diff options
Diffstat (limited to 'contrib/gcc/config/i386/i386.h')
-rw-r--r-- | contrib/gcc/config/i386/i386.h | 2327 |
1 files changed, 0 insertions, 2327 deletions
diff --git a/contrib/gcc/config/i386/i386.h b/contrib/gcc/config/i386/i386.h deleted file mode 100644 index 4a303f61521f..000000000000 --- a/contrib/gcc/config/i386/i386.h +++ /dev/null @@ -1,2327 +0,0 @@ -/* Definitions of target machine for GCC for IA-32. - Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, - 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. - -This file is part of GCC. - -GCC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GCC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to -the Free Software Foundation, 51 Franklin Street, Fifth Floor, -Boston, MA 02110-1301, USA. */ - -/* The purpose of this file is to define the characteristics of the i386, - independent of assembler syntax or operating system. - - Three other files build on this one to describe a specific assembler syntax: - bsd386.h, att386.h, and sun386.h. - - The actual tm.h file for a particular system should include - this file, and then the file for the appropriate assembler syntax. - - Many macros that specify assembler syntax are omitted entirely from - this file because they really belong in the files for particular - assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR, - ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many - that start with ASM_ or end in ASM_OP. */ - -/* Define the specific costs for a given cpu */ - -struct processor_costs { - const int add; /* cost of an add instruction */ - const int lea; /* cost of a lea instruction */ - const int shift_var; /* variable shift costs */ - const int shift_const; /* constant shift costs */ - const int mult_init[5]; /* cost of starting a multiply - in QImode, HImode, SImode, DImode, TImode*/ - const int mult_bit; /* cost of multiply per each bit set */ - const int divide[5]; /* cost of a divide/mod - in QImode, HImode, SImode, DImode, TImode*/ - int movsx; /* The cost of movsx operation. */ - int movzx; /* The cost of movzx operation. */ - const int large_insn; /* insns larger than this cost more */ - const int move_ratio; /* The threshold of number of scalar - memory-to-memory move insns. */ - const int movzbl_load; /* cost of loading using movzbl */ - const int int_load[3]; /* cost of loading integer registers - in QImode, HImode and SImode relative - to reg-reg move (2). */ - const int int_store[3]; /* cost of storing integer register - in QImode, HImode and SImode */ - const int fp_move; /* cost of reg,reg fld/fst */ - const int fp_load[3]; /* cost of loading FP register - in SFmode, DFmode and XFmode */ - const int fp_store[3]; /* cost of storing FP register - in SFmode, DFmode and XFmode */ - const int mmx_move; /* cost of moving MMX register. */ - const int mmx_load[2]; /* cost of loading MMX register - in SImode and DImode */ - const int mmx_store[2]; /* cost of storing MMX register - in SImode and DImode */ - const int sse_move; /* cost of moving SSE register. */ - const int sse_load[3]; /* cost of loading SSE register - in SImode, DImode and TImode*/ - const int sse_store[3]; /* cost of storing SSE register - in SImode, DImode and TImode*/ - const int mmxsse_to_integer; /* cost of moving mmxsse register to - integer and vice versa. */ - const int prefetch_block; /* bytes moved to cache for prefetch. */ - const int simultaneous_prefetches; /* number of parallel prefetch - operations. */ - const int branch_cost; /* Default value for BRANCH_COST. */ - const int fadd; /* cost of FADD and FSUB instructions. */ - const int fmul; /* cost of FMUL instruction. */ - const int fdiv; /* cost of FDIV instruction. */ - const int fabs; /* cost of FABS instruction. */ - const int fchs; /* cost of FCHS instruction. */ - const int fsqrt; /* cost of FSQRT instruction. */ -}; - -extern const struct processor_costs *ix86_cost; - -/* Macros used in the machine description to test the flags. */ - -/* configure can arrange to make this 2, to force a 486. */ - -#ifndef TARGET_CPU_DEFAULT -#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic -#endif - -#ifndef TARGET_FPMATH_DEFAULT -#define TARGET_FPMATH_DEFAULT \ - (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387) -#endif - -#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS - -/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a - compile-time constant. */ -#ifdef IN_LIBGCC2 -#undef TARGET_64BIT -#ifdef __x86_64__ -#define TARGET_64BIT 1 -#else -#define TARGET_64BIT 0 -#endif -#else -#ifndef TARGET_BI_ARCH -#undef TARGET_64BIT -#if TARGET_64BIT_DEFAULT -#define TARGET_64BIT 1 -#else -#define TARGET_64BIT 0 -#endif -#endif -#endif - -#define HAS_LONG_COND_BRANCH 1 -#define HAS_LONG_UNCOND_BRANCH 1 - -#define TARGET_386 (ix86_tune == PROCESSOR_I386) -#define TARGET_486 (ix86_tune == PROCESSOR_I486) -#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM) -#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO) -#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE) -#define TARGET_K6 (ix86_tune == PROCESSOR_K6) -#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON) -#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4) -#define TARGET_K8 (ix86_tune == PROCESSOR_K8) -#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON) -#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA) -#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2) -#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32) -#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64) -#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64) -#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10) - -#define TUNEMASK (1 << ix86_tune) -extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and; -extern const int x86_use_bit_test, x86_cmove, x86_deep_branch; -extern const int x86_branch_hints, x86_unroll_strlen; -extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx; -extern const int x86_use_himode_fiop, x86_use_simode_fiop; -extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write; -extern const int x86_read_modify, x86_split_long_moves; -extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix; -extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs; -extern const int x86_promote_hi_regs, x86_integer_DFmode_moves; -extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8; -extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall; -extern const int x86_accumulate_outgoing_args, x86_prologue_using_move; -extern const int x86_epilogue_using_move, x86_decompose_lea; -extern const int x86_arch_always_fancy_math_387, x86_shift1; -extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs; -extern const int x86_sse_unaligned_move_optimal; -extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor; -extern const int x86_use_ffreep; -extern const int x86_inter_unit_moves, x86_schedule; -extern const int x86_use_bt; -extern const int x86_cmpxchg, x86_cmpxchg8b, x86_xadd; -extern const int x86_use_incdec; -extern const int x86_pad_returns; -extern const int x86_bswap; -extern const int x86_partial_flag_reg_stall; -extern int x86_prefetch_sse, x86_cmpxchg16b; - -#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK) -#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK) -#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK) -#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK) -#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK) -/* For sane SSE instruction set generation we need fcomi instruction. It is - safe to enable all CMOVE instructions. */ -#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE) -#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387) -#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK) -#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK) -#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK) -#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT) -#define TARGET_MOVX (x86_movx & TUNEMASK) -#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK) -#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK) -#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK) -#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK) -#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK) -#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK) -#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK) -#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK) -#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK) -#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK) -#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK) -#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK) -#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK) -#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK) -#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK) -#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK) -#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK) -#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK) -#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK) -#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK) -#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK) -#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK) -#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \ - (x86_sse_partial_reg_dependency & TUNEMASK) -#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \ - (x86_sse_unaligned_move_optimal & TUNEMASK) -#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK) -#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK) -#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK) -#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK) -#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK) -#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK) -#define TARGET_PREFETCH_SSE (x86_prefetch_sse) -#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK) -#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK) -#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK) -#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK) -#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK) -#define TARGET_SCHEDULE (x86_schedule & TUNEMASK) -#define TARGET_USE_BT (x86_use_bt & TUNEMASK) -#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK) -#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK) - -#define ASSEMBLER_DIALECT (ix86_asm_dialect) - -#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0) -#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \ - && (ix86_fpmath & FPMATH_387)) - -#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU) -#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2) -#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS) -#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN) - -#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch)) -#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch)) -#define TARGET_CMPXCHG16B (x86_cmpxchg16b) -#define TARGET_XADD (x86_xadd & (1 << ix86_arch)) -#define TARGET_BSWAP (x86_bswap & (1 << ix86_arch)) - -#ifndef TARGET_64BIT_DEFAULT -#define TARGET_64BIT_DEFAULT 0 -#endif -#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT -#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0 -#endif - -/* Once GDB has been enhanced to deal with functions without frame - pointers, we can change this to allow for elimination of - the frame pointer in leaf functions. */ -#define TARGET_DEFAULT 0 - -/* This is not really a target flag, but is done this way so that - it's analogous to similar code for Mach-O on PowerPC. darwin.h - redefines this to 1. */ -#define TARGET_MACHO 0 - -/* Subtargets may reset this to 1 in order to enable 96-bit long double - with the rounding mode forced to 53 bits. */ -#define TARGET_96_ROUND_53_LONG_DOUBLE 0 - -/* Sometimes certain combinations of command options do not make - sense on a particular target machine. You can define a macro - `OVERRIDE_OPTIONS' to take account of this. This macro, if - defined, is executed once just after all the command options have - been parsed. - - Don't use this macro to turn on various extra optimizations for - `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ - -#define OVERRIDE_OPTIONS override_options () - -/* Define this to change the optimizations performed by default. */ -#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \ - optimization_options ((LEVEL), (SIZE)) - -/* -march=native handling only makes sense with compiler running on - an x86 or x86_64 chip. If changing this condition, also change - the condition in driver-i386.c. */ -#if defined(__i386__) || defined(__x86_64__) -/* In driver-i386.c. */ -extern const char *host_detect_local_cpu (int argc, const char **argv); -#define EXTRA_SPEC_FUNCTIONS \ - { "local_cpu_detect", host_detect_local_cpu }, -#define HAVE_LOCAL_CPU_DETECT -#endif - -/* Support for configure-time defaults of some command line options. - The order here is important so that -march doesn't squash the - tune or cpu values. */ -#define OPTION_DEFAULT_SPECS \ - {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ - {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ - {"arch", "%{!march=*:-march=%(VALUE)}"} - -/* Specs for the compiler proper */ - -#ifndef CC1_CPU_SPEC -#define CC1_CPU_SPEC_1 "\ -%{!mtune*: \ -%{m386:mtune=i386 \ -%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \ -%{m486:-mtune=i486 \ -%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \ -%{mpentium:-mtune=pentium \ -%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \ -%{mpentiumpro:-mtune=pentiumpro \ -%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \ -%{mcpu=*:-mtune=%* \ -%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \ -%<mcpu=* \ -%{mintel-syntax:-masm=intel \ -%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \ -%{mno-intel-syntax:-masm=att \ -%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}" - -#ifndef HAVE_LOCAL_CPU_DETECT -#define CC1_CPU_SPEC CC1_CPU_SPEC_1 -#else -#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \ -"%{march=native:%<march=native %:local_cpu_detect(arch) \ - %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \ -%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}" -#endif -#endif - -/* Target CPU builtins. */ -#define TARGET_CPU_CPP_BUILTINS() \ - do \ - { \ - size_t arch_len = strlen (ix86_arch_string); \ - size_t tune_len = strlen (ix86_tune_string); \ - int last_arch_char = ix86_arch_string[arch_len - 1]; \ - int last_tune_char = ix86_tune_string[tune_len - 1]; \ - \ - if (TARGET_64BIT) \ - { \ - builtin_assert ("cpu=x86_64"); \ - builtin_assert ("machine=x86_64"); \ - builtin_define ("__amd64"); \ - builtin_define ("__amd64__"); \ - builtin_define ("__x86_64"); \ - builtin_define ("__x86_64__"); \ - } \ - else \ - { \ - builtin_assert ("cpu=i386"); \ - builtin_assert ("machine=i386"); \ - builtin_define_std ("i386"); \ - } \ - \ - /* Built-ins based on -mtune= (or -march= if no \ - -mtune= given). */ \ - if (TARGET_386) \ - builtin_define ("__tune_i386__"); \ - else if (TARGET_486) \ - builtin_define ("__tune_i486__"); \ - else if (TARGET_PENTIUM) \ - { \ - builtin_define ("__tune_i586__"); \ - builtin_define ("__tune_pentium__"); \ - if (last_tune_char == 'x') \ - builtin_define ("__tune_pentium_mmx__"); \ - } \ - else if (TARGET_PENTIUMPRO) \ - { \ - builtin_define ("__tune_i686__"); \ - builtin_define ("__tune_pentiumpro__"); \ - switch (last_tune_char) \ - { \ - case '3': \ - builtin_define ("__tune_pentium3__"); \ - /* FALLTHRU */ \ - case '2': \ - builtin_define ("__tune_pentium2__"); \ - break; \ - } \ - } \ - else if (TARGET_GEODE) \ - { \ - builtin_define ("__tune_geode__"); \ - } \ - else if (TARGET_K6) \ - { \ - builtin_define ("__tune_k6__"); \ - if (last_tune_char == '2') \ - builtin_define ("__tune_k6_2__"); \ - else if (last_tune_char == '3') \ - builtin_define ("__tune_k6_3__"); \ - } \ - else if (TARGET_ATHLON) \ - { \ - builtin_define ("__tune_athlon__"); \ - /* Plain "athlon" & "athlon-tbird" lacks SSE. */ \ - if (last_tune_char != 'n' && last_tune_char != 'd') \ - builtin_define ("__tune_athlon_sse__"); \ - } \ - else if (TARGET_K8) \ - builtin_define ("__tune_k8__"); \ - else if (TARGET_AMDFAM10) \ - builtin_define ("__tune_amdfam10__"); \ - else if (TARGET_PENTIUM4) \ - builtin_define ("__tune_pentium4__"); \ - else if (TARGET_NOCONA) \ - builtin_define ("__tune_nocona__"); \ - else if (TARGET_CORE2) \ - builtin_define ("__tune_core2__"); \ - \ - if (TARGET_MMX) \ - builtin_define ("__MMX__"); \ - if (TARGET_3DNOW) \ - builtin_define ("__3dNOW__"); \ - if (TARGET_3DNOW_A) \ - builtin_define ("__3dNOW_A__"); \ - if (TARGET_SSE) \ - builtin_define ("__SSE__"); \ - if (TARGET_SSE2) \ - builtin_define ("__SSE2__"); \ - if (TARGET_SSE3) \ - builtin_define ("__SSE3__"); \ - if (TARGET_SSSE3) \ - builtin_define ("__SSSE3__"); \ - if (TARGET_SSE4A) \ - builtin_define ("__SSE4A__"); \ - if (TARGET_AES) \ - builtin_define ("__AES__"); \ - if (TARGET_SSE_MATH && TARGET_SSE) \ - builtin_define ("__SSE_MATH__"); \ - if (TARGET_SSE_MATH && TARGET_SSE2) \ - builtin_define ("__SSE2_MATH__"); \ - \ - /* Built-ins based on -march=. */ \ - if (ix86_arch == PROCESSOR_I486) \ - { \ - builtin_define ("__i486"); \ - builtin_define ("__i486__"); \ - } \ - else if (ix86_arch == PROCESSOR_PENTIUM) \ - { \ - builtin_define ("__i586"); \ - builtin_define ("__i586__"); \ - builtin_define ("__pentium"); \ - builtin_define ("__pentium__"); \ - if (last_arch_char == 'x') \ - builtin_define ("__pentium_mmx__"); \ - } \ - else if (ix86_arch == PROCESSOR_PENTIUMPRO) \ - { \ - builtin_define ("__i686"); \ - builtin_define ("__i686__"); \ - builtin_define ("__pentiumpro"); \ - builtin_define ("__pentiumpro__"); \ - } \ - else if (ix86_arch == PROCESSOR_GEODE) \ - { \ - builtin_define ("__geode"); \ - builtin_define ("__geode__"); \ - } \ - else if (ix86_arch == PROCESSOR_K6) \ - { \ - \ - builtin_define ("__k6"); \ - builtin_define ("__k6__"); \ - if (last_arch_char == '2') \ - builtin_define ("__k6_2__"); \ - else if (last_arch_char == '3') \ - builtin_define ("__k6_3__"); \ - } \ - else if (ix86_arch == PROCESSOR_ATHLON) \ - { \ - builtin_define ("__athlon"); \ - builtin_define ("__athlon__"); \ - /* Plain "athlon" & "athlon-tbird" lacks SSE. */ \ - if (last_tune_char != 'n' && last_tune_char != 'd') \ - builtin_define ("__athlon_sse__"); \ - } \ - else if (ix86_arch == PROCESSOR_K8) \ - { \ - builtin_define ("__k8"); \ - builtin_define ("__k8__"); \ - } \ - else if (ix86_arch == PROCESSOR_AMDFAM10) \ - { \ - builtin_define ("__amdfam10"); \ - builtin_define ("__amdfam10__"); \ - } \ - else if (ix86_arch == PROCESSOR_PENTIUM4) \ - { \ - builtin_define ("__pentium4"); \ - builtin_define ("__pentium4__"); \ - } \ - else if (ix86_arch == PROCESSOR_NOCONA) \ - { \ - builtin_define ("__nocona"); \ - builtin_define ("__nocona__"); \ - } \ - else if (ix86_arch == PROCESSOR_CORE2) \ - { \ - builtin_define ("__core2"); \ - builtin_define ("__core2__"); \ - } \ - } \ - while (0) - -#define TARGET_CPU_DEFAULT_i386 0 -#define TARGET_CPU_DEFAULT_i486 1 -#define TARGET_CPU_DEFAULT_pentium 2 -#define TARGET_CPU_DEFAULT_pentium_mmx 3 -#define TARGET_CPU_DEFAULT_pentiumpro 4 -#define TARGET_CPU_DEFAULT_pentium2 5 -#define TARGET_CPU_DEFAULT_pentium3 6 -#define TARGET_CPU_DEFAULT_pentium4 7 -#define TARGET_CPU_DEFAULT_geode 8 -#define TARGET_CPU_DEFAULT_k6 9 -#define TARGET_CPU_DEFAULT_k6_2 10 -#define TARGET_CPU_DEFAULT_k6_3 11 -#define TARGET_CPU_DEFAULT_athlon 12 -#define TARGET_CPU_DEFAULT_athlon_sse 13 -#define TARGET_CPU_DEFAULT_k8 14 -#define TARGET_CPU_DEFAULT_pentium_m 15 -#define TARGET_CPU_DEFAULT_prescott 16 -#define TARGET_CPU_DEFAULT_nocona 17 -#define TARGET_CPU_DEFAULT_core2 18 -#define TARGET_CPU_DEFAULT_generic 19 -#define TARGET_CPU_DEFAULT_amdfam10 20 - -#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\ - "pentiumpro", "pentium2", "pentium3", \ - "pentium4", "geode", "k6", "k6-2", "k6-3", \ - "athlon", "athlon-4", "k8", \ - "pentium-m", "prescott", "nocona", \ - "core2", "generic", "amdfam10"} - -#ifndef CC1_SPEC -#define CC1_SPEC "%(cc1_cpu) " -#endif - -/* This macro defines names of additional specifications to put in the - specs that can be used in various specifications like CC1_SPEC. Its - definition is an initializer with a subgrouping for each command option. - - Each subgrouping contains a string constant, that defines the - specification name, and a string constant that used by the GCC driver - program. - - Do not define this macro if it does not need to do anything. */ - -#ifndef SUBTARGET_EXTRA_SPECS -#define SUBTARGET_EXTRA_SPECS -#endif - -#define EXTRA_SPECS \ - { "cc1_cpu", CC1_CPU_SPEC }, \ - SUBTARGET_EXTRA_SPECS - -/* target machine storage layout */ - -#define LONG_DOUBLE_TYPE_SIZE 80 - -/* Set the value of FLT_EVAL_METHOD in float.h. When using only the - FPU, assume that the fpcw is set to extended precision; when using - only SSE, rounding is correct; when using both SSE and the FPU, - the rounding precision is indeterminate, since either may be chosen - apparently at random. */ -#define TARGET_FLT_EVAL_METHOD \ - (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2) - -#define SHORT_TYPE_SIZE 16 -#define INT_TYPE_SIZE 32 -#define FLOAT_TYPE_SIZE 32 -#ifndef LONG_TYPE_SIZE -#define LONG_TYPE_SIZE BITS_PER_WORD -#endif -#define DOUBLE_TYPE_SIZE 64 -#define LONG_LONG_TYPE_SIZE 64 - -#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT -#define MAX_BITS_PER_WORD 64 -#else -#define MAX_BITS_PER_WORD 32 -#endif - -/* Define this if most significant byte of a word is the lowest numbered. */ -/* That is true on the 80386. */ - -#define BITS_BIG_ENDIAN 0 - -/* Define this if most significant byte of a word is the lowest numbered. */ -/* That is not true on the 80386. */ -#define BYTES_BIG_ENDIAN 0 - -/* Define this if most significant word of a multiword number is the lowest - numbered. */ -/* Not true for 80386 */ -#define WORDS_BIG_ENDIAN 0 - -/* Width of a word, in units (bytes). */ -#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) -#ifdef IN_LIBGCC2 -#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) -#else -#define MIN_UNITS_PER_WORD 4 -#endif - -/* Allocation boundary (in *bits*) for storing arguments in argument list. */ -#define PARM_BOUNDARY BITS_PER_WORD - -/* Boundary (in *bits*) on which stack pointer should be aligned. */ -#define STACK_BOUNDARY BITS_PER_WORD - -/* Boundary (in *bits*) on which the stack pointer prefers to be - aligned; the compiler cannot rely on having this alignment. */ -#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary - -/* As of July 2001, many runtimes do not align the stack properly when - entering main. This causes expand_main_function to forcibly align - the stack, which results in aligned frames for functions called from - main, though it does nothing for the alignment of main itself. */ -#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \ - (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT) - -/* Minimum allocation boundary for the code of a function. */ -#define FUNCTION_BOUNDARY 8 - -/* C++ stores the virtual bit in the lowest bit of function pointers. */ -#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn - -/* Alignment of field after `int : 0' in a structure. */ - -#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD - -/* Minimum size in bits of the largest boundary to which any - and all fundamental data types supported by the hardware - might need to be aligned. No data type wants to be aligned - rounder than this. - - Pentium+ prefers DFmode values to be aligned to 64 bit boundary - and Pentium Pro XFmode values at 128 bit boundaries. */ - -#define BIGGEST_ALIGNMENT 128 - -/* Decide whether a variable of mode MODE should be 128 bit aligned. */ -#define ALIGN_MODE_128(MODE) \ - ((MODE) == XFmode || SSE_REG_MODE_P (MODE)) - -/* The published ABIs say that doubles should be aligned on word - boundaries, so lower the alignment for structure fields unless - -malign-double is set. */ - -/* ??? Blah -- this macro is used directly by libobjc. Since it - supports no vector modes, cut out the complexity and fall back - on BIGGEST_FIELD_ALIGNMENT. */ -#ifdef IN_TARGET_LIBS -#ifdef __x86_64__ -#define BIGGEST_FIELD_ALIGNMENT 128 -#else -#define BIGGEST_FIELD_ALIGNMENT 32 -#endif -#else -#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \ - x86_field_alignment (FIELD, COMPUTED) -#endif - -/* If defined, a C expression to compute the alignment given to a - constant that is being placed in memory. EXP is the constant - and ALIGN is the alignment that the object would ordinarily have. - The value of this macro is used instead of that alignment to align - the object. - - If this macro is not defined, then ALIGN is used. - - The typical use of this macro is to increase alignment for string - constants to be word aligned so that `strcpy' calls that copy - constants can be done inline. */ - -#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN)) - -/* If defined, a C expression to compute the alignment for a static - variable. TYPE is the data type, and ALIGN is the alignment that - the object would ordinarily have. The value of this macro is used - instead of that alignment to align the object. - - If this macro is not defined, then ALIGN is used. - - One use of this macro is to increase alignment of medium-size - data to make it all fit in fewer cache lines. Another is to - cause character arrays to be word-aligned so that `strcpy' calls - that copy constants to character arrays can be done inline. */ - -#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN)) - -/* If defined, a C expression to compute the alignment for a local - variable. TYPE is the data type, and ALIGN is the alignment that - the object would ordinarily have. The value of this macro is used - instead of that alignment to align the object. - - If this macro is not defined, then ALIGN is used. - - One use of this macro is to increase alignment of medium-size - data to make it all fit in fewer cache lines. */ - -#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN)) - -/* If defined, a C expression that gives the alignment boundary, in - bits, of an argument with the specified mode and type. If it is - not defined, `PARM_BOUNDARY' is used for all arguments. */ - -#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ - ix86_function_arg_boundary ((MODE), (TYPE)) - -/* Set this nonzero if move instructions will actually fail to work - when given unaligned data. */ -#define STRICT_ALIGNMENT 0 - -/* If bit field type is int, don't let it cross an int, - and give entire struct the alignment of an int. */ -/* Required on the 386 since it doesn't have bit-field insns. */ -#define PCC_BITFIELD_TYPE_MATTERS 1 - -/* Standard register usage. */ - -/* This processor has special stack-like registers. See reg-stack.c - for details. */ - -#define STACK_REGS -#define IS_STACK_MODE(MODE) \ - (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \ - || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \ - || (MODE) == XFmode) - -/* Number of actual hardware registers. - The hardware registers are assigned numbers for the compiler - from 0 to just below FIRST_PSEUDO_REGISTER. - All registers that the compiler knows about must be given numbers, - even those that are not normally considered general registers. - - In the 80386 we give the 8 general purpose registers the numbers 0-7. - We number the floating point registers 8-15. - Note that registers 0-7 can be accessed as a short or int, - while only 0-3 may be used with byte `mov' instructions. - - Reg 16 does not correspond to any hardware register, but instead - appears in the RTL as an argument pointer prior to reload, and is - eliminated during reloading in favor of either the stack or frame - pointer. */ - -#define FIRST_PSEUDO_REGISTER 53 - -/* Number of hardware registers that go into the DWARF-2 unwind info. - If not defined, equals FIRST_PSEUDO_REGISTER. */ - -#define DWARF_FRAME_REGISTERS 17 - -/* 1 for registers that have pervasive standard uses - and are not available for the register allocator. - On the 80386, the stack pointer is such, as is the arg pointer. - - The value is zero if the register is not fixed on either 32 or - 64 bit targets, one if the register if fixed on both 32 and 64 - bit targets, two if it is only fixed on 32bit targets and three - if its only fixed on 64bit targets. - Proper values are computed in the CONDITIONAL_REGISTER_USAGE. - */ -#define FIXED_REGISTERS \ -/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ -{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \ -/*arg,flags,fpsr,dir,frame*/ \ - 1, 1, 1, 1, 1, \ -/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ - 0, 0, 0, 0, 0, 0, 0, 0, \ -/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \ - 0, 0, 0, 0, 0, 0, 0, 0, \ -/* r8, r9, r10, r11, r12, r13, r14, r15*/ \ - 2, 2, 2, 2, 2, 2, 2, 2, \ -/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ - 2, 2, 2, 2, 2, 2, 2, 2} - - -/* 1 for registers not available across function calls. - These must include the FIXED_REGISTERS and also any - registers that can be used without being saved. - The latter must include the registers where values are returned - and the register where structure-value addresses are passed. - Aside from that, you can include as many other registers as you like. - - The value is zero if the register is not call used on either 32 or - 64 bit targets, one if the register if call used on both 32 and 64 - bit targets, two if it is only call used on 32bit targets and three - if its only call used on 64bit targets. - Proper values are computed in the CONDITIONAL_REGISTER_USAGE. -*/ -#define CALL_USED_REGISTERS \ -/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ -{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ -/*arg,flags,fpsr,dir,frame*/ \ - 1, 1, 1, 1, 1, \ -/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ - 1, 1, 1, 1, 1, 1, 1, 1, \ -/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \ - 1, 1, 1, 1, 1, 1, 1, 1, \ -/* r8, r9, r10, r11, r12, r13, r14, r15*/ \ - 1, 1, 1, 1, 2, 2, 2, 2, \ -/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ - 1, 1, 1, 1, 1, 1, 1, 1} \ - -/* Order in which to allocate registers. Each register must be - listed once, even those in FIXED_REGISTERS. List frame pointer - late and fixed registers last. Note that, in general, we prefer - registers listed in CALL_USED_REGISTERS, keeping the others - available for storage of persistent values. - - The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order, - so this is just empty initializer for array. */ - -#define REG_ALLOC_ORDER \ -{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\ - 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \ - 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ - 48, 49, 50, 51, 52 } - -/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order - to be rearranged based on a particular function. When using sse math, - we want to allocate SSE before x87 registers and vice vera. */ - -#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc () - - -/* Macro to conditionally modify fixed_regs/call_used_regs. */ -#define CONDITIONAL_REGISTER_USAGE \ -do { \ - int i; \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - { \ - if (fixed_regs[i] > 1) \ - fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \ - if (call_used_regs[i] > 1) \ - call_used_regs[i] = (call_used_regs[i] \ - == (TARGET_64BIT ? 3 : 2)); \ - } \ - if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \ - { \ - fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ - call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ - } \ - if (! TARGET_MMX) \ - { \ - int i; \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \ - fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \ - } \ - if (! TARGET_SSE) \ - { \ - int i; \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \ - fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \ - } \ - if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \ - { \ - int i; \ - HARD_REG_SET x; \ - COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \ - if (TEST_HARD_REG_BIT (x, i)) \ - fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \ - } \ - if (! TARGET_64BIT) \ - { \ - int i; \ - for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \ - reg_names[i] = ""; \ - for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \ - reg_names[i] = ""; \ - } \ - } while (0) - -/* Return number of consecutive hard regs needed starting at reg REGNO - to hold something of mode MODE. - This is ordinarily the length in words of a value of mode MODE - but can be less for certain modes in special long registers. - - Actually there are no two word move instructions for consecutive - registers. And only registers 0-3 may have mov byte instructions - applied to them. - */ - -#define HARD_REGNO_NREGS(REGNO, MODE) \ - (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \ - ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ - : ((MODE) == XFmode \ - ? (TARGET_64BIT ? 2 : 3) \ - : (MODE) == XCmode \ - ? (TARGET_64BIT ? 4 : 6) \ - : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))) - -#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \ - ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \ - ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \ - ? 0 \ - : ((MODE) == XFmode || (MODE) == XCmode)) \ - : 0) - -#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8) - -#define VALID_SSE2_REG_MODE(MODE) \ - ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \ - || (MODE) == V2DImode || (MODE) == DFmode) - -#define VALID_SSE_REG_MODE(MODE) \ - ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \ - || (MODE) == SFmode || (MODE) == TFmode) - -#define VALID_MMX_REG_MODE_3DNOW(MODE) \ - ((MODE) == V2SFmode || (MODE) == SFmode) - -#define VALID_MMX_REG_MODE(MODE) \ - ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \ - || (MODE) == V2SImode || (MODE) == SImode) - -/* ??? No autovectorization into MMX or 3DNOW until we can reliably - place emms and femms instructions. */ -#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD) - -#define VALID_FP_MODE_P(MODE) \ - ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \ - || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \ - -#define VALID_INT_MODE_P(MODE) \ - ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \ - || (MODE) == DImode \ - || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \ - || (MODE) == CDImode \ - || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \ - || (MODE) == TFmode || (MODE) == TCmode))) - -/* Return true for modes passed in SSE registers. */ -#define SSE_REG_MODE_P(MODE) \ - ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \ - || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \ - || (MODE) == V4SFmode || (MODE) == V4SImode) - -/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */ - -#define HARD_REGNO_MODE_OK(REGNO, MODE) \ - ix86_hard_regno_mode_ok ((REGNO), (MODE)) - -/* Value is 1 if it is a good idea to tie two pseudo registers - when one has mode MODE1 and one has mode MODE2. - If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, - for any hard reg, then this must be 0 for correct output. */ - -#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2) - -/* It is possible to write patterns to move flags; but until someone - does it, */ -#define AVOID_CCMODE_COPIES - -/* Specify the modes required to caller save a given hard regno. - We do this on i386 to prevent flags from being saved at all. - - Kill any attempts to combine saving of modes. */ - -#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ - (CC_REGNO_P (REGNO) ? VOIDmode \ - : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \ - : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\ - : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \ - : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \ - : (MODE)) -/* Specify the registers used for certain standard purposes. - The values of these macros are register numbers. */ - -/* on the 386 the pc register is %eip, and is not usable as a general - register. The ordinary mov instructions won't work */ -/* #define PC_REGNUM */ - -/* Register to use for pushing function arguments. */ -#define STACK_POINTER_REGNUM 7 - -/* Base register for access to local variables of the function. */ -#define HARD_FRAME_POINTER_REGNUM 6 - -/* Base register for access to local variables of the function. */ -#define FRAME_POINTER_REGNUM 20 - -/* First floating point reg */ -#define FIRST_FLOAT_REG 8 - -/* First & last stack-like regs */ -#define FIRST_STACK_REG FIRST_FLOAT_REG -#define LAST_STACK_REG (FIRST_FLOAT_REG + 7) - -#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1) -#define LAST_SSE_REG (FIRST_SSE_REG + 7) - -#define FIRST_MMX_REG (LAST_SSE_REG + 1) -#define LAST_MMX_REG (FIRST_MMX_REG + 7) - -#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) -#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7) - -#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) -#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7) - -/* Value should be nonzero if functions must have frame pointers. - Zero means the frame pointer need not be set up (and parms - may be accessed via the stack pointer) in functions that seem suitable. - This is computed in `reload', in reload1.c. */ -#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required () - -/* Override this in other tm.h files to cope with various OS lossage - requiring a frame pointer. */ -#ifndef SUBTARGET_FRAME_POINTER_REQUIRED -#define SUBTARGET_FRAME_POINTER_REQUIRED 0 -#endif - -/* Make sure we can access arbitrary call frames. */ -#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses () - -/* Base register for access to arguments of the function. */ -#define ARG_POINTER_REGNUM 16 - -/* Register in which static-chain is passed to a function. - We do use ECX as static chain register for 32 bit ABI. On the - 64bit ABI, ECX is an argument register, so we use R10 instead. */ -#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2) - -/* Register to hold the addressing base for position independent - code access to data items. We don't use PIC pointer for 64bit - mode. Define the regnum to dummy value to prevent gcc from - pessimizing code dealing with EBX. - - To avoid clobbering a call-saved register unnecessarily, we renumber - the pic register when possible. The change is visible after the - prologue has been emitted. */ - -#define REAL_PIC_OFFSET_TABLE_REGNUM 3 - -#define PIC_OFFSET_TABLE_REGNUM \ - ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \ - || !flag_pic ? INVALID_REGNUM \ - : reload_completed ? REGNO (pic_offset_table_rtx) \ - : REAL_PIC_OFFSET_TABLE_REGNUM) - -#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_" - -/* A C expression which can inhibit the returning of certain function - values in registers, based on the type of value. A nonzero value - says to return the function value in memory, just as large - structures are always returned. Here TYPE will be a C expression - of type `tree', representing the data type of the value. - - Note that values of mode `BLKmode' must be explicitly handled by - this macro. Also, the option `-fpcc-struct-return' takes effect - regardless of this macro. On most systems, it is possible to - leave the macro undefined; this causes a default definition to be - used, whose value is the constant 1 for `BLKmode' values, and 0 - otherwise. - - Do not use this macro to indicate that structures and unions - should always be returned in memory. You should instead use - `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */ - -#define RETURN_IN_MEMORY(TYPE) \ - ix86_return_in_memory (TYPE) - -/* This is overridden by <cygwin.h>. */ -#define MS_AGGREGATE_RETURN 0 - -/* This is overridden by <netware.h>. */ -#define KEEP_AGGREGATE_RETURN_POINTER 0 - -/* Define the classes of registers for register constraints in the - machine description. Also define ranges of constants. - - One of the classes must always be named ALL_REGS and include all hard regs. - If there is more than one class, another class must be named NO_REGS - and contain no registers. - - The name GENERAL_REGS must be the name of a class (or an alias for - another name such as ALL_REGS). This is the class of registers - that is allowed by "g" or "r" in a register constraint. - Also, registers outside this class are allocated only when - instructions express preferences for them. - - The classes must be numbered in nondecreasing order; that is, - a larger-numbered class must never be contained completely - in a smaller-numbered class. - - For any two classes, it is very desirable that there be another - class that represents their union. - - It might seem that class BREG is unnecessary, since no useful 386 - opcode needs reg %ebx. But some systems pass args to the OS in ebx, - and the "b" register constraint is useful in asms for syscalls. - - The flags and fpsr registers are in no class. */ - -enum reg_class -{ - NO_REGS, - AREG, DREG, CREG, BREG, SIREG, DIREG, - AD_REGS, /* %eax/%edx for DImode */ - Q_REGS, /* %eax %ebx %ecx %edx */ - NON_Q_REGS, /* %esi %edi %ebp %esp */ - INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ - LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ - GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/ - FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ - FLOAT_REGS, - SSE_REGS, - MMX_REGS, - FP_TOP_SSE_REGS, - FP_SECOND_SSE_REGS, - FLOAT_SSE_REGS, - FLOAT_INT_REGS, - INT_SSE_REGS, - FLOAT_INT_SSE_REGS, - ALL_REGS, LIM_REG_CLASSES -}; - -#define N_REG_CLASSES ((int) LIM_REG_CLASSES) - -#define INTEGER_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), GENERAL_REGS) -#define FLOAT_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), FLOAT_REGS) -#define SSE_CLASS_P(CLASS) \ - ((CLASS) == SSE_REGS) -#define MMX_CLASS_P(CLASS) \ - ((CLASS) == MMX_REGS) -#define MAYBE_INTEGER_CLASS_P(CLASS) \ - reg_classes_intersect_p ((CLASS), GENERAL_REGS) -#define MAYBE_FLOAT_CLASS_P(CLASS) \ - reg_classes_intersect_p ((CLASS), FLOAT_REGS) -#define MAYBE_SSE_CLASS_P(CLASS) \ - reg_classes_intersect_p (SSE_REGS, (CLASS)) -#define MAYBE_MMX_CLASS_P(CLASS) \ - reg_classes_intersect_p (MMX_REGS, (CLASS)) - -#define Q_CLASS_P(CLASS) \ - reg_class_subset_p ((CLASS), Q_REGS) - -/* Give names of register classes as strings for dump file. */ - -#define REG_CLASS_NAMES \ -{ "NO_REGS", \ - "AREG", "DREG", "CREG", "BREG", \ - "SIREG", "DIREG", \ - "AD_REGS", \ - "Q_REGS", "NON_Q_REGS", \ - "INDEX_REGS", \ - "LEGACY_REGS", \ - "GENERAL_REGS", \ - "FP_TOP_REG", "FP_SECOND_REG", \ - "FLOAT_REGS", \ - "SSE_REGS", \ - "MMX_REGS", \ - "FP_TOP_SSE_REGS", \ - "FP_SECOND_SSE_REGS", \ - "FLOAT_SSE_REGS", \ - "FLOAT_INT_REGS", \ - "INT_SSE_REGS", \ - "FLOAT_INT_SSE_REGS", \ - "ALL_REGS" } - -/* Define which registers fit in which classes. - This is an initializer for a vector of HARD_REG_SET - of length N_REG_CLASSES. */ - -#define REG_CLASS_CONTENTS \ -{ { 0x00, 0x0 }, \ - { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \ - { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \ - { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \ - { 0x03, 0x0 }, /* AD_REGS */ \ - { 0x0f, 0x0 }, /* Q_REGS */ \ - { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \ - { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \ - { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \ - { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \ - { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\ - { 0xff00, 0x0 }, /* FLOAT_REGS */ \ -{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \ -{ 0xe0000000, 0x1f }, /* MMX_REGS */ \ -{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \ -{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \ -{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \ - { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \ -{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \ -{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \ -{ 0xffffffff,0x1fffff } \ -} - -/* The same information, inverted: - Return the class number of the smallest class containing - reg number REGNO. This could be a conditional expression - or could index an array. */ - -#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) - -/* When defined, the compiler allows registers explicitly used in the - rtl to be used as spill registers but prevents the compiler from - extending the lifetime of these registers. */ - -#define SMALL_REGISTER_CLASSES 1 - -#define QI_REG_P(X) \ - (REG_P (X) && REGNO (X) < 4) - -#define GENERAL_REGNO_P(N) \ - ((N) < 8 || REX_INT_REGNO_P (N)) - -#define GENERAL_REG_P(X) \ - (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) - -#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X)) - -#define NON_QI_REG_P(X) \ - (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER) - -#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG) -#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X))) - -#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X))) -#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG) -#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X))) -#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N)) - -#define SSE_REGNO_P(N) \ - (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \ - || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)) - -#define REX_SSE_REGNO_P(N) \ - ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG) - -#define SSE_REGNO(N) \ - ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8) -#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N))) - -#define SSE_FLOAT_MODE_P(MODE) \ - ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode)) - -#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG) -#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP))) - -#define STACK_REG_P(XOP) \ - (REG_P (XOP) && \ - REGNO (XOP) >= FIRST_STACK_REG && \ - REGNO (XOP) <= LAST_STACK_REG) - -#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP)) - -#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG) - -#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) -#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG) - -/* The class value for index registers, and the one for base regs. */ - -#define INDEX_REG_CLASS INDEX_REGS -#define BASE_REG_CLASS GENERAL_REGS - -/* Place additional restrictions on the register class to use when it - is necessary to be able to hold a value of mode MODE in a reload - register for which class CLASS would ordinarily be used. */ - -#define LIMIT_RELOAD_CLASS(MODE, CLASS) \ - ((MODE) == QImode && !TARGET_64BIT \ - && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \ - || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \ - ? Q_REGS : (CLASS)) - -/* Given an rtx X being reloaded into a reg required to be - in class CLASS, return the class of reg to actually use. - In general this is just CLASS; but on some machines - in some cases it is preferable to use a more restrictive class. - On the 80386 series, we prevent floating constants from being - reloaded into floating registers (since no move-insn can do that) - and we ensure that QImodes aren't reloaded into the esi or edi reg. */ - -/* Put float CONST_DOUBLE in the constant pool instead of fp regs. - QImode must go into class Q_REGS. - Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and - movdf to do mem-to-mem moves through integer regs. */ - -#define PREFERRED_RELOAD_CLASS(X, CLASS) \ - ix86_preferred_reload_class ((X), (CLASS)) - -/* Discourage putting floating-point values in SSE registers unless - SSE math is being used, and likewise for the 387 registers. */ - -#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \ - ix86_preferred_output_reload_class ((X), (CLASS)) - -/* If we are copying between general and FP registers, we need a memory - location. The same is true for SSE and MMX registers. */ -#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ - ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1) - -/* QImode spills from non-QI registers need a scratch. This does not - happen often -- the only example so far requires an uninitialized - pseudo. */ - -#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \ - (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \ - || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \ - ? Q_REGS : NO_REGS) - -/* Return the maximum number of consecutive registers - needed to represent mode MODE in a register of class CLASS. */ -/* On the 80386, this is the size of MODE in words, - except in the FP regs, where a single reg is always enough. */ -#define CLASS_MAX_NREGS(CLASS, MODE) \ - (!MAYBE_INTEGER_CLASS_P (CLASS) \ - ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ - : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \ - + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) - -/* A C expression whose value is nonzero if pseudos that have been - assigned to registers of class CLASS would likely be spilled - because registers of CLASS are needed for spill registers. - - The default value of this macro returns 1 if CLASS has exactly one - register and zero otherwise. On most machines, this default - should be used. Only define this macro to some other expression - if pseudo allocated by `local-alloc.c' end up in memory because - their hard registers were needed for spill registers. If this - macro returns nonzero for those classes, those pseudos will only - be allocated by `global.c', which knows how to reallocate the - pseudo to another register. If there would not be another - register available for reallocation, you should not change the - definition of this macro since the only effect of such a - definition would be to slow down register allocation. */ - -#define CLASS_LIKELY_SPILLED_P(CLASS) \ - (((CLASS) == AREG) \ - || ((CLASS) == DREG) \ - || ((CLASS) == CREG) \ - || ((CLASS) == BREG) \ - || ((CLASS) == AD_REGS) \ - || ((CLASS) == SIREG) \ - || ((CLASS) == DIREG) \ - || ((CLASS) == FP_TOP_REG) \ - || ((CLASS) == FP_SECOND_REG)) - -/* Return a class of registers that cannot change FROM mode to TO mode. */ - -#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ - ix86_cannot_change_mode_class (FROM, TO, CLASS) - -/* Stack layout; function entry, exit and calling. */ - -/* Define this if pushing a word on the stack - makes the stack pointer a smaller address. */ -#define STACK_GROWS_DOWNWARD - -/* Define this to nonzero if the nominal address of the stack frame - is at the high-address end of the local variables; - that is, each additional local variable allocated - goes at a more negative offset in the frame. */ -#define FRAME_GROWS_DOWNWARD 1 - -/* Offset within stack frame to start allocating local variables at. - If FRAME_GROWS_DOWNWARD, this is the offset to the END of the - first local allocated. Otherwise, it is the offset to the BEGINNING - of the first local allocated. */ -#define STARTING_FRAME_OFFSET 0 - -/* If we generate an insn to push BYTES bytes, - this says how many the stack pointer really advances by. - On 386, we have pushw instruction that decrements by exactly 2 no - matter what the position was, there is no pushb. - But as CIE data alignment factor on this arch is -4, we need to make - sure all stack pointer adjustments are in multiple of 4. - - For 64bit ABI we round up to 8 bytes. - */ - -#define PUSH_ROUNDING(BYTES) \ - (TARGET_64BIT \ - ? (((BYTES) + 7) & (-8)) \ - : (((BYTES) + 3) & (-4))) - -/* If defined, the maximum amount of space required for outgoing arguments will - be computed and placed into the variable - `current_function_outgoing_args_size'. No space will be pushed onto the - stack for each call; instead, the function prologue should increase the stack - frame size by this amount. */ - -#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS - -/* If defined, a C expression whose value is nonzero when we want to use PUSH - instructions to pass outgoing arguments. */ - -#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS) - -/* We want the stack and args grow in opposite directions, even if - PUSH_ARGS is 0. */ -#define PUSH_ARGS_REVERSED 1 - -/* Offset of first parameter from the argument pointer register value. */ -#define FIRST_PARM_OFFSET(FNDECL) 0 - -/* Define this macro if functions should assume that stack space has been - allocated for arguments even when their values are passed in registers. - - The value of this macro is the size, in bytes, of the area reserved for - arguments passed in registers for the function represented by FNDECL. - - This space can be allocated by the caller, or be a part of the - machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says - which. */ -#define REG_PARM_STACK_SPACE(FNDECL) 0 - -/* Value is the number of bytes of arguments automatically - popped when returning from a subroutine call. - FUNDECL is the declaration node of the function (as a tree), - FUNTYPE is the data type of the function (as a tree), - or for a library call it is an identifier node for the subroutine name. - SIZE is the number of bytes of arguments passed on the stack. - - On the 80386, the RTD insn may be used to pop them if the number - of args is fixed, but if the number is variable then the caller - must pop them all. RTD can't be used for library calls now - because the library is compiled with the Unix compiler. - Use of RTD is a selectable option, since it is incompatible with - standard Unix calling sequences. If the option is not selected, - the caller must always pop the args. - - The attribute stdcall is equivalent to RTD on a per module basis. */ - -#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \ - ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE)) - -#define FUNCTION_VALUE_REGNO_P(N) \ - ix86_function_value_regno_p (N) - -/* Define how to find the value returned by a library function - assuming the value has mode MODE. */ - -#define LIBCALL_VALUE(MODE) \ - ix86_libcall_value (MODE) - -/* Define the size of the result block used for communication between - untyped_call and untyped_return. The block contains a DImode value - followed by the block used by fnsave and frstor. */ - -#define APPLY_RESULT_SIZE (8+108) - -/* 1 if N is a possible register number for function argument passing. */ -#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N) - -/* Define a data type for recording info about an argument list - during the scan of that argument list. This data type should - hold all necessary information about the function itself - and about the args processed so far, enough to enable macros - such as FUNCTION_ARG to determine where the next arg should go. */ - -typedef struct ix86_args { - int words; /* # words passed so far */ - int nregs; /* # registers available for passing */ - int regno; /* next available register number */ - int fastcall; /* fastcall calling convention is used */ - int sse_words; /* # sse words passed so far */ - int sse_nregs; /* # sse registers available for passing */ - int warn_sse; /* True when we want to warn about SSE ABI. */ - int warn_mmx; /* True when we want to warn about MMX ABI. */ - int sse_regno; /* next available sse register number */ - int mmx_words; /* # mmx words passed so far */ - int mmx_nregs; /* # mmx registers available for passing */ - int mmx_regno; /* next available mmx register number */ - int maybe_vaarg; /* true for calls to possibly vardic fncts. */ - int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should - be passed in SSE registers. Otherwise 0. */ -} CUMULATIVE_ARGS; - -/* Initialize a variable CUM of type CUMULATIVE_ARGS - for a call to a function whose data type is FNTYPE. - For a library call, FNTYPE is 0. */ - -#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ - init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL)) - -/* Update the data in CUM to advance over an argument - of mode MODE and data type TYPE. - (TYPE is null for libcalls where that information may not be available.) */ - -#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ - function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED)) - -/* Define where to put the arguments to a function. - Value is zero to push the argument on the stack, - or a hard register in which to store the argument. - - MODE is the argument's machine mode. - TYPE is the data type of the argument (as a tree). - This is null for libcalls where that information may - not be available. - CUM is a variable of type CUMULATIVE_ARGS which gives info about - the preceding args and about the function being called. - NAMED is nonzero if this argument is a named parameter - (otherwise it is an extra parameter matching an ellipsis). */ - -#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ - function_arg (&(CUM), (MODE), (TYPE), (NAMED)) - -/* Implement `va_start' for varargs and stdarg. */ -#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \ - ix86_va_start (VALIST, NEXTARG) - -#define TARGET_ASM_FILE_END ix86_file_end -#define NEED_INDICATE_EXEC_STACK 0 - -/* Output assembler code to FILE to increment profiler label # LABELNO - for profiling a function entry. */ - -#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO) - -#define MCOUNT_NAME "_mcount" - -#define PROFILE_COUNT_REGISTER "edx" - -/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, - the stack pointer does not matter. The value is tested only in - functions that have frame pointers. - No definition is equivalent to always zero. */ -/* Note on the 386 it might be more efficient not to define this since - we have to restore it ourselves from the frame pointer, in order to - use pop */ - -#define EXIT_IGNORE_STACK 1 - -/* Output assembler code for a block containing the constant parts - of a trampoline, leaving space for the variable parts. */ - -/* On the 386, the trampoline contains two instructions: - mov #STATIC,ecx - jmp FUNCTION - The trampoline is generated entirely at runtime. The operand of JMP - is the address of FUNCTION relative to the instruction following the - JMP (which is 5 bytes long). */ - -/* Length in units of the trampoline for entering a nested function. */ - -#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10) - -/* Emit RTL insns to initialize the variable parts of a trampoline. - FNADDR is an RTX for the address of the function's pure code. - CXT is an RTX for the static chain value for the function. */ - -#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ - x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT)) - -/* Definitions for register eliminations. - - This is an array of structures. Each structure initializes one pair - of eliminable registers. The "from" register number is given first, - followed by "to". Eliminations of the same "from" register are listed - in order of preference. - - There are two registers that can always be eliminated on the i386. - The frame pointer and the arg pointer can be replaced by either the - hard frame pointer or to the stack pointer, depending upon the - circumstances. The hard frame pointer is not used before reload and - so it is not eligible for elimination. */ - -#define ELIMINABLE_REGS \ -{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ - -/* Given FROM and TO register numbers, say whether this elimination is - allowed. Frame pointer elimination is automatically handled. - - All other eliminations are valid. */ - -#define CAN_ELIMINATE(FROM, TO) \ - ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1) - -/* Define the offset between two registers, one to be eliminated, and the other - its replacement, at the start of a routine. */ - -#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ - ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO))) - -/* Addressing modes, and classification of registers for them. */ - -/* Macros to check register numbers against specific register classes. */ - -/* These assume that REGNO is a hard or pseudo reg number. - They give nonzero only if REGNO is a hard reg of the suitable class - or a pseudo reg currently allocated to a suitable hard reg. - Since they use reg_renumber, they are safe only once reg_renumber - has been allocated, which happens in local-alloc.c. */ - -#define REGNO_OK_FOR_INDEX_P(REGNO) \ - ((REGNO) < STACK_POINTER_REGNUM \ - || (REGNO >= FIRST_REX_INT_REG \ - && (REGNO) <= LAST_REX_INT_REG) \ - || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \ - && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \ - || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM) - -#define REGNO_OK_FOR_BASE_P(REGNO) \ - ((REGNO) <= STACK_POINTER_REGNUM \ - || (REGNO) == ARG_POINTER_REGNUM \ - || (REGNO) == FRAME_POINTER_REGNUM \ - || (REGNO >= FIRST_REX_INT_REG \ - && (REGNO) <= LAST_REX_INT_REG) \ - || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \ - && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \ - || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM) - -#define REGNO_OK_FOR_SIREG_P(REGNO) \ - ((REGNO) == 4 || reg_renumber[(REGNO)] == 4) -#define REGNO_OK_FOR_DIREG_P(REGNO) \ - ((REGNO) == 5 || reg_renumber[(REGNO)] == 5) - -/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx - and check its validity for a certain class. - We have two alternate definitions for each of them. - The usual definition accepts all pseudo regs; the other rejects - them unless they have been allocated suitable hard regs. - The symbol REG_OK_STRICT causes the latter definition to be used. - - Most source files want to accept pseudo regs in the hope that - they will get allocated to the class that the insn wants them to be in. - Source files for reload pass need to be strict. - After reload, it makes no difference, since pseudo regs have - been eliminated by then. */ - - -/* Non strict versions, pseudos are ok. */ -#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \ - (REGNO (X) < STACK_POINTER_REGNUM \ - || (REGNO (X) >= FIRST_REX_INT_REG \ - && REGNO (X) <= LAST_REX_INT_REG) \ - || REGNO (X) >= FIRST_PSEUDO_REGISTER) - -#define REG_OK_FOR_BASE_NONSTRICT_P(X) \ - (REGNO (X) <= STACK_POINTER_REGNUM \ - || REGNO (X) == ARG_POINTER_REGNUM \ - || REGNO (X) == FRAME_POINTER_REGNUM \ - || (REGNO (X) >= FIRST_REX_INT_REG \ - && REGNO (X) <= LAST_REX_INT_REG) \ - || REGNO (X) >= FIRST_PSEUDO_REGISTER) - -/* Strict versions, hard registers only */ -#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) -#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) - -#ifndef REG_OK_STRICT -#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X) -#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X) - -#else -#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X) -#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X) -#endif - -/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression - that is a valid memory address for an instruction. - The MODE argument is the machine mode for the MEM expression - that wants to use this address. - - The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, - except for CONSTANT_ADDRESS_P which is usually machine-independent. - - See legitimize_pic_address in i386.c for details as to what - constitutes a legitimate address when -fpic is used. */ - -#define MAX_REGS_PER_ADDRESS 2 - -#define CONSTANT_ADDRESS_P(X) constant_address_p (X) - -/* Nonzero if the constant value X is a legitimate general operand. - It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ - -#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X) - -#ifdef REG_OK_STRICT -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -do { \ - if (legitimate_address_p ((MODE), (X), 1)) \ - goto ADDR; \ -} while (0) - -#else -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -do { \ - if (legitimate_address_p ((MODE), (X), 0)) \ - goto ADDR; \ -} while (0) - -#endif - -/* If defined, a C expression to determine the base term of address X. - This macro is used in only one place: `find_base_term' in alias.c. - - It is always safe for this macro to not be defined. It exists so - that alias analysis can understand machine-dependent addresses. - - The typical use of this macro is to handle addresses containing - a label_ref or symbol_ref within an UNSPEC. */ - -#define FIND_BASE_TERM(X) ix86_find_base_term (X) - -/* Try machine-dependent ways of modifying an illegitimate address - to be legitimate. If we find one, return the new, valid address. - This macro is used in only one place: `memory_address' in explow.c. - - OLDX is the address as it was before break_out_memory_refs was called. - In some cases it is useful to look at this to decide what needs to be done. - - MODE and WIN are passed so that this macro can use - GO_IF_LEGITIMATE_ADDRESS. - - It is always safe for this macro to do nothing. It exists to recognize - opportunities to optimize the output. - - For the 80386, we handle X+REG by loading X into a register R and - using R+REG. R will go in a general reg and indexing will be used. - However, if REG is a broken-out memory address or multiplication, - nothing needs to be done because REG can certainly go in a general reg. - - When -fpic is used, special handling is needed for symbolic references. - See comments by legitimize_pic_address in i386.c for details. */ - -#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ -do { \ - (X) = legitimize_address ((X), (OLDX), (MODE)); \ - if (memory_address_p ((MODE), (X))) \ - goto WIN; \ -} while (0) - -#define REWRITE_ADDRESS(X) rewrite_address (X) - -/* Nonzero if the constant value X is a legitimate general operand - when generating PIC code. It is given that flag_pic is on and - that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ - -#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X) - -#define SYMBOLIC_CONST(X) \ - (GET_CODE (X) == SYMBOL_REF \ - || GET_CODE (X) == LABEL_REF \ - || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) - -/* Go to LABEL if ADDR (a legitimate address expression) - has an effect that depends on the machine mode it is used for. - On the 80386, only postdecrement and postincrement address depend thus - (the amount of decrement or increment being the length of the operand). */ -#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ -do { \ - if (GET_CODE (ADDR) == POST_INC \ - || GET_CODE (ADDR) == POST_DEC) \ - goto LABEL; \ -} while (0) - -/* Max number of args passed in registers. If this is more than 3, we will - have problems with ebx (register #4), since it is a caller save register and - is also used as the pic register in ELF. So for now, don't allow more than - 3 registers to be passed in registers. */ - -#define REGPARM_MAX (TARGET_64BIT ? 6 : 3) - -#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0)) - -#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0)) - - -/* Specify the machine mode that this machine uses - for the index in the tablejump instruction. */ -#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode) - -/* Define this as 1 if `char' should by default be signed; else as 0. */ -#define DEFAULT_SIGNED_CHAR 1 - -/* Number of bytes moved into a data cache for a single prefetch operation. */ -#define PREFETCH_BLOCK ix86_cost->prefetch_block - -/* Number of prefetch operations that can be done in parallel. */ -#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches - -/* Max number of bytes we can move from memory to memory - in one reasonably fast instruction. */ -#define MOVE_MAX 16 - -/* MOVE_MAX_PIECES is the number of bytes at a time which we can - move efficiently, as opposed to MOVE_MAX which is the maximum - number of bytes we can move with a single instruction. */ -#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4) - -/* If a memory-to-memory move would take MOVE_RATIO or more simple - move-instruction pairs, we will do a movmem or libcall instead. - Increasing the value will always make code faster, but eventually - incurs high cost in increased code size. - - If you don't define this, a reasonable default is used. */ - -#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio) - -/* If a clear memory operation would take CLEAR_RATIO or more simple - move-instruction sequences, we will do a clrmem or libcall instead. */ - -#define CLEAR_RATIO (optimize_size ? 2 \ - : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio) - -/* Define if shifts truncate the shift count - which implies one can omit a sign-extension or zero-extension - of a shift count. */ -/* On i386, shifts do truncate the count. But bit opcodes don't. */ - -/* #define SHIFT_COUNT_TRUNCATED */ - -/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits - is done just by pretending it is already truncated. */ -#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 - -/* A macro to update M and UNSIGNEDP when an object whose type is - TYPE and which has the specified mode and signedness is to be - stored in a register. This macro is only called when TYPE is a - scalar type. - - On i386 it is sometimes useful to promote HImode and QImode - quantities to SImode. The choice depends on target type. */ - -#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ -do { \ - if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \ - || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \ - (MODE) = SImode; \ -} while (0) - -/* Specify the machine mode that pointers have. - After generation of rtl, the compiler makes no further distinction - between pointers and any other objects of this machine mode. */ -#define Pmode (TARGET_64BIT ? DImode : SImode) - -/* A function address in a call instruction - is a byte address (for indexing purposes) - so give the MEM rtx a byte's mode. */ -#define FUNCTION_MODE QImode - -/* A C expression for the cost of moving data from a register in class FROM to - one in class TO. The classes are expressed using the enumeration values - such as `GENERAL_REGS'. A value of 2 is the default; other values are - interpreted relative to that. - - It is not required that the cost always equal 2 when FROM is the same as TO; - on some machines it is expensive to move between registers if they are not - general registers. */ - -#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \ - ix86_register_move_cost ((MODE), (CLASS1), (CLASS2)) - -/* A C expression for the cost of moving data of mode M between a - register and memory. A value of 2 is the default; this cost is - relative to those in `REGISTER_MOVE_COST'. - - If moving between registers and memory is more expensive than - between two registers, you should define this macro to express the - relative cost. */ - -#define MEMORY_MOVE_COST(MODE, CLASS, IN) \ - ix86_memory_move_cost ((MODE), (CLASS), (IN)) - -/* A C expression for the cost of a branch instruction. A value of 1 - is the default; other values are interpreted relative to that. */ - -#define BRANCH_COST ix86_branch_cost - -/* Define this macro as a C expression which is nonzero if accessing - less than a word of memory (i.e. a `char' or a `short') is no - faster than accessing a word of memory, i.e., if such access - require more than one instruction or if there is no difference in - cost between byte and (aligned) word loads. - - When this macro is not defined, the compiler will access a field by - finding the smallest containing object; when it is defined, a - fullword load will be used if alignment permits. Unless bytes - accesses are faster than word accesses, using word accesses is - preferable since it may eliminate subsequent memory access if - subsequent accesses occur to other fields in the same word of the - structure, but to different bytes. */ - -#define SLOW_BYTE_ACCESS 0 - -/* Nonzero if access to memory by shorts is slow and undesirable. */ -#define SLOW_SHORT_ACCESS 0 - -/* Define this macro to be the value 1 if unaligned accesses have a - cost many times greater than aligned accesses, for example if they - are emulated in a trap handler. - - When this macro is nonzero, the compiler will act as if - `STRICT_ALIGNMENT' were nonzero when generating code for block - moves. This can cause significantly more instructions to be - produced. Therefore, do not set this macro nonzero if unaligned - accesses only add a cycle or two to the time for a memory access. - - If the value of this macro is always zero, it need not be defined. */ - -/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */ - -/* Define this macro if it is as good or better to call a constant - function address than to call an address kept in a register. - - Desirable on the 386 because a CALL with a constant address is - faster than one with a register address. */ - -#define NO_FUNCTION_CSE - -/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, - return the mode to be used for the comparison. - - For floating-point equality comparisons, CCFPEQmode should be used. - VOIDmode should be used in all other cases. - - For integer comparisons against zero, reduce to CCNOmode or CCZmode if - possible, to allow for more combinations. */ - -#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y)) - -/* Return nonzero if MODE implies a floating point inequality can be - reversed. */ - -#define REVERSIBLE_CC_MODE(MODE) 1 - -/* A C expression whose value is reversed condition code of the CODE for - comparison done in CC_MODE mode. */ -#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE)) - - -/* Control the assembler format that we output, to the extent - this does not vary between assemblers. */ - -/* How to refer to registers in assembler output. - This sequence is indexed by compiler's hard-register-number (see above). */ - -/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e". - For non floating point regs, the following are the HImode names. - - For float regs, the stack top is sometimes referred to as "%st(0)" - instead of just "%st". PRINT_OPERAND handles this with the "y" code. */ - -#define HI_REGISTER_NAMES \ -{"ax","dx","cx","bx","si","di","bp","sp", \ - "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \ - "argp", "flags", "fpsr", "dirflag", "frame", \ - "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \ - "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \ - "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ - "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"} - -#define REGISTER_NAMES HI_REGISTER_NAMES - -/* Table of additional register names to use in user input. */ - -#define ADDITIONAL_REGISTER_NAMES \ -{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \ - { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \ - { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \ - { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \ - { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \ - { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } } - -/* Note we are omitting these since currently I don't know how -to get gcc to use these, since they want the same but different -number as al, and ax. -*/ - -#define QI_REGISTER_NAMES \ -{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",} - -/* These parallel the array above, and can be used to access bits 8:15 - of regs 0 through 3. */ - -#define QI_HIGH_REGISTER_NAMES \ -{"ah", "dh", "ch", "bh", } - -/* How to renumber registers for dbx and gdb. */ - -#define DBX_REGISTER_NUMBER(N) \ - (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)]) - -extern int const dbx_register_map[FIRST_PSEUDO_REGISTER]; -extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER]; -extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER]; - -/* Before the prologue, RA is at 0(%esp). */ -#define INCOMING_RETURN_ADDR_RTX \ - gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM)) - -/* After the prologue, RA is at -4(AP) in the current frame. */ -#define RETURN_ADDR_RTX(COUNT, FRAME) \ - ((COUNT) == 0 \ - ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \ - : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD))) - -/* PC is dbx register 8; let's use that column for RA. */ -#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8) - -/* Before the prologue, the top of the frame is at 4(%esp). */ -#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD - -/* Describe how we implement __builtin_eh_return. */ -#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM) -#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2) - - -/* Select a format to encode pointers in exception handling data. CODE - is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is - true if the symbol may be affected by dynamic relocations. - - ??? All x86 object file formats are capable of representing this. - After all, the relocation needed is the same as for the call insn. - Whether or not a particular assembler allows us to enter such, I - guess we'll have to see. */ -#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ - asm_preferred_eh_data_format ((CODE), (GLOBAL)) - -/* This is how to output an insn to push a register on the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \ -do { \ - if (TARGET_64BIT) \ - asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \ - reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \ - else \ - asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \ -} while (0) - -/* This is how to output an insn to pop a register from the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_POP(FILE, REGNO) \ -do { \ - if (TARGET_64BIT) \ - asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \ - reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \ - else \ - asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \ -} while (0) - -/* This is how to output an element of a case-vector that is absolute. */ - -#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ - ix86_output_addr_vec_elt ((FILE), (VALUE)) - -/* This is how to output an element of a case-vector that is relative. */ - -#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ - ix86_output_addr_diff_elt ((FILE), (VALUE), (REL)) - -/* Under some conditions we need jump tables in the text section, - because the assembler cannot handle label differences between - sections. This is the case for x86_64 on Mach-O for example. */ - -#define JUMP_TABLES_IN_TEXT_SECTION \ - (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \ - || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA))) - -/* Switch to init or fini section via SECTION_OP, emit a call to FUNC, - and switch back. For x86 we do this only to save a few bytes that - would otherwise be unused in the text section. */ -#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ - asm (SECTION_OP "\n\t" \ - "call " USER_LABEL_PREFIX #FUNC "\n" \ - TEXT_SECTION_ASM_OP); - -/* Print operand X (an rtx) in assembler syntax to file FILE. - CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. - Effect of various CODE letters is described in i386.c near - print_operand function. */ - -#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ - ((CODE) == '*' || (CODE) == '+' || (CODE) == '&') - -#define PRINT_OPERAND(FILE, X, CODE) \ - print_operand ((FILE), (X), (CODE)) - -#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ - print_operand_address ((FILE), (ADDR)) - -#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \ -do { \ - if (! output_addr_const_extra (FILE, (X))) \ - goto FAIL; \ -} while (0); - -/* a letter which is not needed by the normal asm syntax, which - we can use for operand syntax in the extended asm */ - -#define ASM_OPERAND_LETTER '#' -#define RET return "" -#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx)) - -/* Which processor to schedule for. The cpu attribute defines a list that - mirrors this list, so changes to i386.md must be made at the same time. */ - -enum processor_type -{ - PROCESSOR_I386, /* 80386 */ - PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */ - PROCESSOR_PENTIUM, - PROCESSOR_PENTIUMPRO, - PROCESSOR_GEODE, - PROCESSOR_K6, - PROCESSOR_ATHLON, - PROCESSOR_PENTIUM4, - PROCESSOR_K8, - PROCESSOR_NOCONA, - PROCESSOR_CORE2, - PROCESSOR_GENERIC32, - PROCESSOR_GENERIC64, - PROCESSOR_AMDFAM10, - PROCESSOR_max -}; - -extern enum processor_type ix86_tune; -extern enum processor_type ix86_arch; - -enum fpmath_unit -{ - FPMATH_387 = 1, - FPMATH_SSE = 2 -}; - -extern enum fpmath_unit ix86_fpmath; - -enum tls_dialect -{ - TLS_DIALECT_GNU, - TLS_DIALECT_GNU2, - TLS_DIALECT_SUN -}; - -extern enum tls_dialect ix86_tls_dialect; - -enum cmodel { - CM_32, /* The traditional 32-bit ABI. */ - CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */ - CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */ - CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */ - CM_LARGE, /* No assumptions. */ - CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */ - CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region. */ -}; - -extern enum cmodel ix86_cmodel; - -/* Size of the RED_ZONE area. */ -#define RED_ZONE_SIZE 128 -/* Reserved area of the red zone for temporaries. */ -#define RED_ZONE_RESERVE 8 - -enum asm_dialect { - ASM_ATT, - ASM_INTEL -}; - -extern enum asm_dialect ix86_asm_dialect; -extern unsigned int ix86_preferred_stack_boundary; -extern int ix86_branch_cost, ix86_section_threshold; - -/* Smallest class containing REGNO. */ -extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; - -extern rtx ix86_compare_op0; /* operand 0 for comparisons */ -extern rtx ix86_compare_op1; /* operand 1 for comparisons */ -extern rtx ix86_compare_emitted; - -/* To properly truncate FP values into integers, we need to set i387 control - word. We can't emit proper mode switching code before reload, as spills - generated by reload may truncate values incorrectly, but we still can avoid - redundant computation of new control word by the mode switching pass. - The fldcw instructions are still emitted redundantly, but this is probably - not going to be noticeable problem, as most CPUs do have fast path for - the sequence. - - The machinery is to emit simple truncation instructions and split them - before reload to instructions having USEs of two memory locations that - are filled by this code to old and new control word. - - Post-reload pass may be later used to eliminate the redundant fildcw if - needed. */ - -enum ix86_entity -{ - I387_TRUNC = 0, - I387_FLOOR, - I387_CEIL, - I387_MASK_PM, - MAX_386_ENTITIES -}; - -enum ix86_stack_slot -{ - SLOT_VIRTUAL = 0, - SLOT_TEMP, - SLOT_CW_STORED, - SLOT_CW_TRUNC, - SLOT_CW_FLOOR, - SLOT_CW_CEIL, - SLOT_CW_MASK_PM, - MAX_386_STACK_LOCALS -}; - -/* Define this macro if the port needs extra instructions inserted - for mode switching in an optimizing compilation. */ - -#define OPTIMIZE_MODE_SWITCHING(ENTITY) \ - ix86_optimize_mode_switching[(ENTITY)] - -/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as - initializer for an array of integers. Each initializer element N - refers to an entity that needs mode switching, and specifies the - number of different modes that might need to be set for this - entity. The position of the initializer in the initializer - - starting counting at zero - determines the integer that is used to - refer to the mode-switched entity in question. */ - -#define NUM_MODES_FOR_MODE_SWITCHING \ - { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY } - -/* ENTITY is an integer specifying a mode-switched entity. If - `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to - return an integer value not larger than the corresponding element - in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY - must be switched into prior to the execution of INSN. */ - -#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I)) - -/* This macro specifies the order in which modes for ENTITY are - processed. 0 is the highest priority. */ - -#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N) - -/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE - is the set of hard registers live at the point where the insn(s) - are to be inserted. */ - -#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \ - ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \ - ? emit_i387_cw_initialization (MODE), 0 \ - : 0) - - -/* Avoid renaming of stack registers, as doing so in combination with - scheduling just increases amount of live registers at time and in - the turn amount of fxch instructions needed. - - ??? Maybe Pentium chips benefits from renaming, someone can try.... */ - -#define HARD_REGNO_RENAME_OK(SRC, TARGET) \ - ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG) - - -#define DLL_IMPORT_EXPORT_PREFIX '#' - -#define FASTCALL_PREFIX '@' - -struct machine_function GTY(()) -{ - struct stack_local_entry *stack_locals; - const char *some_ld_name; - rtx force_align_arg_pointer; - int save_varrargs_registers; - int accesses_prev_frame; - int optimize_mode_switching[MAX_386_ENTITIES]; - /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to - determine the style used. */ - int use_fast_prologue_epilogue; - /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed - for. */ - int use_fast_prologue_epilogue_nregs; - /* If true, the current function needs the default PIC register, not - an alternate register (on x86) and must not use the red zone (on - x86_64), even if it's a leaf function. We don't want the - function to be regarded as non-leaf because TLS calls need not - affect register allocation. This flag is set when a TLS call - instruction is expanded within a function, and never reset, even - if all such instructions are optimized away. Use the - ix86_current_function_calls_tls_descriptor macro for a better - approximation. */ - int tls_descriptor_call_expanded_p; -}; - -#define ix86_stack_locals (cfun->machine->stack_locals) -#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers) -#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching) -#define ix86_tls_descriptor_calls_expanded_in_cfun \ - (cfun->machine->tls_descriptor_call_expanded_p) -/* Since tls_descriptor_call_expanded is not cleared, even if all TLS - calls are optimized away, we try to detect cases in which it was - optimized away. Since such instructions (use (reg REG_SP)), we can - verify whether there's any such instruction live by testing that - REG_SP is live. */ -#define ix86_current_function_calls_tls_descriptor \ - (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG]) - -/* Control behavior of x86_file_start. */ -#define X86_FILE_START_VERSION_DIRECTIVE false -#define X86_FILE_START_FLTUSED false - -/* Flag to mark data that is in the large address area. */ -#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0) -#define SYMBOL_REF_FAR_ADDR_P(X) \ - ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0) -/* -Local variables: -version-control: t -End: -*/ |