aboutsummaryrefslogtreecommitdiff
path: root/contrib/gcc/lcm.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/lcm.c')
-rw-r--r--contrib/gcc/lcm.c799
1 files changed, 0 insertions, 799 deletions
diff --git a/contrib/gcc/lcm.c b/contrib/gcc/lcm.c
deleted file mode 100644
index 01367e36d5c2..000000000000
--- a/contrib/gcc/lcm.c
+++ /dev/null
@@ -1,799 +0,0 @@
-/* Generic partial redundancy elimination with lazy code motion
- support.
- Copyright (C) 1998 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* These routines are meant to be used by various optimization
- passes which can be modeled as lazy code motion problems.
- Including, but not limited to:
-
- * Traditional partial redundancy elimination.
-
- * Placement of caller/caller register save/restores.
-
- * Load/store motion.
-
- * Copy motion.
-
- * Conversion of flat register files to a stacked register
- model.
-
- * Dead load/store elimination.
-
- These routines accept as input:
-
- * Basic block information (number of blocks, lists of
- predecessors and successors). Note the granularity
- does not need to be basic block, they could be statements
- or functions.
-
- * Bitmaps of local properties (computed, transparent and
- anticipatable expressions).
-
- The output of these routines is bitmap of redundant computations
- and a bitmap of optimal placement points. */
-
-
-#include "config.h"
-#include "system.h"
-
-#include "rtl.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "flags.h"
-#include "real.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "basic-block.h"
-
-static void compute_antinout PROTO ((int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-static void compute_earlyinout PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-static void compute_delayinout PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_latein PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_isoinout PROTO ((int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-static void compute_optimal PROTO ((int, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_redundant PROTO ((int, int, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-
-/* Similarly, but for the reversed flowgraph. */
-static void compute_avinout PROTO ((int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-static void compute_fartherinout PROTO ((int, int, int_list_ptr *,
- sbitmap *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_earlierinout PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_firstout PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_rev_isoinout PROTO ((int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-
-/* Given local properties TRANSP, ANTLOC, return the redundant and optimal
- computation points for expressions.
-
- To reduce overall memory consumption, we allocate memory immediately
- before its needed and deallocate it as soon as possible. */
-void
-pre_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
- antloc, redundant, optimal)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_preds;
- int_list_ptr *s_succs;
- sbitmap *transp;
- sbitmap *antloc;
- sbitmap *redundant;
- sbitmap *optimal;
-{
- sbitmap *antin, *antout, *earlyin, *earlyout, *delayin, *delayout;
- sbitmap *latein, *isoin, *isoout;
-
- /* Compute global anticipatability. ANTOUT is not needed except to
- compute ANTIN, so free its memory as soon as we return from
- compute_antinout. */
- antin = sbitmap_vector_alloc (n_blocks, n_exprs);
- antout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_antinout (n_blocks, s_succs, antloc,
- transp, antin, antout);
- free (antout);
- antout = NULL;
-
- /* Compute earliestness. EARLYOUT is not needed except to compute
- EARLYIN, so free its memory as soon as we return from
- compute_earlyinout. */
- earlyin = sbitmap_vector_alloc (n_blocks, n_exprs);
- earlyout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
- earlyin, earlyout);
- free (earlyout);
- earlyout = NULL;
-
- /* Compute delayedness. DELAYOUT is not needed except to compute
- DELAYIN, so free its memory as soon as we return from
- compute_delayinout. We also no longer need ANTIN and EARLYIN. */
- delayin = sbitmap_vector_alloc (n_blocks, n_exprs);
- delayout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
- antin, earlyin, delayin, delayout);
- free (delayout);
- delayout = NULL;
- free (antin);
- antin = NULL;
- free (earlyin);
- earlyin = NULL;
-
- /* Compute latestness. We no longer need DELAYIN after we compute
- LATEIN. */
- latein = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein);
- free (delayin);
- delayin = NULL;
-
- /* Compute isolatedness. ISOIN is not needed except to compute
- ISOOUT, so free its memory as soon as we return from
- compute_isoinout. */
- isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
- isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout);
- free (isoin);
- isoin = NULL;
-
- /* Now compute optimal placement points and the redundant expressions. */
- compute_optimal (n_blocks, latein, isoout, optimal);
- compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant);
- free (latein);
- latein = NULL;
- free (isoout);
- isoout = NULL;
-}
-
-/* Given local properties TRANSP, AVLOC, return the redundant and optimal
- computation points for expressions on the reverse flowgraph.
-
- To reduce overall memory consumption, we allocate memory immediately
- before its needed and deallocate it as soon as possible. */
-
-void
-pre_rev_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
- avloc, redundant, optimal)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_preds;
- int_list_ptr *s_succs;
- sbitmap *transp;
- sbitmap *avloc;
- sbitmap *redundant;
- sbitmap *optimal;
-{
- sbitmap *avin, *avout, *fartherin, *fartherout, *earlierin, *earlierout;
- sbitmap *firstout, *rev_isoin, *rev_isoout;
-
- /* Compute global availability. AVIN is not needed except to
- compute AVOUT, so free its memory as soon as we return from
- compute_avinout. */
- avin = sbitmap_vector_alloc (n_blocks, n_exprs);
- avout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout);
- free (avin);
- avin = NULL;
-
- /* Compute fartherness. FARTHERIN is not needed except to compute
- FARTHEROUT, so free its memory as soon as we return from
- compute_earlyinout. */
- fartherin = sbitmap_vector_alloc (n_blocks, n_exprs);
- fartherout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_fartherinout (n_blocks, n_exprs, s_succs, transp,
- avout, fartherin, fartherout);
- free (fartherin);
- fartherin = NULL;
-
- /* Compute earlierness. EARLIERIN is not needed except to compute
- EARLIEROUT, so free its memory as soon as we return from
- compute_delayinout. We also no longer need AVOUT and FARTHEROUT. */
- earlierin = sbitmap_vector_alloc (n_blocks, n_exprs);
- earlierout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
- avout, fartherout, earlierin, earlierout);
- free (earlierin);
- earlierin = NULL;
- free (avout);
- avout = NULL;
- free (fartherout);
- fartherout = NULL;
-
- /* Compute firstness. We no longer need EARLIEROUT after we compute
- FIRSTOUT. */
- firstout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout);
- free (earlierout);
- earlierout = NULL;
-
- /* Compute rev_isolatedness. ISOIN is not needed except to compute
- ISOOUT, so free its memory as soon as we return from
- compute_isoinout. */
- rev_isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
- rev_isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
- rev_isoin, rev_isoout);
- free (rev_isoout);
- rev_isoout = NULL;
-
- /* Now compute optimal placement points and the redundant expressions. */
- compute_optimal (n_blocks, firstout, rev_isoin, optimal);
- compute_redundant (n_blocks, n_exprs, avloc, firstout, rev_isoin, redundant);
- free (firstout);
- firstout = NULL;
- free (rev_isoin);
- rev_isoin = NULL;
-}
-
-/* Compute expression anticipatability at entrance and exit of each block. */
-
-static void
-compute_antinout (n_blocks, s_succs, antloc, transp, antin, antout)
- int n_blocks;
- int_list_ptr *s_succs;
- sbitmap *antloc;
- sbitmap *transp;
- sbitmap *antin;
- sbitmap *antout;
-{
- int bb, changed, passes;
- sbitmap old_changed, new_changed;
-
- sbitmap_zero (antout[n_blocks - 1]);
- sbitmap_vector_ones (antin, n_blocks);
-
- old_changed = sbitmap_alloc (n_blocks);
- new_changed = sbitmap_alloc (n_blocks);
- sbitmap_ones (old_changed);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- sbitmap_zero (new_changed);
- /* We scan the blocks in the reverse order to speed up
- the convergence. */
- for (bb = n_blocks - 1; bb >= 0; bb--)
- {
- int_list_ptr ps;
-
- /* If none of the successors of this block have changed,
- then this block is not going to change. */
- for (ps = s_succs[bb] ; ps; ps = ps->next)
- {
- if (INT_LIST_VAL (ps) == EXIT_BLOCK
- || INT_LIST_VAL (ps) == ENTRY_BLOCK)
- break;
-
- if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
- || TEST_BIT (new_changed, INT_LIST_VAL (ps)))
- break;
- }
-
- if (!ps)
- continue;
-
- if (bb != n_blocks - 1)
- sbitmap_intersect_of_successors (antout[bb], antin,
- bb, s_succs);
- if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb],
- transp[bb], antout[bb]))
- {
- changed = 1;
- SET_BIT (new_changed, bb);
- }
- }
- sbitmap_copy (old_changed, new_changed);
- passes++;
- }
- free (old_changed);
- free (new_changed);
-}
-
-/* Compute expression earliestness at entrance and exit of each block.
-
- From Advanced Compiler Design and Implementation pp411.
-
- An expression is earliest at the entrance to basic block BB if no
- block from entry to block BB both evaluates the expression and
- produces the same value as evaluating it at the entry to block BB
- does. Similarly for earlistness at basic block BB exit. */
-
-static void
-compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
- earlyin, earlyout)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_preds;
- sbitmap *transp;
- sbitmap *antin;
- sbitmap *earlyin;
- sbitmap *earlyout;
-{
- int bb, changed, passes;
- sbitmap temp_bitmap;
- sbitmap old_changed, new_changed;
-
- temp_bitmap = sbitmap_alloc (n_exprs);
-
- sbitmap_vector_zero (earlyout, n_blocks);
- sbitmap_ones (earlyin[0]);
-
- old_changed = sbitmap_alloc (n_blocks);
- new_changed = sbitmap_alloc (n_blocks);
- sbitmap_ones (old_changed);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- sbitmap_zero (new_changed);
- for (bb = 0; bb < n_blocks; bb++)
- {
- int_list_ptr ps;
-
- /* If none of the predecessors of this block have changed,
- then this block is not going to change. */
- for (ps = s_preds[bb] ; ps; ps = ps->next)
- {
- if (INT_LIST_VAL (ps) == EXIT_BLOCK
- || INT_LIST_VAL (ps) == ENTRY_BLOCK)
- break;
-
- if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
- || TEST_BIT (new_changed, INT_LIST_VAL (ps)))
- break;
- }
-
- if (!ps)
- continue;
-
- if (bb != 0)
- sbitmap_union_of_predecessors (earlyin[bb], earlyout,
- bb, s_preds);
- sbitmap_not (temp_bitmap, transp[bb]);
- if (sbitmap_union_of_diff (earlyout[bb], temp_bitmap,
- earlyin[bb], antin[bb]))
- {
- changed = 1;
- SET_BIT (new_changed, bb);
- }
- }
- sbitmap_copy (old_changed, new_changed);
- passes++;
- }
- free (old_changed);
- free (new_changed);
- free (temp_bitmap);
-}
-
-/* Compute expression delayedness at entrance and exit of each block.
-
- From Advanced Compiler Design and Implementation pp411.
-
- An expression is delayed at the entrance to BB if it is anticipatable
- and earliest at that point and if all subsequent computations of
- the expression are in block BB. */
-
-static void
-compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
- antin, earlyin, delayin, delayout)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_preds;
- sbitmap *antloc;
- sbitmap *antin;
- sbitmap *earlyin;
- sbitmap *delayin;
- sbitmap *delayout;
-{
- int bb, changed, passes;
- sbitmap *anti_and_early;
- sbitmap temp_bitmap;
-
- temp_bitmap = sbitmap_alloc (n_exprs);
-
- /* This is constant throughout the flow equations below, so compute
- it once to save time. */
- anti_and_early = sbitmap_vector_alloc (n_blocks, n_exprs);
- for (bb = 0; bb < n_blocks; bb++)
- sbitmap_a_and_b (anti_and_early[bb], antin[bb], earlyin[bb]);
-
- sbitmap_vector_zero (delayout, n_blocks);
- sbitmap_copy (delayin[0], anti_and_early[0]);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = 0; bb < n_blocks; bb++)
- {
- if (bb != 0)
- {
- sbitmap_intersect_of_predecessors (temp_bitmap, delayout,
- bb, s_preds);
- changed |= sbitmap_a_or_b (delayin[bb],
- anti_and_early[bb],
- temp_bitmap);
- }
- sbitmap_not (temp_bitmap, antloc[bb]);
- changed |= sbitmap_a_and_b (delayout[bb],
- temp_bitmap,
- delayin[bb]);
- }
- passes++;
- }
-
- /* We're done with this, so go ahead and free it's memory now instead
- of waiting until the end of pre. */
- free (anti_and_early);
- free (temp_bitmap);
-}
-
-/* Compute latestness.
-
- From Advanced Compiler Design and Implementation pp412.
-
- An expression is latest at the entrance to block BB if that is an optimal
- point for computing the expression and if on every path from block BB's
- entrance to the exit block, any optimal computation point for the
- expression occurs after one of the points at which the expression was
- computed in the original flowgraph. */
-
-static void
-compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_succs;
- sbitmap *antloc;
- sbitmap *delayin;
- sbitmap *latein;
-{
- int bb;
- sbitmap temp_bitmap;
-
- temp_bitmap = sbitmap_alloc (n_exprs);
-
- for (bb = 0; bb < n_blocks; bb++)
- {
- /* The last block is succeeded only by the exit block; therefore,
- temp_bitmap will not be set by the following call! */
- if (bb == n_blocks - 1)
- {
- sbitmap_intersect_of_successors (temp_bitmap, delayin,
- bb, s_succs);
- sbitmap_not (temp_bitmap, temp_bitmap);
- }
- else
- sbitmap_ones (temp_bitmap);
- sbitmap_a_and_b_or_c (latein[bb], delayin[bb],
- antloc[bb], temp_bitmap);
- }
- free (temp_bitmap);
-}
-
-/* Compute isolated.
-
- From Advanced Compiler Design and Implementation pp413.
-
- A computationally optimal placement for the evaluation of an expression
- is defined to be isolated if and only if on every path from a successor
- of the block in which it is computed to the exit block, every original
- computation of the expression is preceded by the optimal placement point. */
-
-static void
-compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout)
- int n_blocks;
- int_list_ptr *s_succs;
- sbitmap *antloc;
- sbitmap *latein;
- sbitmap *isoin;
- sbitmap *isoout;
-{
- int bb, changed, passes;
-
- sbitmap_vector_zero (isoin, n_blocks);
- sbitmap_zero (isoout[n_blocks - 1]);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = n_blocks - 1; bb >= 0; bb--)
- {
- if (bb != n_blocks - 1)
- sbitmap_intersect_of_successors (isoout[bb], isoin,
- bb, s_succs);
- changed |= sbitmap_union_of_diff (isoin[bb], latein[bb],
- isoout[bb], antloc[bb]);
- }
- passes++;
- }
-}
-
-/* Compute the set of expressions which have optimal computational points
- in each basic block. This is the set of expressions that are latest, but
- that are not isolated in the block. */
-
-static void
-compute_optimal (n_blocks, latein, isoout, optimal)
- int n_blocks;
- sbitmap *latein;
- sbitmap *isoout;
- sbitmap *optimal;
-{
- int bb;
-
- for (bb = 0; bb < n_blocks; bb++)
- sbitmap_difference (optimal[bb], latein[bb], isoout[bb]);
-}
-
-/* Compute the set of expressions that are redundant in a block. They are
- the expressions that are used in the block and that are neither isolated
- or latest. */
-
-static void
-compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant)
- int n_blocks;
- int n_exprs;
- sbitmap *antloc;
- sbitmap *latein;
- sbitmap *isoout;
- sbitmap *redundant;
-{
- int bb;
- sbitmap temp_bitmap;
-
- temp_bitmap = sbitmap_alloc (n_exprs);
-
- for (bb = 0; bb < n_blocks; bb++)
- {
- sbitmap_a_or_b (temp_bitmap, latein[bb], isoout[bb]);
- sbitmap_difference (redundant[bb], antloc[bb], temp_bitmap);
- }
- free (temp_bitmap);
-}
-
-/* Compute expression availability at entrance and exit of each block. */
-
-static void
-compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout)
- int n_blocks;
- int_list_ptr *s_preds;
- sbitmap *avloc;
- sbitmap *transp;
- sbitmap *avin;
- sbitmap *avout;
-{
- int bb, changed, passes;
-
- sbitmap_zero (avin[0]);
- sbitmap_vector_ones (avout, n_blocks);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = 0; bb < n_blocks; bb++)
- {
- if (bb != 0)
- sbitmap_intersect_of_predecessors (avin[bb], avout,
- bb, s_preds);
- changed |= sbitmap_a_or_b_and_c (avout[bb], avloc[bb],
- transp[bb], avin[bb]);
- }
- passes++;
- }
-}
-
-/* Compute expression latestness.
-
- This is effectively the same as earliestness computed on the reverse
- flow graph. */
-
-static void
-compute_fartherinout (n_blocks, n_exprs, s_succs,
- transp, avout, fartherin, fartherout)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_succs;
- sbitmap *transp;
- sbitmap *avout;
- sbitmap *fartherin;
- sbitmap *fartherout;
-{
- int bb, changed, passes;
- sbitmap temp_bitmap;
-
- temp_bitmap = sbitmap_alloc (n_exprs);
-
- sbitmap_vector_zero (fartherin, n_blocks);
- sbitmap_ones (fartherout[n_blocks - 1]);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = n_blocks - 1; bb >= 0; bb--)
- {
- if (bb != n_blocks - 1)
- sbitmap_union_of_successors (fartherout[bb], fartherin,
- bb, s_succs);
- sbitmap_not (temp_bitmap, transp[bb]);
- changed |= sbitmap_union_of_diff (fartherin[bb], temp_bitmap,
- fartherout[bb], avout[bb]);
- }
- passes++;
- }
-
- free (temp_bitmap);
-}
-
-/* Compute expression earlierness at entrance and exit of each block.
-
- This is effectively the same as delayedness computed on the reverse
- flow graph. */
-
-static void
-compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
- avout, fartherout, earlierin, earlierout)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_succs;
- sbitmap *avloc;
- sbitmap *avout;
- sbitmap *fartherout;
- sbitmap *earlierin;
- sbitmap *earlierout;
-{
- int bb, changed, passes;
- sbitmap *av_and_farther;
- sbitmap temp_bitmap;
-
- temp_bitmap = sbitmap_alloc (n_exprs);
-
- /* This is constant throughout the flow equations below, so compute
- it once to save time. */
- av_and_farther = sbitmap_vector_alloc (n_blocks, n_exprs);
- for (bb = 0; bb < n_blocks; bb++)
- sbitmap_a_and_b (av_and_farther[bb], avout[bb], fartherout[bb]);
-
- sbitmap_vector_zero (earlierin, n_blocks);
- sbitmap_copy (earlierout[n_blocks - 1], av_and_farther[n_blocks - 1]);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = n_blocks - 1; bb >= 0; bb--)
- {
- if (bb != n_blocks - 1)
- {
- sbitmap_intersect_of_successors (temp_bitmap, earlierin,
- bb, s_succs);
- changed |= sbitmap_a_or_b (earlierout[bb],
- av_and_farther[bb],
- temp_bitmap);
- }
- sbitmap_not (temp_bitmap, avloc[bb]);
- changed |= sbitmap_a_and_b (earlierin[bb],
- temp_bitmap,
- earlierout[bb]);
- }
- passes++;
- }
-
- /* We're done with this, so go ahead and free it's memory now instead
- of waiting until the end of pre. */
- free (av_and_farther);
- free (temp_bitmap);
-}
-
-/* Compute firstness.
-
- This is effectively the same as latestness computed on the reverse
- flow graph. */
-
-static void
-compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_preds;
- sbitmap *avloc;
- sbitmap *earlierout;
- sbitmap *firstout;
-{
- int bb;
- sbitmap temp_bitmap;
-
- temp_bitmap = sbitmap_alloc (n_exprs);
-
- for (bb = 0; bb < n_blocks; bb++)
- {
- /* The first block is preceded only by the entry block; therefore,
- temp_bitmap will not be set by the following call! */
- if (bb != 0)
- {
- sbitmap_intersect_of_predecessors (temp_bitmap, earlierout,
- bb, s_preds);
- sbitmap_not (temp_bitmap, temp_bitmap);
- }
- else
- {
- sbitmap_ones (temp_bitmap);
- }
- sbitmap_a_and_b_or_c (firstout[bb], earlierout[bb],
- avloc[bb], temp_bitmap);
- }
- free (temp_bitmap);
-}
-
-/* Compute reverse isolated.
-
- This is effectively the same as isolatedness computed on the reverse
- flow graph. */
-
-static void
-compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
- rev_isoin, rev_isoout)
- int n_blocks;
- int_list_ptr *s_preds;
- sbitmap *avloc;
- sbitmap *firstout;
- sbitmap *rev_isoin;
- sbitmap *rev_isoout;
-{
- int bb, changed, passes;
-
- sbitmap_vector_zero (rev_isoout, n_blocks);
- sbitmap_zero (rev_isoin[0]);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = 0; bb < n_blocks; bb++)
- {
- if (bb != 0)
- sbitmap_intersect_of_predecessors (rev_isoin[bb], rev_isoout,
- bb, s_preds);
- changed |= sbitmap_union_of_diff (rev_isoout[bb], firstout[bb],
- rev_isoin[bb], avloc[bb]);
- }
- passes++;
- }
-}