aboutsummaryrefslogtreecommitdiff
path: root/contrib/gcc/doc/vms.texi
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/doc/vms.texi')
-rw-r--r--contrib/gcc/doc/vms.texi331
1 files changed, 331 insertions, 0 deletions
diff --git a/contrib/gcc/doc/vms.texi b/contrib/gcc/doc/vms.texi
new file mode 100644
index 000000000000..5ab266695a84
--- /dev/null
+++ b/contrib/gcc/doc/vms.texi
@@ -0,0 +1,331 @@
+@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+@c 1999, 2000, 2001 Free Software Foundation, Inc.
+@c This is part of the GCC manual.
+@c For copying conditions, see the file gcc.texi.
+
+@node VMS
+@chapter Using GCC on VMS
+
+@c prevent bad page break with this line
+Here is how to use GCC on VMS@.
+
+@menu
+* Include Files and VMS:: Where the preprocessor looks for the include files.
+* Global Declarations:: How to do globaldef, globalref and globalvalue with
+ GCC.
+* VMS Misc:: Misc information.
+@end menu
+
+@node Include Files and VMS
+@section Include Files and VMS
+
+@cindex include files and VMS
+@cindex VMS and include files
+@cindex header files and VMS
+Due to the differences between the filesystems of Unix and VMS, GCC
+attempts to translate file names in @samp{#include} into names that VMS
+will understand. The basic strategy is to prepend a prefix to the
+specification of the include file, convert the whole filename to a VMS
+filename, and then try to open the file. GCC tries various prefixes
+one by one until one of them succeeds:
+
+@enumerate
+@item
+The first prefix is the @samp{GNU_CC_INCLUDE:} logical name: this is
+where GNU C header files are traditionally stored. If you wish to store
+header files in non-standard locations, then you can assign the logical
+@samp{GNU_CC_INCLUDE} to be a search list, where each element of the
+list is suitable for use with a rooted logical.
+
+@item
+The next prefix tried is @samp{SYS$SYSROOT:[SYSLIB.]}. This is where
+VAX-C header files are traditionally stored.
+
+@item
+If the include file specification by itself is a valid VMS filename, the
+preprocessor then uses this name with no prefix in an attempt to open
+the include file.
+
+@item
+If the file specification is not a valid VMS filename (i.e.@: does not
+contain a device or a directory specifier, and contains a @samp{/}
+character), the preprocessor tries to convert it from Unix syntax to
+VMS syntax.
+
+Conversion works like this: the first directory name becomes a device,
+and the rest of the directories are converted into VMS-format directory
+names. For example, the name @file{X11/foobar.h} is
+translated to @file{X11:[000000]foobar.h} or @file{X11:foobar.h},
+whichever one can be opened. This strategy allows you to assign a
+logical name to point to the actual location of the header files.
+
+@item
+If none of these strategies succeeds, the @samp{#include} fails.
+@end enumerate
+
+Include directives of the form:
+
+@example
+#include foobar
+@end example
+
+@noindent
+are a common source of incompatibility between VAX-C and GCC@. VAX-C
+treats this much like a standard @code{#include <foobar.h>} directive.
+That is incompatible with the ISO C behavior implemented by GCC: to
+expand the name @code{foobar} as a macro. Macro expansion should
+eventually yield one of the two standard formats for @code{#include}:
+
+@example
+#include "@var{file}"
+#include <@var{file}>
+@end example
+
+If you have this problem, the best solution is to modify the source to
+convert the @code{#include} directives to one of the two standard forms.
+That will work with either compiler. If you want a quick and dirty fix,
+define the file names as macros with the proper expansion, like this:
+
+@example
+#define stdio <stdio.h>
+@end example
+
+@noindent
+This will work, as long as the name doesn't conflict with anything else
+in the program.
+
+Another source of incompatibility is that VAX-C assumes that:
+
+@example
+#include "foobar"
+@end example
+
+@noindent
+is actually asking for the file @file{foobar.h}. GCC does not
+make this assumption, and instead takes what you ask for literally;
+it tries to read the file @file{foobar}. The best way to avoid this
+problem is to always specify the desired file extension in your include
+directives.
+
+GCC for VMS is distributed with a set of include files that is
+sufficient to compile most general purpose programs. Even though the
+GCC distribution does not contain header files to define constants
+and structures for some VMS system-specific functions, there is no
+reason why you cannot use GCC with any of these functions. You first
+may have to generate or create header files, either by using the public
+domain utility @code{UNSDL} (which can be found on a DECUS tape), or by
+extracting the relevant modules from one of the system macro libraries,
+and using an editor to construct a C header file.
+
+A @code{#include} file name cannot contain a DECNET node name. The
+preprocessor reports an I/O error if you attempt to use a node name,
+whether explicitly, or implicitly via a logical name.
+
+@node Global Declarations
+@section Global Declarations and VMS
+
+@findex GLOBALREF
+@findex GLOBALDEF
+@findex GLOBALVALUEDEF
+@findex GLOBALVALUEREF
+GCC does not provide the @code{globalref}, @code{globaldef} and
+@code{globalvalue} keywords of VAX-C@. You can get the same effect with
+an obscure feature of GAS, the GNU assembler. (This requires GAS
+version 1.39 or later.) The following macros allow you to use this
+feature in a fairly natural way:
+
+@smallexample
+#ifdef __GNUC__
+#define GLOBALREF(TYPE,NAME) \
+ TYPE NAME \
+ asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)
+#define GLOBALDEF(TYPE,NAME,VALUE) \
+ TYPE NAME \
+ asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME) \
+ = VALUE
+#define GLOBALVALUEREF(TYPE,NAME) \
+ const TYPE NAME[1] \
+ asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)
+#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
+ const TYPE NAME[1] \
+ asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME) \
+ = @{VALUE@}
+#else
+#define GLOBALREF(TYPE,NAME) \
+ globalref TYPE NAME
+#define GLOBALDEF(TYPE,NAME,VALUE) \
+ globaldef TYPE NAME = VALUE
+#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
+ globalvalue TYPE NAME = VALUE
+#define GLOBALVALUEREF(TYPE,NAME) \
+ globalvalue TYPE NAME
+#endif
+@end smallexample
+
+@noindent
+(The @code{_$$PsectAttributes_GLOBALSYMBOL} prefix at the start of the
+name is removed by the assembler, after it has modified the attributes
+of the symbol). These macros are provided in the VMS binaries
+distribution in a header file @file{GNU_HACKS.H}. An example of the
+usage is:
+
+@example
+GLOBALREF (int, ijk);
+GLOBALDEF (int, jkl, 0);
+@end example
+
+The macros @code{GLOBALREF} and @code{GLOBALDEF} cannot be used
+straightforwardly for arrays, since there is no way to insert the array
+dimension into the declaration at the right place. However, you can
+declare an array with these macros if you first define a typedef for the
+array type, like this:
+
+@example
+typedef int intvector[10];
+GLOBALREF (intvector, foo);
+@end example
+
+Array and structure initializers will also break the macros; you can
+define the initializer to be a macro of its own, or you can expand the
+@code{GLOBALDEF} macro by hand. You may find a case where you wish to
+use the @code{GLOBALDEF} macro with a large array, but you are not
+interested in explicitly initializing each element of the array. In
+such cases you can use an initializer like: @code{@{0,@}}, which will
+initialize the entire array to @code{0}.
+
+A shortcoming of this implementation is that a variable declared with
+@code{GLOBALVALUEREF} or @code{GLOBALVALUEDEF} is always an array. For
+example, the declaration:
+
+@example
+GLOBALVALUEREF(int, ijk);
+@end example
+
+@noindent
+declares the variable @code{ijk} as an array of type @code{int [1]}.
+This is done because a globalvalue is actually a constant; its ``value''
+is what the linker would normally consider an address. That is not how
+an integer value works in C, but it is how an array works. So treating
+the symbol as an array name gives consistent results---with the
+exception that the value seems to have the wrong type. @strong{Don't
+try to access an element of the array.} It doesn't have any elements.
+The array ``address'' may not be the address of actual storage.
+
+The fact that the symbol is an array may lead to warnings where the
+variable is used. Insert type casts to avoid the warnings. Here is an
+example; it takes advantage of the ISO C feature allowing macros that
+expand to use the same name as the macro itself.
+
+@example
+GLOBALVALUEREF (int, ss$_normal);
+GLOBALVALUEDEF (int, xyzzy,123);
+#ifdef __GNUC__
+#define ss$_normal ((int) ss$_normal)
+#define xyzzy ((int) xyzzy)
+#endif
+@end example
+
+Don't use @code{globaldef} or @code{globalref} with a variable whose
+type is an enumeration type; this is not implemented. Instead, make the
+variable an integer, and use a @code{globalvaluedef} for each of the
+enumeration values. An example of this would be:
+
+@example
+#ifdef __GNUC__
+GLOBALDEF (int, color, 0);
+GLOBALVALUEDEF (int, RED, 0);
+GLOBALVALUEDEF (int, BLUE, 1);
+GLOBALVALUEDEF (int, GREEN, 3);
+#else
+enum globaldef color @{RED, BLUE, GREEN = 3@};
+#endif
+@end example
+
+@node VMS Misc
+@section Other VMS Issues
+
+@cindex exit status and VMS
+@cindex return value of @code{main}
+@cindex @code{main} and the exit status
+GCC automatically arranges for @code{main} to return 1 by default if
+you fail to specify an explicit return value. This will be interpreted
+by VMS as a status code indicating a normal successful completion.
+Version 1 of GCC did not provide this default.
+
+GCC on VMS works only with the GNU assembler, GAS@. You need version
+1.37 or later of GAS in order to produce value debugging information for
+the VMS debugger. Use the ordinary VMS linker with the object files
+produced by GAS@.
+
+@cindex shared VMS run time system
+@cindex @file{VAXCRTL}
+Under previous versions of GCC, the generated code would occasionally
+give strange results when linked to the sharable @file{VAXCRTL} library.
+Now this should work.
+
+A caveat for use of @code{const} global variables: the @code{const}
+modifier must be specified in every external declaration of the variable
+in all of the source files that use that variable. Otherwise the linker
+will issue warnings about conflicting attributes for the variable. Your
+program will still work despite the warnings, but the variable will be
+placed in writable storage.
+
+@cindex name augmentation
+@cindex case sensitivity and VMS
+@cindex VMS and case sensitivity
+Although the VMS linker does distinguish between upper and lower case
+letters in global symbols, most VMS compilers convert all such symbols
+into upper case and most run-time library routines also have upper case
+names. To be able to reliably call such routines, GCC (by means of
+the assembler GAS) converts global symbols into upper case like other
+VMS compilers. However, since the usual practice in C is to distinguish
+case, GCC (via GAS) tries to preserve usual C behavior by augmenting
+each name that is not all lower case. This means truncating the name
+to at most 23 characters and then adding more characters at the end
+which encode the case pattern of those 23. Names which contain at
+least one dollar sign are an exception; they are converted directly into
+upper case without augmentation.
+
+Name augmentation yields bad results for programs that use precompiled
+libraries (such as Xlib) which were generated by another compiler. You
+can use the compiler option @samp{/NOCASE_HACK} to inhibit augmentation;
+it makes external C functions and variables case-independent as is usual
+on VMS@. Alternatively, you could write all references to the functions
+and variables in such libraries using lower case; this will work on VMS,
+but is not portable to other systems. The compiler option @samp{/NAMES}
+also provides control over global name handling.
+
+Function and variable names are handled somewhat differently with G++.
+The GNU C++ compiler performs @dfn{name mangling} on function
+names, which means that it adds information to the function name to
+describe the data types of the arguments that the function takes. One
+result of this is that the name of a function can become very long.
+Since the VMS linker only recognizes the first 31 characters in a name,
+special action is taken to ensure that each function and variable has a
+unique name that can be represented in 31 characters.
+
+If the name (plus a name augmentation, if required) is less than 32
+characters in length, then no special action is performed. If the name
+is longer than 31 characters, the assembler (GAS) will generate a
+hash string based upon the function name, truncate the function name to
+23 characters, and append the hash string to the truncated name. If the
+@samp{/VERBOSE} compiler option is used, the assembler will print both
+the full and truncated names of each symbol that is truncated.
+
+The @samp{/NOCASE_HACK} compiler option should not be used when you are
+compiling programs that use libg++. libg++ has several instances of
+objects (i.e. @code{Filebuf} and @code{filebuf}) which become
+indistinguishable in a case-insensitive environment. This leads to
+cases where you need to inhibit augmentation selectively (if you were
+using libg++ and Xlib in the same program, for example). There is no
+special feature for doing this, but you can get the result by defining a
+macro for each mixed case symbol for which you wish to inhibit
+augmentation. The macro should expand into the lower case equivalent of
+itself. For example:
+
+@example
+#define StuDlyCapS studlycaps
+@end example
+
+These macro definitions can be placed in a header file to minimize the
+number of changes to your source code.