB : MF)
+ Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
+ }
+
+ // This pass takes the function out of SSA form.
+ MRI->leaveSSA();
+
+ // Populate VRegPHIUseCount
+ analyzePHINodes(MF);
+
+ // Eliminate PHI instructions by inserting copies into predecessor blocks.
+ for (auto &MBB : MF)
+ Changed |= EliminatePHINodes(MF, MBB);
+
+ // Remove dead IMPLICIT_DEF instructions.
+ for (MachineInstr *DefMI : ImpDefs) {
+ Register DefReg = DefMI->getOperand(0).getReg();
+ if (MRI->use_nodbg_empty(DefReg)) {
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(*DefMI);
+ DefMI->eraseFromParent();
+ }
+ }
+
+ // Clean up the lowered PHI instructions.
+ for (auto &I : LoweredPHIs) {
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(*I.first);
+ MF.deleteMachineInstr(I.first);
+ }
+
+ // TODO: we should use the incremental DomTree updater here.
+ if (Changed)
+ if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
+ MDT->getBase().recalculate(MF);
+
+ LoweredPHIs.clear();
+ ImpDefs.clear();
+ VRegPHIUseCount.clear();
+
+ MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
+
+ return Changed;
+}
+
+/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
+/// predecessor basic blocks.
+bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
+ MachineBasicBlock &MBB) {
+ if (MBB.empty() || !MBB.front().isPHI())
+ return false; // Quick exit for basic blocks without PHIs.
+
+ // Get an iterator to the last PHI node.
+ MachineBasicBlock::iterator LastPHIIt =
+ std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
+
+ while (MBB.front().isPHI())
+ LowerPHINode(MBB, LastPHIIt);
+
+ return true;
+}
+
+/// Return true if all defs of VirtReg are implicit-defs.
+/// This includes registers with no defs.
+static bool isImplicitlyDefined(unsigned VirtReg,
+ const MachineRegisterInfo &MRI) {
+ for (MachineInstr &DI : MRI.def_instructions(VirtReg))
+ if (!DI.isImplicitDef())
+ return false;
+ return true;
+}
+
+/// Return true if all sources of the phi node are implicit_def's, or undef's.
+static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
+ const MachineRegisterInfo &MRI) {
+ for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
+ const MachineOperand &MO = MPhi.getOperand(I);
+ if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
+ return false;
+ }
+ return true;
+}
+/// LowerPHINode - Lower the PHI node at the top of the specified block.
+void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator LastPHIIt) {
+ ++NumLowered;
+
+ MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
+
+ // Unlink the PHI node from the basic block, but don't delete the PHI yet.
+ MachineInstr *MPhi = MBB.remove(&*MBB.begin());
+
+ unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
+ Register DestReg = MPhi->getOperand(0).getReg();
+ assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
+ bool isDead = MPhi->getOperand(0).isDead();
+
+ // Create a new register for the incoming PHI arguments.
+ MachineFunction &MF = *MBB.getParent();
+ unsigned IncomingReg = 0;
+ bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
+
+ // Insert a register to register copy at the top of the current block (but
+ // after any remaining phi nodes) which copies the new incoming register
+ // into the phi node destination.
+ MachineInstr *PHICopy = nullptr;
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
+ if (allPhiOperandsUndefined(*MPhi, *MRI))
+ // If all sources of a PHI node are implicit_def or undef uses, just emit an
+ // implicit_def instead of a copy.
+ PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
+ TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
+ else {
+ // Can we reuse an earlier PHI node? This only happens for critical edges,
+ // typically those created by tail duplication.
+ unsigned &entry = LoweredPHIs[MPhi];
+ if (entry) {
+ // An identical PHI node was already lowered. Reuse the incoming register.
+ IncomingReg = entry;
+ reusedIncoming = true;
+ ++NumReused;
+ LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
+ << *MPhi);
+ } else {
+ const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
+ entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
+ }
+ // Give the target possiblity to handle special cases fallthrough otherwise
+ PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
+ IncomingReg, DestReg);
+ }
+
+ if (MPhi->peekDebugInstrNum()) {
+ // If referred to by debug-info, store where this PHI was.
+ MachineFunction *MF = MBB.getParent();
+ unsigned ID = MPhi->peekDebugInstrNum();
+ auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
+ auto Res = MF->DebugPHIPositions.insert({ID, P});
+ assert(Res.second);
+ (void)Res;
+ }
+
+ // Update live variable information if there is any.
+ if (LV) {
+ if (IncomingReg) {
+ LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
+
+ // Increment use count of the newly created virtual register.
+ LV->setPHIJoin(IncomingReg);
+
+ MachineInstr *OldKill = nullptr;
+ bool IsPHICopyAfterOldKill = false;
+
+ if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
+ // Calculate whether the PHICopy is after the OldKill.
+ // In general, the PHICopy is inserted as the first non-phi instruction
+ // by default, so it's before the OldKill. But some Target hooks for
+ // createPHIDestinationCopy() may modify the default insert position of
+ // PHICopy.
+ for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
+ I != E; ++I) {
+ if (I == PHICopy)
+ break;
+
+ if (I == OldKill) {
+ IsPHICopyAfterOldKill = true;
+ break;
+ }
+ }
+ }
+
+ // When we are reusing the incoming register and it has been marked killed
+ // by OldKill, if the PHICopy is after the OldKill, we should remove the
+ // killed flag from OldKill.
+ if (IsPHICopyAfterOldKill) {
+ LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
+ LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
+ LLVM_DEBUG(MBB.dump());
+ }
+
+ // Add information to LiveVariables to know that the first used incoming
+ // value or the resued incoming value whose PHICopy is after the OldKIll
+ // is killed. Note that because the value is defined in several places
+ // (once each for each incoming block), the "def" block and instruction
+ // fields for the VarInfo is not filled in.
+ if (!OldKill || IsPHICopyAfterOldKill)
+ LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
+ }
+
+ // Since we are going to be deleting the PHI node, if it is the last use of
+ // any registers, or if the value itself is dead, we need to move this
+ // information over to the new copy we just inserted.
+ LV->removeVirtualRegistersKilled(*MPhi);
+
+ // If the result is dead, update LV.
+ if (isDead) {
+ LV->addVirtualRegisterDead(DestReg, *PHICopy);
+ LV->removeVirtualRegisterDead(DestReg, *MPhi);
+ }
+ }
+
+ // Update LiveIntervals for the new copy or implicit def.
+ if (LIS) {
+ SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
+
+ SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
+ if (IncomingReg) {
+ // Add the region from the beginning of MBB to the copy instruction to
+ // IncomingReg's live interval.
+ LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
+ VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
+ if (!IncomingVNI)
+ IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
+ LIS->getVNInfoAllocator());
+ IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
+ DestCopyIndex.getRegSlot(),
+ IncomingVNI));
+ }
+
+ LiveInterval &DestLI = LIS->getInterval(DestReg);
+ assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
+ if (DestLI.endIndex().isDead()) {
+ // A dead PHI's live range begins and ends at the start of the MBB, but
+ // the lowered copy, which will still be dead, needs to begin and end at
+ // the copy instruction.
+ VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
+ assert(OrigDestVNI && "PHI destination should be live at block entry.");
+ DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
+ DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
+ LIS->getVNInfoAllocator());
+ DestLI.removeValNo(OrigDestVNI);
+ } else {
+ // Otherwise, remove the region from the beginning of MBB to the copy
+ // instruction from DestReg's live interval.
+ DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
+ VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
+ assert(DestVNI && "PHI destination should be live at its definition.");
+ DestVNI->def = DestCopyIndex.getRegSlot();
+ }
+ }
+
+ // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
+ for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
+ if (!MPhi->getOperand(i).isUndef()) {
+ --VRegPHIUseCount[BBVRegPair(
+ MPhi->getOperand(i + 1).getMBB()->getNumber(),
+ MPhi->getOperand(i).getReg())];
+ }
+ }
+
+ // Now loop over all of the incoming arguments, changing them to copy into the
+ // IncomingReg register in the corresponding predecessor basic block.
+ SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
+ for (int i = NumSrcs - 1; i >= 0; --i) {
+ Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
+ unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
+ bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
+ isImplicitlyDefined(SrcReg, *MRI);
+ assert(SrcReg.isVirtual() &&
+ "Machine PHI Operands must all be virtual registers!");
+
+ // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
+ // path the PHI.
+ MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
+
+ // Check to make sure we haven't already emitted the copy for this block.
+ // This can happen because PHI nodes may have multiple entries for the same
+ // basic block.
+ if (!MBBsInsertedInto.insert(&opBlock).second)
+ continue; // If the copy has already been emitted, we're done.
+
+ MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
+ if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
+ assert(SrcRegDef->getOperand(0).isReg() &&
+ SrcRegDef->getOperand(0).isDef() &&
+ "Expected operand 0 to be a reg def!");
+ // Now that the PHI's use has been removed (as the instruction was
+ // removed) there should be no other uses of the SrcReg.
+ assert(MRI->use_empty(SrcReg) &&
+ "Expected a single use from UnspillableTerminator");
+ SrcRegDef->getOperand(0).setReg(IncomingReg);
+
+ // Update LiveVariables.
+ if (LV) {
+ LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
+ LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
+ IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
+ SrcVI.AliveBlocks.clear();
+ }
+
+ continue;
+ }
+
+ // Find a safe location to insert the copy, this may be the first terminator
+ // in the block (or end()).
+ MachineBasicBlock::iterator InsertPos =
+ findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
+
+ // Insert the copy.
+ MachineInstr *NewSrcInstr = nullptr;
+ if (!reusedIncoming && IncomingReg) {
+ if (SrcUndef) {
+ // The source register is undefined, so there is no need for a real
+ // COPY, but we still need to ensure joint dominance by defs.
+ // Insert an IMPLICIT_DEF instruction.
+ NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
+ TII->get(TargetOpcode::IMPLICIT_DEF),
+ IncomingReg);
+
+ // Clean up the old implicit-def, if there even was one.
+ if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
+ if (DefMI->isImplicitDef())
+ ImpDefs.insert(DefMI);
+ } else {
+ // Delete the debug location, since the copy is inserted into a
+ // different basic block.
+ NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
+ SrcReg, SrcSubReg, IncomingReg);
+ }
+ }
+
+ // We only need to update the LiveVariables kill of SrcReg if this was the
+ // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
+ // out of the predecessor. We can also ignore undef sources.
+ if (LV && !SrcUndef &&
+ !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
+ !LV->isLiveOut(SrcReg, opBlock)) {
+ // We want to be able to insert a kill of the register if this PHI (aka,
+ // the copy we just inserted) is the last use of the source value. Live
+ // variable analysis conservatively handles this by saying that the value
+ // is live until the end of the block the PHI entry lives in. If the value
+ // really is dead at the PHI copy, there will be no successor blocks which
+ // have the value live-in.
+
+ // Okay, if we now know that the value is not live out of the block, we
+ // can add a kill marker in this block saying that it kills the incoming
+ // value!
+
+ // In our final twist, we have to decide which instruction kills the
+ // register. In most cases this is the copy, however, terminator
+ // instructions at the end of the block may also use the value. In this
+ // case, we should mark the last such terminator as being the killing
+ // block, not the copy.
+ MachineBasicBlock::iterator KillInst = opBlock.end();
+ for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
+ ++Term) {
+ if (Term->readsRegister(SrcReg))
+ KillInst = Term;
+ }
+
+ if (KillInst == opBlock.end()) {
+ // No terminator uses the register.
+
+ if (reusedIncoming || !IncomingReg) {
+ // We may have to rewind a bit if we didn't insert a copy this time.
+ KillInst = InsertPos;
+ while (KillInst != opBlock.begin()) {
+ --KillInst;
+ if (KillInst->isDebugInstr())
+ continue;
+ if (KillInst->readsRegister(SrcReg))
+ break;
+ }
+ } else {
+ // We just inserted this copy.
+ KillInst = NewSrcInstr;
+ }
+ }
+ assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
+
+ // Finally, mark it killed.
+ LV->addVirtualRegisterKilled(SrcReg, *KillInst);
+
+ // This vreg no longer lives all of the way through opBlock.
+ unsigned opBlockNum = opBlock.getNumber();
+ LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
+ }
+
+ if (LIS) {
+ if (NewSrcInstr) {
+ LIS->InsertMachineInstrInMaps(*NewSrcInstr);
+ LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
+ }
+
+ if (!SrcUndef &&
+ !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
+ LiveInterval &SrcLI = LIS->getInterval(SrcReg);
+
+ bool isLiveOut = false;
+ for (MachineBasicBlock *Succ : opBlock.successors()) {
+ SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
+ VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
+
+ // Definitions by other PHIs are not truly live-in for our purposes.
+ if (VNI && VNI->def != startIdx) {
+ isLiveOut = true;
+ break;
+ }
+ }
+
+ if (!isLiveOut) {
+ MachineBasicBlock::iterator KillInst = opBlock.end();
+ for (MachineBasicBlock::iterator Term = InsertPos;
+ Term != opBlock.end(); ++Term) {
+ if (Term->readsRegister(SrcReg))
+ KillInst = Term;
+ }
+
+ if (KillInst == opBlock.end()) {
+ // No terminator uses the register.
+
+ if (reusedIncoming || !IncomingReg) {
+ // We may have to rewind a bit if we didn't just insert a copy.
+ KillInst = InsertPos;
+ while (KillInst != opBlock.begin()) {
+ --KillInst;
+ if (KillInst->isDebugInstr())
+ continue;
+ if (KillInst->readsRegister(SrcReg))
+ break;
+ }
+ } else {
+ // We just inserted this copy.
+ KillInst = std::prev(InsertPos);
+ }
+ }
+ assert(KillInst->readsRegister(SrcReg) &&
+ "Cannot find kill instruction");
+
+ SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
+ SrcLI.removeSegment(LastUseIndex.getRegSlot(),
+ LIS->getMBBEndIdx(&opBlock));
+ }
+ }
+ }
+ }
+
+ // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
+ if (reusedIncoming || !IncomingReg) {
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(*MPhi);
+ MF.deleteMachineInstr(MPhi);
+ }
+}
+
+/// analyzePHINodes - Gather information about the PHI nodes in here. In
+/// particular, we want to map the number of uses of a virtual register which is
+/// used in a PHI node. We map that to the BB the vreg is coming from. This is
+/// used later to determine when the vreg is killed in the BB.
+void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
+ for (const auto &MBB : MF) {
+ for (const auto &BBI : MBB) {
+ if (!BBI.isPHI())
+ break;
+ for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
+ if (!BBI.getOperand(i).isUndef()) {
+ ++VRegPHIUseCount[BBVRegPair(
+ BBI.getOperand(i + 1).getMBB()->getNumber(),
+ BBI.getOperand(i).getReg())];
+ }
+ }
+ }
+ }
+}
+
+bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineLoopInfo *MLI,
+ std::vector<SparseBitVector<>> *LiveInSets) {
+ if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
+ return false; // Quick exit for basic blocks without PHIs.
+
+ const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
+ bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
+
+ bool Changed = false;
+ for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
+ BBI != BBE && BBI->isPHI(); ++BBI) {
+ for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
+ Register Reg = BBI->getOperand(i).getReg();
+ MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
+ // Is there a critical edge from PreMBB to MBB?
+ if (PreMBB->succ_size() == 1)
+ continue;
+
+ // Avoid splitting backedges of loops. It would introduce small
+ // out-of-line blocks into the loop which is very bad for code placement.
+ if (PreMBB == &MBB && !SplitAllCriticalEdges)
+ continue;
+ const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
+ if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
+ continue;
+
+ // LV doesn't consider a phi use live-out, so isLiveOut only returns true
+ // when the source register is live-out for some other reason than a phi
+ // use. That means the copy we will insert in PreMBB won't be a kill, and
+ // there is a risk it may not be coalesced away.
+ //
+ // If the copy would be a kill, there is no need to split the edge.
+ bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
+ if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
+ continue;
+ if (ShouldSplit) {
+ LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
+ << printMBBReference(*PreMBB) << " -> "
+ << printMBBReference(MBB) << ": " << *BBI);
+ }
+
+ // If Reg is not live-in to MBB, it means it must be live-in to some
+ // other PreMBB successor, and we can avoid the interference by splitting
+ // the edge.
+ //
+ // If Reg *is* live-in to MBB, the interference is inevitable and a copy
+ // is likely to be left after coalescing. If we are looking at a loop
+ // exiting edge, split it so we won't insert code in the loop, otherwise
+ // don't bother.
+ ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
+
+ // Check for a loop exiting edge.
+ if (!ShouldSplit && CurLoop != PreLoop) {
+ LLVM_DEBUG({
+ dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
+ if (PreLoop)
+ dbgs() << "PreLoop: " << *PreLoop;
+ if (CurLoop)
+ dbgs() << "CurLoop: " << *CurLoop;
+ });
+ // This edge could be entering a loop, exiting a loop, or it could be
+ // both: Jumping directly form one loop to the header of a sibling
+ // loop.
+ // Split unless this edge is entering CurLoop from an outer loop.
+ ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
+ }
+ if (!ShouldSplit && !SplitAllCriticalEdges)
+ continue;
+ if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
+ LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
+ continue;
+ }
+ Changed = true;
+ ++NumCriticalEdgesSplit;
+ }
+ }
+ return Changed;
+}
+
+bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
+ assert((LV || LIS) &&
+ "isLiveIn() requires either LiveVariables or LiveIntervals");
+ if (LIS)
+ return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
+ else
+ return LV->isLiveIn(Reg, *MBB);
+}
+
+bool PHIElimination::isLiveOutPastPHIs(Register Reg,
+ const MachineBasicBlock *MBB) {
+ assert((LV || LIS) &&
+ "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
+ // LiveVariables considers uses in PHIs to be in the predecessor basic block,
+ // so that a register used only in a PHI is not live out of the block. In
+ // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
+ // in the predecessor basic block, so that a register used only in a PHI is live
+ // out of the block.
+ if (LIS) {
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ for (const MachineBasicBlock *SI : MBB->successors())
+ if (LI.liveAt(LIS->getMBBStartIdx(SI)))
+ return true;
+ return false;
+ } else {
+ return LV->isLiveOut(Reg, *MBB);
+ }
+}