aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp1110
1 files changed, 1110 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
new file mode 100644
index 000000000000..885a1056b2ea
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
@@ -0,0 +1,1110 @@
+//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the RegBankSelect class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterBank.h"
+#include "llvm/CodeGen/RegisterBankInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Function.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <limits>
+#include <memory>
+#include <utility>
+
+#define DEBUG_TYPE "regbankselect"
+
+using namespace llvm;
+
+static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
+ cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
+ cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
+ "Run the Fast mode (default mapping)"),
+ clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
+ "Use the Greedy mode (best local mapping)")));
+
+char RegBankSelect::ID = 0;
+
+INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
+ "Assign register bank of generic virtual registers",
+ false, false);
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
+ "Assign register bank of generic virtual registers", false,
+ false)
+
+RegBankSelect::RegBankSelect(char &PassID, Mode RunningMode)
+ : MachineFunctionPass(PassID), OptMode(RunningMode) {
+ if (RegBankSelectMode.getNumOccurrences() != 0) {
+ OptMode = RegBankSelectMode;
+ if (RegBankSelectMode != RunningMode)
+ LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
+ }
+}
+
+void RegBankSelect::init(MachineFunction &MF) {
+ RBI = MF.getSubtarget().getRegBankInfo();
+ assert(RBI && "Cannot work without RegisterBankInfo");
+ MRI = &MF.getRegInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TPC = &getAnalysis<TargetPassConfig>();
+ if (OptMode != Mode::Fast) {
+ MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+ } else {
+ MBFI = nullptr;
+ MBPI = nullptr;
+ }
+ MIRBuilder.setMF(MF);
+ MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
+}
+
+void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
+ if (OptMode != Mode::Fast) {
+ // We could preserve the information from these two analysis but
+ // the APIs do not allow to do so yet.
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ }
+ AU.addRequired<TargetPassConfig>();
+ getSelectionDAGFallbackAnalysisUsage(AU);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool RegBankSelect::assignmentMatch(
+ Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
+ bool &OnlyAssign) const {
+ // By default we assume we will have to repair something.
+ OnlyAssign = false;
+ // Each part of a break down needs to end up in a different register.
+ // In other word, Reg assignment does not match.
+ if (ValMapping.NumBreakDowns != 1)
+ return false;
+
+ const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
+ const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
+ // Reg is free of assignment, a simple assignment will make the
+ // register bank to match.
+ OnlyAssign = CurRegBank == nullptr;
+ LLVM_DEBUG(dbgs() << "Does assignment already match: ";
+ if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
+ dbgs() << " against ";
+ assert(DesiredRegBank && "The mapping must be valid");
+ dbgs() << *DesiredRegBank << '\n';);
+ return CurRegBank == DesiredRegBank;
+}
+
+bool RegBankSelect::repairReg(
+ MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
+ RegBankSelect::RepairingPlacement &RepairPt,
+ const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
+
+ assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
+ "need new vreg for each breakdown");
+
+ // An empty range of new register means no repairing.
+ assert(!NewVRegs.empty() && "We should not have to repair");
+
+ MachineInstr *MI;
+ if (ValMapping.NumBreakDowns == 1) {
+ // Assume we are repairing a use and thus, the original reg will be
+ // the source of the repairing.
+ Register Src = MO.getReg();
+ Register Dst = *NewVRegs.begin();
+
+ // If we repair a definition, swap the source and destination for
+ // the repairing.
+ if (MO.isDef())
+ std::swap(Src, Dst);
+
+ assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) &&
+ "We are about to create several defs for Dst");
+
+ // Build the instruction used to repair, then clone it at the right
+ // places. Avoiding buildCopy bypasses the check that Src and Dst have the
+ // same types because the type is a placeholder when this function is called.
+ MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
+ .addDef(Dst)
+ .addUse(Src);
+ LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':'
+ << printRegClassOrBank(Src, *MRI, TRI)
+ << " to: " << printReg(Dst) << ':'
+ << printRegClassOrBank(Dst, *MRI, TRI) << '\n');
+ } else {
+ // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
+ // sequence.
+ assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
+
+ LLT RegTy = MRI->getType(MO.getReg());
+ if (MO.isDef()) {
+ unsigned MergeOp;
+ if (RegTy.isVector()) {
+ if (ValMapping.NumBreakDowns == RegTy.getNumElements())
+ MergeOp = TargetOpcode::G_BUILD_VECTOR;
+ else {
+ assert(
+ (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
+ RegTy.getSizeInBits()) &&
+ (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
+ 0) &&
+ "don't understand this value breakdown");
+
+ MergeOp = TargetOpcode::G_CONCAT_VECTORS;
+ }
+ } else
+ MergeOp = TargetOpcode::G_MERGE_VALUES;
+
+ auto MergeBuilder =
+ MIRBuilder.buildInstrNoInsert(MergeOp)
+ .addDef(MO.getReg());
+
+ for (Register SrcReg : NewVRegs)
+ MergeBuilder.addUse(SrcReg);
+
+ MI = MergeBuilder;
+ } else {
+ MachineInstrBuilder UnMergeBuilder =
+ MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
+ for (Register DefReg : NewVRegs)
+ UnMergeBuilder.addDef(DefReg);
+
+ UnMergeBuilder.addUse(MO.getReg());
+ MI = UnMergeBuilder;
+ }
+ }
+
+ if (RepairPt.getNumInsertPoints() != 1)
+ report_fatal_error("need testcase to support multiple insertion points");
+
+ // TODO:
+ // Check if MI is legal. if not, we need to legalize all the
+ // instructions we are going to insert.
+ std::unique_ptr<MachineInstr *[]> NewInstrs(
+ new MachineInstr *[RepairPt.getNumInsertPoints()]);
+ bool IsFirst = true;
+ unsigned Idx = 0;
+ for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
+ MachineInstr *CurMI;
+ if (IsFirst)
+ CurMI = MI;
+ else
+ CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
+ InsertPt->insert(*CurMI);
+ NewInstrs[Idx++] = CurMI;
+ IsFirst = false;
+ }
+ // TODO:
+ // Legalize NewInstrs if need be.
+ return true;
+}
+
+uint64_t RegBankSelect::getRepairCost(
+ const MachineOperand &MO,
+ const RegisterBankInfo::ValueMapping &ValMapping) const {
+ assert(MO.isReg() && "We should only repair register operand");
+ assert(ValMapping.NumBreakDowns && "Nothing to map??");
+
+ bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
+ const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
+ // If MO does not have a register bank, we should have just been
+ // able to set one unless we have to break the value down.
+ assert(CurRegBank || MO.isDef());
+
+ // Def: Val <- NewDefs
+ // Same number of values: copy
+ // Different number: Val = build_sequence Defs1, Defs2, ...
+ // Use: NewSources <- Val.
+ // Same number of values: copy.
+ // Different number: Src1, Src2, ... =
+ // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
+ // We should remember that this value is available somewhere else to
+ // coalesce the value.
+
+ if (ValMapping.NumBreakDowns != 1)
+ return RBI->getBreakDownCost(ValMapping, CurRegBank);
+
+ if (IsSameNumOfValues) {
+ const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
+ // If we repair a definition, swap the source and destination for
+ // the repairing.
+ if (MO.isDef())
+ std::swap(CurRegBank, DesiredRegBank);
+ // TODO: It may be possible to actually avoid the copy.
+ // If we repair something where the source is defined by a copy
+ // and the source of that copy is on the right bank, we can reuse
+ // it for free.
+ // E.g.,
+ // RegToRepair<BankA> = copy AlternativeSrc<BankB>
+ // = op RegToRepair<BankA>
+ // We can simply propagate AlternativeSrc instead of copying RegToRepair
+ // into a new virtual register.
+ // We would also need to propagate this information in the
+ // repairing placement.
+ unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
+ RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
+ // TODO: use a dedicated constant for ImpossibleCost.
+ if (Cost != std::numeric_limits<unsigned>::max())
+ return Cost;
+ // Return the legalization cost of that repairing.
+ }
+ return std::numeric_limits<unsigned>::max();
+}
+
+const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
+ MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
+ SmallVectorImpl<RepairingPlacement> &RepairPts) {
+ assert(!PossibleMappings.empty() &&
+ "Do not know how to map this instruction");
+
+ const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
+ MappingCost Cost = MappingCost::ImpossibleCost();
+ SmallVector<RepairingPlacement, 4> LocalRepairPts;
+ for (const RegisterBankInfo::InstructionMapping *CurMapping :
+ PossibleMappings) {
+ MappingCost CurCost =
+ computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
+ if (CurCost < Cost) {
+ LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
+ Cost = CurCost;
+ BestMapping = CurMapping;
+ RepairPts.clear();
+ for (RepairingPlacement &RepairPt : LocalRepairPts)
+ RepairPts.emplace_back(std::move(RepairPt));
+ }
+ }
+ if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
+ // If none of the mapping worked that means they are all impossible.
+ // Thus, pick the first one and set an impossible repairing point.
+ // It will trigger the failed isel mode.
+ BestMapping = *PossibleMappings.begin();
+ RepairPts.emplace_back(
+ RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
+ } else
+ assert(BestMapping && "No suitable mapping for instruction");
+ return *BestMapping;
+}
+
+void RegBankSelect::tryAvoidingSplit(
+ RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
+ const RegisterBankInfo::ValueMapping &ValMapping) const {
+ const MachineInstr &MI = *MO.getParent();
+ assert(RepairPt.hasSplit() && "We should not have to adjust for split");
+ // Splitting should only occur for PHIs or between terminators,
+ // because we only do local repairing.
+ assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
+
+ assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
+ "Repairing placement does not match operand");
+
+ // If we need splitting for phis, that means it is because we
+ // could not find an insertion point before the terminators of
+ // the predecessor block for this argument. In other words,
+ // the input value is defined by one of the terminators.
+ assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
+
+ // We split to repair the use of a phi or a terminator.
+ if (!MO.isDef()) {
+ if (MI.isTerminator()) {
+ assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
+ "Need to split for the first terminator?!");
+ } else {
+ // For the PHI case, the split may not be actually required.
+ // In the copy case, a phi is already a copy on the incoming edge,
+ // therefore there is no need to split.
+ if (ValMapping.NumBreakDowns == 1)
+ // This is a already a copy, there is nothing to do.
+ RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
+ }
+ return;
+ }
+
+ // At this point, we need to repair a defintion of a terminator.
+
+ // Technically we need to fix the def of MI on all outgoing
+ // edges of MI to keep the repairing local. In other words, we
+ // will create several definitions of the same register. This
+ // does not work for SSA unless that definition is a physical
+ // register.
+ // However, there are other cases where we can get away with
+ // that while still keeping the repairing local.
+ assert(MI.isTerminator() && MO.isDef() &&
+ "This code is for the def of a terminator");
+
+ // Since we use RPO traversal, if we need to repair a definition
+ // this means this definition could be:
+ // 1. Used by PHIs (i.e., this VReg has been visited as part of the
+ // uses of a phi.), or
+ // 2. Part of a target specific instruction (i.e., the target applied
+ // some register class constraints when creating the instruction.)
+ // If the constraints come for #2, the target said that another mapping
+ // is supported so we may just drop them. Indeed, if we do not change
+ // the number of registers holding that value, the uses will get fixed
+ // when we get to them.
+ // Uses in PHIs may have already been proceeded though.
+ // If the constraints come for #1, then, those are weak constraints and
+ // no actual uses may rely on them. However, the problem remains mainly
+ // the same as for #2. If the value stays in one register, we could
+ // just switch the register bank of the definition, but we would need to
+ // account for a repairing cost for each phi we silently change.
+ //
+ // In any case, if the value needs to be broken down into several
+ // registers, the repairing is not local anymore as we need to patch
+ // every uses to rebuild the value in just one register.
+ //
+ // To summarize:
+ // - If the value is in a physical register, we can do the split and
+ // fix locally.
+ // Otherwise if the value is in a virtual register:
+ // - If the value remains in one register, we do not have to split
+ // just switching the register bank would do, but we need to account
+ // in the repairing cost all the phi we changed.
+ // - If the value spans several registers, then we cannot do a local
+ // repairing.
+
+ // Check if this is a physical or virtual register.
+ Register Reg = MO.getReg();
+ if (Reg.isPhysical()) {
+ // We are going to split every outgoing edges.
+ // Check that this is possible.
+ // FIXME: The machine representation is currently broken
+ // since it also several terminators in one basic block.
+ // Because of that we would technically need a way to get
+ // the targets of just one terminator to know which edges
+ // we have to split.
+ // Assert that we do not hit the ill-formed representation.
+
+ // If there are other terminators before that one, some of
+ // the outgoing edges may not be dominated by this definition.
+ assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
+ "Do not know which outgoing edges are relevant");
+ const MachineInstr *Next = MI.getNextNode();
+ assert((!Next || Next->isUnconditionalBranch()) &&
+ "Do not know where each terminator ends up");
+ if (Next)
+ // If the next terminator uses Reg, this means we have
+ // to split right after MI and thus we need a way to ask
+ // which outgoing edges are affected.
+ assert(!Next->readsRegister(Reg) && "Need to split between terminators");
+ // We will split all the edges and repair there.
+ } else {
+ // This is a virtual register defined by a terminator.
+ if (ValMapping.NumBreakDowns == 1) {
+ // There is nothing to repair, but we may actually lie on
+ // the repairing cost because of the PHIs already proceeded
+ // as already stated.
+ // Though the code will be correct.
+ assert(false && "Repairing cost may not be accurate");
+ } else {
+ // We need to do non-local repairing. Basically, patch all
+ // the uses (i.e., phis) that we already proceeded.
+ // For now, just say this mapping is not possible.
+ RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
+ }
+ }
+}
+
+RegBankSelect::MappingCost RegBankSelect::computeMapping(
+ MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
+ SmallVectorImpl<RepairingPlacement> &RepairPts,
+ const RegBankSelect::MappingCost *BestCost) {
+ assert((MBFI || !BestCost) && "Costs comparison require MBFI");
+
+ if (!InstrMapping.isValid())
+ return MappingCost::ImpossibleCost();
+
+ // If mapped with InstrMapping, MI will have the recorded cost.
+ MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
+ bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
+ assert(!Saturated && "Possible mapping saturated the cost");
+ LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
+ LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
+ RepairPts.clear();
+ if (BestCost && Cost > *BestCost) {
+ LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
+ return Cost;
+ }
+ const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
+
+ // Moreover, to realize this mapping, the register bank of each operand must
+ // match this mapping. In other words, we may need to locally reassign the
+ // register banks. Account for that repairing cost as well.
+ // In this context, local means in the surrounding of MI.
+ for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
+ OpIdx != EndOpIdx; ++OpIdx) {
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ LLT Ty = MRI.getType(Reg);
+ if (!Ty.isValid())
+ continue;
+
+ LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
+ const RegisterBankInfo::ValueMapping &ValMapping =
+ InstrMapping.getOperandMapping(OpIdx);
+ // If Reg is already properly mapped, this is free.
+ bool Assign;
+ if (assignmentMatch(Reg, ValMapping, Assign)) {
+ LLVM_DEBUG(dbgs() << "=> is free (match).\n");
+ continue;
+ }
+ if (Assign) {
+ LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
+ RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
+ RepairingPlacement::Reassign));
+ continue;
+ }
+
+ // Find the insertion point for the repairing code.
+ RepairPts.emplace_back(
+ RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
+ RepairingPlacement &RepairPt = RepairPts.back();
+
+ // If we need to split a basic block to materialize this insertion point,
+ // we may give a higher cost to this mapping.
+ // Nevertheless, we may get away with the split, so try that first.
+ if (RepairPt.hasSplit())
+ tryAvoidingSplit(RepairPt, MO, ValMapping);
+
+ // Check that the materialization of the repairing is possible.
+ if (!RepairPt.canMaterialize()) {
+ LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
+ return MappingCost::ImpossibleCost();
+ }
+
+ // Account for the split cost and repair cost.
+ // Unless the cost is already saturated or we do not care about the cost.
+ if (!BestCost || Saturated)
+ continue;
+
+ // To get accurate information we need MBFI and MBPI.
+ // Thus, if we end up here this information should be here.
+ assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
+
+ // FIXME: We will have to rework the repairing cost model.
+ // The repairing cost depends on the register bank that MO has.
+ // However, when we break down the value into different values,
+ // MO may not have a register bank while still needing repairing.
+ // For the fast mode, we don't compute the cost so that is fine,
+ // but still for the repairing code, we will have to make a choice.
+ // For the greedy mode, we should choose greedily what is the best
+ // choice based on the next use of MO.
+
+ // Sums up the repairing cost of MO at each insertion point.
+ uint64_t RepairCost = getRepairCost(MO, ValMapping);
+
+ // This is an impossible to repair cost.
+ if (RepairCost == std::numeric_limits<unsigned>::max())
+ return MappingCost::ImpossibleCost();
+
+ // Bias used for splitting: 5%.
+ const uint64_t PercentageForBias = 5;
+ uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
+ // We should not need more than a couple of instructions to repair
+ // an assignment. In other words, the computation should not
+ // overflow because the repairing cost is free of basic block
+ // frequency.
+ assert(((RepairCost < RepairCost * PercentageForBias) &&
+ (RepairCost * PercentageForBias <
+ RepairCost * PercentageForBias + 99)) &&
+ "Repairing involves more than a billion of instructions?!");
+ for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
+ assert(InsertPt->canMaterialize() && "We should not have made it here");
+ // We will applied some basic block frequency and those uses uint64_t.
+ if (!InsertPt->isSplit())
+ Saturated = Cost.addLocalCost(RepairCost);
+ else {
+ uint64_t CostForInsertPt = RepairCost;
+ // Again we shouldn't overflow here givent that
+ // CostForInsertPt is frequency free at this point.
+ assert(CostForInsertPt + Bias > CostForInsertPt &&
+ "Repairing + split bias overflows");
+ CostForInsertPt += Bias;
+ uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
+ // Check if we just overflowed.
+ if ((Saturated = PtCost < CostForInsertPt))
+ Cost.saturate();
+ else
+ Saturated = Cost.addNonLocalCost(PtCost);
+ }
+
+ // Stop looking into what it takes to repair, this is already
+ // too expensive.
+ if (BestCost && Cost > *BestCost) {
+ LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
+ return Cost;
+ }
+
+ // No need to accumulate more cost information.
+ // We need to still gather the repairing information though.
+ if (Saturated)
+ break;
+ }
+ }
+ LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
+ return Cost;
+}
+
+bool RegBankSelect::applyMapping(
+ MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
+ SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
+ // OpdMapper will hold all the information needed for the rewriting.
+ RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
+
+ // First, place the repairing code.
+ for (RepairingPlacement &RepairPt : RepairPts) {
+ if (!RepairPt.canMaterialize() ||
+ RepairPt.getKind() == RepairingPlacement::Impossible)
+ return false;
+ assert(RepairPt.getKind() != RepairingPlacement::None &&
+ "This should not make its way in the list");
+ unsigned OpIdx = RepairPt.getOpIdx();
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ const RegisterBankInfo::ValueMapping &ValMapping =
+ InstrMapping.getOperandMapping(OpIdx);
+ Register Reg = MO.getReg();
+
+ switch (RepairPt.getKind()) {
+ case RepairingPlacement::Reassign:
+ assert(ValMapping.NumBreakDowns == 1 &&
+ "Reassignment should only be for simple mapping");
+ MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
+ break;
+ case RepairingPlacement::Insert:
+ // Don't insert additional instruction for debug instruction.
+ if (MI.isDebugInstr())
+ break;
+ OpdMapper.createVRegs(OpIdx);
+ if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
+ return false;
+ break;
+ default:
+ llvm_unreachable("Other kind should not happen");
+ }
+ }
+
+ // Second, rewrite the instruction.
+ LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
+ RBI->applyMapping(OpdMapper);
+
+ return true;
+}
+
+bool RegBankSelect::assignInstr(MachineInstr &MI) {
+ LLVM_DEBUG(dbgs() << "Assign: " << MI);
+
+ unsigned Opc = MI.getOpcode();
+ if (isPreISelGenericOptimizationHint(Opc)) {
+ assert((Opc == TargetOpcode::G_ASSERT_ZEXT ||
+ Opc == TargetOpcode::G_ASSERT_SEXT ||
+ Opc == TargetOpcode::G_ASSERT_ALIGN) &&
+ "Unexpected hint opcode!");
+ // The only correct mapping for these is to always use the source register
+ // bank.
+ const RegisterBank *RB =
+ RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI);
+ // We can assume every instruction above this one has a selected register
+ // bank.
+ assert(RB && "Expected source register to have a register bank?");
+ LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
+ MRI->setRegBank(MI.getOperand(0).getReg(), *RB);
+ return true;
+ }
+
+ // Remember the repairing placement for all the operands.
+ SmallVector<RepairingPlacement, 4> RepairPts;
+
+ const RegisterBankInfo::InstructionMapping *BestMapping;
+ if (OptMode == RegBankSelect::Mode::Fast) {
+ BestMapping = &RBI->getInstrMapping(MI);
+ MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
+ (void)DefaultCost;
+ if (DefaultCost == MappingCost::ImpossibleCost())
+ return false;
+ } else {
+ RegisterBankInfo::InstructionMappings PossibleMappings =
+ RBI->getInstrPossibleMappings(MI);
+ if (PossibleMappings.empty())
+ return false;
+ BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
+ }
+ // Make sure the mapping is valid for MI.
+ assert(BestMapping->verify(MI) && "Invalid instruction mapping");
+
+ LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
+
+ // After this call, MI may not be valid anymore.
+ // Do not use it.
+ return applyMapping(MI, *BestMapping, RepairPts);
+}
+
+bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) {
+ // Walk the function and assign register banks to all operands.
+ // Use a RPOT to make sure all registers are assigned before we choose
+ // the best mapping of the current instruction.
+ ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
+ for (MachineBasicBlock *MBB : RPOT) {
+ // Set a sensible insertion point so that subsequent calls to
+ // MIRBuilder.
+ MIRBuilder.setMBB(*MBB);
+ SmallVector<MachineInstr *> WorkList(
+ make_pointer_range(reverse(MBB->instrs())));
+
+ while (!WorkList.empty()) {
+ MachineInstr &MI = *WorkList.pop_back_val();
+
+ // Ignore target-specific post-isel instructions: they should use proper
+ // regclasses.
+ if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
+ continue;
+
+ // Ignore inline asm instructions: they should use physical
+ // registers/regclasses
+ if (MI.isInlineAsm())
+ continue;
+
+ // Ignore IMPLICIT_DEF which must have a regclass.
+ if (MI.isImplicitDef())
+ continue;
+
+ if (!assignInstr(MI)) {
+ reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
+ "unable to map instruction", MI);
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const {
+#ifndef NDEBUG
+ if (!DisableGISelLegalityCheck) {
+ if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
+ reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
+ "instruction is not legal", *MI);
+ return false;
+ }
+ }
+#endif
+ return true;
+}
+
+bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
+ // If the ISel pipeline failed, do not bother running that pass.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
+ const Function &F = MF.getFunction();
+ Mode SaveOptMode = OptMode;
+ if (F.hasOptNone())
+ OptMode = Mode::Fast;
+ init(MF);
+
+#ifndef NDEBUG
+ if (!checkFunctionIsLegal(MF))
+ return false;
+#endif
+
+ assignRegisterBanks(MF);
+
+ OptMode = SaveOptMode;
+ return false;
+}
+
+//------------------------------------------------------------------------------
+// Helper Classes Implementation
+//------------------------------------------------------------------------------
+RegBankSelect::RepairingPlacement::RepairingPlacement(
+ MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
+ RepairingPlacement::RepairingKind Kind)
+ // Default is, we are going to insert code to repair OpIdx.
+ : Kind(Kind), OpIdx(OpIdx),
+ CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isReg() && "Trying to repair a non-reg operand");
+
+ if (Kind != RepairingKind::Insert)
+ return;
+
+ // Repairings for definitions happen after MI, uses happen before.
+ bool Before = !MO.isDef();
+
+ // Check if we are done with MI.
+ if (!MI.isPHI() && !MI.isTerminator()) {
+ addInsertPoint(MI, Before);
+ // We are done with the initialization.
+ return;
+ }
+
+ // Now, look for the special cases.
+ if (MI.isPHI()) {
+ // - PHI must be the first instructions:
+ // * Before, we have to split the related incoming edge.
+ // * After, move the insertion point past the last phi.
+ if (!Before) {
+ MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
+ if (It != MI.getParent()->end())
+ addInsertPoint(*It, /*Before*/ true);
+ else
+ addInsertPoint(*(--It), /*Before*/ false);
+ return;
+ }
+ // We repair a use of a phi, we may need to split the related edge.
+ MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
+ // Check if we can move the insertion point prior to the
+ // terminators of the predecessor.
+ Register Reg = MO.getReg();
+ MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
+ for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
+ if (It->modifiesRegister(Reg, &TRI)) {
+ // We cannot hoist the repairing code in the predecessor.
+ // Split the edge.
+ addInsertPoint(Pred, *MI.getParent());
+ return;
+ }
+ // At this point, we can insert in Pred.
+
+ // - If It is invalid, Pred is empty and we can insert in Pred
+ // wherever we want.
+ // - If It is valid, It is the first non-terminator, insert after It.
+ if (It == Pred.end())
+ addInsertPoint(Pred, /*Beginning*/ false);
+ else
+ addInsertPoint(*It, /*Before*/ false);
+ } else {
+ // - Terminators must be the last instructions:
+ // * Before, move the insert point before the first terminator.
+ // * After, we have to split the outcoming edges.
+ if (Before) {
+ // Check whether Reg is defined by any terminator.
+ MachineBasicBlock::reverse_iterator It = MI;
+ auto REnd = MI.getParent()->rend();
+
+ for (; It != REnd && It->isTerminator(); ++It) {
+ assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
+ "copy insertion in middle of terminators not handled");
+ }
+
+ if (It == REnd) {
+ addInsertPoint(*MI.getParent()->begin(), true);
+ return;
+ }
+
+ // We are sure to be right before the first terminator.
+ addInsertPoint(*It, /*Before*/ false);
+ return;
+ }
+ // Make sure Reg is not redefined by other terminators, otherwise
+ // we do not know how to split.
+ for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
+ ++It != End;)
+ // The machine verifier should reject this kind of code.
+ assert(It->modifiesRegister(MO.getReg(), &TRI) &&
+ "Do not know where to split");
+ // Split each outcoming edges.
+ MachineBasicBlock &Src = *MI.getParent();
+ for (auto &Succ : Src.successors())
+ addInsertPoint(Src, Succ);
+ }
+}
+
+void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
+ bool Before) {
+ addInsertPoint(*new InstrInsertPoint(MI, Before));
+}
+
+void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
+ bool Beginning) {
+ addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
+}
+
+void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
+ MachineBasicBlock &Dst) {
+ addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
+}
+
+void RegBankSelect::RepairingPlacement::addInsertPoint(
+ RegBankSelect::InsertPoint &Point) {
+ CanMaterialize &= Point.canMaterialize();
+ HasSplit |= Point.isSplit();
+ InsertPoints.emplace_back(&Point);
+}
+
+RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
+ bool Before)
+ : Instr(Instr), Before(Before) {
+ // Since we do not support splitting, we do not need to update
+ // liveness and such, so do not do anything with P.
+ assert((!Before || !Instr.isPHI()) &&
+ "Splitting before phis requires more points");
+ assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
+ "Splitting between phis does not make sense");
+}
+
+void RegBankSelect::InstrInsertPoint::materialize() {
+ if (isSplit()) {
+ // Slice and return the beginning of the new block.
+ // If we need to split between the terminators, we theoritically
+ // need to know where the first and second set of terminators end
+ // to update the successors properly.
+ // Now, in pratice, we should have a maximum of 2 branch
+ // instructions; one conditional and one unconditional. Therefore
+ // we know how to update the successor by looking at the target of
+ // the unconditional branch.
+ // If we end up splitting at some point, then, we should update
+ // the liveness information and such. I.e., we would need to
+ // access P here.
+ // The machine verifier should actually make sure such cases
+ // cannot happen.
+ llvm_unreachable("Not yet implemented");
+ }
+ // Otherwise the insertion point is just the current or next
+ // instruction depending on Before. I.e., there is nothing to do
+ // here.
+}
+
+bool RegBankSelect::InstrInsertPoint::isSplit() const {
+ // If the insertion point is after a terminator, we need to split.
+ if (!Before)
+ return Instr.isTerminator();
+ // If we insert before an instruction that is after a terminator,
+ // we are still after a terminator.
+ return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
+}
+
+uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
+ // Even if we need to split, because we insert between terminators,
+ // this split has actually the same frequency as the instruction.
+ const MachineBlockFrequencyInfo *MBFI =
+ P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
+ if (!MBFI)
+ return 1;
+ return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
+}
+
+uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
+ const MachineBlockFrequencyInfo *MBFI =
+ P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
+ if (!MBFI)
+ return 1;
+ return MBFI->getBlockFreq(&MBB).getFrequency();
+}
+
+void RegBankSelect::EdgeInsertPoint::materialize() {
+ // If we end up repairing twice at the same place before materializing the
+ // insertion point, we may think we have to split an edge twice.
+ // We should have a factory for the insert point such that identical points
+ // are the same instance.
+ assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
+ "This point has already been split");
+ MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
+ assert(NewBB && "Invalid call to materialize");
+ // We reuse the destination block to hold the information of the new block.
+ DstOrSplit = NewBB;
+}
+
+uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
+ const MachineBlockFrequencyInfo *MBFI =
+ P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
+ if (!MBFI)
+ return 1;
+ if (WasMaterialized)
+ return MBFI->getBlockFreq(DstOrSplit).getFrequency();
+
+ const MachineBranchProbabilityInfo *MBPI =
+ P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
+ if (!MBPI)
+ return 1;
+ // The basic block will be on the edge.
+ return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
+ .getFrequency();
+}
+
+bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
+ // If this is not a critical edge, we should not have used this insert
+ // point. Indeed, either the successor or the predecessor should
+ // have do.
+ assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
+ "Edge is not critical");
+ return Src.canSplitCriticalEdge(DstOrSplit);
+}
+
+RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
+ : LocalFreq(LocalFreq.getFrequency()) {}
+
+bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
+ // Check if this overflows.
+ if (LocalCost + Cost < LocalCost) {
+ saturate();
+ return true;
+ }
+ LocalCost += Cost;
+ return isSaturated();
+}
+
+bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
+ // Check if this overflows.
+ if (NonLocalCost + Cost < NonLocalCost) {
+ saturate();
+ return true;
+ }
+ NonLocalCost += Cost;
+ return isSaturated();
+}
+
+bool RegBankSelect::MappingCost::isSaturated() const {
+ return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
+ LocalFreq == UINT64_MAX;
+}
+
+void RegBankSelect::MappingCost::saturate() {
+ *this = ImpossibleCost();
+ --LocalCost;
+}
+
+RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
+ return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
+}
+
+bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
+ // Sort out the easy cases.
+ if (*this == Cost)
+ return false;
+ // If one is impossible to realize the other is cheaper unless it is
+ // impossible as well.
+ if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
+ return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
+ // If one is saturated the other is cheaper, unless it is saturated
+ // as well.
+ if (isSaturated() || Cost.isSaturated())
+ return isSaturated() < Cost.isSaturated();
+ // At this point we know both costs hold sensible values.
+
+ // If both values have a different base frequency, there is no much
+ // we can do but to scale everything.
+ // However, if they have the same base frequency we can avoid making
+ // complicated computation.
+ uint64_t ThisLocalAdjust;
+ uint64_t OtherLocalAdjust;
+ if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
+
+ // At this point, we know the local costs are comparable.
+ // Do the case that do not involve potential overflow first.
+ if (NonLocalCost == Cost.NonLocalCost)
+ // Since the non-local costs do not discriminate on the result,
+ // just compare the local costs.
+ return LocalCost < Cost.LocalCost;
+
+ // The base costs are comparable so we may only keep the relative
+ // value to increase our chances of avoiding overflows.
+ ThisLocalAdjust = 0;
+ OtherLocalAdjust = 0;
+ if (LocalCost < Cost.LocalCost)
+ OtherLocalAdjust = Cost.LocalCost - LocalCost;
+ else
+ ThisLocalAdjust = LocalCost - Cost.LocalCost;
+ } else {
+ ThisLocalAdjust = LocalCost;
+ OtherLocalAdjust = Cost.LocalCost;
+ }
+
+ // The non-local costs are comparable, just keep the relative value.
+ uint64_t ThisNonLocalAdjust = 0;
+ uint64_t OtherNonLocalAdjust = 0;
+ if (NonLocalCost < Cost.NonLocalCost)
+ OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
+ else
+ ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
+ // Scale everything to make them comparable.
+ uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
+ // Check for overflow on that operation.
+ bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
+ ThisScaledCost < LocalFreq);
+ uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
+ // Check for overflow on the last operation.
+ bool OtherOverflows =
+ OtherLocalAdjust &&
+ (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
+ // Add the non-local costs.
+ ThisOverflows |= ThisNonLocalAdjust &&
+ ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
+ ThisScaledCost += ThisNonLocalAdjust;
+ OtherOverflows |= OtherNonLocalAdjust &&
+ OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
+ OtherScaledCost += OtherNonLocalAdjust;
+ // If both overflows, we cannot compare without additional
+ // precision, e.g., APInt. Just give up on that case.
+ if (ThisOverflows && OtherOverflows)
+ return false;
+ // If one overflows but not the other, we can still compare.
+ if (ThisOverflows || OtherOverflows)
+ return ThisOverflows < OtherOverflows;
+ // Otherwise, just compare the values.
+ return ThisScaledCost < OtherScaledCost;
+}
+
+bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
+ return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
+ LocalFreq == Cost.LocalFreq;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
+ if (*this == ImpossibleCost()) {
+ OS << "impossible";
+ return;
+ }
+ if (isSaturated()) {
+ OS << "saturated";
+ return;
+ }
+ OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
+}