diff options
Diffstat (limited to 'contrib/libstdc++/include/tr1/functional')
-rw-r--r-- | contrib/libstdc++/include/tr1/functional | 1106 |
1 files changed, 0 insertions, 1106 deletions
diff --git a/contrib/libstdc++/include/tr1/functional b/contrib/libstdc++/include/tr1/functional deleted file mode 100644 index f3cc78de7516..000000000000 --- a/contrib/libstdc++/include/tr1/functional +++ /dev/null @@ -1,1106 +0,0 @@ -// TR1 functional header -*- C++ -*- - -// Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc. -// -// This file is part of the GNU ISO C++ Library. This library is free -// software; you can redistribute it and/or modify it under the -// terms of the GNU General Public License as published by the -// Free Software Foundation; either version 2, or (at your option) -// any later version. - -// This library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU General Public License for more details. - -// You should have received a copy of the GNU General Public License along -// with this library; see the file COPYING. If not, write to the Free -// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, -// USA. - -// As a special exception, you may use this file as part of a free software -// library without restriction. Specifically, if other files instantiate -// templates or use macros or inline functions from this file, or you compile -// this file and link it with other files to produce an executable, this -// file does not by itself cause the resulting executable to be covered by -// the GNU General Public License. This exception does not however -// invalidate any other reasons why the executable file might be covered by -// the GNU General Public License. - -/** @file tr1/functional - * This is a TR1 C++ Library header. - */ - -#ifndef _TR1_FUNCTIONAL -#define _TR1_FUNCTIONAL 1 - -#pragma GCC system_header - -#include "../functional" -#include <typeinfo> -#include <tr1/type_traits> -#include <ext/type_traits.h> -#include <cstdlib> // for std::abort -#include <tr1/tuple> - -namespace std -{ -_GLIBCXX_BEGIN_NAMESPACE(tr1) - - template<typename _MemberPointer> - class _Mem_fn; - - /** - * @if maint - * Actual implementation of _Has_result_type, which uses SFINAE to - * determine if the type _Tp has a publicly-accessible member type - * result_type. - * @endif - */ - template<typename _Tp> - class _Has_result_type_helper : __sfinae_types - { - template<typename _Up> - struct _Wrap_type - { }; - - template<typename _Up> - static __one __test(_Wrap_type<typename _Up::result_type>*); - - template<typename _Up> - static __two __test(...); - - public: - static const bool value = sizeof(__test<_Tp>(0)) == 1; - }; - - template<typename _Tp> - struct _Has_result_type - : integral_constant< - bool, - _Has_result_type_helper<typename remove_cv<_Tp>::type>::value> - { }; - - /** - * @if maint - * If we have found a result_type, extract it. - * @endif - */ - template<bool _Has_result_type, typename _Functor> - struct _Maybe_get_result_type - { }; - - template<typename _Functor> - struct _Maybe_get_result_type<true, _Functor> - { - typedef typename _Functor::result_type result_type; - }; - - /** - * @if maint - * Base class for any function object that has a weak result type, as - * defined in 3.3/3 of TR1. - * @endif - */ - template<typename _Functor> - struct _Weak_result_type_impl - : _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor> - { - }; - - /** - * @if maint - * Strip top-level cv-qualifiers from the function object and let - * _Weak_result_type_impl perform the real work. - * @endif - */ - template<typename _Functor> - struct _Weak_result_type - : _Weak_result_type_impl<typename remove_cv<_Functor>::type> - { - }; - - template<typename _Signature> - class result_of; - - /** - * @if maint - * Actual implementation of result_of. When _Has_result_type is - * true, gets its result from _Weak_result_type. Otherwise, uses - * the function object's member template result to extract the - * result type. - * @endif - */ - template<bool _Has_result_type, typename _Signature> - struct _Result_of_impl; - - // Handle member data pointers using _Mem_fn's logic - template<typename _Res, typename _Class, typename _T1> - struct _Result_of_impl<false, _Res _Class::*(_T1)> - { - typedef typename _Mem_fn<_Res _Class::*> - ::template _Result_type<_T1>::type type; - }; - - /** - * @if maint - * Determines if the type _Tp derives from unary_function. - * @endif - */ - template<typename _Tp> - struct _Derives_from_unary_function : __sfinae_types - { - private: - template<typename _T1, typename _Res> - static __one __test(const volatile unary_function<_T1, _Res>*); - - // It's tempting to change "..." to const volatile void*, but - // that fails when _Tp is a function type. - static __two __test(...); - - public: - static const bool value = sizeof(__test((_Tp*)0)) == 1; - }; - - /** - * @if maint - * Determines if the type _Tp derives from binary_function. - * @endif - */ - template<typename _Tp> - struct _Derives_from_binary_function : __sfinae_types - { - private: - template<typename _T1, typename _T2, typename _Res> - static __one __test(const volatile binary_function<_T1, _T2, _Res>*); - - // It's tempting to change "..." to const volatile void*, but - // that fails when _Tp is a function type. - static __two __test(...); - - public: - static const bool value = sizeof(__test((_Tp*)0)) == 1; - }; - - /** - * @if maint - * Turns a function type into a function pointer type - * @endif - */ - template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value> - struct _Function_to_function_pointer - { - typedef _Tp type; - }; - - template<typename _Tp> - struct _Function_to_function_pointer<_Tp, true> - { - typedef _Tp* type; - }; - - /** - * @if maint - * Knowing which of unary_function and binary_function _Tp derives - * from, derives from the same and ensures that reference_wrapper - * will have a weak result type. See cases below. - * @endif - */ - template<bool _Unary, bool _Binary, typename _Tp> - struct _Reference_wrapper_base_impl; - - // Not a unary_function or binary_function, so try a weak result type - template<typename _Tp> - struct _Reference_wrapper_base_impl<false, false, _Tp> - : _Weak_result_type<_Tp> - { }; - - // unary_function but not binary_function - template<typename _Tp> - struct _Reference_wrapper_base_impl<true, false, _Tp> - : unary_function<typename _Tp::argument_type, - typename _Tp::result_type> - { }; - - // binary_function but not unary_function - template<typename _Tp> - struct _Reference_wrapper_base_impl<false, true, _Tp> - : binary_function<typename _Tp::first_argument_type, - typename _Tp::second_argument_type, - typename _Tp::result_type> - { }; - - // both unary_function and binary_function. import result_type to - // avoid conflicts. - template<typename _Tp> - struct _Reference_wrapper_base_impl<true, true, _Tp> - : unary_function<typename _Tp::argument_type, - typename _Tp::result_type>, - binary_function<typename _Tp::first_argument_type, - typename _Tp::second_argument_type, - typename _Tp::result_type> - { - typedef typename _Tp::result_type result_type; - }; - - /** - * @if maint - * Derives from unary_function or binary_function when it - * can. Specializations handle all of the easy cases. The primary - * template determines what to do with a class type, which may - * derive from both unary_function and binary_function. - * @endif - */ - template<typename _Tp> - struct _Reference_wrapper_base - : _Reference_wrapper_base_impl< - _Derives_from_unary_function<_Tp>::value, - _Derives_from_binary_function<_Tp>::value, - _Tp> - { }; - - // - a function type (unary) - template<typename _Res, typename _T1> - struct _Reference_wrapper_base<_Res(_T1)> - : unary_function<_T1, _Res> - { }; - - // - a function type (binary) - template<typename _Res, typename _T1, typename _T2> - struct _Reference_wrapper_base<_Res(_T1, _T2)> - : binary_function<_T1, _T2, _Res> - { }; - - // - a function pointer type (unary) - template<typename _Res, typename _T1> - struct _Reference_wrapper_base<_Res(*)(_T1)> - : unary_function<_T1, _Res> - { }; - - // - a function pointer type (binary) - template<typename _Res, typename _T1, typename _T2> - struct _Reference_wrapper_base<_Res(*)(_T1, _T2)> - : binary_function<_T1, _T2, _Res> - { }; - - // - a pointer to member function type (unary, no qualifiers) - template<typename _Res, typename _T1> - struct _Reference_wrapper_base<_Res (_T1::*)()> - : unary_function<_T1*, _Res> - { }; - - // - a pointer to member function type (binary, no qualifiers) - template<typename _Res, typename _T1, typename _T2> - struct _Reference_wrapper_base<_Res (_T1::*)(_T2)> - : binary_function<_T1*, _T2, _Res> - { }; - - // - a pointer to member function type (unary, const) - template<typename _Res, typename _T1> - struct _Reference_wrapper_base<_Res (_T1::*)() const> - : unary_function<const _T1*, _Res> - { }; - - // - a pointer to member function type (binary, const) - template<typename _Res, typename _T1, typename _T2> - struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const> - : binary_function<const _T1*, _T2, _Res> - { }; - - // - a pointer to member function type (unary, volatile) - template<typename _Res, typename _T1> - struct _Reference_wrapper_base<_Res (_T1::*)() volatile> - : unary_function<volatile _T1*, _Res> - { }; - - // - a pointer to member function type (binary, volatile) - template<typename _Res, typename _T1, typename _T2> - struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile> - : binary_function<volatile _T1*, _T2, _Res> - { }; - - // - a pointer to member function type (unary, const volatile) - template<typename _Res, typename _T1> - struct _Reference_wrapper_base<_Res (_T1::*)() const volatile> - : unary_function<const volatile _T1*, _Res> - { }; - - // - a pointer to member function type (binary, const volatile) - template<typename _Res, typename _T1, typename _T2> - struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile> - : binary_function<const volatile _T1*, _T2, _Res> - { }; - - template<typename _Tp> - class reference_wrapper - : public _Reference_wrapper_base<typename remove_cv<_Tp>::type> - { - // If _Tp is a function type, we can't form result_of<_Tp(...)>, - // so turn it into a function pointer type. - typedef typename _Function_to_function_pointer<_Tp>::type - _M_func_type; - - _Tp* _M_data; - public: - typedef _Tp type; - explicit reference_wrapper(_Tp& __indata): _M_data(&__indata) - { } - - reference_wrapper(const reference_wrapper<_Tp>& __inref): - _M_data(__inref._M_data) - { } - - reference_wrapper& - operator=(const reference_wrapper<_Tp>& __inref) - { - _M_data = __inref._M_data; - return *this; - } - - operator _Tp&() const - { return this->get(); } - - _Tp& - get() const - { return *_M_data; } - -#define _GLIBCXX_REPEAT_HEADER <tr1/ref_wrap_iterate.h> -#include <tr1/repeat.h> -#undef _GLIBCXX_REPEAT_HEADER - }; - - - // Denotes a reference should be taken to a variable. - template<typename _Tp> - inline reference_wrapper<_Tp> - ref(_Tp& __t) - { return reference_wrapper<_Tp>(__t); } - - // Denotes a const reference should be taken to a variable. - template<typename _Tp> - inline reference_wrapper<const _Tp> - cref(const _Tp& __t) - { return reference_wrapper<const _Tp>(__t); } - - template<typename _Tp> - inline reference_wrapper<_Tp> - ref(reference_wrapper<_Tp> __t) - { return ref(__t.get()); } - - template<typename _Tp> - inline reference_wrapper<const _Tp> - cref(reference_wrapper<_Tp> __t) - { return cref(__t.get()); } - - template<typename _Tp, bool> - struct _Mem_fn_const_or_non - { - typedef const _Tp& type; - }; - - template<typename _Tp> - struct _Mem_fn_const_or_non<_Tp, false> - { - typedef _Tp& type; - }; - - template<typename _Res, typename _Class> - class _Mem_fn<_Res _Class::*> - { - // This bit of genius is due to Peter Dimov, improved slightly by - // Douglas Gregor. - template<typename _Tp> - _Res& - _M_call(_Tp& __object, _Class *) const - { return __object.*__pm; } - - template<typename _Tp, typename _Up> - _Res& - _M_call(_Tp& __object, _Up * const *) const - { return (*__object).*__pm; } - - template<typename _Tp, typename _Up> - const _Res& - _M_call(_Tp& __object, const _Up * const *) const - { return (*__object).*__pm; } - - template<typename _Tp> - const _Res& - _M_call(_Tp& __object, const _Class *) const - { return __object.*__pm; } - - template<typename _Tp> - const _Res& - _M_call(_Tp& __ptr, const volatile void*) const - { return (*__ptr).*__pm; } - - template<typename _Tp> static _Tp& __get_ref(); - - template<typename _Tp> - static __sfinae_types::__one __check_const(_Tp&, _Class*); - template<typename _Tp, typename _Up> - static __sfinae_types::__one __check_const(_Tp&, _Up * const *); - template<typename _Tp, typename _Up> - static __sfinae_types::__two __check_const(_Tp&, const _Up * const *); - template<typename _Tp> - static __sfinae_types::__two __check_const(_Tp&, const _Class*); - template<typename _Tp> - static __sfinae_types::__two __check_const(_Tp&, const volatile void*); - - public: - template<typename _Tp> - struct _Result_type - : _Mem_fn_const_or_non< - _Res, - (sizeof(__sfinae_types::__two) - == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))> - { }; - - template<typename _Signature> - struct result; - - template<typename _CVMem, typename _Tp> - struct result<_CVMem(_Tp)> - : public _Result_type<_Tp> { }; - - template<typename _CVMem, typename _Tp> - struct result<_CVMem(_Tp&)> - : public _Result_type<_Tp> { }; - - explicit _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { } - - // Handle objects - _Res& operator()(_Class& __object) const - { return __object.*__pm; } - - const _Res& operator()(const _Class& __object) const - { return __object.*__pm; } - - // Handle pointers - _Res& operator()(_Class* __object) const - { return __object->*__pm; } - - const _Res& - operator()(const _Class* __object) const - { return __object->*__pm; } - - // Handle smart pointers and derived - template<typename _Tp> - typename _Result_type<_Tp>::type - operator()(_Tp& __unknown) const - { return _M_call(__unknown, &__unknown); } - - private: - _Res _Class::*__pm; - }; - - /** - * @brief Returns a function object that forwards to the member - * pointer @a pm. - */ - template<typename _Tp, typename _Class> - inline _Mem_fn<_Tp _Class::*> - mem_fn(_Tp _Class::* __pm) - { - return _Mem_fn<_Tp _Class::*>(__pm); - } - - /** - * @brief Determines if the given type _Tp is a function object - * should be treated as a subexpression when evaluating calls to - * function objects returned by bind(). [TR1 3.6.1] - */ - template<typename _Tp> - struct is_bind_expression - { static const bool value = false; }; - - template<typename _Tp> - const bool is_bind_expression<_Tp>::value; - - /** - * @brief Determines if the given type _Tp is a placeholder in a - * bind() expression and, if so, which placeholder it is. [TR1 3.6.2] - */ - template<typename _Tp> - struct is_placeholder - { static const int value = 0; }; - - template<typename _Tp> - const int is_placeholder<_Tp>::value; - - /** - * @if maint - * The type of placeholder objects defined by libstdc++. - * @endif - */ - template<int _Num> struct _Placeholder { }; - - /** - * @if maint - * Partial specialization of is_placeholder that provides the placeholder - * number for the placeholder objects defined by libstdc++. - * @endif - */ - template<int _Num> - struct is_placeholder<_Placeholder<_Num> > - { static const int value = _Num; }; - - template<int _Num> - const int is_placeholder<_Placeholder<_Num> >::value; - - /** - * @if maint - * Maps an argument to bind() into an actual argument to the bound - * function object [TR1 3.6.3/5]. Only the first parameter should - * be specified: the rest are used to determine among the various - * implementations. Note that, although this class is a function - * object, isn't not entirely normal because it takes only two - * parameters regardless of the number of parameters passed to the - * bind expression. The first parameter is the bound argument and - * the second parameter is a tuple containing references to the - * rest of the arguments. - * @endif - */ - template<typename _Arg, - bool _IsBindExp = is_bind_expression<_Arg>::value, - bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)> - class _Mu; - - /** - * @if maint - * If the argument is reference_wrapper<_Tp>, returns the - * underlying reference. [TR1 3.6.3/5 bullet 1] - * @endif - */ - template<typename _Tp> - class _Mu<reference_wrapper<_Tp>, false, false> - { - public: - typedef _Tp& result_type; - - /* Note: This won't actually work for const volatile - * reference_wrappers, because reference_wrapper::get() is const - * but not volatile-qualified. This might be a defect in the TR. - */ - template<typename _CVRef, typename _Tuple> - result_type - operator()(_CVRef& __arg, const _Tuple&) const volatile - { return __arg.get(); } - }; - - /** - * @if maint - * If the argument is a bind expression, we invoke the underlying - * function object with the same cv-qualifiers as we are given and - * pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2] - * @endif - */ - template<typename _Arg> - class _Mu<_Arg, true, false> - { - public: - template<typename _Signature> class result; - -#define _GLIBCXX_REPEAT_HEADER <tr1/mu_iterate.h> -# include <tr1/repeat.h> -#undef _GLIBCXX_REPEAT_HEADER - }; - - /** - * @if maint - * If the argument is a placeholder for the Nth argument, returns - * a reference to the Nth argument to the bind function object. - * [TR1 3.6.3/5 bullet 3] - * @endif - */ - template<typename _Arg> - class _Mu<_Arg, false, true> - { - public: - template<typename _Signature> class result; - - template<typename _CVMu, typename _CVArg, typename _Tuple> - class result<_CVMu(_CVArg, _Tuple)> - { - // Add a reference, if it hasn't already been done for us. - // This allows us to be a little bit sloppy in constructing - // the tuple that we pass to result_of<...>. - typedef typename tuple_element<(is_placeholder<_Arg>::value - 1), - _Tuple>::type __base_type; - - public: - typedef typename add_reference<__base_type>::type type; - }; - - template<typename _Tuple> - typename result<_Mu(_Arg, _Tuple)>::type - operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile - { - return ::std::tr1::get<(is_placeholder<_Arg>::value - 1)>(__tuple); - } - }; - - /** - * @if maint - * If the argument is just a value, returns a reference to that - * value. The cv-qualifiers on the reference are the same as the - * cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4] - * @endif - */ - template<typename _Arg> - class _Mu<_Arg, false, false> - { - public: - template<typename _Signature> struct result; - - template<typename _CVMu, typename _CVArg, typename _Tuple> - struct result<_CVMu(_CVArg, _Tuple)> - { - typedef typename add_reference<_CVArg>::type type; - }; - - // Pick up the cv-qualifiers of the argument - template<typename _CVArg, typename _Tuple> - _CVArg& operator()(_CVArg& __arg, const _Tuple&) const volatile - { return __arg; } - }; - - /** - * @if maint - * Maps member pointers into instances of _Mem_fn but leaves all - * other function objects untouched. Used by tr1::bind(). The - * primary template handles the non--member-pointer case. - * @endif - */ - template<typename _Tp> - struct _Maybe_wrap_member_pointer - { - typedef _Tp type; - static const _Tp& __do_wrap(const _Tp& __x) { return __x; } - }; - - /** - * @if maint - * Maps member pointers into instances of _Mem_fn but leaves all - * other function objects untouched. Used by tr1::bind(). This - * partial specialization handles the member pointer case. - * @endif - */ - template<typename _Tp, typename _Class> - struct _Maybe_wrap_member_pointer<_Tp _Class::*> - { - typedef _Mem_fn<_Tp _Class::*> type; - static type __do_wrap(_Tp _Class::* __pm) { return type(__pm); } - }; - - /** - * @if maint - * Type of the function object returned from bind(). - * @endif - */ - template<typename _Signature> - struct _Bind; - - /** - * @if maint - * Type of the function object returned from bind<R>(). - * @endif - */ - template<typename _Result, typename _Signature> - struct _Bind_result; - - /** - * @if maint - * Class template _Bind is always a bind expression. - * @endif - */ - template<typename _Signature> - struct is_bind_expression<_Bind<_Signature> > - { static const bool value = true; }; - - template<typename _Signature> - const bool is_bind_expression<_Bind<_Signature> >::value; - - /** - * @if maint - * Class template _Bind_result is always a bind expression. - * @endif - */ - template<typename _Result, typename _Signature> - struct is_bind_expression<_Bind_result<_Result, _Signature> > - { static const bool value = true; }; - - template<typename _Result, typename _Signature> - const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value; - - /** - * @brief Exception class thrown when class template function's - * operator() is called with an empty target. - * - */ - class bad_function_call : public std::exception { }; - - /** - * @if maint - * The integral constant expression 0 can be converted into a - * pointer to this type. It is used by the function template to - * accept NULL pointers. - * @endif - */ - struct _M_clear_type; - - /** - * @if maint - * Trait identifying "location-invariant" types, meaning that the - * address of the object (or any of its members) will not escape. - * Also implies a trivial copy constructor and assignment operator. - * @endif - */ - template<typename _Tp> - struct __is_location_invariant - : integral_constant<bool, - (is_pointer<_Tp>::value - || is_member_pointer<_Tp>::value)> - { - }; - - class _Undefined_class; - - union _Nocopy_types - { - void* _M_object; - const void* _M_const_object; - void (*_M_function_pointer)(); - void (_Undefined_class::*_M_member_pointer)(); - }; - - union _Any_data { - void* _M_access() { return &_M_pod_data[0]; } - const void* _M_access() const { return &_M_pod_data[0]; } - - template<typename _Tp> _Tp& _M_access() - { return *static_cast<_Tp*>(_M_access()); } - - template<typename _Tp> const _Tp& _M_access() const - { return *static_cast<const _Tp*>(_M_access()); } - - _Nocopy_types _M_unused; - char _M_pod_data[sizeof(_Nocopy_types)]; - }; - - enum _Manager_operation - { - __get_type_info, - __get_functor_ptr, - __clone_functor, - __destroy_functor - }; - - /* Simple type wrapper that helps avoid annoying const problems - when casting between void pointers and pointers-to-pointers. */ - template<typename _Tp> - struct _Simple_type_wrapper - { - _Simple_type_wrapper(_Tp __value) : __value(__value) { } - - _Tp __value; - }; - - template<typename _Tp> - struct __is_location_invariant<_Simple_type_wrapper<_Tp> > - : __is_location_invariant<_Tp> - { - }; - - // Converts a reference to a function object into a callable - // function object. - template<typename _Functor> - inline _Functor& __callable_functor(_Functor& __f) { return __f; } - - template<typename _Member, typename _Class> - inline _Mem_fn<_Member _Class::*> - __callable_functor(_Member _Class::* &__p) - { return mem_fn(__p); } - - template<typename _Member, typename _Class> - inline _Mem_fn<_Member _Class::*> - __callable_functor(_Member _Class::* const &__p) - { return mem_fn(__p); } - - template<typename _Signature, typename _Functor> - class _Function_handler; - - template<typename _Signature> - class function; - - - /** - * @if maint - * Base class of all polymorphic function object wrappers. - * @endif - */ - class _Function_base - { - public: - static const std::size_t _M_max_size = sizeof(_Nocopy_types); - static const std::size_t _M_max_align = __alignof__(_Nocopy_types); - - template<typename _Functor> - class _Base_manager - { - protected: - static const bool __stored_locally = - (__is_location_invariant<_Functor>::value - && sizeof(_Functor) <= _M_max_size - && __alignof__(_Functor) <= _M_max_align - && (_M_max_align % __alignof__(_Functor) == 0)); - typedef integral_constant<bool, __stored_locally> _Local_storage; - - // Retrieve a pointer to the function object - static _Functor* _M_get_pointer(const _Any_data& __source) - { - const _Functor* __ptr = - __stored_locally? &__source._M_access<_Functor>() - /* have stored a pointer */ : __source._M_access<_Functor*>(); - return const_cast<_Functor*>(__ptr); - } - - // Clone a location-invariant function object that fits within - // an _Any_data structure. - static void - _M_clone(_Any_data& __dest, const _Any_data& __source, true_type) - { - new (__dest._M_access()) _Functor(__source._M_access<_Functor>()); - } - - // Clone a function object that is not location-invariant or - // that cannot fit into an _Any_data structure. - static void - _M_clone(_Any_data& __dest, const _Any_data& __source, false_type) - { - __dest._M_access<_Functor*>() = - new _Functor(*__source._M_access<_Functor*>()); - } - - // Destroying a location-invariant object may still require - // destruction. - static void - _M_destroy(_Any_data& __victim, true_type) - { - __victim._M_access<_Functor>().~_Functor(); - } - - // Destroying an object located on the heap. - static void - _M_destroy(_Any_data& __victim, false_type) - { - delete __victim._M_access<_Functor*>(); - } - - public: - static bool - _M_manager(_Any_data& __dest, const _Any_data& __source, - _Manager_operation __op) - { - switch (__op) { - case __get_type_info: - __dest._M_access<const type_info*>() = &typeid(_Functor); - break; - - case __get_functor_ptr: - __dest._M_access<_Functor*>() = _M_get_pointer(__source); - break; - - case __clone_functor: - _M_clone(__dest, __source, _Local_storage()); - break; - - case __destroy_functor: - _M_destroy(__dest, _Local_storage()); - break; - } - return false; - } - - static void - _M_init_functor(_Any_data& __functor, const _Functor& __f) - { - _M_init_functor(__functor, __f, _Local_storage()); - } - - template<typename _Signature> - static bool - _M_not_empty_function(const function<_Signature>& __f) - { - return __f; - } - - template<typename _Tp> - static bool - _M_not_empty_function(const _Tp*& __fp) - { - return __fp; - } - - template<typename _Class, typename _Tp> - static bool - _M_not_empty_function(_Tp _Class::* const& __mp) - { - return __mp; - } - - template<typename _Tp> - static bool - _M_not_empty_function(const _Tp&) - { - return true; - } - - private: - static void - _M_init_functor(_Any_data& __functor, const _Functor& __f, true_type) - { - new (__functor._M_access()) _Functor(__f); - } - - static void - _M_init_functor(_Any_data& __functor, const _Functor& __f, false_type) - { - __functor._M_access<_Functor*>() = new _Functor(__f); - } - }; - - template<typename _Functor> - class _Ref_manager : public _Base_manager<_Functor*> - { - typedef _Function_base::_Base_manager<_Functor*> _Base; - - public: - static bool - _M_manager(_Any_data& __dest, const _Any_data& __source, - _Manager_operation __op) - { - switch (__op) { - case __get_type_info: - __dest._M_access<const type_info*>() = &typeid(_Functor); - break; - - case __get_functor_ptr: - __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source); - return is_const<_Functor>::value; - break; - - default: - _Base::_M_manager(__dest, __source, __op); - } - return false; - } - - static void - _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f) - { - // TBD: Use address_of function instead - _Base::_M_init_functor(__functor, &__f.get()); - } - }; - - _Function_base() : _M_manager(0) { } - - ~_Function_base() - { - if (_M_manager) - { - _M_manager(_M_functor, _M_functor, __destroy_functor); - } - } - - - bool _M_empty() const { return !_M_manager; } - - typedef bool (*_Manager_type)(_Any_data&, const _Any_data&, - _Manager_operation); - - _Any_data _M_functor; - _Manager_type _M_manager; - }; - - // [3.7.2.7] null pointer comparisons - - /** - * @brief Compares a polymorphic function object wrapper against 0 - * (the NULL pointer). - * @returns @c true if the wrapper has no target, @c false otherwise - * - * This function will not throw an exception. - */ - template<typename _Signature> - inline bool - operator==(const function<_Signature>& __f, _M_clear_type*) - { - return !__f; - } - - /** - * @overload - */ - template<typename _Signature> - inline bool - operator==(_M_clear_type*, const function<_Signature>& __f) - { - return !__f; - } - - /** - * @brief Compares a polymorphic function object wrapper against 0 - * (the NULL pointer). - * @returns @c false if the wrapper has no target, @c true otherwise - * - * This function will not throw an exception. - */ - template<typename _Signature> - inline bool - operator!=(const function<_Signature>& __f, _M_clear_type*) - { - return __f; - } - - /** - * @overload - */ - template<typename _Signature> - inline bool - operator!=(_M_clear_type*, const function<_Signature>& __f) - { - return __f; - } - - // [3.7.2.8] specialized algorithms - - /** - * @brief Swap the targets of two polymorphic function object wrappers. - * - * This function will not throw an exception. - */ - template<typename _Signature> - inline void - swap(function<_Signature>& __x, function<_Signature>& __y) - { - __x.swap(__y); - } - -_GLIBCXX_END_NAMESPACE -} - -#define _GLIBCXX_JOIN(X,Y) _GLIBCXX_JOIN2( X , Y ) -#define _GLIBCXX_JOIN2(X,Y) _GLIBCXX_JOIN3(X,Y) -#define _GLIBCXX_JOIN3(X,Y) X##Y -#define _GLIBCXX_REPEAT_HEADER <tr1/functional_iterate.h> -#include <tr1/repeat.h> -#undef _GLIBCXX_REPEAT_HEADER -#undef _GLIBCXX_JOIN3 -#undef _GLIBCXX_JOIN2 -#undef _GLIBCXX_JOIN - -#include <tr1/functional_hash.h> - -#endif |