diff options
Diffstat (limited to 'contrib/gcc/config/sparc/lb1spc.asm')
-rw-r--r-- | contrib/gcc/config/sparc/lb1spc.asm | 784 |
1 files changed, 0 insertions, 784 deletions
diff --git a/contrib/gcc/config/sparc/lb1spc.asm b/contrib/gcc/config/sparc/lb1spc.asm deleted file mode 100644 index b60bd5740e76..000000000000 --- a/contrib/gcc/config/sparc/lb1spc.asm +++ /dev/null @@ -1,784 +0,0 @@ -/* This is an assembly language implementation of mulsi3, divsi3, and modsi3 - for the sparc processor. - - These routines are derived from the SPARC Architecture Manual, version 8, - slightly edited to match the desired calling convention, and also to - optimize them for our purposes. */ - -#ifdef L_mulsi3 -.text - .align 4 - .global .umul - .proc 4 -.umul: - or %o0, %o1, %o4 ! logical or of multiplier and multiplicand - mov %o0, %y ! multiplier to Y register - andncc %o4, 0xfff, %o5 ! mask out lower 12 bits - be mul_shortway ! can do it the short way - andcc %g0, %g0, %o4 ! zero the partial product and clear NV cc - ! - ! long multiply - ! - mulscc %o4, %o1, %o4 ! first iteration of 33 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 ! 32nd iteration - mulscc %o4, %g0, %o4 ! last iteration only shifts - ! the upper 32 bits of product are wrong, but we do not care - retl - rd %y, %o0 - ! - ! short multiply - ! -mul_shortway: - mulscc %o4, %o1, %o4 ! first iteration of 13 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 - mulscc %o4, %o1, %o4 ! 12th iteration - mulscc %o4, %g0, %o4 ! last iteration only shifts - rd %y, %o5 - sll %o4, 12, %o4 ! left shift partial product by 12 bits - srl %o5, 20, %o5 ! right shift partial product by 20 bits - retl - or %o5, %o4, %o0 ! merge for true product -#endif - -#ifdef L_divsi3 -/* - * Division and remainder, from Appendix E of the SPARC Version 8 - * Architecture Manual, with fixes from Gordon Irlam. - */ - -/* - * Input: dividend and divisor in %o0 and %o1 respectively. - * - * m4 parameters: - * .div name of function to generate - * div div=div => %o0 / %o1; div=rem => %o0 % %o1 - * true true=true => signed; true=false => unsigned - * - * Algorithm parameters: - * N how many bits per iteration we try to get (4) - * WORDSIZE total number of bits (32) - * - * Derived constants: - * TOPBITS number of bits in the top decade of a number - * - * Important variables: - * Q the partial quotient under development (initially 0) - * R the remainder so far, initially the dividend - * ITER number of main division loop iterations required; - * equal to ceil(log2(quotient) / N). Note that this - * is the log base (2^N) of the quotient. - * V the current comparand, initially divisor*2^(ITER*N-1) - * - * Cost: - * Current estimate for non-large dividend is - * ceil(log2(quotient) / N) * (10 + 7N/2) + C - * A large dividend is one greater than 2^(31-TOPBITS) and takes a - * different path, as the upper bits of the quotient must be developed - * one bit at a time. - */ - .global .udiv - .align 4 - .proc 4 - .text -.udiv: - b ready_to_divide - mov 0, %g3 ! result is always positive - - .global .div - .align 4 - .proc 4 - .text -.div: - ! compute sign of result; if neither is negative, no problem - orcc %o1, %o0, %g0 ! either negative? - bge ready_to_divide ! no, go do the divide - xor %o1, %o0, %g3 ! compute sign in any case - tst %o1 - bge 1f - tst %o0 - ! %o1 is definitely negative; %o0 might also be negative - bge ready_to_divide ! if %o0 not negative... - sub %g0, %o1, %o1 ! in any case, make %o1 nonneg -1: ! %o0 is negative, %o1 is nonnegative - sub %g0, %o0, %o0 ! make %o0 nonnegative - - -ready_to_divide: - - ! Ready to divide. Compute size of quotient; scale comparand. - orcc %o1, %g0, %o5 - bne 1f - mov %o0, %o3 - - ! Divide by zero trap. If it returns, return 0 (about as - ! wrong as possible, but that is what SunOS does...). - ta 0x2 ! ST_DIV0 - retl - clr %o0 - -1: - cmp %o3, %o5 ! if %o1 exceeds %o0, done - blu got_result ! (and algorithm fails otherwise) - clr %o2 - sethi %hi(1 << (32 - 4 - 1)), %g1 - cmp %o3, %g1 - blu not_really_big - clr %o4 - - ! Here the dividend is >= 2**(31-N) or so. We must be careful here, - ! as our usual N-at-a-shot divide step will cause overflow and havoc. - ! The number of bits in the result here is N*ITER+SC, where SC <= N. - ! Compute ITER in an unorthodox manner: know we need to shift V into - ! the top decade: so do not even bother to compare to R. - 1: - cmp %o5, %g1 - bgeu 3f - mov 1, %g2 - sll %o5, 4, %o5 - b 1b - add %o4, 1, %o4 - - ! Now compute %g2. - 2: addcc %o5, %o5, %o5 - bcc not_too_big - add %g2, 1, %g2 - - ! We get here if the %o1 overflowed while shifting. - ! This means that %o3 has the high-order bit set. - ! Restore %o5 and subtract from %o3. - sll %g1, 4, %g1 ! high order bit - srl %o5, 1, %o5 ! rest of %o5 - add %o5, %g1, %o5 - b do_single_div - sub %g2, 1, %g2 - - not_too_big: - 3: cmp %o5, %o3 - blu 2b - nop - be do_single_div - nop - /* NB: these are commented out in the V8-SPARC manual as well */ - /* (I do not understand this) */ - ! %o5 > %o3: went too far: back up 1 step - ! srl %o5, 1, %o5 - ! dec %g2 - ! do single-bit divide steps - ! - ! We have to be careful here. We know that %o3 >= %o5, so we can do the - ! first divide step without thinking. BUT, the others are conditional, - ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high- - ! order bit set in the first step, just falling into the regular - ! division loop will mess up the first time around. - ! So we unroll slightly... - do_single_div: - subcc %g2, 1, %g2 - bl end_regular_divide - nop - sub %o3, %o5, %o3 - mov 1, %o2 - b end_single_divloop - nop - single_divloop: - sll %o2, 1, %o2 - bl 1f - srl %o5, 1, %o5 - ! %o3 >= 0 - sub %o3, %o5, %o3 - b 2f - add %o2, 1, %o2 - 1: ! %o3 < 0 - add %o3, %o5, %o3 - sub %o2, 1, %o2 - 2: - end_single_divloop: - subcc %g2, 1, %g2 - bge single_divloop - tst %o3 - b,a end_regular_divide - -not_really_big: -1: - sll %o5, 4, %o5 - cmp %o5, %o3 - bleu 1b - addcc %o4, 1, %o4 - be got_result - sub %o4, 1, %o4 - - tst %o3 ! set up for initial iteration -divloop: - sll %o2, 4, %o2 - ! depth 1, accumulated bits 0 - bl L1.16 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 2, accumulated bits 1 - bl L2.17 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 3, accumulated bits 3 - bl L3.19 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 4, accumulated bits 7 - bl L4.23 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (7*2+1), %o2 - -L4.23: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (7*2-1), %o2 - - -L3.19: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 4, accumulated bits 5 - bl L4.21 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (5*2+1), %o2 - -L4.21: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (5*2-1), %o2 - -L2.17: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 3, accumulated bits 1 - bl L3.17 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 4, accumulated bits 3 - bl L4.19 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (3*2+1), %o2 - -L4.19: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (3*2-1), %o2 - -L3.17: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 4, accumulated bits 1 - bl L4.17 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (1*2+1), %o2 - -L4.17: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (1*2-1), %o2 - -L1.16: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 2, accumulated bits -1 - bl L2.15 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 3, accumulated bits -1 - bl L3.15 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 4, accumulated bits -1 - bl L4.15 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (-1*2+1), %o2 - -L4.15: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (-1*2-1), %o2 - -L3.15: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 4, accumulated bits -3 - bl L4.13 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (-3*2+1), %o2 - -L4.13: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (-3*2-1), %o2 - -L2.15: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 3, accumulated bits -3 - bl L3.13 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 4, accumulated bits -5 - bl L4.11 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (-5*2+1), %o2 - -L4.11: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (-5*2-1), %o2 - -L3.13: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 4, accumulated bits -7 - bl L4.9 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (-7*2+1), %o2 - -L4.9: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (-7*2-1), %o2 - - 9: -end_regular_divide: - subcc %o4, 1, %o4 - bge divloop - tst %o3 - bl,a got_result - ! non-restoring fixup here (one instruction only!) - sub %o2, 1, %o2 - - -got_result: - ! check to see if answer should be < 0 - tst %g3 - bl,a 1f - sub %g0, %o2, %o2 -1: - retl - mov %o2, %o0 -#endif - -#ifdef L_modsi3 -/* This implementation was taken from glibc: - * - * Input: dividend and divisor in %o0 and %o1 respectively. - * - * Algorithm parameters: - * N how many bits per iteration we try to get (4) - * WORDSIZE total number of bits (32) - * - * Derived constants: - * TOPBITS number of bits in the top decade of a number - * - * Important variables: - * Q the partial quotient under development (initially 0) - * R the remainder so far, initially the dividend - * ITER number of main division loop iterations required; - * equal to ceil(log2(quotient) / N). Note that this - * is the log base (2^N) of the quotient. - * V the current comparand, initially divisor*2^(ITER*N-1) - * - * Cost: - * Current estimate for non-large dividend is - * ceil(log2(quotient) / N) * (10 + 7N/2) + C - * A large dividend is one greater than 2^(31-TOPBITS) and takes a - * different path, as the upper bits of the quotient must be developed - * one bit at a time. - */ -.text - .align 4 - .global .urem - .proc 4 -.urem: - b divide - mov 0, %g3 ! result always positive - - .align 4 - .global .rem - .proc 4 -.rem: - ! compute sign of result; if neither is negative, no problem - orcc %o1, %o0, %g0 ! either negative? - bge 2f ! no, go do the divide - mov %o0, %g3 ! sign of remainder matches %o0 - tst %o1 - bge 1f - tst %o0 - ! %o1 is definitely negative; %o0 might also be negative - bge 2f ! if %o0 not negative... - sub %g0, %o1, %o1 ! in any case, make %o1 nonneg -1: ! %o0 is negative, %o1 is nonnegative - sub %g0, %o0, %o0 ! make %o0 nonnegative -2: - - ! Ready to divide. Compute size of quotient; scale comparand. -divide: - orcc %o1, %g0, %o5 - bne 1f - mov %o0, %o3 - - ! Divide by zero trap. If it returns, return 0 (about as - ! wrong as possible, but that is what SunOS does...). - ta 0x2 !ST_DIV0 - retl - clr %o0 - -1: - cmp %o3, %o5 ! if %o1 exceeds %o0, done - blu got_result ! (and algorithm fails otherwise) - clr %o2 - sethi %hi(1 << (32 - 4 - 1)), %g1 - cmp %o3, %g1 - blu not_really_big - clr %o4 - - ! Here the dividend is >= 2**(31-N) or so. We must be careful here, - ! as our usual N-at-a-shot divide step will cause overflow and havoc. - ! The number of bits in the result here is N*ITER+SC, where SC <= N. - ! Compute ITER in an unorthodox manner: know we need to shift V into - ! the top decade: so do not even bother to compare to R. - 1: - cmp %o5, %g1 - bgeu 3f - mov 1, %g2 - sll %o5, 4, %o5 - b 1b - add %o4, 1, %o4 - - ! Now compute %g2. - 2: addcc %o5, %o5, %o5 - bcc not_too_big - add %g2, 1, %g2 - - ! We get here if the %o1 overflowed while shifting. - ! This means that %o3 has the high-order bit set. - ! Restore %o5 and subtract from %o3. - sll %g1, 4, %g1 ! high order bit - srl %o5, 1, %o5 ! rest of %o5 - add %o5, %g1, %o5 - b do_single_div - sub %g2, 1, %g2 - - not_too_big: - 3: cmp %o5, %o3 - blu 2b - nop - be do_single_div - nop - /* NB: these are commented out in the V8-SPARC manual as well */ - /* (I do not understand this) */ - ! %o5 > %o3: went too far: back up 1 step - ! srl %o5, 1, %o5 - ! dec %g2 - ! do single-bit divide steps - ! - ! We have to be careful here. We know that %o3 >= %o5, so we can do the - ! first divide step without thinking. BUT, the others are conditional, - ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high- - ! order bit set in the first step, just falling into the regular - ! division loop will mess up the first time around. - ! So we unroll slightly... - do_single_div: - subcc %g2, 1, %g2 - bl end_regular_divide - nop - sub %o3, %o5, %o3 - mov 1, %o2 - b end_single_divloop - nop - single_divloop: - sll %o2, 1, %o2 - bl 1f - srl %o5, 1, %o5 - ! %o3 >= 0 - sub %o3, %o5, %o3 - b 2f - add %o2, 1, %o2 - 1: ! %o3 < 0 - add %o3, %o5, %o3 - sub %o2, 1, %o2 - 2: - end_single_divloop: - subcc %g2, 1, %g2 - bge single_divloop - tst %o3 - b,a end_regular_divide - -not_really_big: -1: - sll %o5, 4, %o5 - cmp %o5, %o3 - bleu 1b - addcc %o4, 1, %o4 - be got_result - sub %o4, 1, %o4 - - tst %o3 ! set up for initial iteration -divloop: - sll %o2, 4, %o2 - ! depth 1, accumulated bits 0 - bl L1.16 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 2, accumulated bits 1 - bl L2.17 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 3, accumulated bits 3 - bl L3.19 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 4, accumulated bits 7 - bl L4.23 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (7*2+1), %o2 -L4.23: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (7*2-1), %o2 - -L3.19: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 4, accumulated bits 5 - bl L4.21 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (5*2+1), %o2 - -L4.21: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (5*2-1), %o2 - -L2.17: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 3, accumulated bits 1 - bl L3.17 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 4, accumulated bits 3 - bl L4.19 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (3*2+1), %o2 - -L4.19: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (3*2-1), %o2 - -L3.17: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 4, accumulated bits 1 - bl L4.17 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (1*2+1), %o2 - -L4.17: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (1*2-1), %o2 - -L1.16: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 2, accumulated bits -1 - bl L2.15 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 3, accumulated bits -1 - bl L3.15 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 4, accumulated bits -1 - bl L4.15 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (-1*2+1), %o2 - -L4.15: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (-1*2-1), %o2 - -L3.15: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 4, accumulated bits -3 - bl L4.13 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (-3*2+1), %o2 - -L4.13: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (-3*2-1), %o2 - -L2.15: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 3, accumulated bits -3 - bl L3.13 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - ! depth 4, accumulated bits -5 - bl L4.11 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (-5*2+1), %o2 - -L4.11: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (-5*2-1), %o2 - -L3.13: - ! remainder is negative - addcc %o3,%o5,%o3 - ! depth 4, accumulated bits -7 - bl L4.9 - srl %o5,1,%o5 - ! remainder is positive - subcc %o3,%o5,%o3 - b 9f - add %o2, (-7*2+1), %o2 - -L4.9: - ! remainder is negative - addcc %o3,%o5,%o3 - b 9f - add %o2, (-7*2-1), %o2 - - 9: -end_regular_divide: - subcc %o4, 1, %o4 - bge divloop - tst %o3 - bl,a got_result - ! non-restoring fixup here (one instruction only!) - add %o3, %o1, %o3 - -got_result: - ! check to see if answer should be < 0 - tst %g3 - bl,a 1f - sub %g0, %o3, %o3 -1: - retl - mov %o3, %o0 - -#endif - |