diff options
Diffstat (limited to 'contrib/gcc/config/rs6000/rs6000.h')
-rw-r--r-- | contrib/gcc/config/rs6000/rs6000.h | 2992 |
1 files changed, 0 insertions, 2992 deletions
diff --git a/contrib/gcc/config/rs6000/rs6000.h b/contrib/gcc/config/rs6000/rs6000.h deleted file mode 100644 index 3294bd2ddeee..000000000000 --- a/contrib/gcc/config/rs6000/rs6000.h +++ /dev/null @@ -1,2992 +0,0 @@ -/* Definitions of target machine for GNU compiler, for IBM RS/6000. - Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, - 2000, 2001, 2002, 2003, 2004, 2005, 2006 - Free Software Foundation, Inc. - Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) - - This file is part of GCC. - - GCC is free software; you can redistribute it and/or modify it - under the terms of the GNU General Public License as published - by the Free Software Foundation; either version 2, or (at your - option) any later version. - - GCC is distributed in the hope that it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY - or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public - License for more details. - - You should have received a copy of the GNU General Public License - along with GCC; see the file COPYING. If not, write to the - Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, - MA 02110-1301, USA. */ - -/* Note that some other tm.h files include this one and then override - many of the definitions. */ - -/* Definitions for the object file format. These are set at - compile-time. */ - -#define OBJECT_XCOFF 1 -#define OBJECT_ELF 2 -#define OBJECT_PEF 3 -#define OBJECT_MACHO 4 - -#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF) -#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF) -#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF) -#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO) - -#ifndef TARGET_AIX -#define TARGET_AIX 0 -#endif - -/* Control whether function entry points use a "dot" symbol when - ABI_AIX. */ -#define DOT_SYMBOLS 1 - -/* Default string to use for cpu if not specified. */ -#ifndef TARGET_CPU_DEFAULT -#define TARGET_CPU_DEFAULT ((char *)0) -#endif - -/* If configured for PPC405, support PPC405CR Erratum77. */ -#ifdef CONFIG_PPC405CR -#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405) -#else -#define PPC405_ERRATUM77 0 -#endif - -/* Common ASM definitions used by ASM_SPEC among the various targets - for handling -mcpu=xxx switches. */ -#define ASM_CPU_SPEC \ -"%{!mcpu*: \ - %{mpower: %{!mpower2: -mpwr}} \ - %{mpower2: -mpwrx} \ - %{mpowerpc64*: -mppc64} \ - %{!mpowerpc64*: %{mpowerpc*: -mppc}} \ - %{mno-power: %{!mpowerpc*: -mcom}} \ - %{!mno-power: %{!mpower*: %(asm_default)}}} \ -%{mcpu=common: -mcom} \ -%{mcpu=power: -mpwr} \ -%{mcpu=power2: -mpwrx} \ -%{mcpu=power3: -mppc64} \ -%{mcpu=power4: -mpower4} \ -%{mcpu=power5: -mpower4} \ -%{mcpu=power5+: -mpower4} \ -%{mcpu=power6: -mpower4 -maltivec} \ -%{mcpu=powerpc: -mppc} \ -%{mcpu=rios: -mpwr} \ -%{mcpu=rios1: -mpwr} \ -%{mcpu=rios2: -mpwrx} \ -%{mcpu=rsc: -mpwr} \ -%{mcpu=rsc1: -mpwr} \ -%{mcpu=rs64a: -mppc64} \ -%{mcpu=401: -mppc} \ -%{mcpu=403: -m403} \ -%{mcpu=405: -m405} \ -%{mcpu=405fp: -m405} \ -%{mcpu=440: -m440} \ -%{mcpu=440fp: -m440} \ -%{mcpu=505: -mppc} \ -%{mcpu=601: -m601} \ -%{mcpu=602: -mppc} \ -%{mcpu=603: -mppc} \ -%{mcpu=603e: -mppc} \ -%{mcpu=ec603e: -mppc} \ -%{mcpu=604: -mppc} \ -%{mcpu=604e: -mppc} \ -%{mcpu=620: -mppc64} \ -%{mcpu=630: -mppc64} \ -%{mcpu=740: -mppc} \ -%{mcpu=750: -mppc} \ -%{mcpu=G3: -mppc} \ -%{mcpu=7400: -mppc -maltivec} \ -%{mcpu=7450: -mppc -maltivec} \ -%{mcpu=G4: -mppc -maltivec} \ -%{mcpu=801: -mppc} \ -%{mcpu=821: -mppc} \ -%{mcpu=823: -mppc} \ -%{mcpu=860: -mppc} \ -%{mcpu=970: -mpower4 -maltivec} \ -%{mcpu=G5: -mpower4 -maltivec} \ -%{mcpu=8540: -me500} \ -%{maltivec: -maltivec} \ --many" - -#define CPP_DEFAULT_SPEC "" - -#define ASM_DEFAULT_SPEC "" - -/* This macro defines names of additional specifications to put in the specs - that can be used in various specifications like CC1_SPEC. Its definition - is an initializer with a subgrouping for each command option. - - Each subgrouping contains a string constant, that defines the - specification name, and a string constant that used by the GCC driver - program. - - Do not define this macro if it does not need to do anything. */ - -#define SUBTARGET_EXTRA_SPECS - -#define EXTRA_SPECS \ - { "cpp_default", CPP_DEFAULT_SPEC }, \ - { "asm_cpu", ASM_CPU_SPEC }, \ - { "asm_default", ASM_DEFAULT_SPEC }, \ - SUBTARGET_EXTRA_SPECS - -/* Architecture type. */ - -/* Define TARGET_MFCRF if the target assembler does not support the - optional field operand for mfcr. */ - -#ifndef HAVE_AS_MFCRF -#undef TARGET_MFCRF -#define TARGET_MFCRF 0 -#endif - -/* Define TARGET_POPCNTB if the target assembler does not support the - popcount byte instruction. */ - -#ifndef HAVE_AS_POPCNTB -#undef TARGET_POPCNTB -#define TARGET_POPCNTB 0 -#endif - -/* Define TARGET_FPRND if the target assembler does not support the - fp rounding instructions. */ - -#ifndef HAVE_AS_FPRND -#undef TARGET_FPRND -#define TARGET_FPRND 0 -#endif - -#ifndef TARGET_SECURE_PLT -#define TARGET_SECURE_PLT 0 -#endif - -#define TARGET_32BIT (! TARGET_64BIT) - -#ifndef HAVE_AS_TLS -#define HAVE_AS_TLS 0 -#endif - -/* Return 1 for a symbol ref for a thread-local storage symbol. */ -#define RS6000_SYMBOL_REF_TLS_P(RTX) \ - (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0) - -#ifdef IN_LIBGCC2 -/* For libgcc2 we make sure this is a compile time constant */ -#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__) -#undef TARGET_POWERPC64 -#define TARGET_POWERPC64 1 -#else -#undef TARGET_POWERPC64 -#define TARGET_POWERPC64 0 -#endif -#else - /* The option machinery will define this. */ -#endif - -#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING) - -/* Processor type. Order must match cpu attribute in MD file. */ -enum processor_type - { - PROCESSOR_RIOS1, - PROCESSOR_RIOS2, - PROCESSOR_RS64A, - PROCESSOR_MPCCORE, - PROCESSOR_PPC403, - PROCESSOR_PPC405, - PROCESSOR_PPC440, - PROCESSOR_PPC601, - PROCESSOR_PPC603, - PROCESSOR_PPC604, - PROCESSOR_PPC604e, - PROCESSOR_PPC620, - PROCESSOR_PPC630, - PROCESSOR_PPC750, - PROCESSOR_PPC7400, - PROCESSOR_PPC7450, - PROCESSOR_PPC8540, - PROCESSOR_POWER4, - PROCESSOR_POWER5 -}; - -extern enum processor_type rs6000_cpu; - -/* Recast the processor type to the cpu attribute. */ -#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu) - -/* Define generic processor types based upon current deployment. */ -#define PROCESSOR_COMMON PROCESSOR_PPC601 -#define PROCESSOR_POWER PROCESSOR_RIOS1 -#define PROCESSOR_POWERPC PROCESSOR_PPC604 -#define PROCESSOR_POWERPC64 PROCESSOR_RS64A - -/* Define the default processor. This is overridden by other tm.h files. */ -#define PROCESSOR_DEFAULT PROCESSOR_RIOS1 -#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A - -/* Specify the dialect of assembler to use. New mnemonics is dialect one - and the old mnemonics are dialect zero. */ -#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0) - -/* Types of costly dependences. */ -enum rs6000_dependence_cost - { - max_dep_latency = 1000, - no_dep_costly, - all_deps_costly, - true_store_to_load_dep_costly, - store_to_load_dep_costly - }; - -/* Types of nop insertion schemes in sched target hook sched_finish. */ -enum rs6000_nop_insertion - { - sched_finish_regroup_exact = 1000, - sched_finish_pad_groups, - sched_finish_none - }; - -/* Dispatch group termination caused by an insn. */ -enum group_termination - { - current_group, - previous_group - }; - -/* Support for a compile-time default CPU, et cetera. The rules are: - --with-cpu is ignored if -mcpu is specified. - --with-tune is ignored if -mtune is specified. - --with-float is ignored if -mhard-float or -msoft-float are - specified. */ -#define OPTION_DEFAULT_SPECS \ - {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \ - {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \ - {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" } - -/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */ -struct rs6000_cpu_select -{ - const char *string; - const char *name; - int set_tune_p; - int set_arch_p; -}; - -extern struct rs6000_cpu_select rs6000_select[]; - -/* Debug support */ -extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */ -extern int rs6000_debug_stack; /* debug stack applications */ -extern int rs6000_debug_arg; /* debug argument handling */ - -#define TARGET_DEBUG_STACK rs6000_debug_stack -#define TARGET_DEBUG_ARG rs6000_debug_arg - -extern const char *rs6000_traceback_name; /* Type of traceback table. */ - -/* These are separate from target_flags because we've run out of bits - there. */ -extern int rs6000_long_double_type_size; -extern int rs6000_ieeequad; -extern int rs6000_altivec_abi; -extern int rs6000_spe_abi; -extern int rs6000_float_gprs; -extern int rs6000_alignment_flags; -extern const char *rs6000_sched_insert_nops_str; -extern enum rs6000_nop_insertion rs6000_sched_insert_nops; - -/* Alignment options for fields in structures for sub-targets following - AIX-like ABI. - ALIGN_POWER word-aligns FP doubles (default AIX ABI). - ALIGN_NATURAL doubleword-aligns FP doubles (align to object size). - - Override the macro definitions when compiling libobjc to avoid undefined - reference to rs6000_alignment_flags due to library's use of GCC alignment - macros which use the macros below. */ - -#ifndef IN_TARGET_LIBS -#define MASK_ALIGN_POWER 0x00000000 -#define MASK_ALIGN_NATURAL 0x00000001 -#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL) -#else -#define TARGET_ALIGN_NATURAL 0 -#endif - -#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128) -#define TARGET_IEEEQUAD rs6000_ieeequad -#define TARGET_ALTIVEC_ABI rs6000_altivec_abi - -#define TARGET_SPE_ABI 0 -#define TARGET_SPE 0 -#define TARGET_E500 0 -#define TARGET_ISEL 0 -#define TARGET_FPRS 1 -#define TARGET_E500_SINGLE 0 -#define TARGET_E500_DOUBLE 0 - -/* E500 processors only support plain "sync", not lwsync. */ -#define TARGET_NO_LWSYNC TARGET_E500 - -/* Sometimes certain combinations of command options do not make sense - on a particular target machine. You can define a macro - `OVERRIDE_OPTIONS' to take account of this. This macro, if - defined, is executed once just after all the command options have - been parsed. - - Do not use this macro to turn on various extra optimizations for - `-O'. That is what `OPTIMIZATION_OPTIONS' is for. - - On the RS/6000 this is used to define the target cpu type. */ - -#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT) - -/* Define this to change the optimizations performed by default. */ -#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE) - -/* Show we can debug even without a frame pointer. */ -#define CAN_DEBUG_WITHOUT_FP - -/* Target pragma. */ -#define REGISTER_TARGET_PRAGMAS() do { \ - c_register_pragma (0, "longcall", rs6000_pragma_longcall); \ - targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \ -} while (0) - -/* Target #defines. */ -#define TARGET_CPU_CPP_BUILTINS() \ - rs6000_cpu_cpp_builtins (pfile) - -/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order - we're compiling for. Some configurations may need to override it. */ -#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \ - do \ - { \ - if (BYTES_BIG_ENDIAN) \ - { \ - builtin_define ("__BIG_ENDIAN__"); \ - builtin_define ("_BIG_ENDIAN"); \ - builtin_assert ("machine=bigendian"); \ - } \ - else \ - { \ - builtin_define ("__LITTLE_ENDIAN__"); \ - builtin_define ("_LITTLE_ENDIAN"); \ - builtin_assert ("machine=littleendian"); \ - } \ - } \ - while (0) - -/* Target machine storage layout. */ - -/* Define this macro if it is advisable to hold scalars in registers - in a wider mode than that declared by the program. In such cases, - the value is constrained to be within the bounds of the declared - type, but kept valid in the wider mode. The signedness of the - extension may differ from that of the type. */ - -#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ - if (GET_MODE_CLASS (MODE) == MODE_INT \ - && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ - (MODE) = TARGET_32BIT ? SImode : DImode; - -/* Define this if most significant bit is lowest numbered - in instructions that operate on numbered bit-fields. */ -/* That is true on RS/6000. */ -#define BITS_BIG_ENDIAN 1 - -/* Define this if most significant byte of a word is the lowest numbered. */ -/* That is true on RS/6000. */ -#define BYTES_BIG_ENDIAN 1 - -/* Define this if most significant word of a multiword number is lowest - numbered. - - For RS/6000 we can decide arbitrarily since there are no machine - instructions for them. Might as well be consistent with bits and bytes. */ -#define WORDS_BIG_ENDIAN 1 - -#define MAX_BITS_PER_WORD 64 - -/* Width of a word, in units (bytes). */ -#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8) -#ifdef IN_LIBGCC2 -#define MIN_UNITS_PER_WORD UNITS_PER_WORD -#else -#define MIN_UNITS_PER_WORD 4 -#endif -#define UNITS_PER_FP_WORD 8 -#define UNITS_PER_ALTIVEC_WORD 16 -#define UNITS_PER_SPE_WORD 8 - -/* Type used for ptrdiff_t, as a string used in a declaration. */ -#define PTRDIFF_TYPE "int" - -/* Type used for size_t, as a string used in a declaration. */ -#define SIZE_TYPE "long unsigned int" - -/* Type used for wchar_t, as a string used in a declaration. */ -#define WCHAR_TYPE "short unsigned int" - -/* Width of wchar_t in bits. */ -#define WCHAR_TYPE_SIZE 16 - -/* A C expression for the size in bits of the type `short' on the - target machine. If you don't define this, the default is half a - word. (If this would be less than one storage unit, it is - rounded up to one unit.) */ -#define SHORT_TYPE_SIZE 16 - -/* A C expression for the size in bits of the type `int' on the - target machine. If you don't define this, the default is one - word. */ -#define INT_TYPE_SIZE 32 - -/* A C expression for the size in bits of the type `long' on the - target machine. If you don't define this, the default is one - word. */ -#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64) - -/* A C expression for the size in bits of the type `long long' on the - target machine. If you don't define this, the default is two - words. */ -#define LONG_LONG_TYPE_SIZE 64 - -/* A C expression for the size in bits of the type `float' on the - target machine. If you don't define this, the default is one - word. */ -#define FLOAT_TYPE_SIZE 32 - -/* A C expression for the size in bits of the type `double' on the - target machine. If you don't define this, the default is two - words. */ -#define DOUBLE_TYPE_SIZE 64 - -/* A C expression for the size in bits of the type `long double' on - the target machine. If you don't define this, the default is two - words. */ -#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size - -/* Define this to set long double type size to use in libgcc2.c, which can - not depend on target_flags. */ -#ifdef __LONG_DOUBLE_128__ -#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128 -#else -#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64 -#endif - -/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */ -#define WIDEST_HARDWARE_FP_SIZE 64 - -/* Width in bits of a pointer. - See also the macro `Pmode' defined below. */ -#define POINTER_SIZE (TARGET_32BIT ? 32 : 64) - -/* Allocation boundary (in *bits*) for storing arguments in argument list. */ -#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64) - -/* Boundary (in *bits*) on which stack pointer should be aligned. */ -#define STACK_BOUNDARY \ - ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128) - -/* Allocation boundary (in *bits*) for the code of a function. */ -#define FUNCTION_BOUNDARY 32 - -/* No data type wants to be aligned rounder than this. */ -#define BIGGEST_ALIGNMENT 128 - -/* A C expression to compute the alignment for a variables in the - local store. TYPE is the data type, and ALIGN is the alignment - that the object would ordinarily have. */ -#define LOCAL_ALIGNMENT(TYPE, ALIGN) \ - ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \ - (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 : \ - (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE \ - && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) ? 64 : ALIGN) - -/* Alignment of field after `int : 0' in a structure. */ -#define EMPTY_FIELD_BOUNDARY 32 - -/* Every structure's size must be a multiple of this. */ -#define STRUCTURE_SIZE_BOUNDARY 8 - -/* Return 1 if a structure or array containing FIELD should be - accessed using `BLKMODE'. - - For the SPE, simd types are V2SI, and gcc can be tempted to put the - entire thing in a DI and use subregs to access the internals. - store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the - back-end. Because a single GPR can hold a V2SI, but not a DI, the - best thing to do is set structs to BLKmode and avoid Severe Tire - Damage. - - On e500 v2, DF and DI modes suffer from the same anomaly. DF can - fit into 1, whereas DI still needs two. */ -#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \ - ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \ - || (TARGET_E500_DOUBLE && (MODE) == DFmode)) - -/* A bit-field declared as `int' forces `int' alignment for the struct. */ -#define PCC_BITFIELD_TYPE_MATTERS 1 - -/* Make strings word-aligned so strcpy from constants will be faster. - Make vector constants quadword aligned. */ -#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ - (TREE_CODE (EXP) == STRING_CST \ - && (ALIGN) < BITS_PER_WORD \ - ? BITS_PER_WORD \ - : (ALIGN)) - -/* Make arrays of chars word-aligned for the same reasons. - Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to - 64 bits. */ -#define DATA_ALIGNMENT(TYPE, ALIGN) \ - (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \ - : (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 \ - : TREE_CODE (TYPE) == ARRAY_TYPE \ - && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ - && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) - -/* Nonzero if move instructions will actually fail to work - when given unaligned data. */ -#define STRICT_ALIGNMENT 0 - -/* Define this macro to be the value 1 if unaligned accesses have a cost - many times greater than aligned accesses, for example if they are - emulated in a trap handler. */ -#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \ - (STRICT_ALIGNMENT \ - || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \ - || (MODE) == DImode) \ - && (ALIGN) < 32)) - -/* Standard register usage. */ - -/* Number of actual hardware registers. - The hardware registers are assigned numbers for the compiler - from 0 to just below FIRST_PSEUDO_REGISTER. - All registers that the compiler knows about must be given numbers, - even those that are not normally considered general registers. - - RS/6000 has 32 fixed-point registers, 32 floating-point registers, - an MQ register, a count register, a link register, and 8 condition - register fields, which we view here as separate registers. AltiVec - adds 32 vector registers and a VRsave register. - - In addition, the difference between the frame and argument pointers is - a function of the number of registers saved, so we need to have a - register for AP that will later be eliminated in favor of SP or FP. - This is a normal register, but it is fixed. - - We also create a pseudo register for float/int conversions, that will - really represent the memory location used. It is represented here as - a register, in order to work around problems in allocating stack storage - in inline functions. - - Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame - pointer, which is eventually eliminated in favor of SP or FP. */ - -#define FIRST_PSEUDO_REGISTER 114 - -/* This must be included for pre gcc 3.0 glibc compatibility. */ -#define PRE_GCC3_DWARF_FRAME_REGISTERS 77 - -/* Add 32 dwarf columns for synthetic SPE registers. */ -#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32) - -/* The SPE has an additional 32 synthetic registers, with DWARF debug - info numbering for these registers starting at 1200. While eh_frame - register numbering need not be the same as the debug info numbering, - we choose to number these regs for eh_frame at 1200 too. This allows - future versions of the rs6000 backend to add hard registers and - continue to use the gcc hard register numbering for eh_frame. If the - extra SPE registers in eh_frame were numbered starting from the - current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER - changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to - avoid invalidating older SPE eh_frame info. - - We must map them here to avoid huge unwinder tables mostly consisting - of unused space. */ -#define DWARF_REG_TO_UNWIND_COLUMN(r) \ - ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r)) - -/* Use standard DWARF numbering for DWARF debugging information. */ -#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO) - -/* Use gcc hard register numbering for eh_frame. */ -#define DWARF_FRAME_REGNUM(REGNO) (REGNO) - -/* Map register numbers held in the call frame info that gcc has - collected using DWARF_FRAME_REGNUM to those that should be output in - .debug_frame and .eh_frame. We continue to use gcc hard reg numbers - for .eh_frame, but use the numbers mandated by the various ABIs for - .debug_frame. rs6000_emit_prologue has translated any combination of - CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves - the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */ -#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \ - ((FOR_EH) ? (REGNO) \ - : (REGNO) == CR2_REGNO ? 64 \ - : DBX_REGISTER_NUMBER (REGNO)) - -/* 1 for registers that have pervasive standard uses - and are not available for the register allocator. - - On RS/6000, r1 is used for the stack. On Darwin, r2 is available - as a local register; for all other OS's r2 is the TOC pointer. - - cr5 is not supposed to be used. - - On System V implementations, r13 is fixed and not available for use. */ - -#define FIXED_REGISTERS \ - {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \ - /* AltiVec registers. */ \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 1, 1 \ - , 1, 1, 1 \ -} - -/* 1 for registers not available across function calls. - These must include the FIXED_REGISTERS and also any - registers that can be used without being saved. - The latter must include the registers where values are returned - and the register where structure-value addresses are passed. - Aside from that, you can include as many other registers as you like. */ - -#define CALL_USED_REGISTERS \ - {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \ - /* AltiVec registers. */ \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 1, 1 \ - , 1, 1, 1 \ -} - -/* Like `CALL_USED_REGISTERS' except this macro doesn't require that - the entire set of `FIXED_REGISTERS' be included. - (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). - This macro is optional. If not specified, it defaults to the value - of `CALL_USED_REGISTERS'. */ - -#define CALL_REALLY_USED_REGISTERS \ - {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \ - /* AltiVec registers. */ \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 0, 0 \ - , 0, 0, 0 \ -} - -#define MQ_REGNO 64 -#define CR0_REGNO 68 -#define CR1_REGNO 69 -#define CR2_REGNO 70 -#define CR3_REGNO 71 -#define CR4_REGNO 72 -#define MAX_CR_REGNO 75 -#define XER_REGNO 76 -#define FIRST_ALTIVEC_REGNO 77 -#define LAST_ALTIVEC_REGNO 108 -#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1) -#define VRSAVE_REGNO 109 -#define VSCR_REGNO 110 -#define SPE_ACC_REGNO 111 -#define SPEFSCR_REGNO 112 - -#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20) -#define FIRST_SAVED_FP_REGNO (14+32) -#define FIRST_SAVED_GP_REGNO 13 - -/* List the order in which to allocate registers. Each register must be - listed once, even those in FIXED_REGISTERS. - - We allocate in the following order: - fp0 (not saved or used for anything) - fp13 - fp2 (not saved; incoming fp arg registers) - fp1 (not saved; return value) - fp31 - fp14 (saved; order given to save least number) - cr7, cr6 (not saved or special) - cr1 (not saved, but used for FP operations) - cr0 (not saved, but used for arithmetic operations) - cr4, cr3, cr2 (saved) - r0 (not saved; cannot be base reg) - r9 (not saved; best for TImode) - r11, r10, r8-r4 (not saved; highest used first to make less conflict) - r3 (not saved; return value register) - r31 - r13 (saved; order given to save least number) - r12 (not saved; if used for DImode or DFmode would use r13) - mq (not saved; best to use it if we can) - ctr (not saved; when we have the choice ctr is better) - lr (saved) - cr5, r1, r2, ap, xer (fixed) - v0 - v1 (not saved or used for anything) - v13 - v3 (not saved; incoming vector arg registers) - v2 (not saved; incoming vector arg reg; return value) - v19 - v14 (not saved or used for anything) - v31 - v20 (saved; order given to save least number) - vrsave, vscr (fixed) - spe_acc, spefscr (fixed) - sfp (fixed) -*/ - -#if FIXED_R2 == 1 -#define MAYBE_R2_AVAILABLE -#define MAYBE_R2_FIXED 2, -#else -#define MAYBE_R2_AVAILABLE 2, -#define MAYBE_R2_FIXED -#endif - -#define REG_ALLOC_ORDER \ - {32, \ - 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \ - 33, \ - 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ - 50, 49, 48, 47, 46, \ - 75, 74, 69, 68, 72, 71, 70, \ - 0, MAYBE_R2_AVAILABLE \ - 9, 11, 10, 8, 7, 6, 5, 4, \ - 3, \ - 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \ - 18, 17, 16, 15, 14, 13, 12, \ - 64, 66, 65, \ - 73, 1, MAYBE_R2_FIXED 67, 76, \ - /* AltiVec registers. */ \ - 77, 78, \ - 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \ - 79, \ - 96, 95, 94, 93, 92, 91, \ - 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \ - 109, 110, \ - 111, 112, 113 \ -} - -/* True if register is floating-point. */ -#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63) - -/* True if register is a condition register. */ -#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75) - -/* True if register is a condition register, but not cr0. */ -#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75) - -/* True if register is an integer register. */ -#define INT_REGNO_P(N) \ - ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM) - -/* SPE SIMD registers are just the GPRs. */ -#define SPE_SIMD_REGNO_P(N) ((N) <= 31) - -/* True if register is the XER register. */ -#define XER_REGNO_P(N) ((N) == XER_REGNO) - -/* True if register is an AltiVec register. */ -#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO) - -/* Return number of consecutive hard regs needed starting at reg REGNO - to hold something of mode MODE. */ - -#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE)) - -#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \ - ((TARGET_32BIT && TARGET_POWERPC64 \ - && (GET_MODE_SIZE (MODE) > 4) \ - && INT_REGNO_P (REGNO)) ? 1 : 0) - -#define ALTIVEC_VECTOR_MODE(MODE) \ - ((MODE) == V16QImode \ - || (MODE) == V8HImode \ - || (MODE) == V4SFmode \ - || (MODE) == V4SImode) - -#define SPE_VECTOR_MODE(MODE) \ - ((MODE) == V4HImode \ - || (MODE) == V2SFmode \ - || (MODE) == V1DImode \ - || (MODE) == V2SImode) - -#define UNITS_PER_SIMD_WORD \ - (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \ - : (TARGET_SPE ? UNITS_PER_SPE_WORD : UNITS_PER_WORD)) - -/* Value is TRUE if hard register REGNO can hold a value of - machine-mode MODE. */ -#define HARD_REGNO_MODE_OK(REGNO, MODE) \ - rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO] - -/* Value is 1 if it is a good idea to tie two pseudo registers - when one has mode MODE1 and one has mode MODE2. - If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, - for any hard reg, then this must be 0 for correct output. */ -#define MODES_TIEABLE_P(MODE1, MODE2) \ - (SCALAR_FLOAT_MODE_P (MODE1) \ - ? SCALAR_FLOAT_MODE_P (MODE2) \ - : SCALAR_FLOAT_MODE_P (MODE2) \ - ? SCALAR_FLOAT_MODE_P (MODE1) \ - : GET_MODE_CLASS (MODE1) == MODE_CC \ - ? GET_MODE_CLASS (MODE2) == MODE_CC \ - : GET_MODE_CLASS (MODE2) == MODE_CC \ - ? GET_MODE_CLASS (MODE1) == MODE_CC \ - : SPE_VECTOR_MODE (MODE1) \ - ? SPE_VECTOR_MODE (MODE2) \ - : SPE_VECTOR_MODE (MODE2) \ - ? SPE_VECTOR_MODE (MODE1) \ - : ALTIVEC_VECTOR_MODE (MODE1) \ - ? ALTIVEC_VECTOR_MODE (MODE2) \ - : ALTIVEC_VECTOR_MODE (MODE2) \ - ? ALTIVEC_VECTOR_MODE (MODE1) \ - : 1) - -/* Post-reload, we can't use any new AltiVec registers, as we already - emitted the vrsave mask. */ - -#define HARD_REGNO_RENAME_OK(SRC, DST) \ - (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST]) - -/* A C expression returning the cost of moving data from a register of class - CLASS1 to one of CLASS2. */ - -#define REGISTER_MOVE_COST rs6000_register_move_cost - -/* A C expressions returning the cost of moving data of MODE from a register to - or from memory. */ - -#define MEMORY_MOVE_COST rs6000_memory_move_cost - -/* Specify the cost of a branch insn; roughly the number of extra insns that - should be added to avoid a branch. - - Set this to 3 on the RS/6000 since that is roughly the average cost of an - unscheduled conditional branch. */ - -#define BRANCH_COST 3 - -/* Override BRANCH_COST heuristic which empirically produces worse - performance for removing short circuiting from the logical ops. */ - -#define LOGICAL_OP_NON_SHORT_CIRCUIT 0 - -/* A fixed register used at prologue and epilogue generation to fix - addressing modes. The SPE needs heavy addressing fixes at the last - minute, and it's best to save a register for it. - - AltiVec also needs fixes, but we've gotten around using r11, which - is actually wrong because when use_backchain_to_restore_sp is true, - we end up clobbering r11. - - The AltiVec case needs to be fixed. Dunno if we should break ABI - compatibility and reserve a register for it as well.. */ - -#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11) - -/* Define this macro to change register usage conditional on target - flags. */ - -#define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage () - -/* Specify the registers used for certain standard purposes. - The values of these macros are register numbers. */ - -/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */ -/* #define PC_REGNUM */ - -/* Register to use for pushing function arguments. */ -#define STACK_POINTER_REGNUM 1 - -/* Base register for access to local variables of the function. */ -#define HARD_FRAME_POINTER_REGNUM 31 - -/* Base register for access to local variables of the function. */ -#define FRAME_POINTER_REGNUM 113 - -/* Value should be nonzero if functions must have frame pointers. - Zero means the frame pointer need not be set up (and parms - may be accessed via the stack pointer) in functions that seem suitable. - This is computed in `reload', in reload1.c. */ -#define FRAME_POINTER_REQUIRED 0 - -/* Base register for access to arguments of the function. */ -#define ARG_POINTER_REGNUM 67 - -/* Place to put static chain when calling a function that requires it. */ -#define STATIC_CHAIN_REGNUM 11 - -/* Link register number. */ -#define LINK_REGISTER_REGNUM 65 - -/* Count register number. */ -#define COUNT_REGISTER_REGNUM 66 - -/* Define the classes of registers for register constraints in the - machine description. Also define ranges of constants. - - One of the classes must always be named ALL_REGS and include all hard regs. - If there is more than one class, another class must be named NO_REGS - and contain no registers. - - The name GENERAL_REGS must be the name of a class (or an alias for - another name such as ALL_REGS). This is the class of registers - that is allowed by "g" or "r" in a register constraint. - Also, registers outside this class are allocated only when - instructions express preferences for them. - - The classes must be numbered in nondecreasing order; that is, - a larger-numbered class must never be contained completely - in a smaller-numbered class. - - For any two classes, it is very desirable that there be another - class that represents their union. */ - -/* The RS/6000 has three types of registers, fixed-point, floating-point, - and condition registers, plus three special registers, MQ, CTR, and the - link register. AltiVec adds a vector register class. - - However, r0 is special in that it cannot be used as a base register. - So make a class for registers valid as base registers. - - Also, cr0 is the only condition code register that can be used in - arithmetic insns, so make a separate class for it. */ - -enum reg_class -{ - NO_REGS, - BASE_REGS, - GENERAL_REGS, - FLOAT_REGS, - ALTIVEC_REGS, - VRSAVE_REGS, - VSCR_REGS, - SPE_ACC_REGS, - SPEFSCR_REGS, - NON_SPECIAL_REGS, - MQ_REGS, - LINK_REGS, - CTR_REGS, - LINK_OR_CTR_REGS, - SPECIAL_REGS, - SPEC_OR_GEN_REGS, - CR0_REGS, - CR_REGS, - NON_FLOAT_REGS, - XER_REGS, - ALL_REGS, - LIM_REG_CLASSES -}; - -#define N_REG_CLASSES (int) LIM_REG_CLASSES - -/* Give names of register classes as strings for dump file. */ - -#define REG_CLASS_NAMES \ -{ \ - "NO_REGS", \ - "BASE_REGS", \ - "GENERAL_REGS", \ - "FLOAT_REGS", \ - "ALTIVEC_REGS", \ - "VRSAVE_REGS", \ - "VSCR_REGS", \ - "SPE_ACC_REGS", \ - "SPEFSCR_REGS", \ - "NON_SPECIAL_REGS", \ - "MQ_REGS", \ - "LINK_REGS", \ - "CTR_REGS", \ - "LINK_OR_CTR_REGS", \ - "SPECIAL_REGS", \ - "SPEC_OR_GEN_REGS", \ - "CR0_REGS", \ - "CR_REGS", \ - "NON_FLOAT_REGS", \ - "XER_REGS", \ - "ALL_REGS" \ -} - -/* Define which registers fit in which classes. - This is an initializer for a vector of HARD_REG_SET - of length N_REG_CLASSES. */ - -#define REG_CLASS_CONTENTS \ -{ \ - { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ - { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \ - { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \ - { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \ - { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \ - { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \ - { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \ - { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \ - { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \ - { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \ - { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \ - { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \ - { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \ - { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \ - { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \ - { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \ - { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \ - { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \ - { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */ \ - { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \ - { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \ -} - -/* The same information, inverted: - Return the class number of the smallest class containing - reg number REGNO. This could be a conditional expression - or could index an array. */ - -#define REGNO_REG_CLASS(REGNO) \ - ((REGNO) == 0 ? GENERAL_REGS \ - : (REGNO) < 32 ? BASE_REGS \ - : FP_REGNO_P (REGNO) ? FLOAT_REGS \ - : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \ - : (REGNO) == CR0_REGNO ? CR0_REGS \ - : CR_REGNO_P (REGNO) ? CR_REGS \ - : (REGNO) == MQ_REGNO ? MQ_REGS \ - : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \ - : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \ - : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \ - : (REGNO) == XER_REGNO ? XER_REGS \ - : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \ - : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \ - : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \ - : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \ - : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS \ - : NO_REGS) - -/* The class value for index registers, and the one for base regs. */ -#define INDEX_REG_CLASS GENERAL_REGS -#define BASE_REG_CLASS BASE_REGS - -/* Given an rtx X being reloaded into a reg required to be - in class CLASS, return the class of reg to actually use. - In general this is just CLASS; but on some machines - in some cases it is preferable to use a more restrictive class. - - On the RS/6000, we have to return NO_REGS when we want to reload a - floating-point CONST_DOUBLE to force it to be copied to memory. - - We also don't want to reload integer values into floating-point - registers if we can at all help it. In fact, this can - cause reload to die, if it tries to generate a reload of CTR - into a FP register and discovers it doesn't have the memory location - required. - - ??? Would it be a good idea to have reload do the converse, that is - try to reload floating modes into FP registers if possible? - */ - -#define PREFERRED_RELOAD_CLASS(X,CLASS) \ - ((CONSTANT_P (X) \ - && reg_classes_intersect_p ((CLASS), FLOAT_REGS)) \ - ? NO_REGS \ - : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \ - && (CLASS) == NON_SPECIAL_REGS) \ - ? GENERAL_REGS \ - : (CLASS)) - -/* Return the register class of a scratch register needed to copy IN into - or out of a register in CLASS in MODE. If it can be done directly, - NO_REGS is returned. */ - -#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ - rs6000_secondary_reload_class (CLASS, MODE, IN) - -/* If we are copying between FP or AltiVec registers and anything - else, we need a memory location. */ - -#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \ - ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \ - || (CLASS2) == FLOAT_REGS \ - || (CLASS1) == ALTIVEC_REGS \ - || (CLASS2) == ALTIVEC_REGS)) - -/* Return the maximum number of consecutive registers - needed to represent mode MODE in a register of class CLASS. - - On RS/6000, this is the size of MODE in words, - except in the FP regs, where a single reg is enough for two words. */ -#define CLASS_MAX_NREGS(CLASS, MODE) \ - (((CLASS) == FLOAT_REGS) \ - ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \ - : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS && (MODE) == DFmode) \ - ? 1 \ - : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) - -/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */ - -#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ - (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \ - ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8 \ - || TARGET_IEEEQUAD) \ - && reg_classes_intersect_p (FLOAT_REGS, CLASS)) \ - : (((TARGET_E500_DOUBLE \ - && ((((TO) == DFmode) + ((FROM) == DFmode)) == 1 \ - || (((TO) == DImode) + ((FROM) == DImode)) == 1)) \ - || (TARGET_SPE \ - && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1)) \ - && reg_classes_intersect_p (GENERAL_REGS, CLASS))) - -/* Stack layout; function entry, exit and calling. */ - -/* Enumeration to give which calling sequence to use. */ -enum rs6000_abi { - ABI_NONE, - ABI_AIX, /* IBM's AIX */ - ABI_V4, /* System V.4/eabi */ - ABI_DARWIN /* Apple's Darwin (OS X kernel) */ -}; - -extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */ - -/* Define this if pushing a word on the stack - makes the stack pointer a smaller address. */ -#define STACK_GROWS_DOWNWARD - -/* Offsets recorded in opcodes are a multiple of this alignment factor. */ -#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8))) - -/* Define this to nonzero if the nominal address of the stack frame - is at the high-address end of the local variables; - that is, each additional local variable allocated - goes at a more negative offset in the frame. - - On the RS/6000, we grow upwards, from the area after the outgoing - arguments. */ -#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0) - -/* Size of the outgoing register save area */ -#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \ - || DEFAULT_ABI == ABI_DARWIN) \ - ? (TARGET_64BIT ? 64 : 32) \ - : 0) - -/* Size of the fixed area on the stack */ -#define RS6000_SAVE_AREA \ - (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \ - << (TARGET_64BIT ? 1 : 0)) - -/* MEM representing address to save the TOC register */ -#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \ - plus_constant (stack_pointer_rtx, \ - (TARGET_32BIT ? 20 : 40))) - -/* Align an address */ -#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1)) - -/* Offset within stack frame to start allocating local variables at. - If FRAME_GROWS_DOWNWARD, this is the offset to the END of the - first local allocated. Otherwise, it is the offset to the BEGINNING - of the first local allocated. - - On the RS/6000, the frame pointer is the same as the stack pointer, - except for dynamic allocations. So we start after the fixed area and - outgoing parameter area. */ - -#define STARTING_FRAME_OFFSET \ - (FRAME_GROWS_DOWNWARD \ - ? 0 \ - : (RS6000_ALIGN (current_function_outgoing_args_size, \ - TARGET_ALTIVEC ? 16 : 8) \ - + RS6000_SAVE_AREA)) - -/* Offset from the stack pointer register to an item dynamically - allocated on the stack, e.g., by `alloca'. - - The default value for this macro is `STACK_POINTER_OFFSET' plus the - length of the outgoing arguments. The default is correct for most - machines. See `function.c' for details. */ -#define STACK_DYNAMIC_OFFSET(FUNDECL) \ - (RS6000_ALIGN (current_function_outgoing_args_size, \ - TARGET_ALTIVEC ? 16 : 8) \ - + (STACK_POINTER_OFFSET)) - -/* If we generate an insn to push BYTES bytes, - this says how many the stack pointer really advances by. - On RS/6000, don't define this because there are no push insns. */ -/* #define PUSH_ROUNDING(BYTES) */ - -/* Offset of first parameter from the argument pointer register value. - On the RS/6000, we define the argument pointer to the start of the fixed - area. */ -#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA - -/* Offset from the argument pointer register value to the top of - stack. This is different from FIRST_PARM_OFFSET because of the - register save area. */ -#define ARG_POINTER_CFA_OFFSET(FNDECL) 0 - -/* Define this if stack space is still allocated for a parameter passed - in a register. The value is the number of bytes allocated to this - area. */ -#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE - -/* Define this if the above stack space is to be considered part of the - space allocated by the caller. */ -#define OUTGOING_REG_PARM_STACK_SPACE - -/* This is the difference between the logical top of stack and the actual sp. - - For the RS/6000, sp points past the fixed area. */ -#define STACK_POINTER_OFFSET RS6000_SAVE_AREA - -/* Define this if the maximum size of all the outgoing args is to be - accumulated and pushed during the prologue. The amount can be - found in the variable current_function_outgoing_args_size. */ -#define ACCUMULATE_OUTGOING_ARGS 1 - -/* Value is the number of bytes of arguments automatically - popped when returning from a subroutine call. - FUNDECL is the declaration node of the function (as a tree), - FUNTYPE is the data type of the function (as a tree), - or for a library call it is an identifier node for the subroutine name. - SIZE is the number of bytes of arguments passed on the stack. */ - -#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 - -/* Define how to find the value returned by a function. - VALTYPE is the data type of the value (as a tree). - If the precise function being called is known, FUNC is its FUNCTION_DECL; - otherwise, FUNC is 0. */ - -#define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC)) - -/* Define how to find the value returned by a library function - assuming the value has mode MODE. */ - -#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE)) - -/* DRAFT_V4_STRUCT_RET defaults off. */ -#define DRAFT_V4_STRUCT_RET 0 - -/* Let TARGET_RETURN_IN_MEMORY control what happens. */ -#define DEFAULT_PCC_STRUCT_RETURN 0 - -/* Mode of stack savearea. - FUNCTION is VOIDmode because calling convention maintains SP. - BLOCK needs Pmode for SP. - NONLOCAL needs twice Pmode to maintain both backchain and SP. */ -#define STACK_SAVEAREA_MODE(LEVEL) \ - (LEVEL == SAVE_FUNCTION ? VOIDmode \ - : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode) - -/* Minimum and maximum general purpose registers used to hold arguments. */ -#define GP_ARG_MIN_REG 3 -#define GP_ARG_MAX_REG 10 -#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1) - -/* Minimum and maximum floating point registers used to hold arguments. */ -#define FP_ARG_MIN_REG 33 -#define FP_ARG_AIX_MAX_REG 45 -#define FP_ARG_V4_MAX_REG 40 -#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \ - || DEFAULT_ABI == ABI_DARWIN) \ - ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG) -#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1) - -/* Minimum and maximum AltiVec registers used to hold arguments. */ -#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2) -#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11) -#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1) - -/* Return registers */ -#define GP_ARG_RETURN GP_ARG_MIN_REG -#define FP_ARG_RETURN FP_ARG_MIN_REG -#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2) - -/* Flags for the call/call_value rtl operations set up by function_arg */ -#define CALL_NORMAL 0x00000000 /* no special processing */ -/* Bits in 0x00000001 are unused. */ -#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */ -#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */ -#define CALL_LONG 0x00000008 /* always call indirect */ -#define CALL_LIBCALL 0x00000010 /* libcall */ - -/* We don't have prologue and epilogue functions to save/restore - everything for most ABIs. */ -#define WORLD_SAVE_P(INFO) 0 - -/* 1 if N is a possible register number for a function value - as seen by the caller. - - On RS/6000, this is r3, fp1, and v2 (for AltiVec). */ -#define FUNCTION_VALUE_REGNO_P(N) \ - ((N) == GP_ARG_RETURN \ - || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \ - || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)) - -/* 1 if N is a possible register number for function argument passing. - On RS/6000, these are r3-r10 and fp1-fp13. - On AltiVec, v2 - v13 are used for passing vectors. */ -#define FUNCTION_ARG_REGNO_P(N) \ - ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \ - || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \ - && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \ - || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \ - && TARGET_HARD_FLOAT && TARGET_FPRS)) - -/* Define a data type for recording info about an argument list - during the scan of that argument list. This data type should - hold all necessary information about the function itself - and about the args processed so far, enough to enable macros - such as FUNCTION_ARG to determine where the next arg should go. - - On the RS/6000, this is a structure. The first element is the number of - total argument words, the second is used to store the next - floating-point register number, and the third says how many more args we - have prototype types for. - - For ABI_V4, we treat these slightly differently -- `sysv_gregno' is - the next available GP register, `fregno' is the next available FP - register, and `words' is the number of words used on the stack. - - The varargs/stdarg support requires that this structure's size - be a multiple of sizeof(int). */ - -typedef struct rs6000_args -{ - int words; /* # words used for passing GP registers */ - int fregno; /* next available FP register */ - int vregno; /* next available AltiVec register */ - int nargs_prototype; /* # args left in the current prototype */ - int prototype; /* Whether a prototype was defined */ - int stdarg; /* Whether function is a stdarg function. */ - int call_cookie; /* Do special things for this call */ - int sysv_gregno; /* next available GP register */ - int intoffset; /* running offset in struct (darwin64) */ - int use_stack; /* any part of struct on stack (darwin64) */ - int named; /* false for varargs params */ -} CUMULATIVE_ARGS; - -/* Initialize a variable CUM of type CUMULATIVE_ARGS - for a call to a function whose data type is FNTYPE. - For a library call, FNTYPE is 0. */ - -#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ - init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS) - -/* Similar, but when scanning the definition of a procedure. We always - set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */ - -#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \ - init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000) - -/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */ - -#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \ - init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0) - -/* Update the data in CUM to advance over an argument - of mode MODE and data type TYPE. - (TYPE is null for libcalls where that information may not be available.) */ - -#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ - function_arg_advance (&CUM, MODE, TYPE, NAMED, 0) - -/* Determine where to put an argument to a function. - Value is zero to push the argument on the stack, - or a hard register in which to store the argument. - - MODE is the argument's machine mode. - TYPE is the data type of the argument (as a tree). - This is null for libcalls where that information may - not be available. - CUM is a variable of type CUMULATIVE_ARGS which gives info about - the preceding args and about the function being called. - NAMED is nonzero if this argument is a named parameter - (otherwise it is an extra parameter matching an ellipsis). - - On RS/6000 the first eight words of non-FP are normally in registers - and the rest are pushed. The first 13 FP args are in registers. - - If this is floating-point and no prototype is specified, we use - both an FP and integer register (or possibly FP reg and stack). Library - functions (when TYPE is zero) always have the proper types for args, - so we can pass the FP value just in one register. emit_library_function - doesn't support EXPR_LIST anyway. */ - -#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ - function_arg (&CUM, MODE, TYPE, NAMED) - -/* If defined, a C expression which determines whether, and in which - direction, to pad out an argument with extra space. The value - should be of type `enum direction': either `upward' to pad above - the argument, `downward' to pad below, or `none' to inhibit - padding. */ - -#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE) - -/* If defined, a C expression that gives the alignment boundary, in bits, - of an argument with the specified mode and type. If it is not defined, - PARM_BOUNDARY is used for all arguments. */ - -#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ - function_arg_boundary (MODE, TYPE) - -/* Implement `va_start' for varargs and stdarg. */ -#define EXPAND_BUILTIN_VA_START(valist, nextarg) \ - rs6000_va_start (valist, nextarg) - -#define PAD_VARARGS_DOWN \ - (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward) - -/* Output assembler code to FILE to increment profiler label # LABELNO - for profiling a function entry. */ - -#define FUNCTION_PROFILER(FILE, LABELNO) \ - output_function_profiler ((FILE), (LABELNO)); - -/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, - the stack pointer does not matter. No definition is equivalent to - always zero. - - On the RS/6000, this is nonzero because we can restore the stack from - its backpointer, which we maintain. */ -#define EXIT_IGNORE_STACK 1 - -/* Define this macro as a C expression that is nonzero for registers - that are used by the epilogue or the return' pattern. The stack - and frame pointer registers are already be assumed to be used as - needed. */ - -#define EPILOGUE_USES(REGNO) \ - ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \ - || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \ - || (current_function_calls_eh_return \ - && TARGET_AIX \ - && (REGNO) == 2)) - - -/* TRAMPOLINE_TEMPLATE deleted */ - -/* Length in units of the trampoline for entering a nested function. */ - -#define TRAMPOLINE_SIZE rs6000_trampoline_size () - -/* Emit RTL insns to initialize the variable parts of a trampoline. - FNADDR is an RTX for the address of the function's pure code. - CXT is an RTX for the static chain value for the function. */ - -#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \ - rs6000_initialize_trampoline (ADDR, FNADDR, CXT) - -/* Definitions for __builtin_return_address and __builtin_frame_address. - __builtin_return_address (0) should give link register (65), enable - this. */ -/* This should be uncommented, so that the link register is used, but - currently this would result in unmatched insns and spilling fixed - registers so we'll leave it for another day. When these problems are - taken care of one additional fetch will be necessary in RETURN_ADDR_RTX. - (mrs) */ -/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */ - -/* Number of bytes into the frame return addresses can be found. See - rs6000_stack_info in rs6000.c for more information on how the different - abi's store the return address. */ -#define RETURN_ADDRESS_OFFSET \ - ((DEFAULT_ABI == ABI_AIX \ - || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \ - (DEFAULT_ABI == ABI_V4) ? 4 : \ - (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0)) - -/* The current return address is in link register (65). The return address - of anything farther back is accessed normally at an offset of 8 from the - frame pointer. */ -#define RETURN_ADDR_RTX(COUNT, FRAME) \ - (rs6000_return_addr (COUNT, FRAME)) - - -/* Definitions for register eliminations. - - We have two registers that can be eliminated on the RS/6000. First, the - frame pointer register can often be eliminated in favor of the stack - pointer register. Secondly, the argument pointer register can always be - eliminated; it is replaced with either the stack or frame pointer. - - In addition, we use the elimination mechanism to see if r30 is needed - Initially we assume that it isn't. If it is, we spill it. This is done - by making it an eliminable register. We replace it with itself so that - if it isn't needed, then existing uses won't be modified. */ - -/* This is an array of structures. Each structure initializes one pair - of eliminable registers. The "from" register number is given first, - followed by "to". Eliminations of the same "from" register are listed - in order of preference. */ -#define ELIMINABLE_REGS \ -{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ - { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ - { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } } - -/* Given FROM and TO register numbers, say whether this elimination is allowed. - Frame pointer elimination is automatically handled. - - For the RS/6000, if frame pointer elimination is being done, we would like - to convert ap into fp, not sp. - - We need r30 if -mminimal-toc was specified, and there are constant pool - references. */ - -#define CAN_ELIMINATE(FROM, TO) \ - ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \ - ? ! frame_pointer_needed \ - : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \ - ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \ - : 1) - -/* Define the offset between two registers, one to be eliminated, and the other - its replacement, at the start of a routine. */ -#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ - ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO)) - -/* Addressing modes, and classification of registers for them. */ - -#define HAVE_PRE_DECREMENT 1 -#define HAVE_PRE_INCREMENT 1 - -/* Macros to check register numbers against specific register classes. */ - -/* These assume that REGNO is a hard or pseudo reg number. - They give nonzero only if REGNO is a hard reg of the suitable class - or a pseudo reg currently allocated to a suitable hard reg. - Since they use reg_renumber, they are safe only once reg_renumber - has been allocated, which happens in local-alloc.c. */ - -#define REGNO_OK_FOR_INDEX_P(REGNO) \ -((REGNO) < FIRST_PSEUDO_REGISTER \ - ? (REGNO) <= 31 || (REGNO) == 67 \ - || (REGNO) == FRAME_POINTER_REGNUM \ - : (reg_renumber[REGNO] >= 0 \ - && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \ - || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) - -#define REGNO_OK_FOR_BASE_P(REGNO) \ -((REGNO) < FIRST_PSEUDO_REGISTER \ - ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \ - || (REGNO) == FRAME_POINTER_REGNUM \ - : (reg_renumber[REGNO] > 0 \ - && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \ - || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) - -/* Maximum number of registers that can appear in a valid memory address. */ - -#define MAX_REGS_PER_ADDRESS 2 - -/* Recognize any constant value that is a valid address. */ - -#define CONSTANT_ADDRESS_P(X) \ - (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ - || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ - || GET_CODE (X) == HIGH) - -/* Nonzero if the constant value X is a legitimate general operand. - It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. - - On the RS/6000, all integer constants are acceptable, most won't be valid - for particular insns, though. Only easy FP constants are - acceptable. */ - -#define LEGITIMATE_CONSTANT_P(X) \ - (((GET_CODE (X) != CONST_DOUBLE \ - && GET_CODE (X) != CONST_VECTOR) \ - || GET_MODE (X) == VOIDmode \ - || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \ - || easy_fp_constant (X, GET_MODE (X)) \ - || easy_vector_constant (X, GET_MODE (X))) \ - && !rs6000_tls_referenced_p (X)) - -#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15) -#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \ - && EASY_VECTOR_15((n) >> 1) \ - && ((n) & 1) == 0) - -/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx - and check its validity for a certain class. - We have two alternate definitions for each of them. - The usual definition accepts all pseudo regs; the other rejects - them unless they have been allocated suitable hard regs. - The symbol REG_OK_STRICT causes the latter definition to be used. - - Most source files want to accept pseudo regs in the hope that - they will get allocated to the class that the insn wants them to be in. - Source files for reload pass need to be strict. - After reload, it makes no difference, since pseudo regs have - been eliminated by then. */ - -#ifdef REG_OK_STRICT -# define REG_OK_STRICT_FLAG 1 -#else -# define REG_OK_STRICT_FLAG 0 -#endif - -/* Nonzero if X is a hard reg that can be used as an index - or if it is a pseudo reg in the non-strict case. */ -#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \ - ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \ - || REGNO_OK_FOR_INDEX_P (REGNO (X))) - -/* Nonzero if X is a hard reg that can be used as a base reg - or if it is a pseudo reg in the non-strict case. */ -#define INT_REG_OK_FOR_BASE_P(X, STRICT) \ - ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \ - || REGNO_OK_FOR_BASE_P (REGNO (X))) - -#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG) -#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG) - -/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression - that is a valid memory address for an instruction. - The MODE argument is the machine mode for the MEM expression - that wants to use this address. - - On the RS/6000, there are four valid addresses: a SYMBOL_REF that - refers to a constant pool entry of an address (or the sum of it - plus a constant), a short (16-bit signed) constant plus a register, - the sum of two registers, or a register indirect, possibly with an - auto-increment. For DFmode and DImode with a constant plus register, - we must ensure that both words are addressable or PowerPC64 with offset - word aligned. - - For modes spanning multiple registers (DFmode in 32-bit GPRs, - 32-bit DImode, TImode), indexed addressing cannot be used because - adjacent memory cells are accessed by adding word-sized offsets - during assembly output. */ - -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \ - goto ADDR; \ -} - -/* Try machine-dependent ways of modifying an illegitimate address - to be legitimate. If we find one, return the new, valid address. - This macro is used in only one place: `memory_address' in explow.c. - - OLDX is the address as it was before break_out_memory_refs was called. - In some cases it is useful to look at this to decide what needs to be done. - - MODE and WIN are passed so that this macro can use - GO_IF_LEGITIMATE_ADDRESS. - - It is always safe for this macro to do nothing. It exists to recognize - opportunities to optimize the output. - - On RS/6000, first check for the sum of a register with a constant - integer that is out of range. If so, generate code to add the - constant with the low-order 16 bits masked to the register and force - this result into another register (this can be done with `cau'). - Then generate an address of REG+(CONST&0xffff), allowing for the - possibility of bit 16 being a one. - - Then check for the sum of a register and something not constant, try to - load the other things into a register and return the sum. */ - -#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ -{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \ - if (result != NULL_RTX) \ - { \ - (X) = result; \ - goto WIN; \ - } \ -} - -/* Try a machine-dependent way of reloading an illegitimate address - operand. If we find one, push the reload and jump to WIN. This - macro is used in only one place: `find_reloads_address' in reload.c. - - Implemented on rs6000 by rs6000_legitimize_reload_address. - Note that (X) is evaluated twice; this is safe in current usage. */ - -#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \ -do { \ - int win; \ - (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \ - (int)(TYPE), (IND_LEVELS), &win); \ - if ( win ) \ - goto WIN; \ -} while (0) - -/* Go to LABEL if ADDR (a legitimate address expression) - has an effect that depends on the machine mode it is used for. */ - -#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ -do { \ - if (rs6000_mode_dependent_address (ADDR)) \ - goto LABEL; \ -} while (0) - -/* The register number of the register used to address a table of - static data addresses in memory. In some cases this register is - defined by a processor's "application binary interface" (ABI). - When this macro is defined, RTL is generated for this register - once, as with the stack pointer and frame pointer registers. If - this macro is not defined, it is up to the machine-dependent files - to allocate such a register (if necessary). */ - -#define RS6000_PIC_OFFSET_TABLE_REGNUM 30 -#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM) - -#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2) - -/* Define this macro if the register defined by - `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define - this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */ - -/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */ - -/* A C expression that is nonzero if X is a legitimate immediate - operand on the target machine when generating position independent - code. You can assume that X satisfies `CONSTANT_P', so you need - not check this. You can also assume FLAG_PIC is true, so you need - not check it either. You need not define this macro if all - constants (including `SYMBOL_REF') can be immediate operands when - generating position independent code. */ - -/* #define LEGITIMATE_PIC_OPERAND_P (X) */ - -/* Define this if some processing needs to be done immediately before - emitting code for an insn. */ - -/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */ - -/* Specify the machine mode that this machine uses - for the index in the tablejump instruction. */ -#define CASE_VECTOR_MODE SImode - -/* Define as C expression which evaluates to nonzero if the tablejump - instruction expects the table to contain offsets from the address of the - table. - Do not define this if the table should contain absolute addresses. */ -#define CASE_VECTOR_PC_RELATIVE 1 - -/* Define this as 1 if `char' should by default be signed; else as 0. */ -#define DEFAULT_SIGNED_CHAR 0 - -/* This flag, if defined, says the same insns that convert to a signed fixnum - also convert validly to an unsigned one. */ - -/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */ - -/* An integer expression for the size in bits of the largest integer machine - mode that should actually be used. */ - -/* Allow pairs of registers to be used, which is the intent of the default. */ -#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode) - -/* Max number of bytes we can move from memory to memory - in one reasonably fast instruction. */ -#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8) -#define MAX_MOVE_MAX 8 - -/* Nonzero if access to memory by bytes is no faster than for words. - Also nonzero if doing byte operations (specifically shifts) in registers - is undesirable. */ -#define SLOW_BYTE_ACCESS 1 - -/* Define if operations between registers always perform the operation - on the full register even if a narrower mode is specified. */ -#define WORD_REGISTER_OPERATIONS - -/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD - will either zero-extend or sign-extend. The value of this macro should - be the code that says which one of the two operations is implicitly - done, UNKNOWN if none. */ -#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND - -/* Define if loading short immediate values into registers sign extends. */ -#define SHORT_IMMEDIATES_SIGN_EXTEND - -/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits - is done just by pretending it is already truncated. */ -#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 - -/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */ -#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ - ((VALUE) = ((MODE) == SImode ? 32 : 64)) - -/* The CTZ patterns return -1 for input of zero. */ -#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1) - -/* Specify the machine mode that pointers have. - After generation of rtl, the compiler makes no further distinction - between pointers and any other objects of this machine mode. */ -#define Pmode (TARGET_32BIT ? SImode : DImode) - -/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */ -#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode) - -/* Mode of a function address in a call instruction (for indexing purposes). - Doesn't matter on RS/6000. */ -#define FUNCTION_MODE SImode - -/* Define this if addresses of constant functions - shouldn't be put through pseudo regs where they can be cse'd. - Desirable on machines where ordinary constants are expensive - but a CALL with constant address is cheap. */ -#define NO_FUNCTION_CSE - -/* Define this to be nonzero if shift instructions ignore all but the low-order - few bits. - - The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED - have been dropped from the PowerPC architecture. */ - -#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0) - -/* Adjust the length of an INSN. LENGTH is the currently-computed length and - should be adjusted to reflect any required changes. This macro is used when - there is some systematic length adjustment required that would be difficult - to express in the length attribute. */ - -/* #define ADJUST_INSN_LENGTH(X,LENGTH) */ - -/* Given a comparison code (EQ, NE, etc.) and the first operand of a - COMPARE, return the mode to be used for the comparison. For - floating-point, CCFPmode should be used. CCUNSmode should be used - for unsigned comparisons. CCEQmode should be used when we are - doing an inequality comparison on the result of a - comparison. CCmode should be used in all other cases. */ - -#define SELECT_CC_MODE(OP,X,Y) \ - (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \ - : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \ - : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \ - ? CCEQmode : CCmode)) - -/* Can the condition code MODE be safely reversed? This is safe in - all cases on this port, because at present it doesn't use the - trapping FP comparisons (fcmpo). */ -#define REVERSIBLE_CC_MODE(MODE) 1 - -/* Given a condition code and a mode, return the inverse condition. */ -#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE) - -/* Define the information needed to generate branch and scc insns. This is - stored from the compare operation. */ - -extern GTY(()) rtx rs6000_compare_op0; -extern GTY(()) rtx rs6000_compare_op1; -extern int rs6000_compare_fp_p; - -/* Control the assembler format that we output. */ - -/* A C string constant describing how to begin a comment in the target - assembler language. The compiler assumes that the comment will end at - the end of the line. */ -#define ASM_COMMENT_START " #" - -/* Flag to say the TOC is initialized */ -extern int toc_initialized; - -/* Macro to output a special constant pool entry. Go to WIN if we output - it. Otherwise, it is written the usual way. - - On the RS/6000, toc entries are handled this way. */ - -#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \ -{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \ - { \ - output_toc (FILE, X, LABELNO, MODE); \ - goto WIN; \ - } \ -} - -#ifdef HAVE_GAS_WEAK -#define RS6000_WEAK 1 -#else -#define RS6000_WEAK 0 -#endif - -#if RS6000_WEAK -/* Used in lieu of ASM_WEAKEN_LABEL. */ -#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \ - do \ - { \ - fputs ("\t.weak\t", (FILE)); \ - RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ - if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ - && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ - { \ - if (TARGET_XCOFF) \ - fputs ("[DS]", (FILE)); \ - fputs ("\n\t.weak\t.", (FILE)); \ - RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ - } \ - fputc ('\n', (FILE)); \ - if (VAL) \ - { \ - ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \ - if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ - && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ - { \ - fputs ("\t.set\t.", (FILE)); \ - RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ - fputs (",.", (FILE)); \ - RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \ - fputc ('\n', (FILE)); \ - } \ - } \ - } \ - while (0) -#endif - -#if HAVE_GAS_WEAKREF -#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \ - do \ - { \ - fputs ("\t.weakref\t", (FILE)); \ - RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ - fputs (", ", (FILE)); \ - RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ - if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ - && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ - { \ - fputs ("\n\t.weakref\t.", (FILE)); \ - RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ - fputs (", .", (FILE)); \ - RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ - } \ - fputc ('\n', (FILE)); \ - } while (0) -#endif - -/* This implements the `alias' attribute. */ -#undef ASM_OUTPUT_DEF_FROM_DECLS -#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \ - do \ - { \ - const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \ - const char *name = IDENTIFIER_POINTER (TARGET); \ - if (TREE_CODE (DECL) == FUNCTION_DECL \ - && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ - { \ - if (TREE_PUBLIC (DECL)) \ - { \ - if (!RS6000_WEAK || !DECL_WEAK (DECL)) \ - { \ - fputs ("\t.globl\t.", FILE); \ - RS6000_OUTPUT_BASENAME (FILE, alias); \ - putc ('\n', FILE); \ - } \ - } \ - else if (TARGET_XCOFF) \ - { \ - fputs ("\t.lglobl\t.", FILE); \ - RS6000_OUTPUT_BASENAME (FILE, alias); \ - putc ('\n', FILE); \ - } \ - fputs ("\t.set\t.", FILE); \ - RS6000_OUTPUT_BASENAME (FILE, alias); \ - fputs (",.", FILE); \ - RS6000_OUTPUT_BASENAME (FILE, name); \ - fputc ('\n', FILE); \ - } \ - ASM_OUTPUT_DEF (FILE, alias, name); \ - } \ - while (0) - -#define TARGET_ASM_FILE_START rs6000_file_start - -/* Output to assembler file text saying following lines - may contain character constants, extra white space, comments, etc. */ - -#define ASM_APP_ON "" - -/* Output to assembler file text saying following lines - no longer contain unusual constructs. */ - -#define ASM_APP_OFF "" - -/* How to refer to registers in assembler output. - This sequence is indexed by compiler's hard-register-number (see above). */ - -extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */ - -#define REGISTER_NAMES \ -{ \ - &rs6000_reg_names[ 0][0], /* r0 */ \ - &rs6000_reg_names[ 1][0], /* r1 */ \ - &rs6000_reg_names[ 2][0], /* r2 */ \ - &rs6000_reg_names[ 3][0], /* r3 */ \ - &rs6000_reg_names[ 4][0], /* r4 */ \ - &rs6000_reg_names[ 5][0], /* r5 */ \ - &rs6000_reg_names[ 6][0], /* r6 */ \ - &rs6000_reg_names[ 7][0], /* r7 */ \ - &rs6000_reg_names[ 8][0], /* r8 */ \ - &rs6000_reg_names[ 9][0], /* r9 */ \ - &rs6000_reg_names[10][0], /* r10 */ \ - &rs6000_reg_names[11][0], /* r11 */ \ - &rs6000_reg_names[12][0], /* r12 */ \ - &rs6000_reg_names[13][0], /* r13 */ \ - &rs6000_reg_names[14][0], /* r14 */ \ - &rs6000_reg_names[15][0], /* r15 */ \ - &rs6000_reg_names[16][0], /* r16 */ \ - &rs6000_reg_names[17][0], /* r17 */ \ - &rs6000_reg_names[18][0], /* r18 */ \ - &rs6000_reg_names[19][0], /* r19 */ \ - &rs6000_reg_names[20][0], /* r20 */ \ - &rs6000_reg_names[21][0], /* r21 */ \ - &rs6000_reg_names[22][0], /* r22 */ \ - &rs6000_reg_names[23][0], /* r23 */ \ - &rs6000_reg_names[24][0], /* r24 */ \ - &rs6000_reg_names[25][0], /* r25 */ \ - &rs6000_reg_names[26][0], /* r26 */ \ - &rs6000_reg_names[27][0], /* r27 */ \ - &rs6000_reg_names[28][0], /* r28 */ \ - &rs6000_reg_names[29][0], /* r29 */ \ - &rs6000_reg_names[30][0], /* r30 */ \ - &rs6000_reg_names[31][0], /* r31 */ \ - \ - &rs6000_reg_names[32][0], /* fr0 */ \ - &rs6000_reg_names[33][0], /* fr1 */ \ - &rs6000_reg_names[34][0], /* fr2 */ \ - &rs6000_reg_names[35][0], /* fr3 */ \ - &rs6000_reg_names[36][0], /* fr4 */ \ - &rs6000_reg_names[37][0], /* fr5 */ \ - &rs6000_reg_names[38][0], /* fr6 */ \ - &rs6000_reg_names[39][0], /* fr7 */ \ - &rs6000_reg_names[40][0], /* fr8 */ \ - &rs6000_reg_names[41][0], /* fr9 */ \ - &rs6000_reg_names[42][0], /* fr10 */ \ - &rs6000_reg_names[43][0], /* fr11 */ \ - &rs6000_reg_names[44][0], /* fr12 */ \ - &rs6000_reg_names[45][0], /* fr13 */ \ - &rs6000_reg_names[46][0], /* fr14 */ \ - &rs6000_reg_names[47][0], /* fr15 */ \ - &rs6000_reg_names[48][0], /* fr16 */ \ - &rs6000_reg_names[49][0], /* fr17 */ \ - &rs6000_reg_names[50][0], /* fr18 */ \ - &rs6000_reg_names[51][0], /* fr19 */ \ - &rs6000_reg_names[52][0], /* fr20 */ \ - &rs6000_reg_names[53][0], /* fr21 */ \ - &rs6000_reg_names[54][0], /* fr22 */ \ - &rs6000_reg_names[55][0], /* fr23 */ \ - &rs6000_reg_names[56][0], /* fr24 */ \ - &rs6000_reg_names[57][0], /* fr25 */ \ - &rs6000_reg_names[58][0], /* fr26 */ \ - &rs6000_reg_names[59][0], /* fr27 */ \ - &rs6000_reg_names[60][0], /* fr28 */ \ - &rs6000_reg_names[61][0], /* fr29 */ \ - &rs6000_reg_names[62][0], /* fr30 */ \ - &rs6000_reg_names[63][0], /* fr31 */ \ - \ - &rs6000_reg_names[64][0], /* mq */ \ - &rs6000_reg_names[65][0], /* lr */ \ - &rs6000_reg_names[66][0], /* ctr */ \ - &rs6000_reg_names[67][0], /* ap */ \ - \ - &rs6000_reg_names[68][0], /* cr0 */ \ - &rs6000_reg_names[69][0], /* cr1 */ \ - &rs6000_reg_names[70][0], /* cr2 */ \ - &rs6000_reg_names[71][0], /* cr3 */ \ - &rs6000_reg_names[72][0], /* cr4 */ \ - &rs6000_reg_names[73][0], /* cr5 */ \ - &rs6000_reg_names[74][0], /* cr6 */ \ - &rs6000_reg_names[75][0], /* cr7 */ \ - \ - &rs6000_reg_names[76][0], /* xer */ \ - \ - &rs6000_reg_names[77][0], /* v0 */ \ - &rs6000_reg_names[78][0], /* v1 */ \ - &rs6000_reg_names[79][0], /* v2 */ \ - &rs6000_reg_names[80][0], /* v3 */ \ - &rs6000_reg_names[81][0], /* v4 */ \ - &rs6000_reg_names[82][0], /* v5 */ \ - &rs6000_reg_names[83][0], /* v6 */ \ - &rs6000_reg_names[84][0], /* v7 */ \ - &rs6000_reg_names[85][0], /* v8 */ \ - &rs6000_reg_names[86][0], /* v9 */ \ - &rs6000_reg_names[87][0], /* v10 */ \ - &rs6000_reg_names[88][0], /* v11 */ \ - &rs6000_reg_names[89][0], /* v12 */ \ - &rs6000_reg_names[90][0], /* v13 */ \ - &rs6000_reg_names[91][0], /* v14 */ \ - &rs6000_reg_names[92][0], /* v15 */ \ - &rs6000_reg_names[93][0], /* v16 */ \ - &rs6000_reg_names[94][0], /* v17 */ \ - &rs6000_reg_names[95][0], /* v18 */ \ - &rs6000_reg_names[96][0], /* v19 */ \ - &rs6000_reg_names[97][0], /* v20 */ \ - &rs6000_reg_names[98][0], /* v21 */ \ - &rs6000_reg_names[99][0], /* v22 */ \ - &rs6000_reg_names[100][0], /* v23 */ \ - &rs6000_reg_names[101][0], /* v24 */ \ - &rs6000_reg_names[102][0], /* v25 */ \ - &rs6000_reg_names[103][0], /* v26 */ \ - &rs6000_reg_names[104][0], /* v27 */ \ - &rs6000_reg_names[105][0], /* v28 */ \ - &rs6000_reg_names[106][0], /* v29 */ \ - &rs6000_reg_names[107][0], /* v30 */ \ - &rs6000_reg_names[108][0], /* v31 */ \ - &rs6000_reg_names[109][0], /* vrsave */ \ - &rs6000_reg_names[110][0], /* vscr */ \ - &rs6000_reg_names[111][0], /* spe_acc */ \ - &rs6000_reg_names[112][0], /* spefscr */ \ - &rs6000_reg_names[113][0], /* sfp */ \ -} - -/* Table of additional register names to use in user input. */ - -#define ADDITIONAL_REGISTER_NAMES \ - {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \ - {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \ - {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \ - {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \ - {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \ - {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \ - {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \ - {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \ - {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \ - {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \ - {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \ - {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \ - {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \ - {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \ - {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \ - {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \ - {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \ - {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \ - {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \ - {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \ - {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \ - {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \ - {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \ - {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \ - {"vrsave", 109}, {"vscr", 110}, \ - {"spe_acc", 111}, {"spefscr", 112}, \ - /* no additional names for: mq, lr, ctr, ap */ \ - {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \ - {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \ - {"cc", 68}, {"sp", 1}, {"toc", 2} } - -/* Text to write out after a CALL that may be replaced by glue code by - the loader. This depends on the AIX version. */ -#define RS6000_CALL_GLUE "cror 31,31,31" - -/* This is how to output an element of a case-vector that is relative. */ - -#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ - do { char buf[100]; \ - fputs ("\t.long ", FILE); \ - ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ - assemble_name (FILE, buf); \ - putc ('-', FILE); \ - ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \ - assemble_name (FILE, buf); \ - putc ('\n', FILE); \ - } while (0) - -/* This is how to output an assembler line - that says to advance the location counter - to a multiple of 2**LOG bytes. */ - -#define ASM_OUTPUT_ALIGN(FILE,LOG) \ - if ((LOG) != 0) \ - fprintf (FILE, "\t.align %d\n", (LOG)) - -/* Pick up the return address upon entry to a procedure. Used for - dwarf2 unwind information. This also enables the table driven - mechanism. */ - -#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM) -#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM) - -/* Describe how we implement __builtin_eh_return. */ -#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM) -#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10) - -/* Print operand X (an rtx) in assembler syntax to file FILE. - CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. - For `%' followed by punctuation, CODE is the punctuation and X is null. */ - -#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) - -/* Define which CODE values are valid. */ - -#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ - ((CODE) == '.' || (CODE) == '&') - -/* Print a memory address as an operand to reference that memory location. */ - -#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) - -/* uncomment for disabling the corresponding default options */ -/* #define MACHINE_no_sched_interblock */ -/* #define MACHINE_no_sched_speculative */ -/* #define MACHINE_no_sched_speculative_load */ - -/* General flags. */ -extern int flag_pic; -extern int optimize; -extern int flag_expensive_optimizations; -extern int frame_pointer_needed; - -enum rs6000_builtins -{ - /* AltiVec builtins. */ - ALTIVEC_BUILTIN_ST_INTERNAL_4si, - ALTIVEC_BUILTIN_LD_INTERNAL_4si, - ALTIVEC_BUILTIN_ST_INTERNAL_8hi, - ALTIVEC_BUILTIN_LD_INTERNAL_8hi, - ALTIVEC_BUILTIN_ST_INTERNAL_16qi, - ALTIVEC_BUILTIN_LD_INTERNAL_16qi, - ALTIVEC_BUILTIN_ST_INTERNAL_4sf, - ALTIVEC_BUILTIN_LD_INTERNAL_4sf, - ALTIVEC_BUILTIN_VADDUBM, - ALTIVEC_BUILTIN_VADDUHM, - ALTIVEC_BUILTIN_VADDUWM, - ALTIVEC_BUILTIN_VADDFP, - ALTIVEC_BUILTIN_VADDCUW, - ALTIVEC_BUILTIN_VADDUBS, - ALTIVEC_BUILTIN_VADDSBS, - ALTIVEC_BUILTIN_VADDUHS, - ALTIVEC_BUILTIN_VADDSHS, - ALTIVEC_BUILTIN_VADDUWS, - ALTIVEC_BUILTIN_VADDSWS, - ALTIVEC_BUILTIN_VAND, - ALTIVEC_BUILTIN_VANDC, - ALTIVEC_BUILTIN_VAVGUB, - ALTIVEC_BUILTIN_VAVGSB, - ALTIVEC_BUILTIN_VAVGUH, - ALTIVEC_BUILTIN_VAVGSH, - ALTIVEC_BUILTIN_VAVGUW, - ALTIVEC_BUILTIN_VAVGSW, - ALTIVEC_BUILTIN_VCFUX, - ALTIVEC_BUILTIN_VCFSX, - ALTIVEC_BUILTIN_VCTSXS, - ALTIVEC_BUILTIN_VCTUXS, - ALTIVEC_BUILTIN_VCMPBFP, - ALTIVEC_BUILTIN_VCMPEQUB, - ALTIVEC_BUILTIN_VCMPEQUH, - ALTIVEC_BUILTIN_VCMPEQUW, - ALTIVEC_BUILTIN_VCMPEQFP, - ALTIVEC_BUILTIN_VCMPGEFP, - ALTIVEC_BUILTIN_VCMPGTUB, - ALTIVEC_BUILTIN_VCMPGTSB, - ALTIVEC_BUILTIN_VCMPGTUH, - ALTIVEC_BUILTIN_VCMPGTSH, - ALTIVEC_BUILTIN_VCMPGTUW, - ALTIVEC_BUILTIN_VCMPGTSW, - ALTIVEC_BUILTIN_VCMPGTFP, - ALTIVEC_BUILTIN_VEXPTEFP, - ALTIVEC_BUILTIN_VLOGEFP, - ALTIVEC_BUILTIN_VMADDFP, - ALTIVEC_BUILTIN_VMAXUB, - ALTIVEC_BUILTIN_VMAXSB, - ALTIVEC_BUILTIN_VMAXUH, - ALTIVEC_BUILTIN_VMAXSH, - ALTIVEC_BUILTIN_VMAXUW, - ALTIVEC_BUILTIN_VMAXSW, - ALTIVEC_BUILTIN_VMAXFP, - ALTIVEC_BUILTIN_VMHADDSHS, - ALTIVEC_BUILTIN_VMHRADDSHS, - ALTIVEC_BUILTIN_VMLADDUHM, - ALTIVEC_BUILTIN_VMRGHB, - ALTIVEC_BUILTIN_VMRGHH, - ALTIVEC_BUILTIN_VMRGHW, - ALTIVEC_BUILTIN_VMRGLB, - ALTIVEC_BUILTIN_VMRGLH, - ALTIVEC_BUILTIN_VMRGLW, - ALTIVEC_BUILTIN_VMSUMUBM, - ALTIVEC_BUILTIN_VMSUMMBM, - ALTIVEC_BUILTIN_VMSUMUHM, - ALTIVEC_BUILTIN_VMSUMSHM, - ALTIVEC_BUILTIN_VMSUMUHS, - ALTIVEC_BUILTIN_VMSUMSHS, - ALTIVEC_BUILTIN_VMINUB, - ALTIVEC_BUILTIN_VMINSB, - ALTIVEC_BUILTIN_VMINUH, - ALTIVEC_BUILTIN_VMINSH, - ALTIVEC_BUILTIN_VMINUW, - ALTIVEC_BUILTIN_VMINSW, - ALTIVEC_BUILTIN_VMINFP, - ALTIVEC_BUILTIN_VMULEUB, - ALTIVEC_BUILTIN_VMULESB, - ALTIVEC_BUILTIN_VMULEUH, - ALTIVEC_BUILTIN_VMULESH, - ALTIVEC_BUILTIN_VMULOUB, - ALTIVEC_BUILTIN_VMULOSB, - ALTIVEC_BUILTIN_VMULOUH, - ALTIVEC_BUILTIN_VMULOSH, - ALTIVEC_BUILTIN_VNMSUBFP, - ALTIVEC_BUILTIN_VNOR, - ALTIVEC_BUILTIN_VOR, - ALTIVEC_BUILTIN_VSEL_4SI, - ALTIVEC_BUILTIN_VSEL_4SF, - ALTIVEC_BUILTIN_VSEL_8HI, - ALTIVEC_BUILTIN_VSEL_16QI, - ALTIVEC_BUILTIN_VPERM_4SI, - ALTIVEC_BUILTIN_VPERM_4SF, - ALTIVEC_BUILTIN_VPERM_8HI, - ALTIVEC_BUILTIN_VPERM_16QI, - ALTIVEC_BUILTIN_VPKUHUM, - ALTIVEC_BUILTIN_VPKUWUM, - ALTIVEC_BUILTIN_VPKPX, - ALTIVEC_BUILTIN_VPKUHSS, - ALTIVEC_BUILTIN_VPKSHSS, - ALTIVEC_BUILTIN_VPKUWSS, - ALTIVEC_BUILTIN_VPKSWSS, - ALTIVEC_BUILTIN_VPKUHUS, - ALTIVEC_BUILTIN_VPKSHUS, - ALTIVEC_BUILTIN_VPKUWUS, - ALTIVEC_BUILTIN_VPKSWUS, - ALTIVEC_BUILTIN_VREFP, - ALTIVEC_BUILTIN_VRFIM, - ALTIVEC_BUILTIN_VRFIN, - ALTIVEC_BUILTIN_VRFIP, - ALTIVEC_BUILTIN_VRFIZ, - ALTIVEC_BUILTIN_VRLB, - ALTIVEC_BUILTIN_VRLH, - ALTIVEC_BUILTIN_VRLW, - ALTIVEC_BUILTIN_VRSQRTEFP, - ALTIVEC_BUILTIN_VSLB, - ALTIVEC_BUILTIN_VSLH, - ALTIVEC_BUILTIN_VSLW, - ALTIVEC_BUILTIN_VSL, - ALTIVEC_BUILTIN_VSLO, - ALTIVEC_BUILTIN_VSPLTB, - ALTIVEC_BUILTIN_VSPLTH, - ALTIVEC_BUILTIN_VSPLTW, - ALTIVEC_BUILTIN_VSPLTISB, - ALTIVEC_BUILTIN_VSPLTISH, - ALTIVEC_BUILTIN_VSPLTISW, - ALTIVEC_BUILTIN_VSRB, - ALTIVEC_BUILTIN_VSRH, - ALTIVEC_BUILTIN_VSRW, - ALTIVEC_BUILTIN_VSRAB, - ALTIVEC_BUILTIN_VSRAH, - ALTIVEC_BUILTIN_VSRAW, - ALTIVEC_BUILTIN_VSR, - ALTIVEC_BUILTIN_VSRO, - ALTIVEC_BUILTIN_VSUBUBM, - ALTIVEC_BUILTIN_VSUBUHM, - ALTIVEC_BUILTIN_VSUBUWM, - ALTIVEC_BUILTIN_VSUBFP, - ALTIVEC_BUILTIN_VSUBCUW, - ALTIVEC_BUILTIN_VSUBUBS, - ALTIVEC_BUILTIN_VSUBSBS, - ALTIVEC_BUILTIN_VSUBUHS, - ALTIVEC_BUILTIN_VSUBSHS, - ALTIVEC_BUILTIN_VSUBUWS, - ALTIVEC_BUILTIN_VSUBSWS, - ALTIVEC_BUILTIN_VSUM4UBS, - ALTIVEC_BUILTIN_VSUM4SBS, - ALTIVEC_BUILTIN_VSUM4SHS, - ALTIVEC_BUILTIN_VSUM2SWS, - ALTIVEC_BUILTIN_VSUMSWS, - ALTIVEC_BUILTIN_VXOR, - ALTIVEC_BUILTIN_VSLDOI_16QI, - ALTIVEC_BUILTIN_VSLDOI_8HI, - ALTIVEC_BUILTIN_VSLDOI_4SI, - ALTIVEC_BUILTIN_VSLDOI_4SF, - ALTIVEC_BUILTIN_VUPKHSB, - ALTIVEC_BUILTIN_VUPKHPX, - ALTIVEC_BUILTIN_VUPKHSH, - ALTIVEC_BUILTIN_VUPKLSB, - ALTIVEC_BUILTIN_VUPKLPX, - ALTIVEC_BUILTIN_VUPKLSH, - ALTIVEC_BUILTIN_MTVSCR, - ALTIVEC_BUILTIN_MFVSCR, - ALTIVEC_BUILTIN_DSSALL, - ALTIVEC_BUILTIN_DSS, - ALTIVEC_BUILTIN_LVSL, - ALTIVEC_BUILTIN_LVSR, - ALTIVEC_BUILTIN_DSTT, - ALTIVEC_BUILTIN_DSTST, - ALTIVEC_BUILTIN_DSTSTT, - ALTIVEC_BUILTIN_DST, - ALTIVEC_BUILTIN_LVEBX, - ALTIVEC_BUILTIN_LVEHX, - ALTIVEC_BUILTIN_LVEWX, - ALTIVEC_BUILTIN_LVXL, - ALTIVEC_BUILTIN_LVX, - ALTIVEC_BUILTIN_STVX, - ALTIVEC_BUILTIN_STVEBX, - ALTIVEC_BUILTIN_STVEHX, - ALTIVEC_BUILTIN_STVEWX, - ALTIVEC_BUILTIN_STVXL, - ALTIVEC_BUILTIN_VCMPBFP_P, - ALTIVEC_BUILTIN_VCMPEQFP_P, - ALTIVEC_BUILTIN_VCMPEQUB_P, - ALTIVEC_BUILTIN_VCMPEQUH_P, - ALTIVEC_BUILTIN_VCMPEQUW_P, - ALTIVEC_BUILTIN_VCMPGEFP_P, - ALTIVEC_BUILTIN_VCMPGTFP_P, - ALTIVEC_BUILTIN_VCMPGTSB_P, - ALTIVEC_BUILTIN_VCMPGTSH_P, - ALTIVEC_BUILTIN_VCMPGTSW_P, - ALTIVEC_BUILTIN_VCMPGTUB_P, - ALTIVEC_BUILTIN_VCMPGTUH_P, - ALTIVEC_BUILTIN_VCMPGTUW_P, - ALTIVEC_BUILTIN_ABSS_V4SI, - ALTIVEC_BUILTIN_ABSS_V8HI, - ALTIVEC_BUILTIN_ABSS_V16QI, - ALTIVEC_BUILTIN_ABS_V4SI, - ALTIVEC_BUILTIN_ABS_V4SF, - ALTIVEC_BUILTIN_ABS_V8HI, - ALTIVEC_BUILTIN_ABS_V16QI, - ALTIVEC_BUILTIN_MASK_FOR_LOAD, - ALTIVEC_BUILTIN_MASK_FOR_STORE, - ALTIVEC_BUILTIN_VEC_INIT_V4SI, - ALTIVEC_BUILTIN_VEC_INIT_V8HI, - ALTIVEC_BUILTIN_VEC_INIT_V16QI, - ALTIVEC_BUILTIN_VEC_INIT_V4SF, - ALTIVEC_BUILTIN_VEC_SET_V4SI, - ALTIVEC_BUILTIN_VEC_SET_V8HI, - ALTIVEC_BUILTIN_VEC_SET_V16QI, - ALTIVEC_BUILTIN_VEC_SET_V4SF, - ALTIVEC_BUILTIN_VEC_EXT_V4SI, - ALTIVEC_BUILTIN_VEC_EXT_V8HI, - ALTIVEC_BUILTIN_VEC_EXT_V16QI, - ALTIVEC_BUILTIN_VEC_EXT_V4SF, - - /* Altivec overloaded builtins. */ - ALTIVEC_BUILTIN_VCMPEQ_P, - ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P, - ALTIVEC_BUILTIN_VCMPGT_P, - ALTIVEC_BUILTIN_VCMPGE_P, - ALTIVEC_BUILTIN_VEC_ABS, - ALTIVEC_BUILTIN_VEC_ABSS, - ALTIVEC_BUILTIN_VEC_ADD, - ALTIVEC_BUILTIN_VEC_ADDC, - ALTIVEC_BUILTIN_VEC_ADDS, - ALTIVEC_BUILTIN_VEC_AND, - ALTIVEC_BUILTIN_VEC_ANDC, - ALTIVEC_BUILTIN_VEC_AVG, - ALTIVEC_BUILTIN_VEC_CEIL, - ALTIVEC_BUILTIN_VEC_CMPB, - ALTIVEC_BUILTIN_VEC_CMPEQ, - ALTIVEC_BUILTIN_VEC_CMPEQUB, - ALTIVEC_BUILTIN_VEC_CMPEQUH, - ALTIVEC_BUILTIN_VEC_CMPEQUW, - ALTIVEC_BUILTIN_VEC_CMPGE, - ALTIVEC_BUILTIN_VEC_CMPGT, - ALTIVEC_BUILTIN_VEC_CMPLE, - ALTIVEC_BUILTIN_VEC_CMPLT, - ALTIVEC_BUILTIN_VEC_CTF, - ALTIVEC_BUILTIN_VEC_CTS, - ALTIVEC_BUILTIN_VEC_CTU, - ALTIVEC_BUILTIN_VEC_DST, - ALTIVEC_BUILTIN_VEC_DSTST, - ALTIVEC_BUILTIN_VEC_DSTSTT, - ALTIVEC_BUILTIN_VEC_DSTT, - ALTIVEC_BUILTIN_VEC_EXPTE, - ALTIVEC_BUILTIN_VEC_FLOOR, - ALTIVEC_BUILTIN_VEC_LD, - ALTIVEC_BUILTIN_VEC_LDE, - ALTIVEC_BUILTIN_VEC_LDL, - ALTIVEC_BUILTIN_VEC_LOGE, - ALTIVEC_BUILTIN_VEC_LVEBX, - ALTIVEC_BUILTIN_VEC_LVEHX, - ALTIVEC_BUILTIN_VEC_LVEWX, - ALTIVEC_BUILTIN_VEC_LVSL, - ALTIVEC_BUILTIN_VEC_LVSR, - ALTIVEC_BUILTIN_VEC_MADD, - ALTIVEC_BUILTIN_VEC_MADDS, - ALTIVEC_BUILTIN_VEC_MAX, - ALTIVEC_BUILTIN_VEC_MERGEH, - ALTIVEC_BUILTIN_VEC_MERGEL, - ALTIVEC_BUILTIN_VEC_MIN, - ALTIVEC_BUILTIN_VEC_MLADD, - ALTIVEC_BUILTIN_VEC_MPERM, - ALTIVEC_BUILTIN_VEC_MRADDS, - ALTIVEC_BUILTIN_VEC_MRGHB, - ALTIVEC_BUILTIN_VEC_MRGHH, - ALTIVEC_BUILTIN_VEC_MRGHW, - ALTIVEC_BUILTIN_VEC_MRGLB, - ALTIVEC_BUILTIN_VEC_MRGLH, - ALTIVEC_BUILTIN_VEC_MRGLW, - ALTIVEC_BUILTIN_VEC_MSUM, - ALTIVEC_BUILTIN_VEC_MSUMS, - ALTIVEC_BUILTIN_VEC_MTVSCR, - ALTIVEC_BUILTIN_VEC_MULE, - ALTIVEC_BUILTIN_VEC_MULO, - ALTIVEC_BUILTIN_VEC_NMSUB, - ALTIVEC_BUILTIN_VEC_NOR, - ALTIVEC_BUILTIN_VEC_OR, - ALTIVEC_BUILTIN_VEC_PACK, - ALTIVEC_BUILTIN_VEC_PACKPX, - ALTIVEC_BUILTIN_VEC_PACKS, - ALTIVEC_BUILTIN_VEC_PACKSU, - ALTIVEC_BUILTIN_VEC_PERM, - ALTIVEC_BUILTIN_VEC_RE, - ALTIVEC_BUILTIN_VEC_RL, - ALTIVEC_BUILTIN_VEC_ROUND, - ALTIVEC_BUILTIN_VEC_RSQRTE, - ALTIVEC_BUILTIN_VEC_SEL, - ALTIVEC_BUILTIN_VEC_SL, - ALTIVEC_BUILTIN_VEC_SLD, - ALTIVEC_BUILTIN_VEC_SLL, - ALTIVEC_BUILTIN_VEC_SLO, - ALTIVEC_BUILTIN_VEC_SPLAT, - ALTIVEC_BUILTIN_VEC_SPLAT_S16, - ALTIVEC_BUILTIN_VEC_SPLAT_S32, - ALTIVEC_BUILTIN_VEC_SPLAT_S8, - ALTIVEC_BUILTIN_VEC_SPLAT_U16, - ALTIVEC_BUILTIN_VEC_SPLAT_U32, - ALTIVEC_BUILTIN_VEC_SPLAT_U8, - ALTIVEC_BUILTIN_VEC_SPLTB, - ALTIVEC_BUILTIN_VEC_SPLTH, - ALTIVEC_BUILTIN_VEC_SPLTW, - ALTIVEC_BUILTIN_VEC_SR, - ALTIVEC_BUILTIN_VEC_SRA, - ALTIVEC_BUILTIN_VEC_SRL, - ALTIVEC_BUILTIN_VEC_SRO, - ALTIVEC_BUILTIN_VEC_ST, - ALTIVEC_BUILTIN_VEC_STE, - ALTIVEC_BUILTIN_VEC_STL, - ALTIVEC_BUILTIN_VEC_STVEBX, - ALTIVEC_BUILTIN_VEC_STVEHX, - ALTIVEC_BUILTIN_VEC_STVEWX, - ALTIVEC_BUILTIN_VEC_SUB, - ALTIVEC_BUILTIN_VEC_SUBC, - ALTIVEC_BUILTIN_VEC_SUBS, - ALTIVEC_BUILTIN_VEC_SUM2S, - ALTIVEC_BUILTIN_VEC_SUM4S, - ALTIVEC_BUILTIN_VEC_SUMS, - ALTIVEC_BUILTIN_VEC_TRUNC, - ALTIVEC_BUILTIN_VEC_UNPACKH, - ALTIVEC_BUILTIN_VEC_UNPACKL, - ALTIVEC_BUILTIN_VEC_VADDFP, - ALTIVEC_BUILTIN_VEC_VADDSBS, - ALTIVEC_BUILTIN_VEC_VADDSHS, - ALTIVEC_BUILTIN_VEC_VADDSWS, - ALTIVEC_BUILTIN_VEC_VADDUBM, - ALTIVEC_BUILTIN_VEC_VADDUBS, - ALTIVEC_BUILTIN_VEC_VADDUHM, - ALTIVEC_BUILTIN_VEC_VADDUHS, - ALTIVEC_BUILTIN_VEC_VADDUWM, - ALTIVEC_BUILTIN_VEC_VADDUWS, - ALTIVEC_BUILTIN_VEC_VAVGSB, - ALTIVEC_BUILTIN_VEC_VAVGSH, - ALTIVEC_BUILTIN_VEC_VAVGSW, - ALTIVEC_BUILTIN_VEC_VAVGUB, - ALTIVEC_BUILTIN_VEC_VAVGUH, - ALTIVEC_BUILTIN_VEC_VAVGUW, - ALTIVEC_BUILTIN_VEC_VCFSX, - ALTIVEC_BUILTIN_VEC_VCFUX, - ALTIVEC_BUILTIN_VEC_VCMPEQFP, - ALTIVEC_BUILTIN_VEC_VCMPEQUB, - ALTIVEC_BUILTIN_VEC_VCMPEQUH, - ALTIVEC_BUILTIN_VEC_VCMPEQUW, - ALTIVEC_BUILTIN_VEC_VCMPGTFP, - ALTIVEC_BUILTIN_VEC_VCMPGTSB, - ALTIVEC_BUILTIN_VEC_VCMPGTSH, - ALTIVEC_BUILTIN_VEC_VCMPGTSW, - ALTIVEC_BUILTIN_VEC_VCMPGTUB, - ALTIVEC_BUILTIN_VEC_VCMPGTUH, - ALTIVEC_BUILTIN_VEC_VCMPGTUW, - ALTIVEC_BUILTIN_VEC_VMAXFP, - ALTIVEC_BUILTIN_VEC_VMAXSB, - ALTIVEC_BUILTIN_VEC_VMAXSH, - ALTIVEC_BUILTIN_VEC_VMAXSW, - ALTIVEC_BUILTIN_VEC_VMAXUB, - ALTIVEC_BUILTIN_VEC_VMAXUH, - ALTIVEC_BUILTIN_VEC_VMAXUW, - ALTIVEC_BUILTIN_VEC_VMINFP, - ALTIVEC_BUILTIN_VEC_VMINSB, - ALTIVEC_BUILTIN_VEC_VMINSH, - ALTIVEC_BUILTIN_VEC_VMINSW, - ALTIVEC_BUILTIN_VEC_VMINUB, - ALTIVEC_BUILTIN_VEC_VMINUH, - ALTIVEC_BUILTIN_VEC_VMINUW, - ALTIVEC_BUILTIN_VEC_VMRGHB, - ALTIVEC_BUILTIN_VEC_VMRGHH, - ALTIVEC_BUILTIN_VEC_VMRGHW, - ALTIVEC_BUILTIN_VEC_VMRGLB, - ALTIVEC_BUILTIN_VEC_VMRGLH, - ALTIVEC_BUILTIN_VEC_VMRGLW, - ALTIVEC_BUILTIN_VEC_VMSUMMBM, - ALTIVEC_BUILTIN_VEC_VMSUMSHM, - ALTIVEC_BUILTIN_VEC_VMSUMSHS, - ALTIVEC_BUILTIN_VEC_VMSUMUBM, - ALTIVEC_BUILTIN_VEC_VMSUMUHM, - ALTIVEC_BUILTIN_VEC_VMSUMUHS, - ALTIVEC_BUILTIN_VEC_VMULESB, - ALTIVEC_BUILTIN_VEC_VMULESH, - ALTIVEC_BUILTIN_VEC_VMULEUB, - ALTIVEC_BUILTIN_VEC_VMULEUH, - ALTIVEC_BUILTIN_VEC_VMULOSB, - ALTIVEC_BUILTIN_VEC_VMULOSH, - ALTIVEC_BUILTIN_VEC_VMULOUB, - ALTIVEC_BUILTIN_VEC_VMULOUH, - ALTIVEC_BUILTIN_VEC_VPKSHSS, - ALTIVEC_BUILTIN_VEC_VPKSHUS, - ALTIVEC_BUILTIN_VEC_VPKSWSS, - ALTIVEC_BUILTIN_VEC_VPKSWUS, - ALTIVEC_BUILTIN_VEC_VPKUHUM, - ALTIVEC_BUILTIN_VEC_VPKUHUS, - ALTIVEC_BUILTIN_VEC_VPKUWUM, - ALTIVEC_BUILTIN_VEC_VPKUWUS, - ALTIVEC_BUILTIN_VEC_VRLB, - ALTIVEC_BUILTIN_VEC_VRLH, - ALTIVEC_BUILTIN_VEC_VRLW, - ALTIVEC_BUILTIN_VEC_VSLB, - ALTIVEC_BUILTIN_VEC_VSLH, - ALTIVEC_BUILTIN_VEC_VSLW, - ALTIVEC_BUILTIN_VEC_VSPLTB, - ALTIVEC_BUILTIN_VEC_VSPLTH, - ALTIVEC_BUILTIN_VEC_VSPLTW, - ALTIVEC_BUILTIN_VEC_VSRAB, - ALTIVEC_BUILTIN_VEC_VSRAH, - ALTIVEC_BUILTIN_VEC_VSRAW, - ALTIVEC_BUILTIN_VEC_VSRB, - ALTIVEC_BUILTIN_VEC_VSRH, - ALTIVEC_BUILTIN_VEC_VSRW, - ALTIVEC_BUILTIN_VEC_VSUBFP, - ALTIVEC_BUILTIN_VEC_VSUBSBS, - ALTIVEC_BUILTIN_VEC_VSUBSHS, - ALTIVEC_BUILTIN_VEC_VSUBSWS, - ALTIVEC_BUILTIN_VEC_VSUBUBM, - ALTIVEC_BUILTIN_VEC_VSUBUBS, - ALTIVEC_BUILTIN_VEC_VSUBUHM, - ALTIVEC_BUILTIN_VEC_VSUBUHS, - ALTIVEC_BUILTIN_VEC_VSUBUWM, - ALTIVEC_BUILTIN_VEC_VSUBUWS, - ALTIVEC_BUILTIN_VEC_VSUM4SBS, - ALTIVEC_BUILTIN_VEC_VSUM4SHS, - ALTIVEC_BUILTIN_VEC_VSUM4UBS, - ALTIVEC_BUILTIN_VEC_VUPKHPX, - ALTIVEC_BUILTIN_VEC_VUPKHSB, - ALTIVEC_BUILTIN_VEC_VUPKHSH, - ALTIVEC_BUILTIN_VEC_VUPKLPX, - ALTIVEC_BUILTIN_VEC_VUPKLSB, - ALTIVEC_BUILTIN_VEC_VUPKLSH, - ALTIVEC_BUILTIN_VEC_XOR, - ALTIVEC_BUILTIN_VEC_STEP, - ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_STEP, - - /* SPE builtins. */ - SPE_BUILTIN_EVADDW, - SPE_BUILTIN_EVAND, - SPE_BUILTIN_EVANDC, - SPE_BUILTIN_EVDIVWS, - SPE_BUILTIN_EVDIVWU, - SPE_BUILTIN_EVEQV, - SPE_BUILTIN_EVFSADD, - SPE_BUILTIN_EVFSDIV, - SPE_BUILTIN_EVFSMUL, - SPE_BUILTIN_EVFSSUB, - SPE_BUILTIN_EVLDDX, - SPE_BUILTIN_EVLDHX, - SPE_BUILTIN_EVLDWX, - SPE_BUILTIN_EVLHHESPLATX, - SPE_BUILTIN_EVLHHOSSPLATX, - SPE_BUILTIN_EVLHHOUSPLATX, - SPE_BUILTIN_EVLWHEX, - SPE_BUILTIN_EVLWHOSX, - SPE_BUILTIN_EVLWHOUX, - SPE_BUILTIN_EVLWHSPLATX, - SPE_BUILTIN_EVLWWSPLATX, - SPE_BUILTIN_EVMERGEHI, - SPE_BUILTIN_EVMERGEHILO, - SPE_BUILTIN_EVMERGELO, - SPE_BUILTIN_EVMERGELOHI, - SPE_BUILTIN_EVMHEGSMFAA, - SPE_BUILTIN_EVMHEGSMFAN, - SPE_BUILTIN_EVMHEGSMIAA, - SPE_BUILTIN_EVMHEGSMIAN, - SPE_BUILTIN_EVMHEGUMIAA, - SPE_BUILTIN_EVMHEGUMIAN, - SPE_BUILTIN_EVMHESMF, - SPE_BUILTIN_EVMHESMFA, - SPE_BUILTIN_EVMHESMFAAW, - SPE_BUILTIN_EVMHESMFANW, - SPE_BUILTIN_EVMHESMI, - SPE_BUILTIN_EVMHESMIA, - SPE_BUILTIN_EVMHESMIAAW, - SPE_BUILTIN_EVMHESMIANW, - SPE_BUILTIN_EVMHESSF, - SPE_BUILTIN_EVMHESSFA, - SPE_BUILTIN_EVMHESSFAAW, - SPE_BUILTIN_EVMHESSFANW, - SPE_BUILTIN_EVMHESSIAAW, - SPE_BUILTIN_EVMHESSIANW, - SPE_BUILTIN_EVMHEUMI, - SPE_BUILTIN_EVMHEUMIA, - SPE_BUILTIN_EVMHEUMIAAW, - SPE_BUILTIN_EVMHEUMIANW, - SPE_BUILTIN_EVMHEUSIAAW, - SPE_BUILTIN_EVMHEUSIANW, - SPE_BUILTIN_EVMHOGSMFAA, - SPE_BUILTIN_EVMHOGSMFAN, - SPE_BUILTIN_EVMHOGSMIAA, - SPE_BUILTIN_EVMHOGSMIAN, - SPE_BUILTIN_EVMHOGUMIAA, - SPE_BUILTIN_EVMHOGUMIAN, - SPE_BUILTIN_EVMHOSMF, - SPE_BUILTIN_EVMHOSMFA, - SPE_BUILTIN_EVMHOSMFAAW, - SPE_BUILTIN_EVMHOSMFANW, - SPE_BUILTIN_EVMHOSMI, - SPE_BUILTIN_EVMHOSMIA, - SPE_BUILTIN_EVMHOSMIAAW, - SPE_BUILTIN_EVMHOSMIANW, - SPE_BUILTIN_EVMHOSSF, - SPE_BUILTIN_EVMHOSSFA, - SPE_BUILTIN_EVMHOSSFAAW, - SPE_BUILTIN_EVMHOSSFANW, - SPE_BUILTIN_EVMHOSSIAAW, - SPE_BUILTIN_EVMHOSSIANW, - SPE_BUILTIN_EVMHOUMI, - SPE_BUILTIN_EVMHOUMIA, - SPE_BUILTIN_EVMHOUMIAAW, - SPE_BUILTIN_EVMHOUMIANW, - SPE_BUILTIN_EVMHOUSIAAW, - SPE_BUILTIN_EVMHOUSIANW, - SPE_BUILTIN_EVMWHSMF, - SPE_BUILTIN_EVMWHSMFA, - SPE_BUILTIN_EVMWHSMI, - SPE_BUILTIN_EVMWHSMIA, - SPE_BUILTIN_EVMWHSSF, - SPE_BUILTIN_EVMWHSSFA, - SPE_BUILTIN_EVMWHUMI, - SPE_BUILTIN_EVMWHUMIA, - SPE_BUILTIN_EVMWLSMIAAW, - SPE_BUILTIN_EVMWLSMIANW, - SPE_BUILTIN_EVMWLSSIAAW, - SPE_BUILTIN_EVMWLSSIANW, - SPE_BUILTIN_EVMWLUMI, - SPE_BUILTIN_EVMWLUMIA, - SPE_BUILTIN_EVMWLUMIAAW, - SPE_BUILTIN_EVMWLUMIANW, - SPE_BUILTIN_EVMWLUSIAAW, - SPE_BUILTIN_EVMWLUSIANW, - SPE_BUILTIN_EVMWSMF, - SPE_BUILTIN_EVMWSMFA, - SPE_BUILTIN_EVMWSMFAA, - SPE_BUILTIN_EVMWSMFAN, - SPE_BUILTIN_EVMWSMI, - SPE_BUILTIN_EVMWSMIA, - SPE_BUILTIN_EVMWSMIAA, - SPE_BUILTIN_EVMWSMIAN, - SPE_BUILTIN_EVMWHSSFAA, - SPE_BUILTIN_EVMWSSF, - SPE_BUILTIN_EVMWSSFA, - SPE_BUILTIN_EVMWSSFAA, - SPE_BUILTIN_EVMWSSFAN, - SPE_BUILTIN_EVMWUMI, - SPE_BUILTIN_EVMWUMIA, - SPE_BUILTIN_EVMWUMIAA, - SPE_BUILTIN_EVMWUMIAN, - SPE_BUILTIN_EVNAND, - SPE_BUILTIN_EVNOR, - SPE_BUILTIN_EVOR, - SPE_BUILTIN_EVORC, - SPE_BUILTIN_EVRLW, - SPE_BUILTIN_EVSLW, - SPE_BUILTIN_EVSRWS, - SPE_BUILTIN_EVSRWU, - SPE_BUILTIN_EVSTDDX, - SPE_BUILTIN_EVSTDHX, - SPE_BUILTIN_EVSTDWX, - SPE_BUILTIN_EVSTWHEX, - SPE_BUILTIN_EVSTWHOX, - SPE_BUILTIN_EVSTWWEX, - SPE_BUILTIN_EVSTWWOX, - SPE_BUILTIN_EVSUBFW, - SPE_BUILTIN_EVXOR, - SPE_BUILTIN_EVABS, - SPE_BUILTIN_EVADDSMIAAW, - SPE_BUILTIN_EVADDSSIAAW, - SPE_BUILTIN_EVADDUMIAAW, - SPE_BUILTIN_EVADDUSIAAW, - SPE_BUILTIN_EVCNTLSW, - SPE_BUILTIN_EVCNTLZW, - SPE_BUILTIN_EVEXTSB, - SPE_BUILTIN_EVEXTSH, - SPE_BUILTIN_EVFSABS, - SPE_BUILTIN_EVFSCFSF, - SPE_BUILTIN_EVFSCFSI, - SPE_BUILTIN_EVFSCFUF, - SPE_BUILTIN_EVFSCFUI, - SPE_BUILTIN_EVFSCTSF, - SPE_BUILTIN_EVFSCTSI, - SPE_BUILTIN_EVFSCTSIZ, - SPE_BUILTIN_EVFSCTUF, - SPE_BUILTIN_EVFSCTUI, - SPE_BUILTIN_EVFSCTUIZ, - SPE_BUILTIN_EVFSNABS, - SPE_BUILTIN_EVFSNEG, - SPE_BUILTIN_EVMRA, - SPE_BUILTIN_EVNEG, - SPE_BUILTIN_EVRNDW, - SPE_BUILTIN_EVSUBFSMIAAW, - SPE_BUILTIN_EVSUBFSSIAAW, - SPE_BUILTIN_EVSUBFUMIAAW, - SPE_BUILTIN_EVSUBFUSIAAW, - SPE_BUILTIN_EVADDIW, - SPE_BUILTIN_EVLDD, - SPE_BUILTIN_EVLDH, - SPE_BUILTIN_EVLDW, - SPE_BUILTIN_EVLHHESPLAT, - SPE_BUILTIN_EVLHHOSSPLAT, - SPE_BUILTIN_EVLHHOUSPLAT, - SPE_BUILTIN_EVLWHE, - SPE_BUILTIN_EVLWHOS, - SPE_BUILTIN_EVLWHOU, - SPE_BUILTIN_EVLWHSPLAT, - SPE_BUILTIN_EVLWWSPLAT, - SPE_BUILTIN_EVRLWI, - SPE_BUILTIN_EVSLWI, - SPE_BUILTIN_EVSRWIS, - SPE_BUILTIN_EVSRWIU, - SPE_BUILTIN_EVSTDD, - SPE_BUILTIN_EVSTDH, - SPE_BUILTIN_EVSTDW, - SPE_BUILTIN_EVSTWHE, - SPE_BUILTIN_EVSTWHO, - SPE_BUILTIN_EVSTWWE, - SPE_BUILTIN_EVSTWWO, - SPE_BUILTIN_EVSUBIFW, - - /* Compares. */ - SPE_BUILTIN_EVCMPEQ, - SPE_BUILTIN_EVCMPGTS, - SPE_BUILTIN_EVCMPGTU, - SPE_BUILTIN_EVCMPLTS, - SPE_BUILTIN_EVCMPLTU, - SPE_BUILTIN_EVFSCMPEQ, - SPE_BUILTIN_EVFSCMPGT, - SPE_BUILTIN_EVFSCMPLT, - SPE_BUILTIN_EVFSTSTEQ, - SPE_BUILTIN_EVFSTSTGT, - SPE_BUILTIN_EVFSTSTLT, - - /* EVSEL compares. */ - SPE_BUILTIN_EVSEL_CMPEQ, - SPE_BUILTIN_EVSEL_CMPGTS, - SPE_BUILTIN_EVSEL_CMPGTU, - SPE_BUILTIN_EVSEL_CMPLTS, - SPE_BUILTIN_EVSEL_CMPLTU, - SPE_BUILTIN_EVSEL_FSCMPEQ, - SPE_BUILTIN_EVSEL_FSCMPGT, - SPE_BUILTIN_EVSEL_FSCMPLT, - SPE_BUILTIN_EVSEL_FSTSTEQ, - SPE_BUILTIN_EVSEL_FSTSTGT, - SPE_BUILTIN_EVSEL_FSTSTLT, - - SPE_BUILTIN_EVSPLATFI, - SPE_BUILTIN_EVSPLATI, - SPE_BUILTIN_EVMWHSSMAA, - SPE_BUILTIN_EVMWHSMFAA, - SPE_BUILTIN_EVMWHSMIAA, - SPE_BUILTIN_EVMWHUSIAA, - SPE_BUILTIN_EVMWHUMIAA, - SPE_BUILTIN_EVMWHSSFAN, - SPE_BUILTIN_EVMWHSSIAN, - SPE_BUILTIN_EVMWHSMFAN, - SPE_BUILTIN_EVMWHSMIAN, - SPE_BUILTIN_EVMWHUSIAN, - SPE_BUILTIN_EVMWHUMIAN, - SPE_BUILTIN_EVMWHGSSFAA, - SPE_BUILTIN_EVMWHGSMFAA, - SPE_BUILTIN_EVMWHGSMIAA, - SPE_BUILTIN_EVMWHGUMIAA, - SPE_BUILTIN_EVMWHGSSFAN, - SPE_BUILTIN_EVMWHGSMFAN, - SPE_BUILTIN_EVMWHGSMIAN, - SPE_BUILTIN_EVMWHGUMIAN, - SPE_BUILTIN_MTSPEFSCR, - SPE_BUILTIN_MFSPEFSCR, - SPE_BUILTIN_BRINC, - - RS6000_BUILTIN_COUNT -}; - -enum rs6000_builtin_type_index -{ - RS6000_BTI_NOT_OPAQUE, - RS6000_BTI_opaque_V2SI, - RS6000_BTI_opaque_V2SF, - RS6000_BTI_opaque_p_V2SI, - RS6000_BTI_opaque_V4SI, - RS6000_BTI_V16QI, - RS6000_BTI_V2SI, - RS6000_BTI_V2SF, - RS6000_BTI_V4HI, - RS6000_BTI_V4SI, - RS6000_BTI_V4SF, - RS6000_BTI_V8HI, - RS6000_BTI_unsigned_V16QI, - RS6000_BTI_unsigned_V8HI, - RS6000_BTI_unsigned_V4SI, - RS6000_BTI_bool_char, /* __bool char */ - RS6000_BTI_bool_short, /* __bool short */ - RS6000_BTI_bool_int, /* __bool int */ - RS6000_BTI_pixel, /* __pixel */ - RS6000_BTI_bool_V16QI, /* __vector __bool char */ - RS6000_BTI_bool_V8HI, /* __vector __bool short */ - RS6000_BTI_bool_V4SI, /* __vector __bool int */ - RS6000_BTI_pixel_V8HI, /* __vector __pixel */ - RS6000_BTI_long, /* long_integer_type_node */ - RS6000_BTI_unsigned_long, /* long_unsigned_type_node */ - RS6000_BTI_INTQI, /* intQI_type_node */ - RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */ - RS6000_BTI_INTHI, /* intHI_type_node */ - RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */ - RS6000_BTI_INTSI, /* intSI_type_node */ - RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */ - RS6000_BTI_float, /* float_type_node */ - RS6000_BTI_void, /* void_type_node */ - RS6000_BTI_MAX -}; - - -#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI]) -#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF]) -#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI]) -#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI]) -#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI]) -#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI]) -#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF]) -#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI]) -#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI]) -#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF]) -#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI]) -#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI]) -#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI]) -#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI]) -#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char]) -#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short]) -#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int]) -#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel]) -#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI]) -#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI]) -#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI]) -#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI]) - -#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long]) -#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long]) -#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI]) -#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI]) -#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI]) -#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI]) -#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI]) -#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI]) -#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float]) -#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void]) - -extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX]; -extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT]; - |