aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp3638
1 files changed, 3638 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp b/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
new file mode 100644
index 000000000000..1ae17ec9b874
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
@@ -0,0 +1,3638 @@
+//===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing dwarf debug info into asm files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DwarfDebug.h"
+#include "ByteStreamer.h"
+#include "DIEHash.h"
+#include "DwarfCompileUnit.h"
+#include "DwarfExpression.h"
+#include "DwarfUnit.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DIE.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
+#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/MC/SectionKind.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MD5.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/TargetParser/Triple.h"
+#include <algorithm>
+#include <cstddef>
+#include <iterator>
+#include <optional>
+#include <string>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "dwarfdebug"
+
+STATISTIC(NumCSParams, "Number of dbg call site params created");
+
+static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
+ "use-dwarf-ranges-base-address-specifier", cl::Hidden,
+ cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
+
+static cl::opt<bool> GenerateARangeSection("generate-arange-section",
+ cl::Hidden,
+ cl::desc("Generate dwarf aranges"),
+ cl::init(false));
+
+static cl::opt<bool>
+ GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
+ cl::desc("Generate DWARF4 type units."),
+ cl::init(false));
+
+static cl::opt<bool> SplitDwarfCrossCuReferences(
+ "split-dwarf-cross-cu-references", cl::Hidden,
+ cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
+
+enum DefaultOnOff { Default, Enable, Disable };
+
+static cl::opt<DefaultOnOff> UnknownLocations(
+ "use-unknown-locations", cl::Hidden,
+ cl::desc("Make an absence of debug location information explicit."),
+ cl::values(clEnumVal(Default, "At top of block or after label"),
+ clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
+ cl::init(Default));
+
+static cl::opt<AccelTableKind> AccelTables(
+ "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
+ cl::values(clEnumValN(AccelTableKind::Default, "Default",
+ "Default for platform"),
+ clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
+ clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
+ clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
+ cl::init(AccelTableKind::Default));
+
+static cl::opt<DefaultOnOff>
+DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
+ cl::desc("Use inlined strings rather than string section."),
+ cl::values(clEnumVal(Default, "Default for platform"),
+ clEnumVal(Enable, "Enabled"),
+ clEnumVal(Disable, "Disabled")),
+ cl::init(Default));
+
+static cl::opt<bool>
+ NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
+ cl::desc("Disable emission .debug_ranges section."),
+ cl::init(false));
+
+static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
+ "dwarf-sections-as-references", cl::Hidden,
+ cl::desc("Use sections+offset as references rather than labels."),
+ cl::values(clEnumVal(Default, "Default for platform"),
+ clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
+ cl::init(Default));
+
+static cl::opt<bool>
+ UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
+ cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
+ cl::init(false));
+
+static cl::opt<DefaultOnOff> DwarfOpConvert(
+ "dwarf-op-convert", cl::Hidden,
+ cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
+ cl::values(clEnumVal(Default, "Default for platform"),
+ clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
+ cl::init(Default));
+
+enum LinkageNameOption {
+ DefaultLinkageNames,
+ AllLinkageNames,
+ AbstractLinkageNames
+};
+
+static cl::opt<LinkageNameOption>
+ DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
+ cl::desc("Which DWARF linkage-name attributes to emit."),
+ cl::values(clEnumValN(DefaultLinkageNames, "Default",
+ "Default for platform"),
+ clEnumValN(AllLinkageNames, "All", "All"),
+ clEnumValN(AbstractLinkageNames, "Abstract",
+ "Abstract subprograms")),
+ cl::init(DefaultLinkageNames));
+
+static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
+ "minimize-addr-in-v5", cl::Hidden,
+ cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
+ "address pool entry sharing to reduce relocations/object size"),
+ cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
+ "Default address minimization strategy"),
+ clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
+ "Use rnglists for contiguous ranges if that allows "
+ "using a pre-existing base address"),
+ clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
+ "Expressions",
+ "Use exprloc addrx+offset expressions for any "
+ "address with a prior base address"),
+ clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form",
+ "Use addrx+offset extension form for any address "
+ "with a prior base address"),
+ clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
+ "Stuff")),
+ cl::init(DwarfDebug::MinimizeAddrInV5::Default));
+
+static constexpr unsigned ULEB128PadSize = 4;
+
+void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
+ getActiveStreamer().emitInt8(
+ Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
+ : dwarf::OperationEncodingString(Op));
+}
+
+void DebugLocDwarfExpression::emitSigned(int64_t Value) {
+ getActiveStreamer().emitSLEB128(Value, Twine(Value));
+}
+
+void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
+ getActiveStreamer().emitULEB128(Value, Twine(Value));
+}
+
+void DebugLocDwarfExpression::emitData1(uint8_t Value) {
+ getActiveStreamer().emitInt8(Value, Twine(Value));
+}
+
+void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
+ assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
+ getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
+}
+
+bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
+ llvm::Register MachineReg) {
+ // This information is not available while emitting .debug_loc entries.
+ return false;
+}
+
+void DebugLocDwarfExpression::enableTemporaryBuffer() {
+ assert(!IsBuffering && "Already buffering?");
+ if (!TmpBuf)
+ TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
+ IsBuffering = true;
+}
+
+void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
+
+unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
+ return TmpBuf ? TmpBuf->Bytes.size() : 0;
+}
+
+void DebugLocDwarfExpression::commitTemporaryBuffer() {
+ if (!TmpBuf)
+ return;
+ for (auto Byte : enumerate(TmpBuf->Bytes)) {
+ const char *Comment = (Byte.index() < TmpBuf->Comments.size())
+ ? TmpBuf->Comments[Byte.index()].c_str()
+ : "";
+ OutBS.emitInt8(Byte.value(), Comment);
+ }
+ TmpBuf->Bytes.clear();
+ TmpBuf->Comments.clear();
+}
+
+const DIType *DbgVariable::getType() const {
+ return getVariable()->getType();
+}
+
+/// Get .debug_loc entry for the instruction range starting at MI.
+static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
+ const DIExpression *Expr = MI->getDebugExpression();
+ const bool IsVariadic = MI->isDebugValueList();
+ assert(MI->getNumOperands() >= 3);
+ SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries;
+ for (const MachineOperand &Op : MI->debug_operands()) {
+ if (Op.isReg()) {
+ MachineLocation MLoc(Op.getReg(),
+ MI->isNonListDebugValue() && MI->isDebugOffsetImm());
+ DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc));
+ } else if (Op.isTargetIndex()) {
+ DbgValueLocEntries.push_back(
+ DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset())));
+ } else if (Op.isImm())
+ DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm()));
+ else if (Op.isFPImm())
+ DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm()));
+ else if (Op.isCImm())
+ DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm()));
+ else
+ llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!");
+ }
+ return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic);
+}
+
+void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
+ assert(FrameIndexExprs.empty() && "Already initialized?");
+ assert(!ValueLoc.get() && "Already initialized?");
+
+ assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
+ assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
+ "Wrong inlined-at");
+
+ ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
+ if (auto *E = DbgValue->getDebugExpression())
+ if (E->getNumElements())
+ FrameIndexExprs.push_back({0, E});
+}
+
+ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
+ if (FrameIndexExprs.size() == 1)
+ return FrameIndexExprs;
+
+ assert(llvm::all_of(FrameIndexExprs,
+ [](const FrameIndexExpr &A) {
+ return A.Expr->isFragment();
+ }) &&
+ "multiple FI expressions without DW_OP_LLVM_fragment");
+ llvm::sort(FrameIndexExprs,
+ [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
+ return A.Expr->getFragmentInfo()->OffsetInBits <
+ B.Expr->getFragmentInfo()->OffsetInBits;
+ });
+
+ return FrameIndexExprs;
+}
+
+void DbgVariable::addMMIEntry(const DbgVariable &V) {
+ assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
+ assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
+ assert(V.getVariable() == getVariable() && "conflicting variable");
+ assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
+
+ assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
+ assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
+
+ // FIXME: This logic should not be necessary anymore, as we now have proper
+ // deduplication. However, without it, we currently run into the assertion
+ // below, which means that we are likely dealing with broken input, i.e. two
+ // non-fragment entries for the same variable at different frame indices.
+ if (FrameIndexExprs.size()) {
+ auto *Expr = FrameIndexExprs.back().Expr;
+ if (!Expr || !Expr->isFragment())
+ return;
+ }
+
+ for (const auto &FIE : V.FrameIndexExprs)
+ // Ignore duplicate entries.
+ if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
+ return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
+ }))
+ FrameIndexExprs.push_back(FIE);
+
+ assert((FrameIndexExprs.size() == 1 ||
+ llvm::all_of(FrameIndexExprs,
+ [](FrameIndexExpr &FIE) {
+ return FIE.Expr && FIE.Expr->isFragment();
+ })) &&
+ "conflicting locations for variable");
+}
+
+static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
+ bool GenerateTypeUnits,
+ DebuggerKind Tuning,
+ const Triple &TT) {
+ // Honor an explicit request.
+ if (AccelTables != AccelTableKind::Default)
+ return AccelTables;
+
+ // Accelerator tables with type units are currently not supported.
+ if (GenerateTypeUnits)
+ return AccelTableKind::None;
+
+ // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5
+ // always implies debug_names. For lower standard versions we use apple
+ // accelerator tables on apple platforms and debug_names elsewhere.
+ if (DwarfVersion >= 5)
+ return AccelTableKind::Dwarf;
+ if (Tuning == DebuggerKind::LLDB)
+ return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
+ : AccelTableKind::Dwarf;
+ return AccelTableKind::None;
+}
+
+DwarfDebug::DwarfDebug(AsmPrinter *A)
+ : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
+ InfoHolder(A, "info_string", DIEValueAllocator),
+ SkeletonHolder(A, "skel_string", DIEValueAllocator),
+ IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
+ const Triple &TT = Asm->TM.getTargetTriple();
+
+ // Make sure we know our "debugger tuning". The target option takes
+ // precedence; fall back to triple-based defaults.
+ if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
+ DebuggerTuning = Asm->TM.Options.DebuggerTuning;
+ else if (IsDarwin)
+ DebuggerTuning = DebuggerKind::LLDB;
+ else if (TT.isPS())
+ DebuggerTuning = DebuggerKind::SCE;
+ else if (TT.isOSAIX())
+ DebuggerTuning = DebuggerKind::DBX;
+ else
+ DebuggerTuning = DebuggerKind::GDB;
+
+ if (DwarfInlinedStrings == Default)
+ UseInlineStrings = TT.isNVPTX() || tuneForDBX();
+ else
+ UseInlineStrings = DwarfInlinedStrings == Enable;
+
+ UseLocSection = !TT.isNVPTX();
+
+ HasAppleExtensionAttributes = tuneForLLDB();
+
+ // Handle split DWARF.
+ HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
+
+ // SCE defaults to linkage names only for abstract subprograms.
+ if (DwarfLinkageNames == DefaultLinkageNames)
+ UseAllLinkageNames = !tuneForSCE();
+ else
+ UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
+
+ unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
+ unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
+ : MMI->getModule()->getDwarfVersion();
+ // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
+ DwarfVersion =
+ TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
+
+ bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
+ TT.isArch64Bit(); // DWARF64 requires 64-bit relocations.
+
+ // Support DWARF64
+ // 1: For ELF when requested.
+ // 2: For XCOFF64: the AIX assembler will fill in debug section lengths
+ // according to the DWARF64 format for 64-bit assembly, so we must use
+ // DWARF64 in the compiler too for 64-bit mode.
+ Dwarf64 &=
+ ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) &&
+ TT.isOSBinFormatELF()) ||
+ TT.isOSBinFormatXCOFF();
+
+ if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF())
+ report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!");
+
+ UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
+
+ // Use sections as references. Force for NVPTX.
+ if (DwarfSectionsAsReferences == Default)
+ UseSectionsAsReferences = TT.isNVPTX();
+ else
+ UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
+
+ // Don't generate type units for unsupported object file formats.
+ GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
+ A->TM.getTargetTriple().isOSBinFormatWasm()) &&
+ GenerateDwarfTypeUnits;
+
+ TheAccelTableKind = computeAccelTableKind(
+ DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
+
+ // Work around a GDB bug. GDB doesn't support the standard opcode;
+ // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
+ // is defined as of DWARF 3.
+ // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
+ // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
+ UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
+
+ UseDWARF2Bitfields = DwarfVersion < 4;
+
+ // The DWARF v5 string offsets table has - possibly shared - contributions
+ // from each compile and type unit each preceded by a header. The string
+ // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
+ // a monolithic string offsets table without any header.
+ UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
+
+ // Emit call-site-param debug info for GDB and LLDB, if the target supports
+ // the debug entry values feature. It can also be enabled explicitly.
+ EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
+
+ // It is unclear if the GCC .debug_macro extension is well-specified
+ // for split DWARF. For now, do not allow LLVM to emit it.
+ UseDebugMacroSection =
+ DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
+ if (DwarfOpConvert == Default)
+ EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
+ else
+ EnableOpConvert = (DwarfOpConvert == Enable);
+
+ // Split DWARF would benefit object size significantly by trading reductions
+ // in address pool usage for slightly increased range list encodings.
+ if (DwarfVersion >= 5)
+ MinimizeAddr = MinimizeAddrInV5Option;
+
+ Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
+ Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
+ : dwarf::DWARF32);
+}
+
+// Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
+DwarfDebug::~DwarfDebug() = default;
+
+static bool isObjCClass(StringRef Name) {
+ return Name.startswith("+") || Name.startswith("-");
+}
+
+static bool hasObjCCategory(StringRef Name) {
+ if (!isObjCClass(Name))
+ return false;
+
+ return Name.contains(") ");
+}
+
+static void getObjCClassCategory(StringRef In, StringRef &Class,
+ StringRef &Category) {
+ if (!hasObjCCategory(In)) {
+ Class = In.slice(In.find('[') + 1, In.find(' '));
+ Category = "";
+ return;
+ }
+
+ Class = In.slice(In.find('[') + 1, In.find('('));
+ Category = In.slice(In.find('[') + 1, In.find(' '));
+}
+
+static StringRef getObjCMethodName(StringRef In) {
+ return In.slice(In.find(' ') + 1, In.find(']'));
+}
+
+// Add the various names to the Dwarf accelerator table names.
+void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
+ const DISubprogram *SP, DIE &Die) {
+ if (getAccelTableKind() != AccelTableKind::Apple &&
+ CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Apple &&
+ CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
+ return;
+
+ if (!SP->isDefinition())
+ return;
+
+ if (SP->getName() != "")
+ addAccelName(CU, SP->getName(), Die);
+
+ // If the linkage name is different than the name, go ahead and output that as
+ // well into the name table. Only do that if we are going to actually emit
+ // that name.
+ if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
+ (useAllLinkageNames() || InfoHolder.getAbstractScopeDIEs().lookup(SP)))
+ addAccelName(CU, SP->getLinkageName(), Die);
+
+ // If this is an Objective-C selector name add it to the ObjC accelerator
+ // too.
+ if (isObjCClass(SP->getName())) {
+ StringRef Class, Category;
+ getObjCClassCategory(SP->getName(), Class, Category);
+ addAccelObjC(CU, Class, Die);
+ if (Category != "")
+ addAccelObjC(CU, Category, Die);
+ // Also add the base method name to the name table.
+ addAccelName(CU, getObjCMethodName(SP->getName()), Die);
+ }
+}
+
+/// Check whether we should create a DIE for the given Scope, return true
+/// if we don't create a DIE (the corresponding DIE is null).
+bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
+ if (Scope->isAbstractScope())
+ return false;
+
+ // We don't create a DIE if there is no Range.
+ const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
+ if (Ranges.empty())
+ return true;
+
+ if (Ranges.size() > 1)
+ return false;
+
+ // We don't create a DIE if we have a single Range and the end label
+ // is null.
+ return !getLabelAfterInsn(Ranges.front().second);
+}
+
+template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
+ F(CU);
+ if (auto *SkelCU = CU.getSkeleton())
+ if (CU.getCUNode()->getSplitDebugInlining())
+ F(*SkelCU);
+}
+
+bool DwarfDebug::shareAcrossDWOCUs() const {
+ return SplitDwarfCrossCuReferences;
+}
+
+void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
+ LexicalScope *Scope) {
+ assert(Scope && Scope->getScopeNode());
+ assert(Scope->isAbstractScope());
+ assert(!Scope->getInlinedAt());
+
+ auto *SP = cast<DISubprogram>(Scope->getScopeNode());
+
+ // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
+ // was inlined from another compile unit.
+ if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
+ // Avoid building the original CU if it won't be used
+ SrcCU.constructAbstractSubprogramScopeDIE(Scope);
+ else {
+ auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
+ if (auto *SkelCU = CU.getSkeleton()) {
+ (shareAcrossDWOCUs() ? CU : SrcCU)
+ .constructAbstractSubprogramScopeDIE(Scope);
+ if (CU.getCUNode()->getSplitDebugInlining())
+ SkelCU->constructAbstractSubprogramScopeDIE(Scope);
+ } else
+ CU.constructAbstractSubprogramScopeDIE(Scope);
+ }
+}
+
+/// Represents a parameter whose call site value can be described by applying a
+/// debug expression to a register in the forwarded register worklist.
+struct FwdRegParamInfo {
+ /// The described parameter register.
+ unsigned ParamReg;
+
+ /// Debug expression that has been built up when walking through the
+ /// instruction chain that produces the parameter's value.
+ const DIExpression *Expr;
+};
+
+/// Register worklist for finding call site values.
+using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
+/// Container for the set of registers known to be clobbered on the path to a
+/// call site.
+using ClobberedRegSet = SmallSet<Register, 16>;
+
+/// Append the expression \p Addition to \p Original and return the result.
+static const DIExpression *combineDIExpressions(const DIExpression *Original,
+ const DIExpression *Addition) {
+ std::vector<uint64_t> Elts = Addition->getElements().vec();
+ // Avoid multiple DW_OP_stack_values.
+ if (Original->isImplicit() && Addition->isImplicit())
+ erase_value(Elts, dwarf::DW_OP_stack_value);
+ const DIExpression *CombinedExpr =
+ (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
+ return CombinedExpr;
+}
+
+/// Emit call site parameter entries that are described by the given value and
+/// debug expression.
+template <typename ValT>
+static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
+ ArrayRef<FwdRegParamInfo> DescribedParams,
+ ParamSet &Params) {
+ for (auto Param : DescribedParams) {
+ bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
+
+ // TODO: Entry value operations can currently not be combined with any
+ // other expressions, so we can't emit call site entries in those cases.
+ if (ShouldCombineExpressions && Expr->isEntryValue())
+ continue;
+
+ // If a parameter's call site value is produced by a chain of
+ // instructions we may have already created an expression for the
+ // parameter when walking through the instructions. Append that to the
+ // base expression.
+ const DIExpression *CombinedExpr =
+ ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
+ : Expr;
+ assert((!CombinedExpr || CombinedExpr->isValid()) &&
+ "Combined debug expression is invalid");
+
+ DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val));
+ DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
+ Params.push_back(CSParm);
+ ++NumCSParams;
+ }
+}
+
+/// Add \p Reg to the worklist, if it's not already present, and mark that the
+/// given parameter registers' values can (potentially) be described using
+/// that register and an debug expression.
+static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
+ const DIExpression *Expr,
+ ArrayRef<FwdRegParamInfo> ParamsToAdd) {
+ auto I = Worklist.insert({Reg, {}});
+ auto &ParamsForFwdReg = I.first->second;
+ for (auto Param : ParamsToAdd) {
+ assert(none_of(ParamsForFwdReg,
+ [Param](const FwdRegParamInfo &D) {
+ return D.ParamReg == Param.ParamReg;
+ }) &&
+ "Same parameter described twice by forwarding reg");
+
+ // If a parameter's call site value is produced by a chain of
+ // instructions we may have already created an expression for the
+ // parameter when walking through the instructions. Append that to the
+ // new expression.
+ const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
+ ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
+ }
+}
+
+/// Interpret values loaded into registers by \p CurMI.
+static void interpretValues(const MachineInstr *CurMI,
+ FwdRegWorklist &ForwardedRegWorklist,
+ ParamSet &Params,
+ ClobberedRegSet &ClobberedRegUnits) {
+
+ const MachineFunction *MF = CurMI->getMF();
+ const DIExpression *EmptyExpr =
+ DIExpression::get(MF->getFunction().getContext(), {});
+ const auto &TRI = *MF->getSubtarget().getRegisterInfo();
+ const auto &TII = *MF->getSubtarget().getInstrInfo();
+ const auto &TLI = *MF->getSubtarget().getTargetLowering();
+
+ // If an instruction defines more than one item in the worklist, we may run
+ // into situations where a worklist register's value is (potentially)
+ // described by the previous value of another register that is also defined
+ // by that instruction.
+ //
+ // This can for example occur in cases like this:
+ //
+ // $r1 = mov 123
+ // $r0, $r1 = mvrr $r1, 456
+ // call @foo, $r0, $r1
+ //
+ // When describing $r1's value for the mvrr instruction, we need to make sure
+ // that we don't finalize an entry value for $r0, as that is dependent on the
+ // previous value of $r1 (123 rather than 456).
+ //
+ // In order to not have to distinguish between those cases when finalizing
+ // entry values, we simply postpone adding new parameter registers to the
+ // worklist, by first keeping them in this temporary container until the
+ // instruction has been handled.
+ FwdRegWorklist TmpWorklistItems;
+
+ // If the MI is an instruction defining one or more parameters' forwarding
+ // registers, add those defines.
+ ClobberedRegSet NewClobberedRegUnits;
+ auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
+ SmallSetVector<unsigned, 4> &Defs) {
+ if (MI.isDebugInstr())
+ return;
+
+ for (const MachineOperand &MO : MI.all_defs()) {
+ if (MO.getReg().isPhysical()) {
+ for (auto &FwdReg : ForwardedRegWorklist)
+ if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
+ Defs.insert(FwdReg.first);
+ for (MCRegUnit Unit : TRI.regunits(MO.getReg()))
+ NewClobberedRegUnits.insert(Unit);
+ }
+ }
+ };
+
+ // Set of worklist registers that are defined by this instruction.
+ SmallSetVector<unsigned, 4> FwdRegDefs;
+
+ getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
+ if (FwdRegDefs.empty()) {
+ // Any definitions by this instruction will clobber earlier reg movements.
+ ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
+ NewClobberedRegUnits.end());
+ return;
+ }
+
+ // It's possible that we find a copy from a non-volatile register to the param
+ // register, which is clobbered in the meantime. Test for clobbered reg unit
+ // overlaps before completing.
+ auto IsRegClobberedInMeantime = [&](Register Reg) -> bool {
+ for (auto &RegUnit : ClobberedRegUnits)
+ if (TRI.hasRegUnit(Reg, RegUnit))
+ return true;
+ return false;
+ };
+
+ for (auto ParamFwdReg : FwdRegDefs) {
+ if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
+ if (ParamValue->first.isImm()) {
+ int64_t Val = ParamValue->first.getImm();
+ finishCallSiteParams(Val, ParamValue->second,
+ ForwardedRegWorklist[ParamFwdReg], Params);
+ } else if (ParamValue->first.isReg()) {
+ Register RegLoc = ParamValue->first.getReg();
+ Register SP = TLI.getStackPointerRegisterToSaveRestore();
+ Register FP = TRI.getFrameRegister(*MF);
+ bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
+ if (!IsRegClobberedInMeantime(RegLoc) &&
+ (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP)) {
+ MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
+ finishCallSiteParams(MLoc, ParamValue->second,
+ ForwardedRegWorklist[ParamFwdReg], Params);
+ } else {
+ // ParamFwdReg was described by the non-callee saved register
+ // RegLoc. Mark that the call site values for the parameters are
+ // dependent on that register instead of ParamFwdReg. Since RegLoc
+ // may be a register that will be handled in this iteration, we
+ // postpone adding the items to the worklist, and instead keep them
+ // in a temporary container.
+ addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
+ ForwardedRegWorklist[ParamFwdReg]);
+ }
+ }
+ }
+ }
+
+ // Remove all registers that this instruction defines from the worklist.
+ for (auto ParamFwdReg : FwdRegDefs)
+ ForwardedRegWorklist.erase(ParamFwdReg);
+
+ // Any definitions by this instruction will clobber earlier reg movements.
+ ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
+ NewClobberedRegUnits.end());
+
+ // Now that we are done handling this instruction, add items from the
+ // temporary worklist to the real one.
+ for (auto &New : TmpWorklistItems)
+ addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
+ TmpWorklistItems.clear();
+}
+
+static bool interpretNextInstr(const MachineInstr *CurMI,
+ FwdRegWorklist &ForwardedRegWorklist,
+ ParamSet &Params,
+ ClobberedRegSet &ClobberedRegUnits) {
+ // Skip bundle headers.
+ if (CurMI->isBundle())
+ return true;
+
+ // If the next instruction is a call we can not interpret parameter's
+ // forwarding registers or we finished the interpretation of all
+ // parameters.
+ if (CurMI->isCall())
+ return false;
+
+ if (ForwardedRegWorklist.empty())
+ return false;
+
+ // Avoid NOP description.
+ if (CurMI->getNumOperands() == 0)
+ return true;
+
+ interpretValues(CurMI, ForwardedRegWorklist, Params, ClobberedRegUnits);
+
+ return true;
+}
+
+/// Try to interpret values loaded into registers that forward parameters
+/// for \p CallMI. Store parameters with interpreted value into \p Params.
+static void collectCallSiteParameters(const MachineInstr *CallMI,
+ ParamSet &Params) {
+ const MachineFunction *MF = CallMI->getMF();
+ const auto &CalleesMap = MF->getCallSitesInfo();
+ auto CallFwdRegsInfo = CalleesMap.find(CallMI);
+
+ // There is no information for the call instruction.
+ if (CallFwdRegsInfo == CalleesMap.end())
+ return;
+
+ const MachineBasicBlock *MBB = CallMI->getParent();
+
+ // Skip the call instruction.
+ auto I = std::next(CallMI->getReverseIterator());
+
+ FwdRegWorklist ForwardedRegWorklist;
+
+ const DIExpression *EmptyExpr =
+ DIExpression::get(MF->getFunction().getContext(), {});
+
+ // Add all the forwarding registers into the ForwardedRegWorklist.
+ for (const auto &ArgReg : CallFwdRegsInfo->second) {
+ bool InsertedReg =
+ ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
+ .second;
+ assert(InsertedReg && "Single register used to forward two arguments?");
+ (void)InsertedReg;
+ }
+
+ // Do not emit CSInfo for undef forwarding registers.
+ for (const auto &MO : CallMI->uses())
+ if (MO.isReg() && MO.isUndef())
+ ForwardedRegWorklist.erase(MO.getReg());
+
+ // We erase, from the ForwardedRegWorklist, those forwarding registers for
+ // which we successfully describe a loaded value (by using
+ // the describeLoadedValue()). For those remaining arguments in the working
+ // list, for which we do not describe a loaded value by
+ // the describeLoadedValue(), we try to generate an entry value expression
+ // for their call site value description, if the call is within the entry MBB.
+ // TODO: Handle situations when call site parameter value can be described
+ // as the entry value within basic blocks other than the first one.
+ bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
+
+ // Search for a loading value in forwarding registers inside call delay slot.
+ ClobberedRegSet ClobberedRegUnits;
+ if (CallMI->hasDelaySlot()) {
+ auto Suc = std::next(CallMI->getIterator());
+ // Only one-instruction delay slot is supported.
+ auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
+ (void)BundleEnd;
+ assert(std::next(Suc) == BundleEnd &&
+ "More than one instruction in call delay slot");
+ // Try to interpret value loaded by instruction.
+ if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params, ClobberedRegUnits))
+ return;
+ }
+
+ // Search for a loading value in forwarding registers.
+ for (; I != MBB->rend(); ++I) {
+ // Try to interpret values loaded by instruction.
+ if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params, ClobberedRegUnits))
+ return;
+ }
+
+ // Emit the call site parameter's value as an entry value.
+ if (ShouldTryEmitEntryVals) {
+ // Create an expression where the register's entry value is used.
+ DIExpression *EntryExpr = DIExpression::get(
+ MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
+ for (auto &RegEntry : ForwardedRegWorklist) {
+ MachineLocation MLoc(RegEntry.first);
+ finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
+ }
+ }
+}
+
+void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
+ DwarfCompileUnit &CU, DIE &ScopeDIE,
+ const MachineFunction &MF) {
+ // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
+ // the subprogram is required to have one.
+ if (!SP.areAllCallsDescribed() || !SP.isDefinition())
+ return;
+
+ // Use DW_AT_call_all_calls to express that call site entries are present
+ // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
+ // because one of its requirements is not met: call site entries for
+ // optimized-out calls are elided.
+ CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
+
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
+ assert(TII && "TargetInstrInfo not found: cannot label tail calls");
+
+ // Delay slot support check.
+ auto delaySlotSupported = [&](const MachineInstr &MI) {
+ if (!MI.isBundledWithSucc())
+ return false;
+ auto Suc = std::next(MI.getIterator());
+ auto CallInstrBundle = getBundleStart(MI.getIterator());
+ (void)CallInstrBundle;
+ auto DelaySlotBundle = getBundleStart(Suc);
+ (void)DelaySlotBundle;
+ // Ensure that label after call is following delay slot instruction.
+ // Ex. CALL_INSTRUCTION {
+ // DELAY_SLOT_INSTRUCTION }
+ // LABEL_AFTER_CALL
+ assert(getLabelAfterInsn(&*CallInstrBundle) ==
+ getLabelAfterInsn(&*DelaySlotBundle) &&
+ "Call and its successor instruction don't have same label after.");
+ return true;
+ };
+
+ // Emit call site entries for each call or tail call in the function.
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB.instrs()) {
+ // Bundles with call in them will pass the isCall() test below but do not
+ // have callee operand information so skip them here. Iterator will
+ // eventually reach the call MI.
+ if (MI.isBundle())
+ continue;
+
+ // Skip instructions which aren't calls. Both calls and tail-calling jump
+ // instructions (e.g TAILJMPd64) are classified correctly here.
+ if (!MI.isCandidateForCallSiteEntry())
+ continue;
+
+ // Skip instructions marked as frame setup, as they are not interesting to
+ // the user.
+ if (MI.getFlag(MachineInstr::FrameSetup))
+ continue;
+
+ // Check if delay slot support is enabled.
+ if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
+ return;
+
+ // If this is a direct call, find the callee's subprogram.
+ // In the case of an indirect call find the register that holds
+ // the callee.
+ const MachineOperand &CalleeOp = TII->getCalleeOperand(MI);
+ if (!CalleeOp.isGlobal() &&
+ (!CalleeOp.isReg() || !CalleeOp.getReg().isPhysical()))
+ continue;
+
+ unsigned CallReg = 0;
+ const DISubprogram *CalleeSP = nullptr;
+ const Function *CalleeDecl = nullptr;
+ if (CalleeOp.isReg()) {
+ CallReg = CalleeOp.getReg();
+ if (!CallReg)
+ continue;
+ } else {
+ CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
+ if (!CalleeDecl || !CalleeDecl->getSubprogram())
+ continue;
+ CalleeSP = CalleeDecl->getSubprogram();
+ }
+
+ // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
+
+ bool IsTail = TII->isTailCall(MI);
+
+ // If MI is in a bundle, the label was created after the bundle since
+ // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
+ // to search for that label below.
+ const MachineInstr *TopLevelCallMI =
+ MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
+
+ // For non-tail calls, the return PC is needed to disambiguate paths in
+ // the call graph which could lead to some target function. For tail
+ // calls, no return PC information is needed, unless tuning for GDB in
+ // DWARF4 mode in which case we fake a return PC for compatibility.
+ const MCSymbol *PCAddr =
+ (!IsTail || CU.useGNUAnalogForDwarf5Feature())
+ ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
+ : nullptr;
+
+ // For tail calls, it's necessary to record the address of the branch
+ // instruction so that the debugger can show where the tail call occurred.
+ const MCSymbol *CallAddr =
+ IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
+
+ assert((IsTail || PCAddr) && "Non-tail call without return PC");
+
+ LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
+ << (CalleeDecl ? CalleeDecl->getName()
+ : StringRef(MF.getSubtarget()
+ .getRegisterInfo()
+ ->getName(CallReg)))
+ << (IsTail ? " [IsTail]" : "") << "\n");
+
+ DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
+ ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg);
+
+ // Optionally emit call-site-param debug info.
+ if (emitDebugEntryValues()) {
+ ParamSet Params;
+ // Try to interpret values of call site parameters.
+ collectCallSiteParameters(&MI, Params);
+ CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
+ }
+ }
+ }
+}
+
+void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
+ if (!U.hasDwarfPubSections())
+ return;
+
+ U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
+}
+
+void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
+ DwarfCompileUnit &NewCU) {
+ DIE &Die = NewCU.getUnitDie();
+ StringRef FN = DIUnit->getFilename();
+
+ StringRef Producer = DIUnit->getProducer();
+ StringRef Flags = DIUnit->getFlags();
+ if (!Flags.empty() && !useAppleExtensionAttributes()) {
+ std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
+ NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
+ } else
+ NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
+
+ NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
+ DIUnit->getSourceLanguage());
+ NewCU.addString(Die, dwarf::DW_AT_name, FN);
+ StringRef SysRoot = DIUnit->getSysRoot();
+ if (!SysRoot.empty())
+ NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
+ StringRef SDK = DIUnit->getSDK();
+ if (!SDK.empty())
+ NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
+
+ if (!useSplitDwarf()) {
+ // Add DW_str_offsets_base to the unit DIE, except for split units.
+ if (useSegmentedStringOffsetsTable())
+ NewCU.addStringOffsetsStart();
+
+ NewCU.initStmtList();
+
+ // If we're using split dwarf the compilation dir is going to be in the
+ // skeleton CU and so we don't need to duplicate it here.
+ if (!CompilationDir.empty())
+ NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
+ addGnuPubAttributes(NewCU, Die);
+ }
+
+ if (useAppleExtensionAttributes()) {
+ if (DIUnit->isOptimized())
+ NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
+
+ StringRef Flags = DIUnit->getFlags();
+ if (!Flags.empty())
+ NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
+
+ if (unsigned RVer = DIUnit->getRuntimeVersion())
+ NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
+ dwarf::DW_FORM_data1, RVer);
+ }
+
+ if (DIUnit->getDWOId()) {
+ // This CU is either a clang module DWO or a skeleton CU.
+ NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
+ DIUnit->getDWOId());
+ if (!DIUnit->getSplitDebugFilename().empty()) {
+ // This is a prefabricated skeleton CU.
+ dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
+ ? dwarf::DW_AT_dwo_name
+ : dwarf::DW_AT_GNU_dwo_name;
+ NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
+ }
+ }
+}
+// Create new DwarfCompileUnit for the given metadata node with tag
+// DW_TAG_compile_unit.
+DwarfCompileUnit &
+DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
+ if (auto *CU = CUMap.lookup(DIUnit))
+ return *CU;
+
+ if (useSplitDwarf() &&
+ !shareAcrossDWOCUs() &&
+ (!DIUnit->getSplitDebugInlining() ||
+ DIUnit->getEmissionKind() == DICompileUnit::FullDebug) &&
+ !CUMap.empty()) {
+ return *CUMap.begin()->second;
+ }
+ CompilationDir = DIUnit->getDirectory();
+
+ auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
+ InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
+ DwarfCompileUnit &NewCU = *OwnedUnit;
+ InfoHolder.addUnit(std::move(OwnedUnit));
+
+ // LTO with assembly output shares a single line table amongst multiple CUs.
+ // To avoid the compilation directory being ambiguous, let the line table
+ // explicitly describe the directory of all files, never relying on the
+ // compilation directory.
+ if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
+ Asm->OutStreamer->emitDwarfFile0Directive(
+ CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
+ DIUnit->getSource(), NewCU.getUniqueID());
+
+ if (useSplitDwarf()) {
+ NewCU.setSkeleton(constructSkeletonCU(NewCU));
+ NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
+ } else {
+ finishUnitAttributes(DIUnit, NewCU);
+ NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
+ }
+
+ CUMap.insert({DIUnit, &NewCU});
+ CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
+ return NewCU;
+}
+
+/// Sort and unique GVEs by comparing their fragment offset.
+static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
+sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
+ llvm::sort(
+ GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
+ // Sort order: first null exprs, then exprs without fragment
+ // info, then sort by fragment offset in bits.
+ // FIXME: Come up with a more comprehensive comparator so
+ // the sorting isn't non-deterministic, and so the following
+ // std::unique call works correctly.
+ if (!A.Expr || !B.Expr)
+ return !!B.Expr;
+ auto FragmentA = A.Expr->getFragmentInfo();
+ auto FragmentB = B.Expr->getFragmentInfo();
+ if (!FragmentA || !FragmentB)
+ return !!FragmentB;
+ return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
+ });
+ GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
+ [](DwarfCompileUnit::GlobalExpr A,
+ DwarfCompileUnit::GlobalExpr B) {
+ return A.Expr == B.Expr;
+ }),
+ GVEs.end());
+ return GVEs;
+}
+
+// Emit all Dwarf sections that should come prior to the content. Create
+// global DIEs and emit initial debug info sections. This is invoked by
+// the target AsmPrinter.
+void DwarfDebug::beginModule(Module *M) {
+ DebugHandlerBase::beginModule(M);
+
+ if (!Asm || !MMI->hasDebugInfo())
+ return;
+
+ unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
+ M->debug_compile_units_end());
+ assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
+ assert(MMI->hasDebugInfo() &&
+ "DebugInfoAvailabilty unexpectedly not initialized");
+ SingleCU = NumDebugCUs == 1;
+ DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
+ GVMap;
+ for (const GlobalVariable &Global : M->globals()) {
+ SmallVector<DIGlobalVariableExpression *, 1> GVs;
+ Global.getDebugInfo(GVs);
+ for (auto *GVE : GVs)
+ GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
+ }
+
+ // Create the symbol that designates the start of the unit's contribution
+ // to the string offsets table. In a split DWARF scenario, only the skeleton
+ // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
+ if (useSegmentedStringOffsetsTable())
+ (useSplitDwarf() ? SkeletonHolder : InfoHolder)
+ .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
+
+
+ // Create the symbols that designates the start of the DWARF v5 range list
+ // and locations list tables. They are located past the table headers.
+ if (getDwarfVersion() >= 5) {
+ DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
+ Holder.setRnglistsTableBaseSym(
+ Asm->createTempSymbol("rnglists_table_base"));
+
+ if (useSplitDwarf())
+ InfoHolder.setRnglistsTableBaseSym(
+ Asm->createTempSymbol("rnglists_dwo_table_base"));
+ }
+
+ // Create the symbol that points to the first entry following the debug
+ // address table (.debug_addr) header.
+ AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
+ DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
+
+ for (DICompileUnit *CUNode : M->debug_compile_units()) {
+ if (CUNode->getImportedEntities().empty() &&
+ CUNode->getEnumTypes().empty() && CUNode->getRetainedTypes().empty() &&
+ CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
+ continue;
+
+ DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
+
+ // Global Variables.
+ for (auto *GVE : CUNode->getGlobalVariables()) {
+ // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
+ // already know about the variable and it isn't adding a constant
+ // expression.
+ auto &GVMapEntry = GVMap[GVE->getVariable()];
+ auto *Expr = GVE->getExpression();
+ if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
+ GVMapEntry.push_back({nullptr, Expr});
+ }
+
+ DenseSet<DIGlobalVariable *> Processed;
+ for (auto *GVE : CUNode->getGlobalVariables()) {
+ DIGlobalVariable *GV = GVE->getVariable();
+ if (Processed.insert(GV).second)
+ CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
+ }
+
+ for (auto *Ty : CUNode->getEnumTypes())
+ CU.getOrCreateTypeDIE(cast<DIType>(Ty));
+
+ for (auto *Ty : CUNode->getRetainedTypes()) {
+ // The retained types array by design contains pointers to
+ // MDNodes rather than DIRefs. Unique them here.
+ if (DIType *RT = dyn_cast<DIType>(Ty))
+ // There is no point in force-emitting a forward declaration.
+ CU.getOrCreateTypeDIE(RT);
+ }
+ }
+}
+
+void DwarfDebug::finishEntityDefinitions() {
+ for (const auto &Entity : ConcreteEntities) {
+ DIE *Die = Entity->getDIE();
+ assert(Die);
+ // FIXME: Consider the time-space tradeoff of just storing the unit pointer
+ // in the ConcreteEntities list, rather than looking it up again here.
+ // DIE::getUnit isn't simple - it walks parent pointers, etc.
+ DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
+ assert(Unit);
+ Unit->finishEntityDefinition(Entity.get());
+ }
+}
+
+void DwarfDebug::finishSubprogramDefinitions() {
+ for (const DISubprogram *SP : ProcessedSPNodes) {
+ assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
+ forBothCUs(
+ getOrCreateDwarfCompileUnit(SP->getUnit()),
+ [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
+ }
+}
+
+void DwarfDebug::finalizeModuleInfo() {
+ const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
+
+ finishSubprogramDefinitions();
+
+ finishEntityDefinitions();
+
+ // Include the DWO file name in the hash if there's more than one CU.
+ // This handles ThinLTO's situation where imported CUs may very easily be
+ // duplicate with the same CU partially imported into another ThinLTO unit.
+ StringRef DWOName;
+ if (CUMap.size() > 1)
+ DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
+
+ bool HasEmittedSplitCU = false;
+
+ // Handle anything that needs to be done on a per-unit basis after
+ // all other generation.
+ for (const auto &P : CUMap) {
+ auto &TheCU = *P.second;
+ if (TheCU.getCUNode()->isDebugDirectivesOnly())
+ continue;
+ // Emit DW_AT_containing_type attribute to connect types with their
+ // vtable holding type.
+ TheCU.constructContainingTypeDIEs();
+
+ // Add CU specific attributes if we need to add any.
+ // If we're splitting the dwarf out now that we've got the entire
+ // CU then add the dwo id to it.
+ auto *SkCU = TheCU.getSkeleton();
+
+ bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
+
+ if (HasSplitUnit) {
+ (void)HasEmittedSplitCU;
+ assert((shareAcrossDWOCUs() || !HasEmittedSplitCU) &&
+ "Multiple CUs emitted into a single dwo file");
+ HasEmittedSplitCU = true;
+ dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
+ ? dwarf::DW_AT_dwo_name
+ : dwarf::DW_AT_GNU_dwo_name;
+ finishUnitAttributes(TheCU.getCUNode(), TheCU);
+ TheCU.addString(TheCU.getUnitDie(), attrDWOName,
+ Asm->TM.Options.MCOptions.SplitDwarfFile);
+ SkCU->addString(SkCU->getUnitDie(), attrDWOName,
+ Asm->TM.Options.MCOptions.SplitDwarfFile);
+ // Emit a unique identifier for this CU.
+ uint64_t ID =
+ DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
+ if (getDwarfVersion() >= 5) {
+ TheCU.setDWOId(ID);
+ SkCU->setDWOId(ID);
+ } else {
+ TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
+ dwarf::DW_FORM_data8, ID);
+ SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
+ dwarf::DW_FORM_data8, ID);
+ }
+
+ if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
+ const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
+ SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
+ Sym, Sym);
+ }
+ } else if (SkCU) {
+ finishUnitAttributes(SkCU->getCUNode(), *SkCU);
+ }
+
+ // If we have code split among multiple sections or non-contiguous
+ // ranges of code then emit a DW_AT_ranges attribute on the unit that will
+ // remain in the .o file, otherwise add a DW_AT_low_pc.
+ // FIXME: We should use ranges allow reordering of code ala
+ // .subsections_via_symbols in mach-o. This would mean turning on
+ // ranges for all subprogram DIEs for mach-o.
+ DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
+
+ if (unsigned NumRanges = TheCU.getRanges().size()) {
+ if (NumRanges > 1 && useRangesSection())
+ // A DW_AT_low_pc attribute may also be specified in combination with
+ // DW_AT_ranges to specify the default base address for use in
+ // location lists (see Section 2.6.2) and range lists (see Section
+ // 2.17.3).
+ U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
+ else
+ U.setBaseAddress(TheCU.getRanges().front().Begin);
+ U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
+ }
+
+ // We don't keep track of which addresses are used in which CU so this
+ // is a bit pessimistic under LTO.
+ if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
+ U.addAddrTableBase();
+
+ if (getDwarfVersion() >= 5) {
+ if (U.hasRangeLists())
+ U.addRnglistsBase();
+
+ if (!DebugLocs.getLists().empty() && !useSplitDwarf()) {
+ U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
+ DebugLocs.getSym(),
+ TLOF.getDwarfLoclistsSection()->getBeginSymbol());
+ }
+ }
+
+ auto *CUNode = cast<DICompileUnit>(P.first);
+ // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
+ // attribute.
+ if (CUNode->getMacros()) {
+ if (UseDebugMacroSection) {
+ if (useSplitDwarf())
+ TheCU.addSectionDelta(
+ TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
+ TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
+ else {
+ dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
+ ? dwarf::DW_AT_macros
+ : dwarf::DW_AT_GNU_macros;
+ U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
+ TLOF.getDwarfMacroSection()->getBeginSymbol());
+ }
+ } else {
+ if (useSplitDwarf())
+ TheCU.addSectionDelta(
+ TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
+ U.getMacroLabelBegin(),
+ TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
+ else
+ U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
+ U.getMacroLabelBegin(),
+ TLOF.getDwarfMacinfoSection()->getBeginSymbol());
+ }
+ }
+ }
+
+ // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
+ for (auto *CUNode : MMI->getModule()->debug_compile_units())
+ if (CUNode->getDWOId())
+ getOrCreateDwarfCompileUnit(CUNode);
+
+ // Compute DIE offsets and sizes.
+ InfoHolder.computeSizeAndOffsets();
+ if (useSplitDwarf())
+ SkeletonHolder.computeSizeAndOffsets();
+}
+
+// Emit all Dwarf sections that should come after the content.
+void DwarfDebug::endModule() {
+ // Terminate the pending line table.
+ if (PrevCU)
+ terminateLineTable(PrevCU);
+ PrevCU = nullptr;
+ assert(CurFn == nullptr);
+ assert(CurMI == nullptr);
+
+ for (const auto &P : CUMap) {
+ const auto *CUNode = cast<DICompileUnit>(P.first);
+ DwarfCompileUnit *CU = &*P.second;
+
+ // Emit imported entities.
+ for (auto *IE : CUNode->getImportedEntities()) {
+ assert(!isa_and_nonnull<DILocalScope>(IE->getScope()) &&
+ "Unexpected function-local entity in 'imports' CU field.");
+ CU->getOrCreateImportedEntityDIE(IE);
+ }
+ for (const auto *D : CU->getDeferredLocalDecls()) {
+ if (auto *IE = dyn_cast<DIImportedEntity>(D))
+ CU->getOrCreateImportedEntityDIE(IE);
+ else
+ llvm_unreachable("Unexpected local retained node!");
+ }
+
+ // Emit base types.
+ CU->createBaseTypeDIEs();
+ }
+
+ // If we aren't actually generating debug info (check beginModule -
+ // conditionalized on the presence of the llvm.dbg.cu metadata node)
+ if (!Asm || !MMI->hasDebugInfo())
+ return;
+
+ // Finalize the debug info for the module.
+ finalizeModuleInfo();
+
+ if (useSplitDwarf())
+ // Emit debug_loc.dwo/debug_loclists.dwo section.
+ emitDebugLocDWO();
+ else
+ // Emit debug_loc/debug_loclists section.
+ emitDebugLoc();
+
+ // Corresponding abbreviations into a abbrev section.
+ emitAbbreviations();
+
+ // Emit all the DIEs into a debug info section.
+ emitDebugInfo();
+
+ // Emit info into a debug aranges section.
+ if (GenerateARangeSection)
+ emitDebugARanges();
+
+ // Emit info into a debug ranges section.
+ emitDebugRanges();
+
+ if (useSplitDwarf())
+ // Emit info into a debug macinfo.dwo section.
+ emitDebugMacinfoDWO();
+ else
+ // Emit info into a debug macinfo/macro section.
+ emitDebugMacinfo();
+
+ emitDebugStr();
+
+ if (useSplitDwarf()) {
+ emitDebugStrDWO();
+ emitDebugInfoDWO();
+ emitDebugAbbrevDWO();
+ emitDebugLineDWO();
+ emitDebugRangesDWO();
+ }
+
+ emitDebugAddr();
+
+ // Emit info into the dwarf accelerator table sections.
+ switch (getAccelTableKind()) {
+ case AccelTableKind::Apple:
+ emitAccelNames();
+ emitAccelObjC();
+ emitAccelNamespaces();
+ emitAccelTypes();
+ break;
+ case AccelTableKind::Dwarf:
+ emitAccelDebugNames();
+ break;
+ case AccelTableKind::None:
+ break;
+ case AccelTableKind::Default:
+ llvm_unreachable("Default should have already been resolved.");
+ }
+
+ // Emit the pubnames and pubtypes sections if requested.
+ emitDebugPubSections();
+
+ // clean up.
+ // FIXME: AbstractVariables.clear();
+}
+
+void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
+ const DINode *Node, const MDNode *ScopeNode) {
+ if (CU.getExistingAbstractEntity(Node))
+ return;
+
+ if (LexicalScope *Scope =
+ LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
+ CU.createAbstractEntity(Node, Scope);
+}
+
+static const DILocalScope *getRetainedNodeScope(const MDNode *N) {
+ const DIScope *S;
+ if (const auto *LV = dyn_cast<DILocalVariable>(N))
+ S = LV->getScope();
+ else if (const auto *L = dyn_cast<DILabel>(N))
+ S = L->getScope();
+ else if (const auto *IE = dyn_cast<DIImportedEntity>(N))
+ S = IE->getScope();
+ else
+ llvm_unreachable("Unexpected retained node!");
+
+ // Ensure the scope is not a DILexicalBlockFile.
+ return cast<DILocalScope>(S)->getNonLexicalBlockFileScope();
+}
+
+// Collect variable information from side table maintained by MF.
+void DwarfDebug::collectVariableInfoFromMFTable(
+ DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
+ SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
+ LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
+ for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
+ if (!VI.Var)
+ continue;
+ assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
+ "Expected inlined-at fields to agree");
+
+ InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
+ Processed.insert(Var);
+ LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
+
+ // If variable scope is not found then skip this variable.
+ if (!Scope) {
+ LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
+ << ", no variable scope found\n");
+ continue;
+ }
+
+ ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
+ auto RegVar = std::make_unique<DbgVariable>(
+ cast<DILocalVariable>(Var.first), Var.second);
+ if (VI.inStackSlot())
+ RegVar->initializeMMI(VI.Expr, VI.getStackSlot());
+ else {
+ MachineLocation MLoc(VI.getEntryValueRegister(), /*IsIndirect*/ true);
+ auto LocEntry = DbgValueLocEntry(MLoc);
+ RegVar->initializeDbgValue(DbgValueLoc(VI.Expr, LocEntry));
+ }
+ LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
+ << "\n");
+
+ if (DbgVariable *DbgVar = MFVars.lookup(Var)) {
+ if (DbgVar->getValueLoc())
+ LLVM_DEBUG(dbgs() << "Dropping repeated entry value debug info for "
+ "variable "
+ << VI.Var->getName() << "\n");
+ else
+ DbgVar->addMMIEntry(*RegVar);
+ } else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
+ MFVars.insert({Var, RegVar.get()});
+ ConcreteEntities.push_back(std::move(RegVar));
+ }
+ }
+}
+
+/// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
+/// enclosing lexical scope. The check ensures there are no other instructions
+/// in the same lexical scope preceding the DBG_VALUE and that its range is
+/// either open or otherwise rolls off the end of the scope.
+static bool validThroughout(LexicalScopes &LScopes,
+ const MachineInstr *DbgValue,
+ const MachineInstr *RangeEnd,
+ const InstructionOrdering &Ordering) {
+ assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
+ auto MBB = DbgValue->getParent();
+ auto DL = DbgValue->getDebugLoc();
+ auto *LScope = LScopes.findLexicalScope(DL);
+ // Scope doesn't exist; this is a dead DBG_VALUE.
+ if (!LScope)
+ return false;
+ auto &LSRange = LScope->getRanges();
+ if (LSRange.size() == 0)
+ return false;
+
+ const MachineInstr *LScopeBegin = LSRange.front().first;
+ // If the scope starts before the DBG_VALUE then we may have a negative
+ // result. Otherwise the location is live coming into the scope and we
+ // can skip the following checks.
+ if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
+ // Exit if the lexical scope begins outside of the current block.
+ if (LScopeBegin->getParent() != MBB)
+ return false;
+
+ MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
+ for (++Pred; Pred != MBB->rend(); ++Pred) {
+ if (Pred->getFlag(MachineInstr::FrameSetup))
+ break;
+ auto PredDL = Pred->getDebugLoc();
+ if (!PredDL || Pred->isMetaInstruction())
+ continue;
+ // Check whether the instruction preceding the DBG_VALUE is in the same
+ // (sub)scope as the DBG_VALUE.
+ if (DL->getScope() == PredDL->getScope())
+ return false;
+ auto *PredScope = LScopes.findLexicalScope(PredDL);
+ if (!PredScope || LScope->dominates(PredScope))
+ return false;
+ }
+ }
+
+ // If the range of the DBG_VALUE is open-ended, report success.
+ if (!RangeEnd)
+ return true;
+
+ // Single, constant DBG_VALUEs in the prologue are promoted to be live
+ // throughout the function. This is a hack, presumably for DWARF v2 and not
+ // necessarily correct. It would be much better to use a dbg.declare instead
+ // if we know the constant is live throughout the scope.
+ if (MBB->pred_empty() &&
+ all_of(DbgValue->debug_operands(),
+ [](const MachineOperand &Op) { return Op.isImm(); }))
+ return true;
+
+ // Test if the location terminates before the end of the scope.
+ const MachineInstr *LScopeEnd = LSRange.back().second;
+ if (Ordering.isBefore(RangeEnd, LScopeEnd))
+ return false;
+
+ // There's a single location which starts at the scope start, and ends at or
+ // after the scope end.
+ return true;
+}
+
+/// Build the location list for all DBG_VALUEs in the function that
+/// describe the same variable. The resulting DebugLocEntries will have
+/// strict monotonically increasing begin addresses and will never
+/// overlap. If the resulting list has only one entry that is valid
+/// throughout variable's scope return true.
+//
+// See the definition of DbgValueHistoryMap::Entry for an explanation of the
+// different kinds of history map entries. One thing to be aware of is that if
+// a debug value is ended by another entry (rather than being valid until the
+// end of the function), that entry's instruction may or may not be included in
+// the range, depending on if the entry is a clobbering entry (it has an
+// instruction that clobbers one or more preceding locations), or if it is an
+// (overlapping) debug value entry. This distinction can be seen in the example
+// below. The first debug value is ended by the clobbering entry 2, and the
+// second and third debug values are ended by the overlapping debug value entry
+// 4.
+//
+// Input:
+//
+// History map entries [type, end index, mi]
+//
+// 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
+// 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
+// 2 | | [Clobber, $reg0 = [...], -, -]
+// 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
+// 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
+//
+// Output [start, end) [Value...]:
+//
+// [0-1) [(reg0, fragment 0, 32)]
+// [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
+// [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)]
+// [4-) [(@g, fragment 0, 96)]
+bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
+ const DbgValueHistoryMap::Entries &Entries) {
+ using OpenRange =
+ std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
+ SmallVector<OpenRange, 4> OpenRanges;
+ bool isSafeForSingleLocation = true;
+ const MachineInstr *StartDebugMI = nullptr;
+ const MachineInstr *EndMI = nullptr;
+
+ for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
+ const MachineInstr *Instr = EI->getInstr();
+
+ // Remove all values that are no longer live.
+ size_t Index = std::distance(EB, EI);
+ erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
+
+ // If we are dealing with a clobbering entry, this iteration will result in
+ // a location list entry starting after the clobbering instruction.
+ const MCSymbol *StartLabel =
+ EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
+ assert(StartLabel &&
+ "Forgot label before/after instruction starting a range!");
+
+ const MCSymbol *EndLabel;
+ if (std::next(EI) == Entries.end()) {
+ const MachineBasicBlock &EndMBB = Asm->MF->back();
+ EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
+ if (EI->isClobber())
+ EndMI = EI->getInstr();
+ }
+ else if (std::next(EI)->isClobber())
+ EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
+ else
+ EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
+ assert(EndLabel && "Forgot label after instruction ending a range!");
+
+ if (EI->isDbgValue())
+ LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
+
+ // If this history map entry has a debug value, add that to the list of
+ // open ranges and check if its location is valid for a single value
+ // location.
+ if (EI->isDbgValue()) {
+ // Do not add undef debug values, as they are redundant information in
+ // the location list entries. An undef debug results in an empty location
+ // description. If there are any non-undef fragments then padding pieces
+ // with empty location descriptions will automatically be inserted, and if
+ // all fragments are undef then the whole location list entry is
+ // redundant.
+ if (!Instr->isUndefDebugValue()) {
+ auto Value = getDebugLocValue(Instr);
+ OpenRanges.emplace_back(EI->getEndIndex(), Value);
+
+ // TODO: Add support for single value fragment locations.
+ if (Instr->getDebugExpression()->isFragment())
+ isSafeForSingleLocation = false;
+
+ if (!StartDebugMI)
+ StartDebugMI = Instr;
+ } else {
+ isSafeForSingleLocation = false;
+ }
+ }
+
+ // Location list entries with empty location descriptions are redundant
+ // information in DWARF, so do not emit those.
+ if (OpenRanges.empty())
+ continue;
+
+ // Omit entries with empty ranges as they do not have any effect in DWARF.
+ if (StartLabel == EndLabel) {
+ LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
+ continue;
+ }
+
+ SmallVector<DbgValueLoc, 4> Values;
+ for (auto &R : OpenRanges)
+ Values.push_back(R.second);
+
+ // With Basic block sections, it is posssible that the StartLabel and the
+ // Instr are not in the same section. This happens when the StartLabel is
+ // the function begin label and the dbg value appears in a basic block
+ // that is not the entry. In this case, the range needs to be split to
+ // span each individual section in the range from StartLabel to EndLabel.
+ if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() &&
+ !Instr->getParent()->sameSection(&Asm->MF->front())) {
+ const MCSymbol *BeginSectionLabel = StartLabel;
+
+ for (const MachineBasicBlock &MBB : *Asm->MF) {
+ if (MBB.isBeginSection() && &MBB != &Asm->MF->front())
+ BeginSectionLabel = MBB.getSymbol();
+
+ if (MBB.sameSection(Instr->getParent())) {
+ DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values);
+ break;
+ }
+ if (MBB.isEndSection())
+ DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values);
+ }
+ } else {
+ DebugLoc.emplace_back(StartLabel, EndLabel, Values);
+ }
+
+ // Attempt to coalesce the ranges of two otherwise identical
+ // DebugLocEntries.
+ auto CurEntry = DebugLoc.rbegin();
+ LLVM_DEBUG({
+ dbgs() << CurEntry->getValues().size() << " Values:\n";
+ for (auto &Value : CurEntry->getValues())
+ Value.dump();
+ dbgs() << "-----\n";
+ });
+
+ auto PrevEntry = std::next(CurEntry);
+ if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
+ DebugLoc.pop_back();
+ }
+
+ if (!isSafeForSingleLocation ||
+ !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()))
+ return false;
+
+ if (DebugLoc.size() == 1)
+ return true;
+
+ if (!Asm->MF->hasBBSections())
+ return false;
+
+ // Check here to see if loclist can be merged into a single range. If not,
+ // we must keep the split loclists per section. This does exactly what
+ // MergeRanges does without sections. We don't actually merge the ranges
+ // as the split ranges must be kept intact if this cannot be collapsed
+ // into a single range.
+ const MachineBasicBlock *RangeMBB = nullptr;
+ if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin())
+ RangeMBB = &Asm->MF->front();
+ else
+ RangeMBB = Entries.begin()->getInstr()->getParent();
+ auto *CurEntry = DebugLoc.begin();
+ auto *NextEntry = std::next(CurEntry);
+ while (NextEntry != DebugLoc.end()) {
+ // Get the last machine basic block of this section.
+ while (!RangeMBB->isEndSection())
+ RangeMBB = RangeMBB->getNextNode();
+ if (!RangeMBB->getNextNode())
+ return false;
+ // CurEntry should end the current section and NextEntry should start
+ // the next section and the Values must match for these two ranges to be
+ // merged.
+ if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() ||
+ NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() ||
+ CurEntry->getValues() != NextEntry->getValues())
+ return false;
+ RangeMBB = RangeMBB->getNextNode();
+ CurEntry = NextEntry;
+ NextEntry = std::next(CurEntry);
+ }
+ return true;
+}
+
+DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
+ LexicalScope &Scope,
+ const DINode *Node,
+ const DILocation *Location,
+ const MCSymbol *Sym) {
+ ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
+ if (isa<const DILocalVariable>(Node)) {
+ ConcreteEntities.push_back(
+ std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
+ Location));
+ InfoHolder.addScopeVariable(&Scope,
+ cast<DbgVariable>(ConcreteEntities.back().get()));
+ } else if (isa<const DILabel>(Node)) {
+ ConcreteEntities.push_back(
+ std::make_unique<DbgLabel>(cast<const DILabel>(Node),
+ Location, Sym));
+ InfoHolder.addScopeLabel(&Scope,
+ cast<DbgLabel>(ConcreteEntities.back().get()));
+ }
+ return ConcreteEntities.back().get();
+}
+
+// Find variables for each lexical scope.
+void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
+ const DISubprogram *SP,
+ DenseSet<InlinedEntity> &Processed) {
+ // Grab the variable info that was squirreled away in the MMI side-table.
+ collectVariableInfoFromMFTable(TheCU, Processed);
+
+ for (const auto &I : DbgValues) {
+ InlinedEntity IV = I.first;
+ if (Processed.count(IV))
+ continue;
+
+ // Instruction ranges, specifying where IV is accessible.
+ const auto &HistoryMapEntries = I.second;
+
+ // Try to find any non-empty variable location. Do not create a concrete
+ // entity if there are no locations.
+ if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries))
+ continue;
+
+ LexicalScope *Scope = nullptr;
+ const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
+ if (const DILocation *IA = IV.second)
+ Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
+ else
+ Scope = LScopes.findLexicalScope(LocalVar->getScope());
+ // If variable scope is not found then skip this variable.
+ if (!Scope)
+ continue;
+
+ Processed.insert(IV);
+ DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
+ *Scope, LocalVar, IV.second));
+
+ const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
+ assert(MInsn->isDebugValue() && "History must begin with debug value");
+
+ // Check if there is a single DBG_VALUE, valid throughout the var's scope.
+ // If the history map contains a single debug value, there may be an
+ // additional entry which clobbers the debug value.
+ size_t HistSize = HistoryMapEntries.size();
+ bool SingleValueWithClobber =
+ HistSize == 2 && HistoryMapEntries[1].isClobber();
+ if (HistSize == 1 || SingleValueWithClobber) {
+ const auto *End =
+ SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
+ if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
+ RegVar->initializeDbgValue(MInsn);
+ continue;
+ }
+ }
+
+ // Do not emit location lists if .debug_loc secton is disabled.
+ if (!useLocSection())
+ continue;
+
+ // Handle multiple DBG_VALUE instructions describing one variable.
+ DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
+
+ // Build the location list for this variable.
+ SmallVector<DebugLocEntry, 8> Entries;
+ bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
+
+ // Check whether buildLocationList managed to merge all locations to one
+ // that is valid throughout the variable's scope. If so, produce single
+ // value location.
+ if (isValidSingleLocation) {
+ RegVar->initializeDbgValue(Entries[0].getValues()[0]);
+ continue;
+ }
+
+ // If the variable has a DIBasicType, extract it. Basic types cannot have
+ // unique identifiers, so don't bother resolving the type with the
+ // identifier map.
+ const DIBasicType *BT = dyn_cast<DIBasicType>(
+ static_cast<const Metadata *>(LocalVar->getType()));
+
+ // Finalize the entry by lowering it into a DWARF bytestream.
+ for (auto &Entry : Entries)
+ Entry.finalize(*Asm, List, BT, TheCU);
+ }
+
+ // For each InlinedEntity collected from DBG_LABEL instructions, convert to
+ // DWARF-related DbgLabel.
+ for (const auto &I : DbgLabels) {
+ InlinedEntity IL = I.first;
+ const MachineInstr *MI = I.second;
+ if (MI == nullptr)
+ continue;
+
+ LexicalScope *Scope = nullptr;
+ const DILabel *Label = cast<DILabel>(IL.first);
+ // The scope could have an extra lexical block file.
+ const DILocalScope *LocalScope =
+ Label->getScope()->getNonLexicalBlockFileScope();
+ // Get inlined DILocation if it is inlined label.
+ if (const DILocation *IA = IL.second)
+ Scope = LScopes.findInlinedScope(LocalScope, IA);
+ else
+ Scope = LScopes.findLexicalScope(LocalScope);
+ // If label scope is not found then skip this label.
+ if (!Scope)
+ continue;
+
+ Processed.insert(IL);
+ /// At this point, the temporary label is created.
+ /// Save the temporary label to DbgLabel entity to get the
+ /// actually address when generating Dwarf DIE.
+ MCSymbol *Sym = getLabelBeforeInsn(MI);
+ createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
+ }
+
+ // Collect info for retained nodes.
+ for (const DINode *DN : SP->getRetainedNodes()) {
+ const auto *LS = getRetainedNodeScope(DN);
+ if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) {
+ if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
+ continue;
+ LexicalScope *LexS = LScopes.findLexicalScope(LS);
+ if (LexS)
+ createConcreteEntity(TheCU, *LexS, DN, nullptr);
+ } else {
+ LocalDeclsPerLS[LS].insert(DN);
+ }
+ }
+}
+
+// Process beginning of an instruction.
+void DwarfDebug::beginInstruction(const MachineInstr *MI) {
+ const MachineFunction &MF = *MI->getMF();
+ const auto *SP = MF.getFunction().getSubprogram();
+ bool NoDebug =
+ !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
+
+ // Delay slot support check.
+ auto delaySlotSupported = [](const MachineInstr &MI) {
+ if (!MI.isBundledWithSucc())
+ return false;
+ auto Suc = std::next(MI.getIterator());
+ (void)Suc;
+ // Ensure that delay slot instruction is successor of the call instruction.
+ // Ex. CALL_INSTRUCTION {
+ // DELAY_SLOT_INSTRUCTION }
+ assert(Suc->isBundledWithPred() &&
+ "Call bundle instructions are out of order");
+ return true;
+ };
+
+ // When describing calls, we need a label for the call instruction.
+ if (!NoDebug && SP->areAllCallsDescribed() &&
+ MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
+ (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
+ bool IsTail = TII->isTailCall(*MI);
+ // For tail calls, we need the address of the branch instruction for
+ // DW_AT_call_pc.
+ if (IsTail)
+ requestLabelBeforeInsn(MI);
+ // For non-tail calls, we need the return address for the call for
+ // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
+ // tail calls as well.
+ requestLabelAfterInsn(MI);
+ }
+
+ DebugHandlerBase::beginInstruction(MI);
+ if (!CurMI)
+ return;
+
+ if (NoDebug)
+ return;
+
+ // Check if source location changes, but ignore DBG_VALUE and CFI locations.
+ // If the instruction is part of the function frame setup code, do not emit
+ // any line record, as there is no correspondence with any user code.
+ if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
+ return;
+ const DebugLoc &DL = MI->getDebugLoc();
+ unsigned Flags = 0;
+
+ if (MI->getFlag(MachineInstr::FrameDestroy) && DL) {
+ const MachineBasicBlock *MBB = MI->getParent();
+ if (MBB && (MBB != EpilogBeginBlock)) {
+ // First time FrameDestroy has been seen in this basic block
+ EpilogBeginBlock = MBB;
+ Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
+ }
+ }
+
+ // When we emit a line-0 record, we don't update PrevInstLoc; so look at
+ // the last line number actually emitted, to see if it was line 0.
+ unsigned LastAsmLine =
+ Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
+
+ bool PrevInstInSameSection =
+ (!PrevInstBB ||
+ PrevInstBB->getSectionIDNum() == MI->getParent()->getSectionIDNum());
+ if (DL == PrevInstLoc && PrevInstInSameSection) {
+ // If we have an ongoing unspecified location, nothing to do here.
+ if (!DL)
+ return;
+ // We have an explicit location, same as the previous location.
+ // But we might be coming back to it after a line 0 record.
+ if ((LastAsmLine == 0 && DL.getLine() != 0) || Flags) {
+ // Reinstate the source location but not marked as a statement.
+ const MDNode *Scope = DL.getScope();
+ recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
+ }
+ return;
+ }
+
+ if (!DL) {
+ // We have an unspecified location, which might want to be line 0.
+ // If we have already emitted a line-0 record, don't repeat it.
+ if (LastAsmLine == 0)
+ return;
+ // If user said Don't Do That, don't do that.
+ if (UnknownLocations == Disable)
+ return;
+ // See if we have a reason to emit a line-0 record now.
+ // Reasons to emit a line-0 record include:
+ // - User asked for it (UnknownLocations).
+ // - Instruction has a label, so it's referenced from somewhere else,
+ // possibly debug information; we want it to have a source location.
+ // - Instruction is at the top of a block; we don't want to inherit the
+ // location from the physically previous (maybe unrelated) block.
+ if (UnknownLocations == Enable || PrevLabel ||
+ (PrevInstBB && PrevInstBB != MI->getParent())) {
+ // Preserve the file and column numbers, if we can, to save space in
+ // the encoded line table.
+ // Do not update PrevInstLoc, it remembers the last non-0 line.
+ const MDNode *Scope = nullptr;
+ unsigned Column = 0;
+ if (PrevInstLoc) {
+ Scope = PrevInstLoc.getScope();
+ Column = PrevInstLoc.getCol();
+ }
+ recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
+ }
+ return;
+ }
+
+ // We have an explicit location, different from the previous location.
+ // Don't repeat a line-0 record, but otherwise emit the new location.
+ // (The new location might be an explicit line 0, which we do emit.)
+ if (DL.getLine() == 0 && LastAsmLine == 0)
+ return;
+ if (DL == PrologEndLoc) {
+ Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
+ PrologEndLoc = DebugLoc();
+ }
+ // If the line changed, we call that a new statement; unless we went to
+ // line 0 and came back, in which case it is not a new statement.
+ unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
+ if (DL.getLine() && DL.getLine() != OldLine)
+ Flags |= DWARF2_FLAG_IS_STMT;
+
+ const MDNode *Scope = DL.getScope();
+ recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
+
+ // If we're not at line 0, remember this location.
+ if (DL.getLine())
+ PrevInstLoc = DL;
+}
+
+static std::pair<DebugLoc, bool> findPrologueEndLoc(const MachineFunction *MF) {
+ // First known non-DBG_VALUE and non-frame setup location marks
+ // the beginning of the function body.
+ DebugLoc LineZeroLoc;
+ const Function &F = MF->getFunction();
+
+ // Some instructions may be inserted into prologue after this function. Must
+ // keep prologue for these cases.
+ bool IsEmptyPrologue =
+ !(F.hasPrologueData() || F.getMetadata(LLVMContext::MD_func_sanitize));
+ for (const auto &MBB : *MF) {
+ for (const auto &MI : MBB) {
+ if (!MI.isMetaInstruction()) {
+ if (!MI.getFlag(MachineInstr::FrameSetup) && MI.getDebugLoc()) {
+ // Scan forward to try to find a non-zero line number. The
+ // prologue_end marks the first breakpoint in the function after the
+ // frame setup, and a compiler-generated line 0 location is not a
+ // meaningful breakpoint. If none is found, return the first
+ // location after the frame setup.
+ if (MI.getDebugLoc().getLine())
+ return std::make_pair(MI.getDebugLoc(), IsEmptyPrologue);
+
+ LineZeroLoc = MI.getDebugLoc();
+ }
+ IsEmptyPrologue = false;
+ }
+ }
+ }
+ return std::make_pair(LineZeroLoc, IsEmptyPrologue);
+}
+
+/// Register a source line with debug info. Returns the unique label that was
+/// emitted and which provides correspondence to the source line list.
+static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
+ const MDNode *S, unsigned Flags, unsigned CUID,
+ uint16_t DwarfVersion,
+ ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
+ StringRef Fn;
+ unsigned FileNo = 1;
+ unsigned Discriminator = 0;
+ if (auto *Scope = cast_or_null<DIScope>(S)) {
+ Fn = Scope->getFilename();
+ if (Line != 0 && DwarfVersion >= 4)
+ if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
+ Discriminator = LBF->getDiscriminator();
+
+ FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
+ .getOrCreateSourceID(Scope->getFile());
+ }
+ Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
+ Discriminator, Fn);
+}
+
+DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
+ unsigned CUID) {
+ std::pair<DebugLoc, bool> PrologEnd = findPrologueEndLoc(&MF);
+ DebugLoc PrologEndLoc = PrologEnd.first;
+ bool IsEmptyPrologue = PrologEnd.second;
+
+ // Get beginning of function.
+ if (PrologEndLoc) {
+ // If the prolog is empty, no need to generate scope line for the proc.
+ if (IsEmptyPrologue)
+ return PrologEndLoc;
+
+ // Ensure the compile unit is created if the function is called before
+ // beginFunction().
+ (void)getOrCreateDwarfCompileUnit(
+ MF.getFunction().getSubprogram()->getUnit());
+ // We'd like to list the prologue as "not statements" but GDB behaves
+ // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
+ const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
+ ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
+ CUID, getDwarfVersion(), getUnits());
+ return PrologEndLoc;
+ }
+ return DebugLoc();
+}
+
+// Gather pre-function debug information. Assumes being called immediately
+// after the function entry point has been emitted.
+void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
+ CurFn = MF;
+
+ auto *SP = MF->getFunction().getSubprogram();
+ assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
+ if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
+ return;
+
+ DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
+
+ Asm->OutStreamer->getContext().setDwarfCompileUnitID(
+ getDwarfCompileUnitIDForLineTable(CU));
+
+ // Record beginning of function.
+ PrologEndLoc = emitInitialLocDirective(
+ *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
+}
+
+unsigned
+DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) {
+ // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
+ // belongs to so that we add to the correct per-cu line table in the
+ // non-asm case.
+ if (Asm->OutStreamer->hasRawTextSupport())
+ // Use a single line table if we are generating assembly.
+ return 0;
+ else
+ return CU.getUniqueID();
+}
+
+void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) {
+ const auto &CURanges = CU->getRanges();
+ auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable(
+ getDwarfCompileUnitIDForLineTable(*CU));
+ // Add the last range label for the given CU.
+ LineTable.getMCLineSections().addEndEntry(
+ const_cast<MCSymbol *>(CURanges.back().End));
+}
+
+void DwarfDebug::skippedNonDebugFunction() {
+ // If we don't have a subprogram for this function then there will be a hole
+ // in the range information. Keep note of this by setting the previously used
+ // section to nullptr.
+ // Terminate the pending line table.
+ if (PrevCU)
+ terminateLineTable(PrevCU);
+ PrevCU = nullptr;
+ CurFn = nullptr;
+}
+
+// Gather and emit post-function debug information.
+void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
+ const DISubprogram *SP = MF->getFunction().getSubprogram();
+
+ assert(CurFn == MF &&
+ "endFunction should be called with the same function as beginFunction");
+
+ // Set DwarfDwarfCompileUnitID in MCContext to default value.
+ Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
+
+ LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
+ assert(!FnScope || SP == FnScope->getScopeNode());
+ DwarfCompileUnit &TheCU = getOrCreateDwarfCompileUnit(SP->getUnit());
+ if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
+ PrevLabel = nullptr;
+ CurFn = nullptr;
+ return;
+ }
+
+ DenseSet<InlinedEntity> Processed;
+ collectEntityInfo(TheCU, SP, Processed);
+
+ // Add the range of this function to the list of ranges for the CU.
+ // With basic block sections, add ranges for all basic block sections.
+ for (const auto &R : Asm->MBBSectionRanges)
+ TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
+
+ // Under -gmlt, skip building the subprogram if there are no inlined
+ // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
+ // is still needed as we need its source location.
+ if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
+ TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
+ LScopes.getAbstractScopesList().empty() && !IsDarwin) {
+ for (const auto &R : Asm->MBBSectionRanges)
+ addArangeLabel(SymbolCU(&TheCU, R.second.BeginLabel));
+
+ assert(InfoHolder.getScopeVariables().empty());
+ PrevLabel = nullptr;
+ CurFn = nullptr;
+ return;
+ }
+
+#ifndef NDEBUG
+ size_t NumAbstractSubprograms = LScopes.getAbstractScopesList().size();
+#endif
+ for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
+ const auto *SP = cast<DISubprogram>(AScope->getScopeNode());
+ for (const DINode *DN : SP->getRetainedNodes()) {
+ const auto *LS = getRetainedNodeScope(DN);
+ // Ensure LexicalScope is created for the scope of this node.
+ auto *LexS = LScopes.getOrCreateAbstractScope(LS);
+ assert(LexS && "Expected the LexicalScope to be created.");
+ if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) {
+ // Collect info for variables/labels that were optimized out.
+ if (!Processed.insert(InlinedEntity(DN, nullptr)).second ||
+ TheCU.getExistingAbstractEntity(DN))
+ continue;
+ TheCU.createAbstractEntity(DN, LexS);
+ } else {
+ // Remember the node if this is a local declarations.
+ LocalDeclsPerLS[LS].insert(DN);
+ }
+ assert(
+ LScopes.getAbstractScopesList().size() == NumAbstractSubprograms &&
+ "getOrCreateAbstractScope() inserted an abstract subprogram scope");
+ }
+ constructAbstractSubprogramScopeDIE(TheCU, AScope);
+ }
+
+ ProcessedSPNodes.insert(SP);
+ DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
+ if (auto *SkelCU = TheCU.getSkeleton())
+ if (!LScopes.getAbstractScopesList().empty() &&
+ TheCU.getCUNode()->getSplitDebugInlining())
+ SkelCU->constructSubprogramScopeDIE(SP, FnScope);
+
+ // Construct call site entries.
+ constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
+
+ // Clear debug info
+ // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
+ // DbgVariables except those that are also in AbstractVariables (since they
+ // can be used cross-function)
+ InfoHolder.getScopeVariables().clear();
+ InfoHolder.getScopeLabels().clear();
+ LocalDeclsPerLS.clear();
+ PrevLabel = nullptr;
+ CurFn = nullptr;
+}
+
+// Register a source line with debug info. Returns the unique label that was
+// emitted and which provides correspondence to the source line list.
+void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
+ unsigned Flags) {
+ ::recordSourceLine(*Asm, Line, Col, S, Flags,
+ Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
+ getDwarfVersion(), getUnits());
+}
+
+//===----------------------------------------------------------------------===//
+// Emit Methods
+//===----------------------------------------------------------------------===//
+
+// Emit the debug info section.
+void DwarfDebug::emitDebugInfo() {
+ DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
+ Holder.emitUnits(/* UseOffsets */ false);
+}
+
+// Emit the abbreviation section.
+void DwarfDebug::emitAbbreviations() {
+ DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
+
+ Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
+}
+
+void DwarfDebug::emitStringOffsetsTableHeader() {
+ DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
+ Holder.getStringPool().emitStringOffsetsTableHeader(
+ *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
+ Holder.getStringOffsetsStartSym());
+}
+
+template <typename AccelTableT>
+void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
+ StringRef TableName) {
+ Asm->OutStreamer->switchSection(Section);
+
+ // Emit the full data.
+ emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
+}
+
+void DwarfDebug::emitAccelDebugNames() {
+ // Don't emit anything if we have no compilation units to index.
+ if (getUnits().empty())
+ return;
+
+ emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
+}
+
+// Emit visible names into a hashed accelerator table section.
+void DwarfDebug::emitAccelNames() {
+ emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
+ "Names");
+}
+
+// Emit objective C classes and categories into a hashed accelerator table
+// section.
+void DwarfDebug::emitAccelObjC() {
+ emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
+ "ObjC");
+}
+
+// Emit namespace dies into a hashed accelerator table.
+void DwarfDebug::emitAccelNamespaces() {
+ emitAccel(AccelNamespace,
+ Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
+ "namespac");
+}
+
+// Emit type dies into a hashed accelerator table.
+void DwarfDebug::emitAccelTypes() {
+ emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
+ "types");
+}
+
+// Public name handling.
+// The format for the various pubnames:
+//
+// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
+// for the DIE that is named.
+//
+// gnu pubnames - offset/index value/name tuples where the offset is the offset
+// into the CU and the index value is computed according to the type of value
+// for the DIE that is named.
+//
+// For type units the offset is the offset of the skeleton DIE. For split dwarf
+// it's the offset within the debug_info/debug_types dwo section, however, the
+// reference in the pubname header doesn't change.
+
+/// computeIndexValue - Compute the gdb index value for the DIE and CU.
+static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
+ const DIE *Die) {
+ // Entities that ended up only in a Type Unit reference the CU instead (since
+ // the pub entry has offsets within the CU there's no real offset that can be
+ // provided anyway). As it happens all such entities (namespaces and types,
+ // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
+ // not to be true it would be necessary to persist this information from the
+ // point at which the entry is added to the index data structure - since by
+ // the time the index is built from that, the original type/namespace DIE in a
+ // type unit has already been destroyed so it can't be queried for properties
+ // like tag, etc.
+ if (Die->getTag() == dwarf::DW_TAG_compile_unit)
+ return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
+ dwarf::GIEL_EXTERNAL);
+ dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
+
+ // We could have a specification DIE that has our most of our knowledge,
+ // look for that now.
+ if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
+ DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
+ if (SpecDIE.findAttribute(dwarf::DW_AT_external))
+ Linkage = dwarf::GIEL_EXTERNAL;
+ } else if (Die->findAttribute(dwarf::DW_AT_external))
+ Linkage = dwarf::GIEL_EXTERNAL;
+
+ switch (Die->getTag()) {
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_structure_type:
+ case dwarf::DW_TAG_union_type:
+ case dwarf::DW_TAG_enumeration_type:
+ return dwarf::PubIndexEntryDescriptor(
+ dwarf::GIEK_TYPE,
+ dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
+ ? dwarf::GIEL_EXTERNAL
+ : dwarf::GIEL_STATIC);
+ case dwarf::DW_TAG_typedef:
+ case dwarf::DW_TAG_base_type:
+ case dwarf::DW_TAG_subrange_type:
+ return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
+ case dwarf::DW_TAG_namespace:
+ return dwarf::GIEK_TYPE;
+ case dwarf::DW_TAG_subprogram:
+ return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
+ case dwarf::DW_TAG_variable:
+ return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
+ case dwarf::DW_TAG_enumerator:
+ return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
+ dwarf::GIEL_STATIC);
+ default:
+ return dwarf::GIEK_NONE;
+ }
+}
+
+/// emitDebugPubSections - Emit visible names and types into debug pubnames and
+/// pubtypes sections.
+void DwarfDebug::emitDebugPubSections() {
+ for (const auto &NU : CUMap) {
+ DwarfCompileUnit *TheU = NU.second;
+ if (!TheU->hasDwarfPubSections())
+ continue;
+
+ bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
+ DICompileUnit::DebugNameTableKind::GNU;
+
+ Asm->OutStreamer->switchSection(
+ GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
+ : Asm->getObjFileLowering().getDwarfPubNamesSection());
+ emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
+
+ Asm->OutStreamer->switchSection(
+ GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
+ : Asm->getObjFileLowering().getDwarfPubTypesSection());
+ emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
+ }
+}
+
+void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
+ if (useSectionsAsReferences())
+ Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
+ CU.getDebugSectionOffset());
+ else
+ Asm->emitDwarfSymbolReference(CU.getLabelBegin());
+}
+
+void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
+ DwarfCompileUnit *TheU,
+ const StringMap<const DIE *> &Globals) {
+ if (auto *Skeleton = TheU->getSkeleton())
+ TheU = Skeleton;
+
+ // Emit the header.
+ MCSymbol *EndLabel = Asm->emitDwarfUnitLength(
+ "pub" + Name, "Length of Public " + Name + " Info");
+
+ Asm->OutStreamer->AddComment("DWARF Version");
+ Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
+
+ Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
+ emitSectionReference(*TheU);
+
+ Asm->OutStreamer->AddComment("Compilation Unit Length");
+ Asm->emitDwarfLengthOrOffset(TheU->getLength());
+
+ // Emit the pubnames for this compilation unit.
+ SmallVector<std::pair<StringRef, const DIE *>, 0> Vec;
+ for (const auto &GI : Globals)
+ Vec.emplace_back(GI.first(), GI.second);
+ llvm::sort(Vec, [](auto &A, auto &B) {
+ return A.second->getOffset() < B.second->getOffset();
+ });
+ for (const auto &[Name, Entity] : Vec) {
+ Asm->OutStreamer->AddComment("DIE offset");
+ Asm->emitDwarfLengthOrOffset(Entity->getOffset());
+
+ if (GnuStyle) {
+ dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
+ Asm->OutStreamer->AddComment(
+ Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
+ ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
+ Asm->emitInt8(Desc.toBits());
+ }
+
+ Asm->OutStreamer->AddComment("External Name");
+ Asm->OutStreamer->emitBytes(StringRef(Name.data(), Name.size() + 1));
+ }
+
+ Asm->OutStreamer->AddComment("End Mark");
+ Asm->emitDwarfLengthOrOffset(0);
+ Asm->OutStreamer->emitLabel(EndLabel);
+}
+
+/// Emit null-terminated strings into a debug str section.
+void DwarfDebug::emitDebugStr() {
+ MCSection *StringOffsetsSection = nullptr;
+ if (useSegmentedStringOffsetsTable()) {
+ emitStringOffsetsTableHeader();
+ StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
+ }
+ DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
+ Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
+ StringOffsetsSection, /* UseRelativeOffsets = */ true);
+}
+
+void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
+ const DebugLocStream::Entry &Entry,
+ const DwarfCompileUnit *CU) {
+ auto &&Comments = DebugLocs.getComments(Entry);
+ auto Comment = Comments.begin();
+ auto End = Comments.end();
+
+ // The expressions are inserted into a byte stream rather early (see
+ // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
+ // need to reference a base_type DIE the offset of that DIE is not yet known.
+ // To deal with this we instead insert a placeholder early and then extract
+ // it here and replace it with the real reference.
+ unsigned PtrSize = Asm->MAI->getCodePointerSize();
+ DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
+ DebugLocs.getBytes(Entry).size()),
+ Asm->getDataLayout().isLittleEndian(), PtrSize);
+ DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
+
+ using Encoding = DWARFExpression::Operation::Encoding;
+ uint64_t Offset = 0;
+ for (const auto &Op : Expr) {
+ assert(Op.getCode() != dwarf::DW_OP_const_type &&
+ "3 operand ops not yet supported");
+ assert(!Op.getSubCode() && "SubOps not yet supported");
+ Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
+ Offset++;
+ for (unsigned I = 0; I < Op.getDescription().Op.size(); ++I) {
+ if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
+ unsigned Length =
+ Streamer.emitDIERef(*CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die);
+ // Make sure comments stay aligned.
+ for (unsigned J = 0; J < Length; ++J)
+ if (Comment != End)
+ Comment++;
+ } else {
+ for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
+ Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
+ }
+ Offset = Op.getOperandEndOffset(I);
+ }
+ assert(Offset == Op.getEndOffset());
+ }
+}
+
+void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
+ const DbgValueLoc &Value,
+ DwarfExpression &DwarfExpr) {
+ auto *DIExpr = Value.getExpression();
+ DIExpressionCursor ExprCursor(DIExpr);
+ DwarfExpr.addFragmentOffset(DIExpr);
+
+ // If the DIExpr is is an Entry Value, we want to follow the same code path
+ // regardless of whether the DBG_VALUE is variadic or not.
+ if (DIExpr && DIExpr->isEntryValue()) {
+ // Entry values can only be a single register with no additional DIExpr,
+ // so just add it directly.
+ assert(Value.getLocEntries().size() == 1);
+ assert(Value.getLocEntries()[0].isLocation());
+ MachineLocation Location = Value.getLocEntries()[0].getLoc();
+ DwarfExpr.setLocation(Location, DIExpr);
+
+ DwarfExpr.beginEntryValueExpression(ExprCursor);
+
+ const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
+ if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg()))
+ return;
+ return DwarfExpr.addExpression(std::move(ExprCursor));
+ }
+
+ // Regular entry.
+ auto EmitValueLocEntry = [&DwarfExpr, &BT,
+ &AP](const DbgValueLocEntry &Entry,
+ DIExpressionCursor &Cursor) -> bool {
+ if (Entry.isInt()) {
+ if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
+ BT->getEncoding() == dwarf::DW_ATE_signed_char))
+ DwarfExpr.addSignedConstant(Entry.getInt());
+ else
+ DwarfExpr.addUnsignedConstant(Entry.getInt());
+ } else if (Entry.isLocation()) {
+ MachineLocation Location = Entry.getLoc();
+ if (Location.isIndirect())
+ DwarfExpr.setMemoryLocationKind();
+
+ const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
+ if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
+ return false;
+ } else if (Entry.isTargetIndexLocation()) {
+ TargetIndexLocation Loc = Entry.getTargetIndexLocation();
+ // TODO TargetIndexLocation is a target-independent. Currently only the
+ // WebAssembly-specific encoding is supported.
+ assert(AP.TM.getTargetTriple().isWasm());
+ DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
+ } else if (Entry.isConstantFP()) {
+ if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
+ !Cursor) {
+ DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP);
+ } else if (Entry.getConstantFP()
+ ->getValueAPF()
+ .bitcastToAPInt()
+ .getBitWidth() <= 64 /*bits*/) {
+ DwarfExpr.addUnsignedConstant(
+ Entry.getConstantFP()->getValueAPF().bitcastToAPInt());
+ } else {
+ LLVM_DEBUG(
+ dbgs() << "Skipped DwarfExpression creation for ConstantFP of size"
+ << Entry.getConstantFP()
+ ->getValueAPF()
+ .bitcastToAPInt()
+ .getBitWidth()
+ << " bits\n");
+ return false;
+ }
+ }
+ return true;
+ };
+
+ if (!Value.isVariadic()) {
+ if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor))
+ return;
+ DwarfExpr.addExpression(std::move(ExprCursor));
+ return;
+ }
+
+ // If any of the location entries are registers with the value 0, then the
+ // location is undefined.
+ if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) {
+ return Entry.isLocation() && !Entry.getLoc().getReg();
+ }))
+ return;
+
+ DwarfExpr.addExpression(
+ std::move(ExprCursor),
+ [EmitValueLocEntry, &Value](unsigned Idx,
+ DIExpressionCursor &Cursor) -> bool {
+ return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor);
+ });
+}
+
+void DebugLocEntry::finalize(const AsmPrinter &AP,
+ DebugLocStream::ListBuilder &List,
+ const DIBasicType *BT,
+ DwarfCompileUnit &TheCU) {
+ assert(!Values.empty() &&
+ "location list entries without values are redundant");
+ assert(Begin != End && "unexpected location list entry with empty range");
+ DebugLocStream::EntryBuilder Entry(List, Begin, End);
+ BufferByteStreamer Streamer = Entry.getStreamer();
+ DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
+ const DbgValueLoc &Value = Values[0];
+ if (Value.isFragment()) {
+ // Emit all fragments that belong to the same variable and range.
+ assert(llvm::all_of(Values, [](DbgValueLoc P) {
+ return P.isFragment();
+ }) && "all values are expected to be fragments");
+ assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
+
+ for (const auto &Fragment : Values)
+ DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
+
+ } else {
+ assert(Values.size() == 1 && "only fragments may have >1 value");
+ DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
+ }
+ DwarfExpr.finalize();
+ if (DwarfExpr.TagOffset)
+ List.setTagOffset(*DwarfExpr.TagOffset);
+}
+
+void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
+ const DwarfCompileUnit *CU) {
+ // Emit the size.
+ Asm->OutStreamer->AddComment("Loc expr size");
+ if (getDwarfVersion() >= 5)
+ Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
+ else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
+ Asm->emitInt16(DebugLocs.getBytes(Entry).size());
+ else {
+ // The entry is too big to fit into 16 bit, drop it as there is nothing we
+ // can do.
+ Asm->emitInt16(0);
+ return;
+ }
+ // Emit the entry.
+ APByteStreamer Streamer(*Asm);
+ emitDebugLocEntry(Streamer, Entry, CU);
+}
+
+// Emit the header of a DWARF 5 range list table list table. Returns the symbol
+// that designates the end of the table for the caller to emit when the table is
+// complete.
+static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
+ const DwarfFile &Holder) {
+ MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
+
+ Asm->OutStreamer->AddComment("Offset entry count");
+ Asm->emitInt32(Holder.getRangeLists().size());
+ Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
+
+ for (const RangeSpanList &List : Holder.getRangeLists())
+ Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
+ Asm->getDwarfOffsetByteSize());
+
+ return TableEnd;
+}
+
+// Emit the header of a DWARF 5 locations list table. Returns the symbol that
+// designates the end of the table for the caller to emit when the table is
+// complete.
+static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
+ const DwarfDebug &DD) {
+ MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
+
+ const auto &DebugLocs = DD.getDebugLocs();
+
+ Asm->OutStreamer->AddComment("Offset entry count");
+ Asm->emitInt32(DebugLocs.getLists().size());
+ Asm->OutStreamer->emitLabel(DebugLocs.getSym());
+
+ for (const auto &List : DebugLocs.getLists())
+ Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
+ Asm->getDwarfOffsetByteSize());
+
+ return TableEnd;
+}
+
+template <typename Ranges, typename PayloadEmitter>
+static void emitRangeList(
+ DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
+ const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
+ unsigned StartxLength, unsigned EndOfList,
+ StringRef (*StringifyEnum)(unsigned),
+ bool ShouldUseBaseAddress,
+ PayloadEmitter EmitPayload) {
+
+ auto Size = Asm->MAI->getCodePointerSize();
+ bool UseDwarf5 = DD.getDwarfVersion() >= 5;
+
+ // Emit our symbol so we can find the beginning of the range.
+ Asm->OutStreamer->emitLabel(Sym);
+
+ // Gather all the ranges that apply to the same section so they can share
+ // a base address entry.
+ MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
+
+ for (const auto &Range : R)
+ SectionRanges[&Range.Begin->getSection()].push_back(&Range);
+
+ const MCSymbol *CUBase = CU.getBaseAddress();
+ bool BaseIsSet = false;
+ for (const auto &P : SectionRanges) {
+ auto *Base = CUBase;
+ if (!Base && ShouldUseBaseAddress) {
+ const MCSymbol *Begin = P.second.front()->Begin;
+ const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
+ if (!UseDwarf5) {
+ Base = NewBase;
+ BaseIsSet = true;
+ Asm->OutStreamer->emitIntValue(-1, Size);
+ Asm->OutStreamer->AddComment(" base address");
+ Asm->OutStreamer->emitSymbolValue(Base, Size);
+ } else if (NewBase != Begin || P.second.size() > 1) {
+ // Only use a base address if
+ // * the existing pool address doesn't match (NewBase != Begin)
+ // * or, there's more than one entry to share the base address
+ Base = NewBase;
+ BaseIsSet = true;
+ Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
+ Asm->emitInt8(BaseAddressx);
+ Asm->OutStreamer->AddComment(" base address index");
+ Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
+ }
+ } else if (BaseIsSet && !UseDwarf5) {
+ BaseIsSet = false;
+ assert(!Base);
+ Asm->OutStreamer->emitIntValue(-1, Size);
+ Asm->OutStreamer->emitIntValue(0, Size);
+ }
+
+ for (const auto *RS : P.second) {
+ const MCSymbol *Begin = RS->Begin;
+ const MCSymbol *End = RS->End;
+ assert(Begin && "Range without a begin symbol?");
+ assert(End && "Range without an end symbol?");
+ if (Base) {
+ if (UseDwarf5) {
+ // Emit offset_pair when we have a base.
+ Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
+ Asm->emitInt8(OffsetPair);
+ Asm->OutStreamer->AddComment(" starting offset");
+ Asm->emitLabelDifferenceAsULEB128(Begin, Base);
+ Asm->OutStreamer->AddComment(" ending offset");
+ Asm->emitLabelDifferenceAsULEB128(End, Base);
+ } else {
+ Asm->emitLabelDifference(Begin, Base, Size);
+ Asm->emitLabelDifference(End, Base, Size);
+ }
+ } else if (UseDwarf5) {
+ Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
+ Asm->emitInt8(StartxLength);
+ Asm->OutStreamer->AddComment(" start index");
+ Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
+ Asm->OutStreamer->AddComment(" length");
+ Asm->emitLabelDifferenceAsULEB128(End, Begin);
+ } else {
+ Asm->OutStreamer->emitSymbolValue(Begin, Size);
+ Asm->OutStreamer->emitSymbolValue(End, Size);
+ }
+ EmitPayload(*RS);
+ }
+ }
+
+ if (UseDwarf5) {
+ Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
+ Asm->emitInt8(EndOfList);
+ } else {
+ // Terminate the list with two 0 values.
+ Asm->OutStreamer->emitIntValue(0, Size);
+ Asm->OutStreamer->emitIntValue(0, Size);
+ }
+}
+
+// Handles emission of both debug_loclist / debug_loclist.dwo
+static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
+ emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
+ *List.CU, dwarf::DW_LLE_base_addressx,
+ dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
+ dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
+ /* ShouldUseBaseAddress */ true,
+ [&](const DebugLocStream::Entry &E) {
+ DD.emitDebugLocEntryLocation(E, List.CU);
+ });
+}
+
+void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
+ if (DebugLocs.getLists().empty())
+ return;
+
+ Asm->OutStreamer->switchSection(Sec);
+
+ MCSymbol *TableEnd = nullptr;
+ if (getDwarfVersion() >= 5)
+ TableEnd = emitLoclistsTableHeader(Asm, *this);
+
+ for (const auto &List : DebugLocs.getLists())
+ emitLocList(*this, Asm, List);
+
+ if (TableEnd)
+ Asm->OutStreamer->emitLabel(TableEnd);
+}
+
+// Emit locations into the .debug_loc/.debug_loclists section.
+void DwarfDebug::emitDebugLoc() {
+ emitDebugLocImpl(
+ getDwarfVersion() >= 5
+ ? Asm->getObjFileLowering().getDwarfLoclistsSection()
+ : Asm->getObjFileLowering().getDwarfLocSection());
+}
+
+// Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
+void DwarfDebug::emitDebugLocDWO() {
+ if (getDwarfVersion() >= 5) {
+ emitDebugLocImpl(
+ Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
+
+ return;
+ }
+
+ for (const auto &List : DebugLocs.getLists()) {
+ Asm->OutStreamer->switchSection(
+ Asm->getObjFileLowering().getDwarfLocDWOSection());
+ Asm->OutStreamer->emitLabel(List.Label);
+
+ for (const auto &Entry : DebugLocs.getEntries(List)) {
+ // GDB only supports startx_length in pre-standard split-DWARF.
+ // (in v5 standard loclists, it currently* /only/ supports base_address +
+ // offset_pair, so the implementations can't really share much since they
+ // need to use different representations)
+ // * as of October 2018, at least
+ //
+ // In v5 (see emitLocList), this uses SectionLabels to reuse existing
+ // addresses in the address pool to minimize object size/relocations.
+ Asm->emitInt8(dwarf::DW_LLE_startx_length);
+ unsigned idx = AddrPool.getIndex(Entry.Begin);
+ Asm->emitULEB128(idx);
+ // Also the pre-standard encoding is slightly different, emitting this as
+ // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
+ Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
+ emitDebugLocEntryLocation(Entry, List.CU);
+ }
+ Asm->emitInt8(dwarf::DW_LLE_end_of_list);
+ }
+}
+
+struct ArangeSpan {
+ const MCSymbol *Start, *End;
+};
+
+// Emit a debug aranges section, containing a CU lookup for any
+// address we can tie back to a CU.
+void DwarfDebug::emitDebugARanges() {
+ // Provides a unique id per text section.
+ MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
+
+ // Filter labels by section.
+ for (const SymbolCU &SCU : ArangeLabels) {
+ if (SCU.Sym->isInSection()) {
+ // Make a note of this symbol and it's section.
+ MCSection *Section = &SCU.Sym->getSection();
+ if (!Section->getKind().isMetadata())
+ SectionMap[Section].push_back(SCU);
+ } else {
+ // Some symbols (e.g. common/bss on mach-o) can have no section but still
+ // appear in the output. This sucks as we rely on sections to build
+ // arange spans. We can do it without, but it's icky.
+ SectionMap[nullptr].push_back(SCU);
+ }
+ }
+
+ DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
+
+ for (auto &I : SectionMap) {
+ MCSection *Section = I.first;
+ SmallVector<SymbolCU, 8> &List = I.second;
+ if (List.size() < 1)
+ continue;
+
+ // If we have no section (e.g. common), just write out
+ // individual spans for each symbol.
+ if (!Section) {
+ for (const SymbolCU &Cur : List) {
+ ArangeSpan Span;
+ Span.Start = Cur.Sym;
+ Span.End = nullptr;
+ assert(Cur.CU);
+ Spans[Cur.CU].push_back(Span);
+ }
+ continue;
+ }
+
+ // Sort the symbols by offset within the section.
+ llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
+ unsigned IA = A.Sym ? Asm->OutStreamer->getSymbolOrder(A.Sym) : 0;
+ unsigned IB = B.Sym ? Asm->OutStreamer->getSymbolOrder(B.Sym) : 0;
+
+ // Symbols with no order assigned should be placed at the end.
+ // (e.g. section end labels)
+ if (IA == 0)
+ return false;
+ if (IB == 0)
+ return true;
+ return IA < IB;
+ });
+
+ // Insert a final terminator.
+ List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
+
+ // Build spans between each label.
+ const MCSymbol *StartSym = List[0].Sym;
+ for (size_t n = 1, e = List.size(); n < e; n++) {
+ const SymbolCU &Prev = List[n - 1];
+ const SymbolCU &Cur = List[n];
+
+ // Try and build the longest span we can within the same CU.
+ if (Cur.CU != Prev.CU) {
+ ArangeSpan Span;
+ Span.Start = StartSym;
+ Span.End = Cur.Sym;
+ assert(Prev.CU);
+ Spans[Prev.CU].push_back(Span);
+ StartSym = Cur.Sym;
+ }
+ }
+ }
+
+ // Start the dwarf aranges section.
+ Asm->OutStreamer->switchSection(
+ Asm->getObjFileLowering().getDwarfARangesSection());
+
+ unsigned PtrSize = Asm->MAI->getCodePointerSize();
+
+ // Build a list of CUs used.
+ std::vector<DwarfCompileUnit *> CUs;
+ for (const auto &it : Spans) {
+ DwarfCompileUnit *CU = it.first;
+ CUs.push_back(CU);
+ }
+
+ // Sort the CU list (again, to ensure consistent output order).
+ llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
+ return A->getUniqueID() < B->getUniqueID();
+ });
+
+ // Emit an arange table for each CU we used.
+ for (DwarfCompileUnit *CU : CUs) {
+ std::vector<ArangeSpan> &List = Spans[CU];
+
+ // Describe the skeleton CU's offset and length, not the dwo file's.
+ if (auto *Skel = CU->getSkeleton())
+ CU = Skel;
+
+ // Emit size of content not including length itself.
+ unsigned ContentSize =
+ sizeof(int16_t) + // DWARF ARange version number
+ Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
+ // section
+ sizeof(int8_t) + // Pointer Size (in bytes)
+ sizeof(int8_t); // Segment Size (in bytes)
+
+ unsigned TupleSize = PtrSize * 2;
+
+ // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
+ unsigned Padding = offsetToAlignment(
+ Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
+
+ ContentSize += Padding;
+ ContentSize += (List.size() + 1) * TupleSize;
+
+ // For each compile unit, write the list of spans it covers.
+ Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
+ Asm->OutStreamer->AddComment("DWARF Arange version number");
+ Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
+ Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
+ emitSectionReference(*CU);
+ Asm->OutStreamer->AddComment("Address Size (in bytes)");
+ Asm->emitInt8(PtrSize);
+ Asm->OutStreamer->AddComment("Segment Size (in bytes)");
+ Asm->emitInt8(0);
+
+ Asm->OutStreamer->emitFill(Padding, 0xff);
+
+ for (const ArangeSpan &Span : List) {
+ Asm->emitLabelReference(Span.Start, PtrSize);
+
+ // Calculate the size as being from the span start to its end.
+ //
+ // If the size is zero, then round it up to one byte. The DWARF
+ // specification requires that entries in this table have nonzero
+ // lengths.
+ auto SizeRef = SymSize.find(Span.Start);
+ if ((SizeRef == SymSize.end() || SizeRef->second != 0) && Span.End) {
+ Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
+ } else {
+ // For symbols without an end marker (e.g. common), we
+ // write a single arange entry containing just that one symbol.
+ uint64_t Size;
+ if (SizeRef == SymSize.end() || SizeRef->second == 0)
+ Size = 1;
+ else
+ Size = SizeRef->second;
+
+ Asm->OutStreamer->emitIntValue(Size, PtrSize);
+ }
+ }
+
+ Asm->OutStreamer->AddComment("ARange terminator");
+ Asm->OutStreamer->emitIntValue(0, PtrSize);
+ Asm->OutStreamer->emitIntValue(0, PtrSize);
+ }
+}
+
+/// Emit a single range list. We handle both DWARF v5 and earlier.
+static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
+ const RangeSpanList &List) {
+ emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
+ dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
+ dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
+ llvm::dwarf::RangeListEncodingString,
+ List.CU->getCUNode()->getRangesBaseAddress() ||
+ DD.getDwarfVersion() >= 5,
+ [](auto) {});
+}
+
+void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
+ if (Holder.getRangeLists().empty())
+ return;
+
+ assert(useRangesSection());
+ assert(!CUMap.empty());
+ assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
+ return !Pair.second->getCUNode()->isDebugDirectivesOnly();
+ }));
+
+ Asm->OutStreamer->switchSection(Section);
+
+ MCSymbol *TableEnd = nullptr;
+ if (getDwarfVersion() >= 5)
+ TableEnd = emitRnglistsTableHeader(Asm, Holder);
+
+ for (const RangeSpanList &List : Holder.getRangeLists())
+ emitRangeList(*this, Asm, List);
+
+ if (TableEnd)
+ Asm->OutStreamer->emitLabel(TableEnd);
+}
+
+/// Emit address ranges into the .debug_ranges section or into the DWARF v5
+/// .debug_rnglists section.
+void DwarfDebug::emitDebugRanges() {
+ const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
+
+ emitDebugRangesImpl(Holder,
+ getDwarfVersion() >= 5
+ ? Asm->getObjFileLowering().getDwarfRnglistsSection()
+ : Asm->getObjFileLowering().getDwarfRangesSection());
+}
+
+void DwarfDebug::emitDebugRangesDWO() {
+ emitDebugRangesImpl(InfoHolder,
+ Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
+}
+
+/// Emit the header of a DWARF 5 macro section, or the GNU extension for
+/// DWARF 4.
+static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
+ const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
+ enum HeaderFlagMask {
+#define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
+#include "llvm/BinaryFormat/Dwarf.def"
+ };
+ Asm->OutStreamer->AddComment("Macro information version");
+ Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
+ // We emit the line offset flag unconditionally here, since line offset should
+ // be mostly present.
+ if (Asm->isDwarf64()) {
+ Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
+ Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
+ } else {
+ Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
+ Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
+ }
+ Asm->OutStreamer->AddComment("debug_line_offset");
+ if (DD.useSplitDwarf())
+ Asm->emitDwarfLengthOrOffset(0);
+ else
+ Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
+}
+
+void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
+ for (auto *MN : Nodes) {
+ if (auto *M = dyn_cast<DIMacro>(MN))
+ emitMacro(*M);
+ else if (auto *F = dyn_cast<DIMacroFile>(MN))
+ emitMacroFile(*F, U);
+ else
+ llvm_unreachable("Unexpected DI type!");
+ }
+}
+
+void DwarfDebug::emitMacro(DIMacro &M) {
+ StringRef Name = M.getName();
+ StringRef Value = M.getValue();
+
+ // There should be one space between the macro name and the macro value in
+ // define entries. In undef entries, only the macro name is emitted.
+ std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
+
+ if (UseDebugMacroSection) {
+ if (getDwarfVersion() >= 5) {
+ unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
+ ? dwarf::DW_MACRO_define_strx
+ : dwarf::DW_MACRO_undef_strx;
+ Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
+ Asm->emitULEB128(Type);
+ Asm->OutStreamer->AddComment("Line Number");
+ Asm->emitULEB128(M.getLine());
+ Asm->OutStreamer->AddComment("Macro String");
+ Asm->emitULEB128(
+ InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
+ } else {
+ unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
+ ? dwarf::DW_MACRO_GNU_define_indirect
+ : dwarf::DW_MACRO_GNU_undef_indirect;
+ Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
+ Asm->emitULEB128(Type);
+ Asm->OutStreamer->AddComment("Line Number");
+ Asm->emitULEB128(M.getLine());
+ Asm->OutStreamer->AddComment("Macro String");
+ Asm->emitDwarfSymbolReference(
+ InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
+ }
+ } else {
+ Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
+ Asm->emitULEB128(M.getMacinfoType());
+ Asm->OutStreamer->AddComment("Line Number");
+ Asm->emitULEB128(M.getLine());
+ Asm->OutStreamer->AddComment("Macro String");
+ Asm->OutStreamer->emitBytes(Str);
+ Asm->emitInt8('\0');
+ }
+}
+
+void DwarfDebug::emitMacroFileImpl(
+ DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
+ StringRef (*MacroFormToString)(unsigned Form)) {
+
+ Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
+ Asm->emitULEB128(StartFile);
+ Asm->OutStreamer->AddComment("Line Number");
+ Asm->emitULEB128(MF.getLine());
+ Asm->OutStreamer->AddComment("File Number");
+ DIFile &F = *MF.getFile();
+ if (useSplitDwarf())
+ Asm->emitULEB128(getDwoLineTable(U)->getFile(
+ F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
+ Asm->OutContext.getDwarfVersion(), F.getSource()));
+ else
+ Asm->emitULEB128(U.getOrCreateSourceID(&F));
+ handleMacroNodes(MF.getElements(), U);
+ Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
+ Asm->emitULEB128(EndFile);
+}
+
+void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
+ // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
+ // so for readibility/uniformity, We are explicitly emitting those.
+ assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
+ if (UseDebugMacroSection)
+ emitMacroFileImpl(
+ F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
+ (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
+ else
+ emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
+ dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
+}
+
+void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
+ for (const auto &P : CUMap) {
+ auto &TheCU = *P.second;
+ auto *SkCU = TheCU.getSkeleton();
+ DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
+ auto *CUNode = cast<DICompileUnit>(P.first);
+ DIMacroNodeArray Macros = CUNode->getMacros();
+ if (Macros.empty())
+ continue;
+ Asm->OutStreamer->switchSection(Section);
+ Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
+ if (UseDebugMacroSection)
+ emitMacroHeader(Asm, *this, U, getDwarfVersion());
+ handleMacroNodes(Macros, U);
+ Asm->OutStreamer->AddComment("End Of Macro List Mark");
+ Asm->emitInt8(0);
+ }
+}
+
+/// Emit macros into a debug macinfo/macro section.
+void DwarfDebug::emitDebugMacinfo() {
+ auto &ObjLower = Asm->getObjFileLowering();
+ emitDebugMacinfoImpl(UseDebugMacroSection
+ ? ObjLower.getDwarfMacroSection()
+ : ObjLower.getDwarfMacinfoSection());
+}
+
+void DwarfDebug::emitDebugMacinfoDWO() {
+ auto &ObjLower = Asm->getObjFileLowering();
+ emitDebugMacinfoImpl(UseDebugMacroSection
+ ? ObjLower.getDwarfMacroDWOSection()
+ : ObjLower.getDwarfMacinfoDWOSection());
+}
+
+// DWARF5 Experimental Separate Dwarf emitters.
+
+void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
+ std::unique_ptr<DwarfCompileUnit> NewU) {
+
+ if (!CompilationDir.empty())
+ NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
+ addGnuPubAttributes(*NewU, Die);
+
+ SkeletonHolder.addUnit(std::move(NewU));
+}
+
+DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
+
+ auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
+ CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
+ UnitKind::Skeleton);
+ DwarfCompileUnit &NewCU = *OwnedUnit;
+ NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
+
+ NewCU.initStmtList();
+
+ if (useSegmentedStringOffsetsTable())
+ NewCU.addStringOffsetsStart();
+
+ initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
+
+ return NewCU;
+}
+
+// Emit the .debug_info.dwo section for separated dwarf. This contains the
+// compile units that would normally be in debug_info.
+void DwarfDebug::emitDebugInfoDWO() {
+ assert(useSplitDwarf() && "No split dwarf debug info?");
+ // Don't emit relocations into the dwo file.
+ InfoHolder.emitUnits(/* UseOffsets */ true);
+}
+
+// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
+// abbreviations for the .debug_info.dwo section.
+void DwarfDebug::emitDebugAbbrevDWO() {
+ assert(useSplitDwarf() && "No split dwarf?");
+ InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
+}
+
+void DwarfDebug::emitDebugLineDWO() {
+ assert(useSplitDwarf() && "No split dwarf?");
+ SplitTypeUnitFileTable.Emit(
+ *Asm->OutStreamer, MCDwarfLineTableParams(),
+ Asm->getObjFileLowering().getDwarfLineDWOSection());
+}
+
+void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
+ assert(useSplitDwarf() && "No split dwarf?");
+ InfoHolder.getStringPool().emitStringOffsetsTableHeader(
+ *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
+ InfoHolder.getStringOffsetsStartSym());
+}
+
+// Emit the .debug_str.dwo section for separated dwarf. This contains the
+// string section and is identical in format to traditional .debug_str
+// sections.
+void DwarfDebug::emitDebugStrDWO() {
+ if (useSegmentedStringOffsetsTable())
+ emitStringOffsetsTableHeaderDWO();
+ assert(useSplitDwarf() && "No split dwarf?");
+ MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
+ InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
+ OffSec, /* UseRelativeOffsets = */ false);
+}
+
+// Emit address pool.
+void DwarfDebug::emitDebugAddr() {
+ AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
+}
+
+MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
+ if (!useSplitDwarf())
+ return nullptr;
+ const DICompileUnit *DIUnit = CU.getCUNode();
+ SplitTypeUnitFileTable.maybeSetRootFile(
+ DIUnit->getDirectory(), DIUnit->getFilename(),
+ getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
+ return &SplitTypeUnitFileTable;
+}
+
+uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
+ MD5 Hash;
+ Hash.update(Identifier);
+ // ... take the least significant 8 bytes and return those. Our MD5
+ // implementation always returns its results in little endian, so we actually
+ // need the "high" word.
+ MD5::MD5Result Result;
+ Hash.final(Result);
+ return Result.high();
+}
+
+void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
+ StringRef Identifier, DIE &RefDie,
+ const DICompositeType *CTy) {
+ // Fast path if we're building some type units and one has already used the
+ // address pool we know we're going to throw away all this work anyway, so
+ // don't bother building dependent types.
+ if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
+ return;
+
+ auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
+ if (!Ins.second) {
+ CU.addDIETypeSignature(RefDie, Ins.first->second);
+ return;
+ }
+
+ bool TopLevelType = TypeUnitsUnderConstruction.empty();
+ AddrPool.resetUsedFlag();
+
+ auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
+ getDwoLineTable(CU));
+ DwarfTypeUnit &NewTU = *OwnedUnit;
+ DIE &UnitDie = NewTU.getUnitDie();
+ TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
+
+ NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
+ CU.getLanguage());
+
+ uint64_t Signature = makeTypeSignature(Identifier);
+ NewTU.setTypeSignature(Signature);
+ Ins.first->second = Signature;
+
+ if (useSplitDwarf()) {
+ MCSection *Section =
+ getDwarfVersion() <= 4
+ ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
+ : Asm->getObjFileLowering().getDwarfInfoDWOSection();
+ NewTU.setSection(Section);
+ } else {
+ MCSection *Section =
+ getDwarfVersion() <= 4
+ ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
+ : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
+ NewTU.setSection(Section);
+ // Non-split type units reuse the compile unit's line table.
+ CU.applyStmtList(UnitDie);
+ }
+
+ // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
+ // units.
+ if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
+ NewTU.addStringOffsetsStart();
+
+ NewTU.setType(NewTU.createTypeDIE(CTy));
+
+ if (TopLevelType) {
+ auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
+ TypeUnitsUnderConstruction.clear();
+
+ // Types referencing entries in the address table cannot be placed in type
+ // units.
+ if (AddrPool.hasBeenUsed()) {
+
+ // Remove all the types built while building this type.
+ // This is pessimistic as some of these types might not be dependent on
+ // the type that used an address.
+ for (const auto &TU : TypeUnitsToAdd)
+ TypeSignatures.erase(TU.second);
+
+ // Construct this type in the CU directly.
+ // This is inefficient because all the dependent types will be rebuilt
+ // from scratch, including building them in type units, discovering that
+ // they depend on addresses, throwing them out and rebuilding them.
+ CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
+ return;
+ }
+
+ // If the type wasn't dependent on fission addresses, finish adding the type
+ // and all its dependent types.
+ for (auto &TU : TypeUnitsToAdd) {
+ InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
+ InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
+ }
+ }
+ CU.addDIETypeSignature(RefDie, Signature);
+}
+
+// Add the Name along with its companion DIE to the appropriate accelerator
+// table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
+// AccelTableKind::Apple, we use the table we got as an argument). If
+// accelerator tables are disabled, this function does nothing.
+template <typename DataT>
+void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
+ AccelTable<DataT> &AppleAccel, StringRef Name,
+ const DIE &Die) {
+ if (getAccelTableKind() == AccelTableKind::None || Name.empty())
+ return;
+
+ if (getAccelTableKind() != AccelTableKind::Apple &&
+ CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Apple &&
+ CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
+ return;
+
+ DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
+ DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
+
+ switch (getAccelTableKind()) {
+ case AccelTableKind::Apple:
+ AppleAccel.addName(Ref, Die);
+ break;
+ case AccelTableKind::Dwarf:
+ AccelDebugNames.addName(Ref, Die);
+ break;
+ case AccelTableKind::Default:
+ llvm_unreachable("Default should have already been resolved.");
+ case AccelTableKind::None:
+ llvm_unreachable("None handled above");
+ }
+}
+
+void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
+ const DIE &Die) {
+ addAccelNameImpl(CU, AccelNames, Name, Die);
+}
+
+void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
+ const DIE &Die) {
+ // ObjC names go only into the Apple accelerator tables.
+ if (getAccelTableKind() == AccelTableKind::Apple)
+ addAccelNameImpl(CU, AccelObjC, Name, Die);
+}
+
+void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
+ const DIE &Die) {
+ addAccelNameImpl(CU, AccelNamespace, Name, Die);
+}
+
+void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
+ const DIE &Die, char Flags) {
+ addAccelNameImpl(CU, AccelTypes, Name, Die);
+}
+
+uint16_t DwarfDebug::getDwarfVersion() const {
+ return Asm->OutStreamer->getContext().getDwarfVersion();
+}
+
+dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
+ if (Asm->getDwarfVersion() >= 4)
+ return dwarf::Form::DW_FORM_sec_offset;
+ assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
+ "DWARF64 is not defined prior DWARFv3");
+ return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
+ : dwarf::Form::DW_FORM_data4;
+}
+
+const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
+ return SectionLabels.lookup(S);
+}
+
+void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
+ if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
+ if (useSplitDwarf() || getDwarfVersion() >= 5)
+ AddrPool.getIndex(S);
+}
+
+std::optional<MD5::MD5Result>
+DwarfDebug::getMD5AsBytes(const DIFile *File) const {
+ assert(File);
+ if (getDwarfVersion() < 5)
+ return std::nullopt;
+ std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
+ if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
+ return std::nullopt;
+
+ // Convert the string checksum to an MD5Result for the streamer.
+ // The verifier validates the checksum so we assume it's okay.
+ // An MD5 checksum is 16 bytes.
+ std::string ChecksumString = fromHex(Checksum->Value);
+ MD5::MD5Result CKMem;
+ std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.data());
+ return CKMem;
+}
+
+bool DwarfDebug::alwaysUseRanges(const DwarfCompileUnit &CU) const {
+ if (MinimizeAddr == MinimizeAddrInV5::Ranges)
+ return true;
+ if (MinimizeAddr != MinimizeAddrInV5::Default)
+ return false;
+ if (useSplitDwarf())
+ return true;
+ return false;
+}