aboutsummaryrefslogtreecommitdiff
path: root/contrib/gcc/config/i386/i386.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/config/i386/i386.c')
-rw-r--r--contrib/gcc/config/i386/i386.c5741
1 files changed, 0 insertions, 5741 deletions
diff --git a/contrib/gcc/config/i386/i386.c b/contrib/gcc/config/i386/i386.c
deleted file mode 100644
index 0333b194c0fd..000000000000
--- a/contrib/gcc/config/i386/i386.c
+++ /dev/null
@@ -1,5741 +0,0 @@
-/* Subroutines for insn-output.c for Intel X86.
- Copyright (C) 1988, 92, 94-98, 1999 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-#include <setjmp.h>
-#include "config.h"
-#include "system.h"
-#include "rtl.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "real.h"
-#include "insn-config.h"
-#include "conditions.h"
-#include "insn-flags.h"
-#include "output.h"
-#include "insn-attr.h"
-#include "tree.h"
-#include "flags.h"
-#include "except.h"
-#include "function.h"
-#include "recog.h"
-#include "expr.h"
-#include "toplev.h"
-
-#ifdef EXTRA_CONSTRAINT
-/* If EXTRA_CONSTRAINT is defined, then the 'S'
- constraint in REG_CLASS_FROM_LETTER will no longer work, and various
- asm statements that need 'S' for class SIREG will break. */
- error EXTRA_CONSTRAINT conflicts with S constraint letter
-/* The previous line used to be #error, but some compilers barf
- even if the conditional was untrue. */
-#endif
-
-#ifndef CHECK_STACK_LIMIT
-#define CHECK_STACK_LIMIT -1
-#endif
-
-/* Type of an operand for ix86_{binary,unary}_operator_ok */
-enum reg_mem
-{
- reg_p,
- mem_p,
- imm_p
-};
-
-/* Processor costs (relative to an add) */
-struct processor_costs i386_cost = { /* 386 specific costs */
- 1, /* cost of an add instruction */
- 1, /* cost of a lea instruction */
- 3, /* variable shift costs */
- 2, /* constant shift costs */
- 6, /* cost of starting a multiply */
- 1, /* cost of multiply per each bit set */
- 23 /* cost of a divide/mod */
-};
-
-struct processor_costs i486_cost = { /* 486 specific costs */
- 1, /* cost of an add instruction */
- 1, /* cost of a lea instruction */
- 3, /* variable shift costs */
- 2, /* constant shift costs */
- 12, /* cost of starting a multiply */
- 1, /* cost of multiply per each bit set */
- 40 /* cost of a divide/mod */
-};
-
-struct processor_costs pentium_cost = {
- 1, /* cost of an add instruction */
- 1, /* cost of a lea instruction */
- 4, /* variable shift costs */
- 1, /* constant shift costs */
- 11, /* cost of starting a multiply */
- 0, /* cost of multiply per each bit set */
- 25 /* cost of a divide/mod */
-};
-
-struct processor_costs pentiumpro_cost = {
- 1, /* cost of an add instruction */
- 1, /* cost of a lea instruction */
- 3, /* variable shift costs */
- 1, /* constant shift costs */
- 4, /* cost of starting a multiply */
- 0, /* cost of multiply per each bit set */
- 17 /* cost of a divide/mod */
-};
-
-/* We use decoding time together with execution time.
- To get correct vale add 1 for short decodable, 2 for long decodable
- and 4 for vector decodable instruction to execution time and divide
- by two (because CPU is able to do two insns at a time). */
-
-struct processor_costs k6_cost = {
- 1, /* cost of an add instruction */
- 1, /* cost of a lea instruction */
- 1, /* variable shift costs */
- 1, /* constant shift costs */
- 3, /* cost of starting a multiply */
- 0, /* cost of multiply per each bit set */
- 20 /* cost of a divide/mod */
-};
-
-struct processor_costs *ix86_cost = &pentium_cost;
-
-/* Processor feature/optimization bitmasks. */
-#define m_386 (1<<PROCESSOR_I386)
-#define m_486 (1<<PROCESSOR_I486)
-#define m_PENT (1<<PROCESSOR_PENTIUM)
-#define m_PPRO (1<<PROCESSOR_PENTIUMPRO)
-#define m_K6 (1<<PROCESSOR_K6)
-
-const int x86_use_leave = m_386 | m_K6;
-const int x86_push_memory = m_386 | m_K6;
-const int x86_zero_extend_with_and = m_486 | m_PENT;
-const int x86_movx = m_386 | m_PPRO | m_K6;
-const int x86_double_with_add = ~(m_386 | m_PENT | m_PPRO);
-const int x86_use_bit_test = m_386;
-const int x86_unroll_strlen = m_486 | m_PENT | m_PPRO;
-const int x86_use_q_reg = m_PENT | m_PPRO | m_K6;
-const int x86_use_any_reg = m_486;
-const int x86_cmove = m_PPRO;
-const int x86_deep_branch = m_PPRO| m_K6;
-
-#define AT_BP(mode) (gen_rtx_MEM ((mode), frame_pointer_rtx))
-
-extern FILE *asm_out_file;
-extern char *strcat ();
-
-static void ix86_epilogue PROTO((int));
-static void ix86_prologue PROTO((int));
-
-char *singlemove_string ();
-char *output_move_const_single ();
-char *output_fp_cc0_set ();
-
-char *hi_reg_name[] = HI_REGISTER_NAMES;
-char *qi_reg_name[] = QI_REGISTER_NAMES;
-char *qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES;
-
-/* Array of the smallest class containing reg number REGNO, indexed by
- REGNO. Used by REGNO_REG_CLASS in i386.h. */
-
-enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] =
-{
- /* ax, dx, cx, bx */
- AREG, DREG, CREG, BREG,
- /* si, di, bp, sp */
- SIREG, DIREG, INDEX_REGS, GENERAL_REGS,
- /* FP registers */
- FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS,
- FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS,
- /* arg pointer */
- INDEX_REGS
-};
-
-/* Test and compare insns in i386.md store the information needed to
- generate branch and scc insns here. */
-
-struct rtx_def *i386_compare_op0 = NULL_RTX;
-struct rtx_def *i386_compare_op1 = NULL_RTX;
-struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
-
-/* which cpu are we scheduling for */
-enum processor_type ix86_cpu;
-
-/* which instruction set architecture to use. */
-int ix86_arch;
-
-/* Strings to hold which cpu and instruction set architecture to use. */
-char *ix86_cpu_string; /* for -mcpu=<xxx> */
-char *ix86_arch_string; /* for -march=<xxx> */
-
-/* Register allocation order */
-char *i386_reg_alloc_order;
-static char regs_allocated[FIRST_PSEUDO_REGISTER];
-
-/* # of registers to use to pass arguments. */
-char *i386_regparm_string;
-
-/* i386_regparm_string as a number */
-int i386_regparm;
-
-/* Alignment to use for loops and jumps: */
-
-/* Power of two alignment for loops. */
-char *i386_align_loops_string;
-
-/* Power of two alignment for non-loop jumps. */
-char *i386_align_jumps_string;
-
-/* Power of two alignment for stack boundary in bytes. */
-char *i386_preferred_stack_boundary_string;
-
-/* Preferred alignment for stack boundary in bits. */
-int i386_preferred_stack_boundary;
-
-/* Values 1-5: see jump.c */
-int i386_branch_cost;
-char *i386_branch_cost_string;
-
-/* Power of two alignment for functions. */
-int i386_align_funcs;
-char *i386_align_funcs_string;
-
-/* Power of two alignment for loops. */
-int i386_align_loops;
-
-/* Power of two alignment for non-loop jumps. */
-int i386_align_jumps;
-
-/* Sometimes certain combinations of command options do not make
- sense on a particular target machine. You can define a macro
- `OVERRIDE_OPTIONS' to take account of this. This macro, if
- defined, is executed once just after all the command options have
- been parsed.
-
- Don't use this macro to turn on various extra optimizations for
- `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
-
-void
-override_options ()
-{
- int ch, i, j;
- int def_align;
-
- static struct ptt
- {
- char *name; /* Canonical processor name. */
- enum processor_type processor; /* Processor type enum value. */
- struct processor_costs *cost; /* Processor costs */
- int target_enable; /* Target flags to enable. */
- int target_disable; /* Target flags to disable. */
- } processor_target_table[] = {
- {PROCESSOR_I386_STRING, PROCESSOR_I386, &i386_cost, 0, 0},
- {PROCESSOR_I486_STRING, PROCESSOR_I486, &i486_cost, 0, 0},
- {PROCESSOR_I586_STRING, PROCESSOR_PENTIUM, &pentium_cost, 0, 0},
- {PROCESSOR_PENTIUM_STRING, PROCESSOR_PENTIUM, &pentium_cost, 0, 0},
- {PROCESSOR_I686_STRING, PROCESSOR_PENTIUMPRO, &pentiumpro_cost, 0, 0},
- {PROCESSOR_PENTIUMPRO_STRING, PROCESSOR_PENTIUMPRO,
- &pentiumpro_cost, 0, 0},
- {PROCESSOR_K6_STRING, PROCESSOR_K6, &k6_cost, 0, 0}
- };
-
- int ptt_size = sizeof (processor_target_table) / sizeof (struct ptt);
-
-#ifdef SUBTARGET_OVERRIDE_OPTIONS
- SUBTARGET_OVERRIDE_OPTIONS;
-#endif
-
- /* Validate registers in register allocation order. */
- if (i386_reg_alloc_order)
- {
- for (i = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
- {
- int regno = 0;
-
- switch (ch)
- {
- case 'a': regno = 0; break;
- case 'd': regno = 1; break;
- case 'c': regno = 2; break;
- case 'b': regno = 3; break;
- case 'S': regno = 4; break;
- case 'D': regno = 5; break;
- case 'B': regno = 6; break;
-
- default: fatal ("Register '%c' is unknown", ch);
- }
-
- if (regs_allocated[regno])
- fatal ("Register '%c' already specified in allocation order", ch);
-
- regs_allocated[regno] = 1;
- }
- }
-
- if (ix86_arch_string == 0)
- {
- ix86_arch_string = PROCESSOR_PENTIUM_STRING;
- if (ix86_cpu_string == 0)
- ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
- }
-
- for (i = 0; i < ptt_size; i++)
- if (! strcmp (ix86_arch_string, processor_target_table[i].name))
- {
- ix86_arch = processor_target_table[i].processor;
- if (ix86_cpu_string == 0)
- ix86_cpu_string = processor_target_table[i].name;
- break;
- }
-
- if (i == ptt_size)
- {
- error ("bad value (%s) for -march= switch", ix86_arch_string);
- ix86_arch_string = PROCESSOR_PENTIUM_STRING;
- ix86_arch = PROCESSOR_DEFAULT;
- }
-
- if (ix86_cpu_string == 0)
- ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
-
- for (j = 0; j < ptt_size; j++)
- if (! strcmp (ix86_cpu_string, processor_target_table[j].name))
- {
- ix86_cpu = processor_target_table[j].processor;
- ix86_cost = processor_target_table[j].cost;
- if (i > j && (int) ix86_arch >= (int) PROCESSOR_K6)
- error ("-mcpu=%s does not support -march=%s",
- ix86_cpu_string, ix86_arch_string);
-
- target_flags |= processor_target_table[j].target_enable;
- target_flags &= ~processor_target_table[j].target_disable;
- break;
- }
-
- if (j == ptt_size)
- {
- error ("bad value (%s) for -mcpu= switch", ix86_cpu_string);
- ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
- ix86_cpu = PROCESSOR_DEFAULT;
- }
-
- /* Validate -mregparm= value. */
- if (i386_regparm_string)
- {
- i386_regparm = atoi (i386_regparm_string);
- if (i386_regparm < 0 || i386_regparm > REGPARM_MAX)
- fatal ("-mregparm=%d is not between 0 and %d",
- i386_regparm, REGPARM_MAX);
- }
-
- /* The 486 suffers more from non-aligned cache line fills, and the
- larger code size results in a larger cache foot-print and more misses.
- The 486 has a 16 byte cache line, pentium and pentiumpro have a 32 byte
- cache line. */
- def_align = (TARGET_486) ? 4 : 2;
-
- /* Validate -malign-loops= value, or provide default. */
-#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
- i386_align_loops = 4;
-#else
- i386_align_loops = 2;
-#endif
- if (i386_align_loops_string)
- {
- i386_align_loops = atoi (i386_align_loops_string);
- if (i386_align_loops < 0 || i386_align_loops > MAX_CODE_ALIGN)
- fatal ("-malign-loops=%d is not between 0 and %d",
- i386_align_loops, MAX_CODE_ALIGN);
- }
-
- /* Validate -malign-jumps= value, or provide default. */
-#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
- i386_align_jumps = 4;
-#else
- i386_align_jumps = def_align;
-#endif
- if (i386_align_jumps_string)
- {
- i386_align_jumps = atoi (i386_align_jumps_string);
- if (i386_align_jumps < 0 || i386_align_jumps > MAX_CODE_ALIGN)
- fatal ("-malign-jumps=%d is not between 0 and %d",
- i386_align_jumps, MAX_CODE_ALIGN);
- }
-
- /* Validate -malign-functions= value, or provide default. */
- i386_align_funcs = def_align;
- if (i386_align_funcs_string)
- {
- i386_align_funcs = atoi (i386_align_funcs_string);
- if (i386_align_funcs < 0 || i386_align_funcs > MAX_CODE_ALIGN)
- fatal ("-malign-functions=%d is not between 0 and %d",
- i386_align_funcs, MAX_CODE_ALIGN);
- }
-
- /* Validate -mpreferred_stack_boundary= value, or provide default.
- The default of 128 bits is for Pentium III's SSE __m128. */
- i386_preferred_stack_boundary = 128;
- if (i386_preferred_stack_boundary_string)
- {
- i = atoi (i386_preferred_stack_boundary_string);
- if (i < 2 || i > 31)
- fatal ("-mpreferred_stack_boundary=%d is not between 2 and 31", i);
- i386_preferred_stack_boundary = (1 << i) * BITS_PER_UNIT;
- }
-
- /* Validate -mbranch-cost= value, or provide default. */
- i386_branch_cost = 1;
- if (i386_branch_cost_string)
- {
- i386_branch_cost = atoi (i386_branch_cost_string);
- if (i386_branch_cost < 0 || i386_branch_cost > 5)
- fatal ("-mbranch-cost=%d is not between 0 and 5", i386_branch_cost);
- }
-
- /* Keep nonleaf frame pointers. */
- if (TARGET_OMIT_LEAF_FRAME_POINTER)
- flag_omit_frame_pointer = 1;
-}
-
-/* A C statement (sans semicolon) to choose the order in which to
- allocate hard registers for pseudo-registers local to a basic
- block.
-
- Store the desired register order in the array `reg_alloc_order'.
- Element 0 should be the register to allocate first; element 1, the
- next register; and so on.
-
- The macro body should not assume anything about the contents of
- `reg_alloc_order' before execution of the macro.
-
- On most machines, it is not necessary to define this macro. */
-
-void
-order_regs_for_local_alloc ()
-{
- int i, ch, order;
-
- /* User specified the register allocation order. */
-
- if (i386_reg_alloc_order)
- {
- for (i = order = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
- {
- int regno = 0;
-
- switch (ch)
- {
- case 'a': regno = 0; break;
- case 'd': regno = 1; break;
- case 'c': regno = 2; break;
- case 'b': regno = 3; break;
- case 'S': regno = 4; break;
- case 'D': regno = 5; break;
- case 'B': regno = 6; break;
- }
-
- reg_alloc_order[order++] = regno;
- }
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- if (! regs_allocated[i])
- reg_alloc_order[order++] = i;
- }
- }
-
- /* If user did not specify a register allocation order, use natural order. */
- else
- {
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- reg_alloc_order[i] = i;
- }
-}
-
-void
-optimization_options (level, size)
- int level;
- int size ATTRIBUTE_UNUSED;
-{
- /* For -O2 and beyond, turn off -fschedule-insns by default. It tends to
- make the problem with not enough registers even worse. */
-#ifdef INSN_SCHEDULING
- if (level > 1)
- flag_schedule_insns = 0;
-#endif
-}
-
-/* Sign-extend a 16-bit constant */
-
-struct rtx_def *
-i386_sext16_if_const (op)
- struct rtx_def *op;
-{
- if (GET_CODE (op) == CONST_INT)
- {
- HOST_WIDE_INT val = INTVAL (op);
- HOST_WIDE_INT sext_val;
- if (val & 0x8000)
- sext_val = val | ~0xffff;
- else
- sext_val = val & 0xffff;
- if (sext_val != val)
- op = GEN_INT (sext_val);
- }
- return op;
-}
-
-/* Return nonzero if the rtx is aligned */
-
-static int
-i386_aligned_reg_p (regno)
- int regno;
-{
- return (regno == STACK_POINTER_REGNUM
- || (! flag_omit_frame_pointer && regno == FRAME_POINTER_REGNUM));
-}
-
-int
-i386_aligned_p (op)
- rtx op;
-{
- /* Registers and immediate operands are always "aligned". */
- if (GET_CODE (op) != MEM)
- return 1;
-
- /* Don't even try to do any aligned optimizations with volatiles. */
- if (MEM_VOLATILE_P (op))
- return 0;
-
- /* Get address of memory operand. */
- op = XEXP (op, 0);
-
- switch (GET_CODE (op))
- {
- case CONST_INT:
- if (INTVAL (op) & 3)
- break;
- return 1;
-
- /* Match "reg + offset" */
- case PLUS:
- if (GET_CODE (XEXP (op, 1)) != CONST_INT)
- break;
- if (INTVAL (XEXP (op, 1)) & 3)
- break;
-
- op = XEXP (op, 0);
- if (GET_CODE (op) != REG)
- break;
-
- /* ... fall through ... */
-
- case REG:
- return i386_aligned_reg_p (REGNO (op));
-
- default:
- break;
- }
-
- return 0;
-}
-
-/* Return nonzero if INSN looks like it won't compute useful cc bits
- as a side effect. This information is only a hint. */
-
-int
-i386_cc_probably_useless_p (insn)
- rtx insn;
-{
- return ! next_cc0_user (insn);
-}
-
-/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific
- attribute for DECL. The attributes in ATTRIBUTES have previously been
- assigned to DECL. */
-
-int
-i386_valid_decl_attribute_p (decl, attributes, identifier, args)
- tree decl ATTRIBUTE_UNUSED;
- tree attributes ATTRIBUTE_UNUSED;
- tree identifier ATTRIBUTE_UNUSED;
- tree args ATTRIBUTE_UNUSED;
-{
- return 0;
-}
-
-/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific
- attribute for TYPE. The attributes in ATTRIBUTES have previously been
- assigned to TYPE. */
-
-int
-i386_valid_type_attribute_p (type, attributes, identifier, args)
- tree type;
- tree attributes ATTRIBUTE_UNUSED;
- tree identifier;
- tree args;
-{
- if (TREE_CODE (type) != FUNCTION_TYPE
- && TREE_CODE (type) != METHOD_TYPE
- && TREE_CODE (type) != FIELD_DECL
- && TREE_CODE (type) != TYPE_DECL)
- return 0;
-
- /* Stdcall attribute says callee is responsible for popping arguments
- if they are not variable. */
- if (is_attribute_p ("stdcall", identifier))
- return (args == NULL_TREE);
-
- /* Cdecl attribute says the callee is a normal C declaration. */
- if (is_attribute_p ("cdecl", identifier))
- return (args == NULL_TREE);
-
- /* Regparm attribute specifies how many integer arguments are to be
- passed in registers. */
- if (is_attribute_p ("regparm", identifier))
- {
- tree cst;
-
- if (! args || TREE_CODE (args) != TREE_LIST
- || TREE_CHAIN (args) != NULL_TREE
- || TREE_VALUE (args) == NULL_TREE)
- return 0;
-
- cst = TREE_VALUE (args);
- if (TREE_CODE (cst) != INTEGER_CST)
- return 0;
-
- if (TREE_INT_CST_HIGH (cst) != 0
- || TREE_INT_CST_LOW (cst) < 0
- || TREE_INT_CST_LOW (cst) > REGPARM_MAX)
- return 0;
-
- return 1;
- }
-
- return 0;
-}
-
-/* Return 0 if the attributes for two types are incompatible, 1 if they
- are compatible, and 2 if they are nearly compatible (which causes a
- warning to be generated). */
-
-int
-i386_comp_type_attributes (type1, type2)
- tree type1;
- tree type2;
-{
- /* Check for mismatch of non-default calling convention. */
- char *rtdstr = TARGET_RTD ? "cdecl" : "stdcall";
-
- if (TREE_CODE (type1) != FUNCTION_TYPE)
- return 1;
-
- /* Check for mismatched return types (cdecl vs stdcall). */
- if (!lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type1))
- != !lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type2)))
- return 0;
- return 1;
-}
-
-
-/* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the 80386, the RTD insn may be used to pop them if the number
- of args is fixed, but if the number is variable then the caller
- must pop them all. RTD can't be used for library calls now
- because the library is compiled with the Unix compiler.
- Use of RTD is a selectable option, since it is incompatible with
- standard Unix calling sequences. If the option is not selected,
- the caller must always pop the args.
-
- The attribute stdcall is equivalent to RTD on a per module basis. */
-
-int
-i386_return_pops_args (fundecl, funtype, size)
- tree fundecl;
- tree funtype;
- int size;
-{
- int rtd = TARGET_RTD && (!fundecl || TREE_CODE (fundecl) != IDENTIFIER_NODE);
-
- /* Cdecl functions override -mrtd, and never pop the stack. */
- if (! lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) {
-
- /* Stdcall functions will pop the stack if not variable args. */
- if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype)))
- rtd = 1;
-
- if (rtd
- && (TYPE_ARG_TYPES (funtype) == NULL_TREE
- || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (funtype)))
- == void_type_node)))
- return size;
- }
-
- /* Lose any fake structure return argument. */
- if (aggregate_value_p (TREE_TYPE (funtype)))
- return GET_MODE_SIZE (Pmode);
-
- return 0;
-}
-
-
-/* Argument support functions. */
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
-void
-init_cumulative_args (cum, fntype, libname)
- CUMULATIVE_ARGS *cum; /* Argument info to initialize */
- tree fntype; /* tree ptr for function decl */
- rtx libname; /* SYMBOL_REF of library name or 0 */
-{
- static CUMULATIVE_ARGS zero_cum;
- tree param, next_param;
-
- if (TARGET_DEBUG_ARG)
- {
- fprintf (stderr, "\ninit_cumulative_args (");
- if (fntype)
- fprintf (stderr, "fntype code = %s, ret code = %s",
- tree_code_name[(int) TREE_CODE (fntype)],
- tree_code_name[(int) TREE_CODE (TREE_TYPE (fntype))]);
- else
- fprintf (stderr, "no fntype");
-
- if (libname)
- fprintf (stderr, ", libname = %s", XSTR (libname, 0));
- }
-
- *cum = zero_cum;
-
- /* Set up the number of registers to use for passing arguments. */
- cum->nregs = i386_regparm;
- if (fntype)
- {
- tree attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (fntype));
-
- if (attr)
- cum->nregs = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr)));
- }
-
- /* Determine if this function has variable arguments. This is
- indicated by the last argument being 'void_type_mode' if there
- are no variable arguments. If there are variable arguments, then
- we won't pass anything in registers */
-
- if (cum->nregs)
- {
- for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
- param != 0; param = next_param)
- {
- next_param = TREE_CHAIN (param);
- if (next_param == 0 && TREE_VALUE (param) != void_type_node)
- cum->nregs = 0;
- }
- }
-
- if (TARGET_DEBUG_ARG)
- fprintf (stderr, ", nregs=%d )\n", cum->nregs);
-
- return;
-}
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
-void
-function_arg_advance (cum, mode, type, named)
- CUMULATIVE_ARGS *cum; /* current arg information */
- enum machine_mode mode; /* current arg mode */
- tree type; /* type of the argument or 0 if lib support */
- int named; /* whether or not the argument was named */
-{
- int bytes
- = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
- int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
-
- if (TARGET_DEBUG_ARG)
- fprintf (stderr,
- "function_adv (sz=%d, wds=%2d, nregs=%d, mode=%s, named=%d)\n\n",
- words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
-
- cum->words += words;
- cum->nregs -= words;
- cum->regno += words;
-
- if (cum->nregs <= 0)
- {
- cum->nregs = 0;
- cum->regno = 0;
- }
-
- return;
-}
-
-/* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-struct rtx_def *
-function_arg (cum, mode, type, named)
- CUMULATIVE_ARGS *cum; /* current arg information */
- enum machine_mode mode; /* current arg mode */
- tree type; /* type of the argument or 0 if lib support */
- int named; /* != 0 for normal args, == 0 for ... args */
-{
- rtx ret = NULL_RTX;
- int bytes
- = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
- int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
-
- switch (mode)
- {
- /* For now, pass fp/complex values on the stack. */
- default:
- break;
-
- case BLKmode:
- case DImode:
- case SImode:
- case HImode:
- case QImode:
- if (words <= cum->nregs)
- ret = gen_rtx_REG (mode, cum->regno);
- break;
- }
-
- if (TARGET_DEBUG_ARG)
- {
- fprintf (stderr,
- "function_arg (size=%d, wds=%2d, nregs=%d, mode=%4s, named=%d",
- words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
-
- if (ret)
- fprintf (stderr, ", reg=%%e%s", reg_names[ REGNO(ret) ]);
- else
- fprintf (stderr, ", stack");
-
- fprintf (stderr, " )\n");
- }
-
- return ret;
-}
-
-/* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
-int
-function_arg_partial_nregs (cum, mode, type, named)
- CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED; /* current arg information */
- enum machine_mode mode ATTRIBUTE_UNUSED; /* current arg mode */
- tree type ATTRIBUTE_UNUSED; /* type of the argument or 0 if lib support */
- int named ATTRIBUTE_UNUSED; /* != 0 for normal args, == 0 for ... args */
-{
- return 0;
-}
-
-char *
-singlemove_string (operands)
- rtx *operands;
-{
- rtx x;
- if (GET_CODE (operands[0]) == MEM
- && GET_CODE (x = XEXP (operands[0], 0)) == PRE_DEC)
- {
- if (XEXP (x, 0) != stack_pointer_rtx)
- abort ();
- return "push%L1 %1";
- }
- else if (GET_CODE (operands[1]) == CONST_DOUBLE)
- return output_move_const_single (operands);
- else if (GET_CODE (operands[0]) == REG || GET_CODE (operands[1]) == REG)
- return AS2 (mov%L0,%1,%0);
- else if (CONSTANT_P (operands[1]))
- return AS2 (mov%L0,%1,%0);
- else
- {
- output_asm_insn ("push%L1 %1", operands);
- return "pop%L0 %0";
- }
-}
-
-/* Output an insn to add the constant N to the register X. */
-
-static void
-asm_add (n, x)
- int n;
- rtx x;
-{
- rtx xops[2];
- xops[0] = x;
-
- if (n == -1)
- output_asm_insn (AS1 (dec%L0,%0), xops);
- else if (n == 1)
- output_asm_insn (AS1 (inc%L0,%0), xops);
- else if (n < 0 || n == 128)
- {
- xops[1] = GEN_INT (-n);
- output_asm_insn (AS2 (sub%L0,%1,%0), xops);
- }
- else if (n > 0)
- {
- xops[1] = GEN_INT (n);
- output_asm_insn (AS2 (add%L0,%1,%0), xops);
- }
-}
-
-/* Output assembler code to perform a doubleword move insn
- with operands OPERANDS. */
-
-char *
-output_move_double (operands)
- rtx *operands;
-{
- enum {REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
- rtx latehalf[2];
- rtx middlehalf[2];
- rtx xops[2];
- int dest_overlapped_low = 0;
- int size = GET_MODE_SIZE (GET_MODE (operands[0]));
-
- middlehalf[0] = 0;
- middlehalf[1] = 0;
-
- /* First classify both operands. */
-
- if (REG_P (operands[0]))
- optype0 = REGOP;
- else if (offsettable_memref_p (operands[0]))
- optype0 = OFFSOP;
- else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
- optype0 = POPOP;
- else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
- optype0 = PUSHOP;
- else if (GET_CODE (operands[0]) == MEM)
- optype0 = MEMOP;
- else
- optype0 = RNDOP;
-
- if (REG_P (operands[1]))
- optype1 = REGOP;
- else if (CONSTANT_P (operands[1]))
- optype1 = CNSTOP;
- else if (offsettable_memref_p (operands[1]))
- optype1 = OFFSOP;
- else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
- optype1 = POPOP;
- else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
- optype1 = PUSHOP;
- else if (GET_CODE (operands[1]) == MEM)
- optype1 = MEMOP;
- else
- optype1 = RNDOP;
-
- /* Check for the cases that are not supposed to happen
- either due to the operand constraints or the fact
- that all memory operands on the x86 are offsettable.
- Abort if we get one, because generating code for these
- cases is painful. */
-
- if (optype0 == RNDOP || optype1 == RNDOP
- || optype0 == MEMOP || optype1 == MEMOP)
- abort ();
-
- /* If one operand is decrementing and one is incrementing
- decrement the former register explicitly
- and change that operand into ordinary indexing. */
-
- if (optype0 == PUSHOP && optype1 == POPOP)
- {
- /* ??? Can this ever happen on i386? */
- operands[0] = XEXP (XEXP (operands[0], 0), 0);
- asm_add (-size, operands[0]);
- if (GET_MODE (operands[1]) == XFmode)
- operands[0] = gen_rtx_MEM (XFmode, operands[0]);
- else if (GET_MODE (operands[0]) == DFmode)
- operands[0] = gen_rtx_MEM (DFmode, operands[0]);
- else
- operands[0] = gen_rtx_MEM (DImode, operands[0]);
- optype0 = OFFSOP;
- }
-
- if (optype0 == POPOP && optype1 == PUSHOP)
- {
- /* ??? Can this ever happen on i386? */
- operands[1] = XEXP (XEXP (operands[1], 0), 0);
- asm_add (-size, operands[1]);
- if (GET_MODE (operands[1]) == XFmode)
- operands[1] = gen_rtx_MEM (XFmode, operands[1]);
- else if (GET_MODE (operands[1]) == DFmode)
- operands[1] = gen_rtx_MEM (DFmode, operands[1]);
- else
- operands[1] = gen_rtx_MEM (DImode, operands[1]);
- optype1 = OFFSOP;
- }
-
- /* Ok, we can do one word at a time.
- Normally we do the low-numbered word first,
- but if either operand is autodecrementing then we
- do the high-numbered word first.
-
- In either case, set up in LATEHALF the operands to use
- for the high-numbered word and in some cases alter the
- operands in OPERANDS to be suitable for the low-numbered word. */
-
- if (size == 12)
- {
- if (optype0 == REGOP)
- {
- middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
- latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
- }
- else if (optype0 == OFFSOP)
- {
- middlehalf[0] = adj_offsettable_operand (operands[0], 4);
- latehalf[0] = adj_offsettable_operand (operands[0], 8);
- }
- else
- {
- middlehalf[0] = operands[0];
- latehalf[0] = operands[0];
- }
-
- if (optype1 == REGOP)
- {
- middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
- latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
- }
- else if (optype1 == OFFSOP)
- {
- middlehalf[1] = adj_offsettable_operand (operands[1], 4);
- latehalf[1] = adj_offsettable_operand (operands[1], 8);
- }
- else if (optype1 == CNSTOP)
- {
- if (GET_CODE (operands[1]) == CONST_DOUBLE)
- {
- REAL_VALUE_TYPE r; long l[3];
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
- REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
- operands[1] = GEN_INT (l[0]);
- middlehalf[1] = GEN_INT (l[1]);
- latehalf[1] = GEN_INT (l[2]);
- }
- else if (CONSTANT_P (operands[1]))
- /* No non-CONST_DOUBLE constant should ever appear here. */
- abort ();
- }
- else
- {
- middlehalf[1] = operands[1];
- latehalf[1] = operands[1];
- }
- }
-
- else
- {
- /* Size is not 12. */
-
- if (optype0 == REGOP)
- latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
- else if (optype0 == OFFSOP)
- latehalf[0] = adj_offsettable_operand (operands[0], 4);
- else
- latehalf[0] = operands[0];
-
- if (optype1 == REGOP)
- latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
- else if (optype1 == OFFSOP)
- latehalf[1] = adj_offsettable_operand (operands[1], 4);
- else if (optype1 == CNSTOP)
- split_double (operands[1], &operands[1], &latehalf[1]);
- else
- latehalf[1] = operands[1];
- }
-
- /* If insn is effectively movd N (sp),-(sp) then we will do the
- high word first. We should use the adjusted operand 1
- (which is N+4 (sp) or N+8 (sp))
- for the low word and middle word as well,
- to compensate for the first decrement of sp. */
- if (optype0 == PUSHOP
- && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
- && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
- middlehalf[1] = operands[1] = latehalf[1];
-
- /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
- if the upper part of reg N does not appear in the MEM, arrange to
- emit the move late-half first. Otherwise, compute the MEM address
- into the upper part of N and use that as a pointer to the memory
- operand. */
- if (optype0 == REGOP && optype1 == OFFSOP)
- {
- if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
- && reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
- {
- /* If both halves of dest are used in the src memory address,
- compute the address into latehalf of dest. */
- compadr:
- xops[0] = latehalf[0];
- xops[1] = XEXP (operands[1], 0);
- output_asm_insn (AS2 (lea%L0,%a1,%0), xops);
- if (GET_MODE (operands[1]) == XFmode)
- {
- operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
- middlehalf[1] = adj_offsettable_operand (operands[1], size-8);
- latehalf[1] = adj_offsettable_operand (operands[1], size-4);
- }
- else
- {
- operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
- latehalf[1] = adj_offsettable_operand (operands[1], size-4);
- }
- }
-
- else if (size == 12
- && reg_mentioned_p (middlehalf[0], XEXP (operands[1], 0)))
- {
- /* Check for two regs used by both source and dest. */
- if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
- || reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
- goto compadr;
-
- /* Only the middle reg conflicts; simply put it last. */
- output_asm_insn (singlemove_string (operands), operands);
- output_asm_insn (singlemove_string (latehalf), latehalf);
- output_asm_insn (singlemove_string (middlehalf), middlehalf);
- return "";
- }
-
- else if (reg_mentioned_p (operands[0], XEXP (operands[1], 0)))
- /* If the low half of dest is mentioned in the source memory
- address, the arrange to emit the move late half first. */
- dest_overlapped_low = 1;
- }
-
- /* If one or both operands autodecrementing,
- do the two words, high-numbered first. */
-
- /* Likewise, the first move would clobber the source of the second one,
- do them in the other order. This happens only for registers;
- such overlap can't happen in memory unless the user explicitly
- sets it up, and that is an undefined circumstance. */
-
-#if 0
- if (optype0 == PUSHOP || optype1 == PUSHOP
- || (optype0 == REGOP && optype1 == REGOP
- && REGNO (operands[0]) == REGNO (latehalf[1]))
- || dest_overlapped_low)
-#endif
-
- if (optype0 == PUSHOP || optype1 == PUSHOP
- || (optype0 == REGOP && optype1 == REGOP
- && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
- || REGNO (operands[0]) == REGNO (latehalf[1])))
- || dest_overlapped_low)
- {
- /* Do the high-numbered word. */
- output_asm_insn (singlemove_string (latehalf), latehalf);
-
- if (size == 12)
- output_asm_insn (singlemove_string (middlehalf), middlehalf);
-
- /* Do low-numbered word. */
- return singlemove_string (operands);
- }
-
- /* Normal case: do the two words, low-numbered first. */
-
- output_asm_insn (singlemove_string (operands), operands);
-
- /* Do the middle one of the three words for long double */
- if (size == 12)
- output_asm_insn (singlemove_string (middlehalf), middlehalf);
-
- /* Do the high-numbered word. */
- output_asm_insn (singlemove_string (latehalf), latehalf);
-
- return "";
-}
-
-#define MAX_TMPS 2 /* max temporary registers used */
-
-/* Output the appropriate code to move push memory on the stack */
-
-char *
-output_move_pushmem (operands, insn, length, tmp_start, n_operands)
- rtx operands[];
- rtx insn;
- int length;
- int tmp_start;
- int n_operands;
-{
- struct
- {
- char *load;
- char *push;
- rtx xops[2];
- } tmp_info[MAX_TMPS];
-
- rtx src = operands[1];
- int max_tmps = 0;
- int offset = 0;
- int stack_p = reg_overlap_mentioned_p (stack_pointer_rtx, src);
- int stack_offset = 0;
- int i, num_tmps;
- rtx xops[1];
-
- if (! offsettable_memref_p (src))
- fatal_insn ("Source is not offsettable", insn);
-
- if ((length & 3) != 0)
- fatal_insn ("Pushing non-word aligned size", insn);
-
- /* Figure out which temporary registers we have available */
- for (i = tmp_start; i < n_operands; i++)
- {
- if (GET_CODE (operands[i]) == REG)
- {
- if (reg_overlap_mentioned_p (operands[i], src))
- continue;
-
- tmp_info[ max_tmps++ ].xops[1] = operands[i];
- if (max_tmps == MAX_TMPS)
- break;
- }
- }
-
- if (max_tmps == 0)
- for (offset = length - 4; offset >= 0; offset -= 4)
- {
- xops[0] = adj_offsettable_operand (src, offset + stack_offset);
- output_asm_insn (AS1(push%L0,%0), xops);
- if (stack_p)
- stack_offset += 4;
- }
-
- else
- for (offset = length - 4; offset >= 0; )
- {
- for (num_tmps = 0; num_tmps < max_tmps && offset >= 0; num_tmps++)
- {
- tmp_info[num_tmps].load = AS2(mov%L0,%0,%1);
- tmp_info[num_tmps].push = AS1(push%L0,%1);
- tmp_info[num_tmps].xops[0]
- = adj_offsettable_operand (src, offset + stack_offset);
- offset -= 4;
- }
-
- for (i = 0; i < num_tmps; i++)
- output_asm_insn (tmp_info[i].load, tmp_info[i].xops);
-
- for (i = 0; i < num_tmps; i++)
- output_asm_insn (tmp_info[i].push, tmp_info[i].xops);
-
- if (stack_p)
- stack_offset += 4*num_tmps;
- }
-
- return "";
-}
-
-int
-standard_80387_constant_p (x)
- rtx x;
-{
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
- REAL_VALUE_TYPE d;
- jmp_buf handler;
- int is0, is1;
-
- if (setjmp (handler))
- return 0;
-
- set_float_handler (handler);
- REAL_VALUE_FROM_CONST_DOUBLE (d, x);
- is0 = REAL_VALUES_EQUAL (d, dconst0) && !REAL_VALUE_MINUS_ZERO (d);
- is1 = REAL_VALUES_EQUAL (d, dconst1);
- set_float_handler (NULL_PTR);
-
- if (is0)
- return 1;
-
- if (is1)
- return 2;
-
- /* Note that on the 80387, other constants, such as pi,
- are much slower to load as standard constants
- than to load from doubles in memory! */
- /* ??? Not true on K6: all constants are equal cost. */
-#endif
-
- return 0;
-}
-
-char *
-output_move_const_single (operands)
- rtx *operands;
-{
- if (FP_REG_P (operands[0]))
- {
- int conval = standard_80387_constant_p (operands[1]);
-
- if (conval == 1)
- return "fldz";
-
- if (conval == 2)
- return "fld1";
- }
-
- if (GET_CODE (operands[1]) == CONST_DOUBLE)
- {
- REAL_VALUE_TYPE r; long l;
-
- if (GET_MODE (operands[1]) == XFmode)
- abort ();
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
- REAL_VALUE_TO_TARGET_SINGLE (r, l);
- operands[1] = GEN_INT (l);
- }
-
- return singlemove_string (operands);
-}
-
-/* Returns 1 if OP is either a symbol reference or a sum of a symbol
- reference and a constant. */
-
-int
-symbolic_operand (op, mode)
- register rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- switch (GET_CODE (op))
- {
- case SYMBOL_REF:
- case LABEL_REF:
- return 1;
-
- case CONST:
- op = XEXP (op, 0);
- return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
- || GET_CODE (XEXP (op, 0)) == LABEL_REF)
- && GET_CODE (XEXP (op, 1)) == CONST_INT);
-
- default:
- return 0;
- }
-}
-
-/* Return nonzero if OP is a constant shift count small enough to
- encode into an lea instruction. */
-
-int
-small_shift_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- return (GET_CODE (op) == CONST_INT && INTVAL (op) > 0 && INTVAL (op) < 4);
-}
-
-/* Test for a valid operand for a call instruction.
- Don't allow the arg pointer register or virtual regs
- since they may change into reg + const, which the patterns
- can't handle yet. */
-
-int
-call_insn_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (op) == MEM
- && ((CONSTANT_ADDRESS_P (XEXP (op, 0))
- /* This makes a difference for PIC. */
- && general_operand (XEXP (op, 0), Pmode))
- || (GET_CODE (XEXP (op, 0)) == REG
- && XEXP (op, 0) != arg_pointer_rtx
- && ! (REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
- && REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
- return 1;
-
- return 0;
-}
-
-/* Like call_insn_operand but allow (mem (symbol_ref ...))
- even if pic. */
-
-int
-expander_call_insn_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (op) == MEM
- && (CONSTANT_ADDRESS_P (XEXP (op, 0))
- || (GET_CODE (XEXP (op, 0)) == REG
- && XEXP (op, 0) != arg_pointer_rtx
- && ! (REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
- && REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
- return 1;
-
- return 0;
-}
-
-/* Return 1 if OP is a comparison operator that can use the condition code
- generated by an arithmetic operation. */
-
-int
-arithmetic_comparison_operator (op, mode)
- register rtx op;
- enum machine_mode mode;
-{
- enum rtx_code code;
-
- if (mode != VOIDmode && mode != GET_MODE (op))
- return 0;
-
- code = GET_CODE (op);
- if (GET_RTX_CLASS (code) != '<')
- return 0;
-
- return (code != GT && code != LE);
-}
-
-int
-ix86_logical_operator (op, mode)
- register rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- return GET_CODE (op) == AND || GET_CODE (op) == IOR || GET_CODE (op) == XOR;
-}
-
-
-/* Returns 1 if OP contains a symbol reference */
-
-int
-symbolic_reference_mentioned_p (op)
- rtx op;
-{
- register char *fmt;
- register int i;
-
- if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
- return 1;
-
- fmt = GET_RTX_FORMAT (GET_CODE (op));
- for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- register int j;
-
- for (j = XVECLEN (op, i) - 1; j >= 0; j--)
- if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
- return 1;
- }
-
- else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
- return 1;
- }
-
- return 0;
-}
-
-/* Attempt to expand a binary operator. Make the expansion closer to the
- actual machine, then just general_operand, which will allow 3 separate
- memory references (one output, two input) in a single insn. Return
- whether the insn fails, or succeeds. */
-
-int
-ix86_expand_binary_operator (code, mode, operands)
- enum rtx_code code;
- enum machine_mode mode;
- rtx operands[];
-{
- int modified;
-
- /* Recognize <var1> = <value> <op> <var1> for commutative operators */
- if (GET_RTX_CLASS (code) == 'c'
- && (rtx_equal_p (operands[0], operands[2])
- || immediate_operand (operands[1], mode)))
- {
- rtx temp = operands[1];
- operands[1] = operands[2];
- operands[2] = temp;
- }
-
- /* If optimizing, copy to regs to improve CSE */
- if (TARGET_PSEUDO && optimize
- && ((reload_in_progress | reload_completed) == 0))
- {
- if (GET_CODE (operands[1]) == MEM
- && ! rtx_equal_p (operands[0], operands[1]))
- operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
-
- if (GET_CODE (operands[2]) == MEM)
- operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
-
- if (GET_CODE (operands[1]) == CONST_INT && code == MINUS)
- {
- rtx temp = gen_reg_rtx (GET_MODE (operands[0]));
-
- emit_move_insn (temp, operands[1]);
- operands[1] = temp;
- return TRUE;
- }
- }
-
- if (!ix86_binary_operator_ok (code, mode, operands))
- {
- /* If not optimizing, try to make a valid insn (optimize code
- previously did this above to improve chances of CSE) */
-
- if ((! TARGET_PSEUDO || !optimize)
- && ((reload_in_progress | reload_completed) == 0)
- && (GET_CODE (operands[1]) == MEM || GET_CODE (operands[2]) == MEM))
- {
- modified = FALSE;
- if (GET_CODE (operands[1]) == MEM
- && ! rtx_equal_p (operands[0], operands[1]))
- {
- operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
- modified = TRUE;
- }
-
- if (GET_CODE (operands[2]) == MEM)
- {
- operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
- modified = TRUE;
- }
-
- if (GET_CODE (operands[1]) == CONST_INT && code == MINUS)
- {
- rtx temp = gen_reg_rtx (GET_MODE (operands[0]));
-
- emit_move_insn (temp, operands[1]);
- operands[1] = temp;
- return TRUE;
- }
-
- if (modified && ! ix86_binary_operator_ok (code, mode, operands))
- return FALSE;
- }
- else
- return FALSE;
- }
-
- return TRUE;
-}
-
-/* Return TRUE or FALSE depending on whether the binary operator meets the
- appropriate constraints. */
-
-int
-ix86_binary_operator_ok (code, mode, operands)
- enum rtx_code code;
- enum machine_mode mode ATTRIBUTE_UNUSED;
- rtx operands[3];
-{
- return (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != MEM)
- && (GET_CODE (operands[1]) != CONST_INT || GET_RTX_CLASS (code) == 'c');
-}
-
-/* Attempt to expand a unary operator. Make the expansion closer to the
- actual machine, then just general_operand, which will allow 2 separate
- memory references (one output, one input) in a single insn. Return
- whether the insn fails, or succeeds. */
-
-int
-ix86_expand_unary_operator (code, mode, operands)
- enum rtx_code code;
- enum machine_mode mode;
- rtx operands[];
-{
- /* If optimizing, copy to regs to improve CSE */
- if (TARGET_PSEUDO
- && optimize
- && ((reload_in_progress | reload_completed) == 0)
- && GET_CODE (operands[1]) == MEM)
- operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
-
- if (! ix86_unary_operator_ok (code, mode, operands))
- {
- if ((! TARGET_PSEUDO || optimize == 0)
- && ((reload_in_progress | reload_completed) == 0)
- && GET_CODE (operands[1]) == MEM)
- {
- operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
- if (! ix86_unary_operator_ok (code, mode, operands))
- return FALSE;
- }
- else
- return FALSE;
- }
-
- return TRUE;
-}
-
-/* Return TRUE or FALSE depending on whether the unary operator meets the
- appropriate constraints. */
-
-int
-ix86_unary_operator_ok (code, mode, operands)
- enum rtx_code code ATTRIBUTE_UNUSED;
- enum machine_mode mode ATTRIBUTE_UNUSED;
- rtx operands[2] ATTRIBUTE_UNUSED;
-{
- return TRUE;
-}
-
-static rtx pic_label_rtx;
-static char pic_label_name [256];
-static int pic_label_no = 0;
-
-/* This function generates code for -fpic that loads %ebx with
- the return address of the caller and then returns. */
-
-void
-asm_output_function_prefix (file, name)
- FILE *file;
- char *name ATTRIBUTE_UNUSED;
-{
- rtx xops[2];
- int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
- || current_function_uses_const_pool);
- xops[0] = pic_offset_table_rtx;
- xops[1] = stack_pointer_rtx;
-
- /* Deep branch prediction favors having a return for every call. */
- if (pic_reg_used && TARGET_DEEP_BRANCH_PREDICTION)
- {
- tree prologue_node;
-
- if (pic_label_rtx == 0)
- {
- pic_label_rtx = gen_label_rtx ();
- ASM_GENERATE_INTERNAL_LABEL (pic_label_name, "LPR", pic_label_no++);
- LABEL_NAME (pic_label_rtx) = pic_label_name;
- }
-
- prologue_node = make_node (FUNCTION_DECL);
- DECL_RESULT (prologue_node) = 0;
-
- /* This used to call ASM_DECLARE_FUNCTION_NAME() but since it's an
- internal (non-global) label that's being emitted, it didn't make
- sense to have .type information for local labels. This caused
- the SCO OpenServer 5.0.4 ELF assembler grief (why are you giving
- me debug info for a label that you're declaring non-global?) this
- was changed to call ASM_OUTPUT_LABEL() instead. */
-
-
- ASM_OUTPUT_LABEL (file, pic_label_name);
- output_asm_insn ("movl (%1),%0", xops);
- output_asm_insn ("ret", xops);
- }
-}
-
-/* Generate the assembly code for function entry.
- FILE is an stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate. */
-
-void
-function_prologue (file, size)
- FILE *file ATTRIBUTE_UNUSED;
- int size ATTRIBUTE_UNUSED;
-{
- if (TARGET_SCHEDULE_PROLOGUE)
- {
- pic_label_rtx = 0;
- return;
- }
-
- ix86_prologue (0);
-}
-
-/* Expand the prologue into a bunch of separate insns. */
-
-void
-ix86_expand_prologue ()
-{
- if (! TARGET_SCHEDULE_PROLOGUE)
- return;
-
- ix86_prologue (1);
-}
-
-void
-load_pic_register (do_rtl)
- int do_rtl;
-{
- rtx xops[4];
-
- if (TARGET_DEEP_BRANCH_PREDICTION)
- {
- xops[0] = pic_offset_table_rtx;
- if (pic_label_rtx == 0)
- {
- pic_label_rtx = gen_label_rtx ();
- ASM_GENERATE_INTERNAL_LABEL (pic_label_name, "LPR", pic_label_no++);
- LABEL_NAME (pic_label_rtx) = pic_label_name;
- }
-
- xops[1] = gen_rtx_MEM (QImode,
- gen_rtx (SYMBOL_REF, Pmode,
- LABEL_NAME (pic_label_rtx)));
-
- if (do_rtl)
- {
- emit_insn (gen_prologue_get_pc (xops[0], xops[1]));
- emit_insn (gen_prologue_set_got (xops[0],
-#ifdef YES_UNDERSCORES
- gen_rtx_SYMBOL_REF (Pmode,
- "$__GLOBAL_OFFSET_TABLE_"),
-#else
- gen_rtx_SYMBOL_REF (Pmode,
- "$_GLOBAL_OFFSET_TABLE_"),
-#endif
- xops[1]));
- }
- else
- {
- output_asm_insn (AS1 (call,%X1), xops);
- output_asm_insn ("addl $%__GLOBAL_OFFSET_TABLE_,%0", xops);
- pic_label_rtx = 0;
- }
- }
-
- else
- {
- xops[0] = pic_offset_table_rtx;
- xops[1] = gen_label_rtx ();
-
- if (do_rtl)
- {
- /* We can't put a raw CODE_LABEL into the RTL, and we can't emit
- a new CODE_LABEL after reload, so we need a single pattern to
- emit the 3 necessary instructions. */
- emit_insn (gen_prologue_get_pc_and_set_got (xops[0]));
- }
- else
- {
- output_asm_insn (AS1 (call,%P1), xops);
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
- CODE_LABEL_NUMBER (xops[1]));
- output_asm_insn (AS1 (pop%L0,%0), xops);
- output_asm_insn ("addl $%__GLOBAL_OFFSET_TABLE_+[.-%P1],%0", xops);
- }
- }
-
- /* When -fpic, we must emit a scheduling barrier, so that the instruction
- that restores %ebx (which is PIC_OFFSET_TABLE_REGNUM), does not get
- moved before any instruction which implicitly uses the got. */
-
- if (do_rtl)
- emit_insn (gen_blockage ());
-}
-
-/* Compute the size of local storage taking into consideration the
- desired stack alignment which is to be maintained. Also determine
- the number of registers saved below the local storage. */
-
-HOST_WIDE_INT
-ix86_compute_frame_size (size, nregs_on_stack)
- HOST_WIDE_INT size;
- int *nregs_on_stack;
-{
- int limit;
- int nregs;
- int regno;
- int padding;
- int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
- || current_function_uses_const_pool);
- HOST_WIDE_INT total_size;
-
- limit = frame_pointer_needed
- ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM;
-
- nregs = 0;
-
- for (regno = limit - 1; regno >= 0; regno--)
- if ((regs_ever_live[regno] && ! call_used_regs[regno])
- || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
- nregs++;
-
- padding = 0;
- total_size = size + (nregs * UNITS_PER_WORD);
-
-#ifdef PREFERRED_STACK_BOUNDARY
- {
- int offset;
- int preferred_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
-
- offset = 4;
- if (frame_pointer_needed)
- offset += UNITS_PER_WORD;
-
- total_size += offset;
-
- padding = ((total_size + preferred_alignment - 1)
- & -preferred_alignment) - total_size;
-
- if (padding < (((offset + preferred_alignment - 1)
- & -preferred_alignment) - offset))
- padding += preferred_alignment;
-
- /* Don't bother aligning the stack of a leaf function
- which doesn't allocate any stack slots. */
- if (size == 0 && current_function_is_leaf)
- padding = 0;
- }
-#endif
-
- if (nregs_on_stack)
- *nregs_on_stack = nregs;
-
- return size + padding;
-}
-
-static void
-ix86_prologue (do_rtl)
- int do_rtl;
-{
- register int regno;
- int limit;
- rtx xops[4];
- int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
- || current_function_uses_const_pool);
- HOST_WIDE_INT tsize = ix86_compute_frame_size (get_frame_size (), (int *)0);
- rtx insn;
- int cfa_offset = INCOMING_FRAME_SP_OFFSET, cfa_store_offset = cfa_offset;
-
- xops[0] = stack_pointer_rtx;
- xops[1] = frame_pointer_rtx;
- xops[2] = GEN_INT (tsize);
-
- if (frame_pointer_needed)
- {
- if (do_rtl)
- {
- insn = emit_insn (gen_rtx (SET, VOIDmode,
- gen_rtx_MEM (SImode,
- gen_rtx (PRE_DEC, SImode,
- stack_pointer_rtx)),
- frame_pointer_rtx));
-
- RTX_FRAME_RELATED_P (insn) = 1;
- insn = emit_move_insn (xops[1], xops[0]);
- RTX_FRAME_RELATED_P (insn) = 1;
- }
-
- else
- {
- output_asm_insn ("push%L1 %1", xops);
-#ifdef INCOMING_RETURN_ADDR_RTX
- if (dwarf2out_do_frame ())
- {
- char *l = dwarf2out_cfi_label ();
-
- cfa_store_offset += 4;
- cfa_offset = cfa_store_offset;
- dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
- dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, - cfa_store_offset);
- }
-#endif
-
- output_asm_insn (AS2 (mov%L0,%0,%1), xops);
-#ifdef INCOMING_RETURN_ADDR_RTX
- if (dwarf2out_do_frame ())
- dwarf2out_def_cfa ("", FRAME_POINTER_REGNUM, cfa_offset);
-#endif
- }
- }
-
- if (tsize == 0)
- ;
- else if (! TARGET_STACK_PROBE || tsize < CHECK_STACK_LIMIT)
- {
- if (do_rtl)
- {
- insn = emit_insn (gen_prologue_set_stack_ptr (xops[2]));
- RTX_FRAME_RELATED_P (insn) = 1;
- }
- else
- {
- output_asm_insn (AS2 (sub%L0,%2,%0), xops);
-#ifdef INCOMING_RETURN_ADDR_RTX
- if (dwarf2out_do_frame ())
- {
- cfa_store_offset += tsize;
- if (! frame_pointer_needed)
- {
- cfa_offset = cfa_store_offset;
- dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, cfa_offset);
- }
- }
-#endif
- }
- }
- else
- {
- xops[3] = gen_rtx_REG (SImode, 0);
- if (do_rtl)
- emit_move_insn (xops[3], xops[2]);
- else
- output_asm_insn (AS2 (mov%L0,%2,%3), xops);
-
- xops[3] = gen_rtx_MEM (FUNCTION_MODE,
- gen_rtx (SYMBOL_REF, Pmode, "_alloca"));
-
- if (do_rtl)
- emit_call_insn (gen_rtx (CALL, VOIDmode, xops[3], const0_rtx));
- else
- output_asm_insn (AS1 (call,%P3), xops);
- }
-
- /* Note If use enter it is NOT reversed args.
- This one is not reversed from intel!!
- I think enter is slower. Also sdb doesn't like it.
- But if you want it the code is:
- {
- xops[3] = const0_rtx;
- output_asm_insn ("enter %2,%3", xops);
- }
- */
-
- limit = (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
- for (regno = limit - 1; regno >= 0; regno--)
- if ((regs_ever_live[regno] && ! call_used_regs[regno])
- || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
- {
- xops[0] = gen_rtx_REG (SImode, regno);
- if (do_rtl)
- {
- insn = emit_insn (gen_rtx (SET, VOIDmode,
- gen_rtx_MEM (SImode,
- gen_rtx (PRE_DEC, SImode,
- stack_pointer_rtx)),
- xops[0]));
-
- RTX_FRAME_RELATED_P (insn) = 1;
- }
- else
- {
- output_asm_insn ("push%L0 %0", xops);
-#ifdef INCOMING_RETURN_ADDR_RTX
- if (dwarf2out_do_frame ())
- {
- char *l = dwarf2out_cfi_label ();
-
- cfa_store_offset += 4;
- if (! frame_pointer_needed)
- {
- cfa_offset = cfa_store_offset;
- dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
- }
-
- dwarf2out_reg_save (l, regno, - cfa_store_offset);
- }
-#endif
- }
- }
-
-#ifdef SUBTARGET_PROLOGUE
- SUBTARGET_PROLOGUE;
-#endif
-
- if (pic_reg_used)
- load_pic_register (do_rtl);
-
- /* If we are profiling, make sure no instructions are scheduled before
- the call to mcount. However, if -fpic, the above call will have
- done that. */
- if ((profile_flag || profile_block_flag)
- && ! pic_reg_used && do_rtl)
- emit_insn (gen_blockage ());
-}
-
-/* Return 1 if it is appropriate to emit `ret' instructions in the
- body of a function. Do this only if the epilogue is simple, needing a
- couple of insns. Prior to reloading, we can't tell how many registers
- must be saved, so return 0 then. Return 0 if there is no frame
- marker to de-allocate.
-
- If NON_SAVING_SETJMP is defined and true, then it is not possible
- for the epilogue to be simple, so return 0. This is a special case
- since NON_SAVING_SETJMP will not cause regs_ever_live to change
- until final, but jump_optimize may need to know sooner if a
- `return' is OK. */
-
-int
-ix86_can_use_return_insn_p ()
-{
- int regno;
- int nregs = 0;
- int reglimit = (frame_pointer_needed
- ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
- int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
- || current_function_uses_const_pool);
-
-#ifdef NON_SAVING_SETJMP
- if (NON_SAVING_SETJMP && current_function_calls_setjmp)
- return 0;
-#endif
-
- if (! reload_completed)
- return 0;
-
- for (regno = reglimit - 1; regno >= 0; regno--)
- if ((regs_ever_live[regno] && ! call_used_regs[regno])
- || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
- nregs++;
-
- return nregs == 0 || ! frame_pointer_needed;
-}
-
-/* This function generates the assembly code for function exit.
- FILE is an stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to deallocate. */
-
-void
-function_epilogue (file, size)
- FILE *file ATTRIBUTE_UNUSED;
- int size ATTRIBUTE_UNUSED;
-{
- return;
-}
-
-/* Restore function stack, frame, and registers. */
-
-void
-ix86_expand_epilogue ()
-{
- ix86_epilogue (1);
-}
-
-static void
-ix86_epilogue (do_rtl)
- int do_rtl;
-{
- register int regno;
- register int limit;
- int nregs;
- rtx xops[3];
- int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
- || current_function_uses_const_pool);
- int sp_valid = !frame_pointer_needed || current_function_sp_is_unchanging;
- HOST_WIDE_INT offset;
- HOST_WIDE_INT tsize = ix86_compute_frame_size (get_frame_size (), &nregs);
-
- /* sp is often unreliable so we may have to go off the frame pointer. */
-
- offset = -(tsize + nregs * UNITS_PER_WORD);
-
- xops[2] = stack_pointer_rtx;
-
- /* When -fpic, we must emit a scheduling barrier, so that the instruction
- that restores %ebx (which is PIC_OFFSET_TABLE_REGNUM), does not get
- moved before any instruction which implicitly uses the got. This
- includes any instruction which uses a SYMBOL_REF or a LABEL_REF.
-
- Alternatively, this could be fixed by making the dependence on the
- PIC_OFFSET_TABLE_REGNUM explicit in the RTL. */
-
- if (flag_pic || profile_flag || profile_block_flag)
- emit_insn (gen_blockage ());
-
- /* If we're only restoring one register and sp is not valid then
- using a move instruction to restore the register since it's
- less work than reloading sp and popping the register. Otherwise,
- restore sp (if necessary) and pop the registers. */
-
- limit = frame_pointer_needed
- ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM;
-
- if (nregs > 1 || sp_valid)
- {
- if ( !sp_valid )
- {
- xops[0] = adj_offsettable_operand (AT_BP (QImode), offset);
- if (do_rtl)
- emit_insn (gen_movsi_lea (xops[2], XEXP (xops[0], 0)));
- else
- output_asm_insn (AS2 (lea%L2,%0,%2), xops);
- }
-
- for (regno = 0; regno < limit; regno++)
- if ((regs_ever_live[regno] && ! call_used_regs[regno])
- || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
- {
- xops[0] = gen_rtx_REG (SImode, regno);
-
- if (do_rtl)
- emit_insn (gen_pop (xops[0]));
- else
- output_asm_insn ("pop%L0 %0", xops);
- }
- }
-
- else
- for (regno = 0; regno < limit; regno++)
- if ((regs_ever_live[regno] && ! call_used_regs[regno])
- || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
- {
- xops[0] = gen_rtx_REG (SImode, regno);
- xops[1] = adj_offsettable_operand (AT_BP (Pmode), offset);
-
- if (do_rtl)
- emit_move_insn (xops[0], xops[1]);
- else
- output_asm_insn (AS2 (mov%L0,%1,%0), xops);
-
- offset += 4;
- }
-
- if (frame_pointer_needed)
- {
- /* If not an i386, mov & pop is faster than "leave". */
-
- if (TARGET_USE_LEAVE)
- {
- if (do_rtl)
- emit_insn (gen_leave());
- else
- output_asm_insn ("leave", xops);
- }
- else
- {
- xops[0] = frame_pointer_rtx;
- xops[1] = stack_pointer_rtx;
-
- if (do_rtl)
- {
- emit_insn (gen_epilogue_set_stack_ptr());
- emit_insn (gen_pop (xops[0]));
- }
- else
- {
- output_asm_insn (AS2 (mov%L2,%0,%2), xops);
- output_asm_insn ("pop%L0 %0", xops);
- }
- }
- }
-
- else if (tsize)
- {
- /* Intel's docs say that for 4 or 8 bytes of stack frame one should
- use `pop' and not `add'. */
- int use_pop = tsize == 4;
-
- /* Use two pops only for the Pentium processors. */
- if (tsize == 8 && !TARGET_386 && !TARGET_486)
- {
- rtx retval = current_function_return_rtx;
-
- xops[1] = gen_rtx_REG (SImode, 1); /* %edx */
-
- /* This case is a bit more complex. Since we cannot pop into
- %ecx twice we need a second register. But this is only
- available if the return value is not of DImode in which
- case the %edx register is not available. */
- use_pop = (retval == NULL
- || ! reg_overlap_mentioned_p (xops[1], retval));
- }
-
- if (use_pop)
- {
- xops[0] = gen_rtx_REG (SImode, 2); /* %ecx */
-
- if (do_rtl)
- {
- /* We have to prevent the two pops here from being scheduled.
- GCC otherwise would try in some situation to put other
- instructions in between them which has a bad effect. */
- emit_insn (gen_blockage ());
- emit_insn (gen_pop (xops[0]));
- if (tsize == 8)
- emit_insn (gen_pop (xops[1]));
- }
- else
- {
- output_asm_insn ("pop%L0 %0", xops);
- if (tsize == 8)
- output_asm_insn ("pop%L1 %1", xops);
- }
- }
- else
- {
- /* If there is no frame pointer, we must still release the frame. */
- xops[0] = GEN_INT (tsize);
-
- if (do_rtl)
- emit_insn (gen_rtx (SET, VOIDmode, xops[2],
- gen_rtx (PLUS, SImode, xops[2], xops[0])));
- else
- output_asm_insn (AS2 (add%L2,%0,%2), xops);
- }
- }
-
-#ifdef FUNCTION_BLOCK_PROFILER_EXIT
- if (profile_block_flag == 2)
- {
- FUNCTION_BLOCK_PROFILER_EXIT(file);
- }
-#endif
-
- if (current_function_pops_args && current_function_args_size)
- {
- xops[1] = GEN_INT (current_function_pops_args);
-
- /* i386 can only pop 32K bytes (maybe 64K? Is it signed?). If
- asked to pop more, pop return address, do explicit add, and jump
- indirectly to the caller. */
-
- if (current_function_pops_args >= 32768)
- {
- /* ??? Which register to use here? */
- xops[0] = gen_rtx_REG (SImode, 2);
-
- if (do_rtl)
- {
- emit_insn (gen_pop (xops[0]));
- emit_insn (gen_rtx (SET, VOIDmode, xops[2],
- gen_rtx (PLUS, SImode, xops[1], xops[2])));
- emit_jump_insn (xops[0]);
- }
- else
- {
- output_asm_insn ("pop%L0 %0", xops);
- output_asm_insn (AS2 (add%L2,%1,%2), xops);
- output_asm_insn ("jmp %*%0", xops);
- }
- }
- else
- {
- if (do_rtl)
- emit_jump_insn (gen_return_pop_internal (xops[1]));
- else
- output_asm_insn ("ret %1", xops);
- }
- }
- else
- {
- if (do_rtl)
- emit_jump_insn (gen_return_internal ());
- else
- output_asm_insn ("ret", xops);
- }
-}
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- On x86, legitimate addresses are:
- base movl (base),reg
- displacement movl disp,reg
- base + displacement movl disp(base),reg
- index + base movl (base,index),reg
- (index + base) + displacement movl disp(base,index),reg
- index*scale movl (,index,scale),reg
- index*scale + disp movl disp(,index,scale),reg
- index*scale + base movl (base,index,scale),reg
- (index*scale + base) + disp movl disp(base,index,scale),reg
-
- In each case, scale can be 1, 2, 4, 8. */
-
-/* This is exactly the same as print_operand_addr, except that
- it recognizes addresses instead of printing them.
-
- It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should
- convert common non-canonical forms to canonical form so that they will
- be recognized. */
-
-#define ADDR_INVALID(msg,insn) \
-do { \
- if (TARGET_DEBUG_ADDR) \
- { \
- fprintf (stderr, msg); \
- debug_rtx (insn); \
- } \
-} while (0)
-
-int
-legitimate_pic_address_disp_p (disp)
- register rtx disp;
-{
- if (GET_CODE (disp) != CONST)
- return 0;
- disp = XEXP (disp, 0);
-
- if (GET_CODE (disp) == PLUS)
- {
- if (GET_CODE (XEXP (disp, 1)) != CONST_INT)
- return 0;
- disp = XEXP (disp, 0);
- }
-
- if (GET_CODE (disp) != UNSPEC
- || XVECLEN (disp, 0) != 1)
- return 0;
-
- /* Must be @GOT or @GOTOFF. */
- if (XINT (disp, 1) != 6
- && XINT (disp, 1) != 7)
- return 0;
-
- if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF
- && GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF)
- return 0;
-
- return 1;
-}
-
-int
-legitimate_address_p (mode, addr, strict)
- enum machine_mode mode;
- register rtx addr;
- int strict;
-{
- rtx base = NULL_RTX;
- rtx indx = NULL_RTX;
- rtx scale = NULL_RTX;
- rtx disp = NULL_RTX;
-
- if (TARGET_DEBUG_ADDR)
- {
- fprintf (stderr,
- "\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
- GET_MODE_NAME (mode), strict);
-
- debug_rtx (addr);
- }
-
- if (GET_CODE (addr) == REG || GET_CODE (addr) == SUBREG)
- base = addr;
-
- else if (GET_CODE (addr) == PLUS)
- {
- rtx op0 = XEXP (addr, 0);
- rtx op1 = XEXP (addr, 1);
- enum rtx_code code0 = GET_CODE (op0);
- enum rtx_code code1 = GET_CODE (op1);
-
- if (code0 == REG || code0 == SUBREG)
- {
- if (code1 == REG || code1 == SUBREG)
- {
- indx = op0; /* index + base */
- base = op1;
- }
-
- else
- {
- base = op0; /* base + displacement */
- disp = op1;
- }
- }
-
- else if (code0 == MULT)
- {
- indx = XEXP (op0, 0);
- scale = XEXP (op0, 1);
-
- if (code1 == REG || code1 == SUBREG)
- base = op1; /* index*scale + base */
-
- else
- disp = op1; /* index*scale + disp */
- }
-
- else if (code0 == PLUS && GET_CODE (XEXP (op0, 0)) == MULT)
- {
- indx = XEXP (XEXP (op0, 0), 0); /* index*scale + base + disp */
- scale = XEXP (XEXP (op0, 0), 1);
- base = XEXP (op0, 1);
- disp = op1;
- }
-
- else if (code0 == PLUS)
- {
- indx = XEXP (op0, 0); /* index + base + disp */
- base = XEXP (op0, 1);
- disp = op1;
- }
-
- else
- {
- ADDR_INVALID ("PLUS subcode is not valid.\n", op0);
- return FALSE;
- }
- }
-
- else if (GET_CODE (addr) == MULT)
- {
- indx = XEXP (addr, 0); /* index*scale */
- scale = XEXP (addr, 1);
- }
-
- else
- disp = addr; /* displacement */
-
- /* Allow arg pointer and stack pointer as index if there is not scaling */
- if (base && indx && !scale
- && (indx == arg_pointer_rtx || indx == stack_pointer_rtx))
- {
- rtx tmp = base;
- base = indx;
- indx = tmp;
- }
-
- /* Validate base register:
-
- Don't allow SUBREG's here, it can lead to spill failures when the base
- is one word out of a two word structure, which is represented internally
- as a DImode int. */
-
- if (base)
- {
- if (GET_CODE (base) != REG)
- {
- ADDR_INVALID ("Base is not a register.\n", base);
- return FALSE;
- }
-
- if (GET_MODE (base) != Pmode)
- {
- ADDR_INVALID ("Base is not in Pmode.\n", base);
- return FALSE;
- }
-
- if ((strict && ! REG_OK_FOR_BASE_STRICT_P (base))
- || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (base)))
- {
- ADDR_INVALID ("Base is not valid.\n", base);
- return FALSE;
- }
- }
-
- /* Validate index register:
-
- Don't allow SUBREG's here, it can lead to spill failures when the index
- is one word out of a two word structure, which is represented internally
- as a DImode int. */
- if (indx)
- {
- if (GET_CODE (indx) != REG)
- {
- ADDR_INVALID ("Index is not a register.\n", indx);
- return FALSE;
- }
-
- if (GET_MODE (indx) != Pmode)
- {
- ADDR_INVALID ("Index is not in Pmode.\n", indx);
- return FALSE;
- }
-
- if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (indx))
- || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (indx)))
- {
- ADDR_INVALID ("Index is not valid.\n", indx);
- return FALSE;
- }
- }
- else if (scale)
- abort (); /* scale w/o index invalid */
-
- /* Validate scale factor: */
- if (scale)
- {
- HOST_WIDE_INT value;
-
- if (GET_CODE (scale) != CONST_INT)
- {
- ADDR_INVALID ("Scale is not valid.\n", scale);
- return FALSE;
- }
-
- value = INTVAL (scale);
- if (value != 1 && value != 2 && value != 4 && value != 8)
- {
- ADDR_INVALID ("Scale is not a good multiplier.\n", scale);
- return FALSE;
- }
- }
-
- /* Validate displacement. */
- if (disp)
- {
- if (!CONSTANT_ADDRESS_P (disp))
- {
- ADDR_INVALID ("Displacement is not valid.\n", disp);
- return FALSE;
- }
-
- else if (GET_CODE (disp) == CONST_DOUBLE)
- {
- ADDR_INVALID ("Displacement is a const_double.\n", disp);
- return FALSE;
- }
-
- if (flag_pic && SYMBOLIC_CONST (disp))
- {
- if (! legitimate_pic_address_disp_p (disp))
- {
- ADDR_INVALID ("Displacement is an invalid PIC construct.\n",
- disp);
- return FALSE;
- }
-
- if (base != pic_offset_table_rtx
- && (indx != pic_offset_table_rtx || scale != NULL_RTX))
- {
- ADDR_INVALID ("PIC displacement against invalid base.\n", disp);
- return FALSE;
- }
- }
-
- else if (HALF_PIC_P ())
- {
- if (! HALF_PIC_ADDRESS_P (disp)
- || (base != NULL_RTX || indx != NULL_RTX))
- {
- ADDR_INVALID ("Displacement is an invalid half-pic reference.\n",
- disp);
- return FALSE;
- }
- }
- }
-
- if (TARGET_DEBUG_ADDR)
- fprintf (stderr, "Address is valid.\n");
-
- /* Everything looks valid, return true */
- return TRUE;
-}
-
-/* Return a legitimate reference for ORIG (an address) using the
- register REG. If REG is 0, a new pseudo is generated.
-
- There are two types of references that must be handled:
-
- 1. Global data references must load the address from the GOT, via
- the PIC reg. An insn is emitted to do this load, and the reg is
- returned.
-
- 2. Static data references, constant pool addresses, and code labels
- compute the address as an offset from the GOT, whose base is in
- the PIC reg. Static data objects have SYMBOL_REF_FLAG set to
- differentiate them from global data objects. The returned
- address is the PIC reg + an unspec constant.
-
- GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC
- reg also appears in the address. */
-
-rtx
-legitimize_pic_address (orig, reg)
- rtx orig;
- rtx reg;
-{
- rtx addr = orig;
- rtx new = orig;
- rtx base;
-
- if (GET_CODE (addr) == LABEL_REF
- || (GET_CODE (addr) == SYMBOL_REF
- && (CONSTANT_POOL_ADDRESS_P (addr)
- || SYMBOL_REF_FLAG (addr))))
- {
- /* This symbol may be referenced via a displacement from the PIC
- base address (@GOTOFF). */
-
- current_function_uses_pic_offset_table = 1;
- new = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, addr), 7);
- new = gen_rtx_CONST (VOIDmode, new);
- new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
-
- if (reg != 0)
- {
- emit_move_insn (reg, new);
- new = reg;
- }
- }
- else if (GET_CODE (addr) == SYMBOL_REF)
- {
- /* This symbol must be referenced via a load from the
- Global Offset Table (@GOT). */
-
- current_function_uses_pic_offset_table = 1;
- new = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, addr), 6);
- new = gen_rtx_CONST (VOIDmode, new);
- new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
- new = gen_rtx_MEM (Pmode, new);
- RTX_UNCHANGING_P (new) = 1;
-
- if (reg == 0)
- reg = gen_reg_rtx (Pmode);
- emit_move_insn (reg, new);
- new = reg;
- }
- else
- {
- if (GET_CODE (addr) == CONST)
- {
- addr = XEXP (addr, 0);
- if (GET_CODE (addr) == UNSPEC)
- {
- /* Check that the unspec is one of the ones we generate? */
- }
- else if (GET_CODE (addr) != PLUS)
- abort();
- }
- if (GET_CODE (addr) == PLUS)
- {
- rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1);
-
- /* Check first to see if this is a constant offset from a @GOTOFF
- symbol reference. */
- if ((GET_CODE (op0) == LABEL_REF
- || (GET_CODE (op0) == SYMBOL_REF
- && (CONSTANT_POOL_ADDRESS_P (op0)
- || SYMBOL_REF_FLAG (op0))))
- && GET_CODE (op1) == CONST_INT)
- {
- current_function_uses_pic_offset_table = 1;
- new = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, op0), 7);
- new = gen_rtx_PLUS (VOIDmode, new, op1);
- new = gen_rtx_CONST (VOIDmode, new);
- new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
-
- if (reg != 0)
- {
- emit_move_insn (reg, new);
- new = reg;
- }
- }
- else
- {
- base = legitimize_pic_address (XEXP (addr, 0), reg);
- new = legitimize_pic_address (XEXP (addr, 1),
- base == reg ? NULL_RTX : reg);
-
- if (GET_CODE (new) == CONST_INT)
- new = plus_constant (base, INTVAL (new));
- else
- {
- if (GET_CODE (new) == PLUS && CONSTANT_P (XEXP (new, 1)))
- {
- base = gen_rtx_PLUS (Pmode, base, XEXP (new, 0));
- new = XEXP (new, 1);
- }
- new = gen_rtx_PLUS (Pmode, base, new);
- }
- }
- }
- }
- return new;
-}
-
-/* Emit insns to move operands[1] into operands[0]. */
-
-void
-emit_pic_move (operands, mode)
- rtx *operands;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- rtx temp = reload_in_progress ? operands[0] : gen_reg_rtx (Pmode);
-
- if (GET_CODE (operands[0]) == MEM && SYMBOLIC_CONST (operands[1]))
- operands[1] = force_reg (Pmode, operands[1]);
- else
- operands[1] = legitimize_pic_address (operands[1], temp);
-}
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the 80386, we handle X+REG by loading X into a register R and
- using R+REG. R will go in a general reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in a general reg.
-
- When -fpic is used, special handling is needed for symbolic references.
- See comments by legitimize_pic_address in i386.c for details. */
-
-rtx
-legitimize_address (x, oldx, mode)
- register rtx x;
- register rtx oldx ATTRIBUTE_UNUSED;
- enum machine_mode mode;
-{
- int changed = 0;
- unsigned log;
-
- if (TARGET_DEBUG_ADDR)
- {
- fprintf (stderr, "\n==========\nLEGITIMIZE_ADDRESS, mode = %s\n",
- GET_MODE_NAME (mode));
- debug_rtx (x);
- }
-
- if (flag_pic && SYMBOLIC_CONST (x))
- return legitimize_pic_address (x, 0);
-
- /* Canonicalize shifts by 0, 1, 2, 3 into multiply */
- if (GET_CODE (x) == ASHIFT
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && (log = (unsigned)exact_log2 (INTVAL (XEXP (x, 1)))) < 4)
- {
- changed = 1;
- x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)),
- GEN_INT (1 << log));
- }
-
- if (GET_CODE (x) == PLUS)
- {
- /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */
-
- if (GET_CODE (XEXP (x, 0)) == ASHIFT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) < 4)
- {
- changed = 1;
- XEXP (x, 0) = gen_rtx (MULT, Pmode,
- force_reg (Pmode, XEXP (XEXP (x, 0), 0)),
- GEN_INT (1 << log));
- }
-
- if (GET_CODE (XEXP (x, 1)) == ASHIFT
- && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
- && (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1)))) < 4)
- {
- changed = 1;
- XEXP (x, 1) = gen_rtx (MULT, Pmode,
- force_reg (Pmode, XEXP (XEXP (x, 1), 0)),
- GEN_INT (1 << log));
- }
-
- /* Put multiply first if it isn't already. */
- if (GET_CODE (XEXP (x, 1)) == MULT)
- {
- rtx tmp = XEXP (x, 0);
- XEXP (x, 0) = XEXP (x, 1);
- XEXP (x, 1) = tmp;
- changed = 1;
- }
-
- /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const)))
- into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be
- created by virtual register instantiation, register elimination, and
- similar optimizations. */
- if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS)
- {
- changed = 1;
- x = gen_rtx (PLUS, Pmode,
- gen_rtx (PLUS, Pmode, XEXP (x, 0),
- XEXP (XEXP (x, 1), 0)),
- XEXP (XEXP (x, 1), 1));
- }
-
- /* Canonicalize
- (plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
- into (plus (plus (mult (reg) (const)) (reg)) (const)). */
- else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS
- && CONSTANT_P (XEXP (x, 1)))
- {
- rtx constant;
- rtx other = NULL_RTX;
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- constant = XEXP (x, 1);
- other = XEXP (XEXP (XEXP (x, 0), 1), 1);
- }
- else if (GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 1)) == CONST_INT)
- {
- constant = XEXP (XEXP (XEXP (x, 0), 1), 1);
- other = XEXP (x, 1);
- }
- else
- constant = 0;
-
- if (constant)
- {
- changed = 1;
- x = gen_rtx (PLUS, Pmode,
- gen_rtx (PLUS, Pmode, XEXP (XEXP (x, 0), 0),
- XEXP (XEXP (XEXP (x, 0), 1), 0)),
- plus_constant (other, INTVAL (constant)));
- }
- }
-
- if (changed && legitimate_address_p (mode, x, FALSE))
- return x;
-
- if (GET_CODE (XEXP (x, 0)) == MULT)
- {
- changed = 1;
- XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
- }
-
- if (GET_CODE (XEXP (x, 1)) == MULT)
- {
- changed = 1;
- XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
- }
-
- if (changed
- && GET_CODE (XEXP (x, 1)) == REG
- && GET_CODE (XEXP (x, 0)) == REG)
- return x;
-
- if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1)))
- {
- changed = 1;
- x = legitimize_pic_address (x, 0);
- }
-
- if (changed && legitimate_address_p (mode, x, FALSE))
- return x;
-
- if (GET_CODE (XEXP (x, 0)) == REG)
- {
- register rtx temp = gen_reg_rtx (Pmode);
- register rtx val = force_operand (XEXP (x, 1), temp);
- if (val != temp)
- emit_move_insn (temp, val);
-
- XEXP (x, 1) = temp;
- return x;
- }
-
- else if (GET_CODE (XEXP (x, 1)) == REG)
- {
- register rtx temp = gen_reg_rtx (Pmode);
- register rtx val = force_operand (XEXP (x, 0), temp);
- if (val != temp)
- emit_move_insn (temp, val);
-
- XEXP (x, 0) = temp;
- return x;
- }
- }
-
- return x;
-}
-
-/* Print an integer constant expression in assembler syntax. Addition
- and subtraction are the only arithmetic that may appear in these
- expressions. FILE is the stdio stream to write to, X is the rtx, and
- CODE is the operand print code from the output string. */
-
-static void
-output_pic_addr_const (file, x, code)
- FILE *file;
- rtx x;
- int code;
-{
- char buf[256];
-
- switch (GET_CODE (x))
- {
- case PC:
- if (flag_pic)
- putc ('.', file);
- else
- abort ();
- break;
-
- case SYMBOL_REF:
- assemble_name (file, XSTR (x, 0));
- if (code == 'P' && ! SYMBOL_REF_FLAG (x))
- fputs ("@PLT", file);
- break;
-
- case LABEL_REF:
- x = XEXP (x, 0);
- /* FALLTHRU */
- case CODE_LABEL:
- ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
- assemble_name (asm_out_file, buf);
- break;
-
- case CONST_INT:
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
- break;
-
- case CONST:
- /* This used to output parentheses around the expression,
- but that does not work on the 386 (either ATT or BSD assembler). */
- output_pic_addr_const (file, XEXP (x, 0), code);
- break;
-
- case CONST_DOUBLE:
- if (GET_MODE (x) == VOIDmode)
- {
- /* We can use %d if the number is <32 bits and positive. */
- if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0)
- fprintf (file, "0x%lx%08lx",
- (unsigned long) CONST_DOUBLE_HIGH (x),
- (unsigned long) CONST_DOUBLE_LOW (x));
- else
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
- }
- else
- /* We can't handle floating point constants;
- PRINT_OPERAND must handle them. */
- output_operand_lossage ("floating constant misused");
- break;
-
- case PLUS:
- /* Some assemblers need integer constants to appear first. */
- if (GET_CODE (XEXP (x, 0)) == CONST_INT)
- {
- output_pic_addr_const (file, XEXP (x, 0), code);
- fprintf (file, "+");
- output_pic_addr_const (file, XEXP (x, 1), code);
- }
- else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- output_pic_addr_const (file, XEXP (x, 1), code);
- fprintf (file, "+");
- output_pic_addr_const (file, XEXP (x, 0), code);
- }
- else
- abort ();
- break;
-
- case MINUS:
- output_pic_addr_const (file, XEXP (x, 0), code);
- fprintf (file, "-");
- output_pic_addr_const (file, XEXP (x, 1), code);
- break;
-
- case UNSPEC:
- if (XVECLEN (x, 0) != 1)
- abort ();
- output_pic_addr_const (file, XVECEXP (x, 0, 0), code);
- switch (XINT (x, 1))
- {
- case 6:
- fputs ("@GOT", file);
- break;
- case 7:
- fputs ("@GOTOFF", file);
- break;
- case 8:
- fputs ("@PLT", file);
- break;
- default:
- output_operand_lossage ("invalid UNSPEC as operand");
- break;
- }
- break;
-
- default:
- output_operand_lossage ("invalid expression as operand");
- }
-}
-
-static void
-put_jump_code (code, reverse, file)
- enum rtx_code code;
- int reverse;
- FILE *file;
-{
- int flags = cc_prev_status.flags;
- int ieee = (TARGET_IEEE_FP && (flags & CC_IN_80387)
- && !(cc_prev_status.flags & CC_FCOMI));
- const char *suffix;
-
- if (flags & CC_Z_IN_NOT_C)
- switch (code)
- {
- case EQ:
- fputs (reverse ? "c" : "nc", file);
- return;
-
- case NE:
- fputs (reverse ? "nc" : "c", file);
- return;
-
- default:
- abort ();
- }
- if (ieee)
- {
- switch (code)
- {
- case LE:
- suffix = reverse ? "ae" : "b";
- break;
- case GT:
- case LT:
- case GE:
- suffix = reverse ? "ne" : "e";
- break;
- case EQ:
- suffix = reverse ? "ne" : "e";
- break;
- case NE:
- suffix = reverse ? "e" : "ne";
- break;
- default:
- abort ();
- }
- fputs (suffix, file);
- return;
- }
- if (flags & CC_TEST_AX)
- abort();
- if ((flags & CC_NO_OVERFLOW) && (code == LE || code == GT))
- abort ();
- if (reverse)
- code = reverse_condition (code);
- switch (code)
- {
- case EQ:
- suffix = "e";
- break;
-
- case NE:
- suffix = "ne";
- break;
-
- case GT:
- suffix = flags & CC_IN_80387 ? "a" : "g";
- break;
-
- case GTU:
- suffix = "a";
- break;
-
- case LT:
- if (flags & CC_NO_OVERFLOW)
- suffix = "s";
- else
- suffix = flags & CC_IN_80387 ? "b" : "l";
- break;
-
- case LTU:
- suffix = "b";
- break;
-
- case GE:
- if (flags & CC_NO_OVERFLOW)
- suffix = "ns";
- else
- suffix = flags & CC_IN_80387 ? "ae" : "ge";
- break;
-
- case GEU:
- suffix = "ae";
- break;
-
- case LE:
- suffix = flags & CC_IN_80387 ? "be" : "le";
- break;
-
- case LEU:
- suffix = "be";
- break;
-
- default:
- abort ();
- }
- fputs (suffix, file);
-}
-
-/* Append the correct conditional move suffix which corresponds to CODE. */
-
-static void
-put_condition_code (code, reverse_cc, mode, file)
- enum rtx_code code;
- int reverse_cc;
- enum mode_class mode;
- FILE * file;
-{
- int ieee = (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)
- && ! (cc_prev_status.flags & CC_FCOMI));
- if (reverse_cc && ! ieee)
- code = reverse_condition (code);
-
- if (mode == MODE_INT)
- switch (code)
- {
- case NE:
- if (cc_prev_status.flags & CC_Z_IN_NOT_C)
- fputs ("b", file);
- else
- fputs ("ne", file);
- return;
-
- case EQ:
- if (cc_prev_status.flags & CC_Z_IN_NOT_C)
- fputs ("ae", file);
- else
- fputs ("e", file);
- return;
-
- case GE:
- if (cc_prev_status.flags & CC_NO_OVERFLOW)
- fputs ("ns", file);
- else
- fputs ("ge", file);
- return;
-
- case GT:
- fputs ("g", file);
- return;
-
- case LE:
- fputs ("le", file);
- return;
-
- case LT:
- if (cc_prev_status.flags & CC_NO_OVERFLOW)
- fputs ("s", file);
- else
- fputs ("l", file);
- return;
-
- case GEU:
- fputs ("ae", file);
- return;
-
- case GTU:
- fputs ("a", file);
- return;
-
- case LEU:
- fputs ("be", file);
- return;
-
- case LTU:
- fputs ("b", file);
- return;
-
- default:
- output_operand_lossage ("Invalid %%C operand");
- }
-
- else if (mode == MODE_FLOAT)
- switch (code)
- {
- case NE:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "ne", file);
- return;
- case EQ:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "e", file);
- return;
- case GE:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file);
- return;
- case GT:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file);
- return;
- case LE:
- fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file);
- return;
- case LT:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file);
- return;
- case GEU:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file);
- return;
- case GTU:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file);
- return;
- case LEU:
- fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file);
- return;
- case LTU:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file);
- return;
- default:
- output_operand_lossage ("Invalid %%C operand");
- }
-}
-
-/* Meaning of CODE:
- L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
- C -- print opcode suffix for set/cmov insn.
- c -- like C, but print reversed condition
- F -- print opcode suffix for fcmov insn.
- f -- like F, but print reversed condition
- D -- print the opcode suffix for a jump
- d -- like D, but print reversed condition
- R -- print the prefix for register names.
- z -- print the opcode suffix for the size of the current operand.
- * -- print a star (in certain assembler syntax)
- w -- print the operand as if it's a "word" (HImode) even if it isn't.
- J -- print the appropriate jump operand.
- s -- print a shift double count, followed by the assemblers argument
- delimiter.
- b -- print the QImode name of the register for the indicated operand.
- %b0 would print %al if operands[0] is reg 0.
- w -- likewise, print the HImode name of the register.
- k -- likewise, print the SImode name of the register.
- h -- print the QImode name for a "high" register, either ah, bh, ch or dh.
- y -- print "st(0)" instead of "st" as a register.
- P -- print as a PIC constant
- _ -- output "_" if YES_UNDERSCORES */
-
-void
-print_operand (file, x, code)
- FILE *file;
- rtx x;
- int code;
-{
- if (code)
- {
- switch (code)
- {
- case '*':
- if (USE_STAR)
- putc ('*', file);
- return;
-
- case '_':
-#ifdef YES_UNDERSCORES
- putc ('_', file);
-#endif
- return;
-
- case 'L':
- PUT_OP_SIZE (code, 'l', file);
- return;
-
- case 'W':
- PUT_OP_SIZE (code, 'w', file);
- return;
-
- case 'B':
- PUT_OP_SIZE (code, 'b', file);
- return;
-
- case 'Q':
- PUT_OP_SIZE (code, 'l', file);
- return;
-
- case 'S':
- PUT_OP_SIZE (code, 's', file);
- return;
-
- case 'T':
- PUT_OP_SIZE (code, 't', file);
- return;
-
- case 'z':
- /* 387 opcodes don't get size suffixes if the operands are
- registers. */
-
- if (STACK_REG_P (x))
- return;
-
- /* this is the size of op from size of operand */
- switch (GET_MODE_SIZE (GET_MODE (x)))
- {
- case 2:
-#ifdef HAVE_GAS_FILDS_FISTS
- PUT_OP_SIZE ('W', 's', file);
-#endif
- return;
-
- case 4:
- if (GET_MODE (x) == SFmode)
- {
- PUT_OP_SIZE ('S', 's', file);
- return;
- }
- else
- PUT_OP_SIZE ('L', 'l', file);
- return;
-
- case 12:
- PUT_OP_SIZE ('T', 't', file);
- return;
-
- case 8:
- if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
- {
-#ifdef GAS_MNEMONICS
- PUT_OP_SIZE ('Q', 'q', file);
- return;
-#else
- PUT_OP_SIZE ('Q', 'l', file); /* Fall through */
-#endif
- }
-
- PUT_OP_SIZE ('Q', 'l', file);
- return;
-
- default:
- abort ();
- }
-
- case 'b':
- case 'w':
- case 'k':
- case 'h':
- case 'y':
- case 'P':
- case 'X':
- break;
-
- case 'J':
- switch (GET_CODE (x))
- {
- /* These conditions are appropriate for testing the result
- of an arithmetic operation, not for a compare operation.
- Cases GE, LT assume CC_NO_OVERFLOW true. All cases assume
- CC_Z_IN_NOT_C false and not floating point. */
- case NE: fputs ("jne", file); return;
- case EQ: fputs ("je", file); return;
- case GE: fputs ("jns", file); return;
- case LT: fputs ("js", file); return;
- case GEU: fputs ("jmp", file); return;
- case GTU: fputs ("jne", file); return;
- case LEU: fputs ("je", file); return;
- case LTU: fputs ("#branch never", file); return;
-
- /* no matching branches for GT nor LE */
-
- default:
- abort ();
- }
-
- case 's':
- if (GET_CODE (x) == CONST_INT || ! SHIFT_DOUBLE_OMITS_COUNT)
- {
- PRINT_OPERAND (file, x, 0);
- fputs (AS2C (,) + 1, file);
- }
-
- return;
-
- case 'D':
- put_jump_code (GET_CODE (x), 0, file);
- return;
-
- case 'd':
- put_jump_code (GET_CODE (x), 1, file);
- return;
-
- /* This is used by the conditional move instructions. */
- case 'C':
- put_condition_code (GET_CODE (x), 0, MODE_INT, file);
- return;
-
- /* Like above, but reverse condition */
- case 'c':
- put_condition_code (GET_CODE (x), 1, MODE_INT, file); return;
-
- case 'F':
- put_condition_code (GET_CODE (x), 0, MODE_FLOAT, file);
- return;
-
- /* Like above, but reverse condition */
- case 'f':
- put_condition_code (GET_CODE (x), 1, MODE_FLOAT, file);
- return;
-
- default:
- {
- char str[50];
-
- sprintf (str, "invalid operand code `%c'", code);
- output_operand_lossage (str);
- }
- }
- }
-
- if (GET_CODE (x) == REG)
- {
- PRINT_REG (x, code, file);
- }
-
- else if (GET_CODE (x) == MEM)
- {
- PRINT_PTR (x, file);
- if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
- {
- if (flag_pic)
- output_pic_addr_const (file, XEXP (x, 0), code);
- else
- output_addr_const (file, XEXP (x, 0));
- }
- else
- output_address (XEXP (x, 0));
- }
-
- else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode)
- {
- REAL_VALUE_TYPE r;
- long l;
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- REAL_VALUE_TO_TARGET_SINGLE (r, l);
- PRINT_IMMED_PREFIX (file);
- fprintf (file, "0x%lx", l);
- }
-
- /* These float cases don't actually occur as immediate operands. */
- else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode)
- {
- REAL_VALUE_TYPE r;
- char dstr[30];
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
- fprintf (file, "%s", dstr);
- }
-
- else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode)
- {
- REAL_VALUE_TYPE r;
- char dstr[30];
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
- fprintf (file, "%s", dstr);
- }
- else
- {
- if (code != 'P')
- {
- if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
- PRINT_IMMED_PREFIX (file);
- else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF
- || GET_CODE (x) == LABEL_REF)
- PRINT_OFFSET_PREFIX (file);
- }
- if (flag_pic)
- output_pic_addr_const (file, x, code);
- else
- output_addr_const (file, x);
- }
-}
-
-/* Print a memory operand whose address is ADDR. */
-
-void
-print_operand_address (file, addr)
- FILE *file;
- register rtx addr;
-{
- register rtx reg1, reg2, breg, ireg;
- rtx offset;
-
- switch (GET_CODE (addr))
- {
- case REG:
- /* ESI addressing makes instruction vector decoded on the K6. We can
- avoid this by ESI+0 addressing. */
- if (REGNO_REG_CLASS (REGNO (addr)) == SIREG
- && ix86_cpu == PROCESSOR_K6 && !optimize_size)
- output_addr_const (file, const0_rtx);
- ADDR_BEG (file);
- fprintf (file, "%se", RP);
- fputs (hi_reg_name[REGNO (addr)], file);
- ADDR_END (file);
- break;
-
- case PLUS:
- reg1 = 0;
- reg2 = 0;
- ireg = 0;
- breg = 0;
- offset = 0;
- if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
- {
- offset = XEXP (addr, 0);
- addr = XEXP (addr, 1);
- }
- else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
- {
- offset = XEXP (addr, 1);
- addr = XEXP (addr, 0);
- }
-
- if (GET_CODE (addr) != PLUS)
- ;
- else if (GET_CODE (XEXP (addr, 0)) == MULT)
- reg1 = XEXP (addr, 0), addr = XEXP (addr, 1);
- else if (GET_CODE (XEXP (addr, 1)) == MULT)
- reg1 = XEXP (addr, 1), addr = XEXP (addr, 0);
- else if (GET_CODE (XEXP (addr, 0)) == REG)
- reg1 = XEXP (addr, 0), addr = XEXP (addr, 1);
- else if (GET_CODE (XEXP (addr, 1)) == REG)
- reg1 = XEXP (addr, 1), addr = XEXP (addr, 0);
-
- if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)
- {
- if (reg1 == 0)
- reg1 = addr;
- else
- reg2 = addr;
-
- addr = 0;
- }
-
- if (offset != 0)
- {
- if (addr != 0)
- abort ();
- addr = offset;
- }
-
- if ((reg1 && GET_CODE (reg1) == MULT)
- || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
- {
- breg = reg2;
- ireg = reg1;
- }
- else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
- {
- breg = reg1;
- ireg = reg2;
- }
-
- if (ireg != 0 || breg != 0)
- {
- int scale = 1;
-
- if (addr != 0)
- {
- if (flag_pic)
- output_pic_addr_const (file, addr, 0);
- else if (GET_CODE (addr) == LABEL_REF)
- output_asm_label (addr);
- else
- output_addr_const (file, addr);
- }
-
- if (ireg != 0 && GET_CODE (ireg) == MULT)
- {
- scale = INTVAL (XEXP (ireg, 1));
- ireg = XEXP (ireg, 0);
- }
-
- /* The stack pointer can only appear as a base register,
- never an index register, so exchange the regs if it is wrong. */
-
- if (scale == 1 && ireg && REGNO (ireg) == STACK_POINTER_REGNUM)
- {
- rtx tmp;
-
- tmp = breg;
- breg = ireg;
- ireg = tmp;
- }
-
- /* output breg+ireg*scale */
- PRINT_B_I_S (breg, ireg, scale, file);
- break;
- }
-
- case MULT:
- {
- int scale;
-
- if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
- {
- scale = INTVAL (XEXP (addr, 0));
- ireg = XEXP (addr, 1);
- }
- else
- {
- scale = INTVAL (XEXP (addr, 1));
- ireg = XEXP (addr, 0);
- }
-
- /* (reg,reg,) is shorter than (,reg,2). */
- if (scale == 2)
- {
- PRINT_B_I_S (ireg, ireg, 1, file);
- }
- else
- {
- output_addr_const (file, const0_rtx);
- PRINT_B_I_S (NULL_RTX, ireg, scale, file);
- }
- }
- break;
-
- default:
- if (GET_CODE (addr) == CONST_INT
- && INTVAL (addr) < 0x8000
- && INTVAL (addr) >= -0x8000)
- fprintf (file, "%d", (int) INTVAL (addr));
- else
- {
- if (flag_pic)
- output_pic_addr_const (file, addr, 0);
- else
- output_addr_const (file, addr);
- }
- }
-}
-
-/* Set the cc_status for the results of an insn whose pattern is EXP.
- On the 80386, we assume that only test and compare insns, as well
- as SI, HI, & DI mode ADD, SUB, NEG, AND, IOR, XOR, BSF, ASHIFT,
- ASHIFTRT, and LSHIFTRT instructions set the condition codes usefully.
- Also, we assume that jumps, moves and sCOND don't affect the condition
- codes. All else clobbers the condition codes, by assumption.
-
- We assume that ALL integer add, minus, etc. instructions effect the
- condition codes. This MUST be consistent with i386.md.
-
- We don't record any float test or compare - the redundant test &
- compare check in final.c does not handle stack-like regs correctly. */
-
-void
-notice_update_cc (exp)
- rtx exp;
-{
- if (GET_CODE (exp) == SET)
- {
- /* Jumps do not alter the cc's. */
- if (SET_DEST (exp) == pc_rtx)
- return;
-
- /* Moving register or memory into a register:
- it doesn't alter the cc's, but it might invalidate
- the RTX's which we remember the cc's came from.
- (Note that moving a constant 0 or 1 MAY set the cc's). */
- if (REG_P (SET_DEST (exp))
- && (REG_P (SET_SRC (exp)) || GET_CODE (SET_SRC (exp)) == MEM
- || GET_RTX_CLASS (GET_CODE (SET_SRC (exp))) == '<'
- || GET_CODE (SET_SRC (exp)) == IF_THEN_ELSE))
- {
- if (cc_status.value1
- && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
- cc_status.value1 = 0;
-
- if (cc_status.value2
- && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
- cc_status.value2 = 0;
-
- return;
- }
-
- /* Moving register into memory doesn't alter the cc's.
- It may invalidate the RTX's which we remember the cc's came from. */
- if (GET_CODE (SET_DEST (exp)) == MEM
- && (REG_P (SET_SRC (exp))
- || GET_RTX_CLASS (GET_CODE (SET_SRC (exp))) == '<'))
- {
- if (cc_status.value1
- && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
- cc_status.value1 = 0;
- if (cc_status.value2
- && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
- cc_status.value2 = 0;
-
- return;
- }
-
- /* Function calls clobber the cc's. */
- else if (GET_CODE (SET_SRC (exp)) == CALL)
- {
- CC_STATUS_INIT;
- return;
- }
-
- /* Tests and compares set the cc's in predictable ways. */
- else if (SET_DEST (exp) == cc0_rtx)
- {
- CC_STATUS_INIT;
- cc_status.value1 = SET_SRC (exp);
- return;
- }
-
- /* Certain instructions effect the condition codes. */
- else if (GET_MODE (SET_SRC (exp)) == SImode
- || GET_MODE (SET_SRC (exp)) == HImode
- || GET_MODE (SET_SRC (exp)) == QImode)
- switch (GET_CODE (SET_SRC (exp)))
- {
- case ASHIFTRT: case LSHIFTRT: case ASHIFT:
- /* Shifts on the 386 don't set the condition codes if the
- shift count is zero. */
- if (GET_CODE (XEXP (SET_SRC (exp), 1)) != CONST_INT)
- {
- CC_STATUS_INIT;
- break;
- }
-
- /* We assume that the CONST_INT is non-zero (this rtx would
- have been deleted if it were zero. */
-
- case PLUS: case MINUS: case NEG:
- case AND: case IOR: case XOR:
- cc_status.flags = CC_NO_OVERFLOW;
- cc_status.value1 = SET_SRC (exp);
- cc_status.value2 = SET_DEST (exp);
- break;
-
- /* This is the bsf pattern used by ffs. */
- case UNSPEC:
- if (XINT (SET_SRC (exp), 1) == 5)
- {
- /* Only the Z flag is defined after bsf. */
- cc_status.flags
- = CC_NOT_POSITIVE | CC_NOT_NEGATIVE | CC_NO_OVERFLOW;
- cc_status.value1 = XVECEXP (SET_SRC (exp), 0, 0);
- cc_status.value2 = 0;
- break;
- }
- /* FALLTHRU */
-
- default:
- CC_STATUS_INIT;
- }
- else
- {
- CC_STATUS_INIT;
- }
- }
- else if (GET_CODE (exp) == PARALLEL
- && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
- {
- if (SET_DEST (XVECEXP (exp, 0, 0)) == pc_rtx)
- return;
- if (SET_DEST (XVECEXP (exp, 0, 0)) == cc0_rtx)
-
- {
- CC_STATUS_INIT;
- if (stack_regs_mentioned_p (SET_SRC (XVECEXP (exp, 0, 0))))
- {
- cc_status.flags |= CC_IN_80387;
- if (TARGET_CMOVE && stack_regs_mentioned_p
- (XEXP (SET_SRC (XVECEXP (exp, 0, 0)), 1)))
- cc_status.flags |= CC_FCOMI;
- }
- else
- cc_status.value1 = SET_SRC (XVECEXP (exp, 0, 0));
- return;
- }
-
- CC_STATUS_INIT;
- }
- else
- {
- CC_STATUS_INIT;
- }
-}
-
-/* Split one or more DImode RTL references into pairs of SImode
- references. The RTL can be REG, offsettable MEM, integer constant, or
- CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
- split and "num" is its length. lo_half and hi_half are output arrays
- that parallel "operands". */
-
-void
-split_di (operands, num, lo_half, hi_half)
- rtx operands[];
- int num;
- rtx lo_half[], hi_half[];
-{
- while (num--)
- {
- rtx op = operands[num];
- if (! reload_completed)
- {
- lo_half[num] = gen_lowpart (SImode, op);
- hi_half[num] = gen_highpart (SImode, op);
- }
- else if (GET_CODE (op) == REG)
- {
- lo_half[num] = gen_rtx_REG (SImode, REGNO (op));
- hi_half[num] = gen_rtx_REG (SImode, REGNO (op) + 1);
- }
- else if (CONSTANT_P (op))
- split_double (op, &lo_half[num], &hi_half[num]);
- else if (offsettable_memref_p (op))
- {
- rtx lo_addr = XEXP (op, 0);
- rtx hi_addr = XEXP (adj_offsettable_operand (op, 4), 0);
- lo_half[num] = change_address (op, SImode, lo_addr);
- hi_half[num] = change_address (op, SImode, hi_addr);
- }
- else
- abort();
- }
-}
-
-/* Return 1 if this is a valid binary operation on a 387.
- OP is the expression matched, and MODE is its mode. */
-
-int
-binary_387_op (op, mode)
- register rtx op;
- enum machine_mode mode;
-{
- if (mode != VOIDmode && mode != GET_MODE (op))
- return 0;
-
- switch (GET_CODE (op))
- {
- case PLUS:
- case MINUS:
- case MULT:
- case DIV:
- return GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT;
-
- default:
- return 0;
- }
-}
-
-/* Return 1 if this is a valid shift or rotate operation on a 386.
- OP is the expression matched, and MODE is its mode. */
-
-int
-shift_op (op, mode)
- register rtx op;
- enum machine_mode mode;
-{
- rtx operand = XEXP (op, 0);
-
- if (mode != VOIDmode && mode != GET_MODE (op))
- return 0;
-
- if (GET_MODE (operand) != GET_MODE (op)
- || GET_MODE_CLASS (GET_MODE (op)) != MODE_INT)
- return 0;
-
- return (GET_CODE (op) == ASHIFT
- || GET_CODE (op) == ASHIFTRT
- || GET_CODE (op) == LSHIFTRT
- || GET_CODE (op) == ROTATE
- || GET_CODE (op) == ROTATERT);
-}
-
-/* Return 1 if OP is COMPARE rtx with mode VOIDmode.
- MODE is not used. */
-
-int
-VOIDmode_compare_op (op, mode)
- register rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- return GET_CODE (op) == COMPARE && GET_MODE (op) == VOIDmode;
-}
-
-/* Output code to perform a 387 binary operation in INSN, one of PLUS,
- MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3]
- is the expression of the binary operation. The output may either be
- emitted here, or returned to the caller, like all output_* functions.
-
- There is no guarantee that the operands are the same mode, as they
- might be within FLOAT or FLOAT_EXTEND expressions. */
-
-char *
-output_387_binary_op (insn, operands)
- rtx insn;
- rtx *operands;
-{
- rtx temp;
- char *base_op;
- static char buf[100];
-
- switch (GET_CODE (operands[3]))
- {
- case PLUS:
- base_op = "fadd";
- break;
-
- case MINUS:
- base_op = "fsub";
- break;
-
- case MULT:
- base_op = "fmul";
- break;
-
- case DIV:
- base_op = "fdiv";
- break;
-
- default:
- abort ();
- }
-
- strcpy (buf, base_op);
-
- switch (GET_CODE (operands[3]))
- {
- case MULT:
- case PLUS:
- if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]))
- {
- temp = operands[2];
- operands[2] = operands[1];
- operands[1] = temp;
- }
-
- if (GET_CODE (operands[2]) == MEM)
- return strcat (buf, AS1 (%z2,%2));
-
- if (! STACK_REG_P (operands[1]) || ! STACK_REG_P (operands[2]))
- abort ();
-
- if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
- {
- if (STACK_TOP_P (operands[0]))
- return strcat (buf, AS2 (p,%0,%2));
- else
- return strcat (buf, AS2 (p,%2,%0));
- }
-
- if (STACK_TOP_P (operands[0]))
- return strcat (buf, AS2C (%y2,%0));
- else
- return strcat (buf, AS2C (%2,%0));
-
- case MINUS:
- case DIV:
- if (GET_CODE (operands[1]) == MEM)
- return strcat (buf, AS1 (r%z1,%1));
-
- if (GET_CODE (operands[2]) == MEM)
- return strcat (buf, AS1 (%z2,%2));
-
- if (! STACK_REG_P (operands[1]) || ! STACK_REG_P (operands[2]))
- abort ();
-
- if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
- {
- if (STACK_TOP_P (operands[0]))
- return strcat (buf, AS2 (p,%0,%2));
- else
- return strcat (buf, AS2 (rp,%2,%0));
- }
-
- if (find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
- {
- if (STACK_TOP_P (operands[0]))
- return strcat (buf, AS2 (rp,%0,%1));
- else
- return strcat (buf, AS2 (p,%1,%0));
- }
-
- if (STACK_TOP_P (operands[0]))
- {
- if (STACK_TOP_P (operands[1]))
- return strcat (buf, AS2C (%y2,%0));
- else
- return strcat (buf, AS2 (r,%y1,%0));
- }
- else if (STACK_TOP_P (operands[1]))
- return strcat (buf, AS2C (%1,%0));
- else
- return strcat (buf, AS2 (r,%2,%0));
-
- default:
- abort ();
- }
-}
-
-/* Output code for INSN to convert a float to a signed int. OPERANDS
- are the insn operands. The input may be SFmode, DFmode, or XFmode
- and the output operand may be SImode or DImode. As a special case,
- make sure that the 387 stack top dies if the output mode is DImode,
- because the hardware requires this. */
-
-char *
-output_fix_trunc (insn, operands)
- rtx insn;
- rtx *operands;
-{
- int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
- rtx xops[2];
-
- if (! STACK_TOP_P (operands[1]))
- abort ();
-
- if (GET_MODE (operands[0]) == DImode && ! stack_top_dies)
- abort ();
-
- xops[0] = GEN_INT (0x0c00);
- xops[1] = operands[5];
-
- output_asm_insn (AS1 (fnstc%W2,%2), operands);
- output_asm_insn (AS2 (mov%W5,%2,%w5), operands);
- output_asm_insn (AS2 (or%W1,%0,%w1), xops);
- output_asm_insn (AS2 (mov%W3,%w5,%3), operands);
- output_asm_insn (AS1 (fldc%W3,%3), operands);
-
- xops[0] = NON_STACK_REG_P (operands[0]) ? operands[4] : operands[0];
-
- if (stack_top_dies)
- output_asm_insn (AS1 (fistp%z0,%y0), xops);
- else
- output_asm_insn (AS1 (fist%z0,%y0), xops);
-
- if (NON_STACK_REG_P (operands[0]))
- {
- if (GET_MODE (operands[0]) == SImode)
- output_asm_insn (AS2 (mov%L0,%4,%0), operands);
- else
- {
- xops[0] = operands[0];
- xops[1] = operands[4];
- output_asm_insn (output_move_double (xops), xops);
- }
- }
-
- return AS1 (fldc%W2,%2);
-}
-
-/* Output code for INSN to extend a float. OPERANDS are the insn
- operands. The output may be DFmode or XFmode and the input operand
- may be SFmode or DFmode. Operands 2 and 3 are scratch memory and
- are only necessary if operands 0 or 1 are non-stack registers. */
-
-void
-output_float_extend (insn, operands)
- rtx insn;
- rtx *operands;
-{
- int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
- rtx xops[2];
-
- if (! STACK_TOP_P (operands[0]) && ! STACK_TOP_P (operands[1]))
- abort ();
-
- if (STACK_TOP_P (operands[0]) && STACK_TOP_P (operands[1]) && stack_top_dies)
- return;
-
- if (STACK_TOP_P (operands[0]) )
- {
- if (NON_STACK_REG_P (operands[1]))
- {
- if (GET_MODE (operands[1]) == SFmode)
- output_asm_insn (AS2 (mov%L0,%1,%2), operands);
- else
- {
- xops[0] = operands[2];
- xops[1] = operands[1];
- output_asm_insn (output_move_double (xops), xops);
- }
- }
-
- xops[0] = NON_STACK_REG_P (operands[1]) ? operands[2] : operands[1];
-
- output_asm_insn (AS1 (fld%z0,%y0), xops);
- }
- else
- {
- xops[0] = NON_STACK_REG_P (operands[0]) ? operands[3] : operands[0];
-
- if (stack_top_dies
- || (GET_CODE (xops[0]) == MEM && GET_MODE (xops[0]) == XFmode))
- {
- output_asm_insn (AS1 (fstp%z0,%y0), xops);
- if (! stack_top_dies)
- output_asm_insn (AS1 (fld%z0,%y0), xops);
- }
- else
- output_asm_insn (AS1 (fst%z0,%y0), xops);
-
- if (NON_STACK_REG_P (operands[0]))
- {
- xops[0] = operands[0];
- xops[1] = operands[3];
- output_asm_insn (output_move_double (xops), xops);
- }
- }
-}
-
-/* Output code for INSN to compare OPERANDS. The two operands might
- not have the same mode: one might be within a FLOAT or FLOAT_EXTEND
- expression. If the compare is in mode CCFPEQmode, use an opcode that
- will not fault if a qNaN is present. */
-
-char *
-output_float_compare (insn, operands)
- rtx insn;
- rtx *operands;
-{
- int stack_top_dies;
- rtx body = XVECEXP (PATTERN (insn), 0, 0);
- int unordered_compare = GET_MODE (SET_SRC (body)) == CCFPEQmode;
- rtx tmp;
- int cc0_set = 1;
- int i;
-
- if (TARGET_CMOVE && STACK_REG_P (operands[1])
- && STACK_REG_P (operands[0]))
- {
- cc_status.flags |= CC_FCOMI;
- cc_prev_status.flags &= ~CC_TEST_AX;
- }
-
- if (! STACK_TOP_P (operands[0]))
- {
- tmp = operands[0];
- operands[0] = operands[1];
- operands[1] = tmp;
- cc_status.flags |= CC_REVERSED;
- }
-
- if (! STACK_TOP_P (operands[0]))
- abort ();
-
- stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
-
- if (STACK_REG_P (operands[1])
- && stack_top_dies
- && find_regno_note (insn, REG_DEAD, REGNO (operands[1]))
- && REGNO (operands[1]) == FIRST_STACK_REG + 1)
- {
- /* If both the top of the 387 stack dies, and the other operand
- is also a stack register that dies, then this must be a
- `fcompp' float compare */
-
- if (unordered_compare)
- {
- if (cc_status.flags & CC_FCOMI)
- {
- output_asm_insn (AS2 (fucomip,%y1,%0), operands);
- output_asm_insn (AS1 (fstp, %y0), operands);
- if (!TARGET_IEEE_FP)
- cc0_set = 0;
- }
- else
- output_asm_insn ("fucompp", operands);
- }
- else
- {
- if (cc_status.flags & CC_FCOMI)
- {
- output_asm_insn (AS2 (fcomip, %y1,%0), operands);
- output_asm_insn (AS1 (fstp, %y0), operands);
- if (!TARGET_IEEE_FP)
- cc0_set = 0;
- }
- else
- output_asm_insn ("fcompp", operands);
- }
- }
- else
- {
- static char buf[100];
-
- /* Decide if this is a float compare or an unordered float compare. */
-
- if (unordered_compare)
- strcpy (buf, (cc_status.flags & CC_FCOMI) ? "fucomi" : "fucom");
- else
- strcpy (buf, (cc_status.flags & CC_FCOMI) ? "fcomi" : "fcom");
-
- /* Modify the opcode if the 387 stack is to be popped. */
-
- if (stack_top_dies)
- strcat (buf, "p");
-
- if (cc_status.flags & CC_FCOMI)
- {
- output_asm_insn (strcat (buf, AS2 (%z1,%y1,%0)), operands);
- if (!TARGET_IEEE_FP)
- cc0_set = 0;
- }
- else
- output_asm_insn (strcat (buf, AS1 (%z1,%y1)), operands);
- }
-
- /* Now retrieve the condition code. */
- if (cc0_set)
- {
- char *r = output_fp_cc0_set (insn);
- if (r[0]) output_asm_insn (r, operands);
- }
-
-
- /* We emit fstp instruction after integer comparsions to improve
- scheduling. */
- for (i = 0; i < 2 ; i++)
- {
- if (STACK_REG_P (operands[i])
- && find_regno_note (insn, REG_DEAD, REGNO (operands[i]))
- && REGNO (operands[i]) != FIRST_STACK_REG
- && (!stack_top_dies || REGNO (operands[i]) != FIRST_STACK_REG + 1))
- {
- rtx xexp[2];
- xexp[0] = gen_rtx_REG (DFmode,
- REGNO (operands[i]) - (stack_top_dies != 0));
- output_asm_insn (AS1 (fstp, %y0), xexp);
- }
- }
-
- return "";
-
-
-}
-
-/* Output opcodes to transfer the results of FP compare or test INSN
- from the FPU to the CPU flags. If TARGET_IEEE_FP, ensure that if the
- result of the compare or test is unordered, no comparison operator
- succeeds except NE. Return an output template, if any. */
-
-char *
-output_fp_cc0_set (insn)
- rtx insn;
-{
- rtx xops[3];
- rtx next;
- enum rtx_code code;
-
- if (!(cc_status.flags & CC_FCOMI))
- {
- xops[0] = gen_rtx_REG (HImode, 0);
- output_asm_insn (AS1 (fnsts%W0,%0), xops);
- }
-
- if (! TARGET_IEEE_FP)
- {
- if (!(cc_status.flags & CC_REVERSED))
- {
- next = next_cc0_user (insn);
-
- if (GET_CODE (PATTERN (next)) == SET
- && SET_DEST (PATTERN (next)) == pc_rtx
- && GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
- code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
- else if (GET_CODE (PATTERN (next)) == SET)
- code = GET_CODE (SET_SRC (PATTERN (next)));
- else
- return "sahf";
-
- if (code == GT || code == LT || code == EQ || code == NE
- || code == LE || code == GE)
- {
- /* We will test eax directly. */
- cc_status.flags |= CC_TEST_AX;
- return "";
- }
- }
-
- return "sahf";
- }
-
- next = next_cc0_user (insn);
- if (next == NULL_RTX)
- abort ();
-
- if (GET_CODE (PATTERN (next)) == SET
- && SET_DEST (PATTERN (next)) == pc_rtx
- && GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
- code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
- else if (GET_CODE (PATTERN (next)) == SET)
- {
- if (GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
- code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
- else
- code = GET_CODE (SET_SRC (PATTERN (next)));
- }
-
- else if (GET_CODE (PATTERN (next)) == PARALLEL
- && GET_CODE (XVECEXP (PATTERN (next), 0, 0)) == SET)
- {
- if (GET_CODE (SET_SRC (XVECEXP (PATTERN (next), 0, 0))) == IF_THEN_ELSE)
- code = GET_CODE (XEXP (SET_SRC (XVECEXP (PATTERN (next), 0, 0)), 0));
- else
- code = GET_CODE (SET_SRC (XVECEXP (PATTERN (next), 0, 0)));
- }
- else
- abort ();
-
- if (cc_status.flags & CC_FCOMI)
- {
- /* It is very tricky. We have to do it right. */
-
- xops [0] = gen_rtx_REG (QImode, 0);
-
- switch (code)
- {
- case GT:
- case GE:
- break;
-
- case LT:
- output_asm_insn (AS1 (setb,%b0), xops);
- output_asm_insn (AS1 (setp,%h0), xops);
- output_asm_insn (AS2 (cmp%B0,%b0,%h0), xops);
- break;
-
- case LE:
- output_asm_insn (AS1 (setbe,%b0), xops);
- output_asm_insn (AS1 (setnp,%h0), xops);
- output_asm_insn (AS2 (xor%B0,%b0,%h0), xops);
- break;
-
- case EQ:
- case NE:
- output_asm_insn (AS1 (setne,%b0), xops);
- output_asm_insn (AS1 (setp,%h0), xops);
- output_asm_insn (AS2 (or%B0,%b0,%h0), xops);
- break;
-
- case GTU:
- case LTU:
- case GEU:
- case LEU:
- default:
- abort ();
- }
- }
- else
- {
- xops[0] = gen_rtx_REG (QImode, 0);
-
- switch (code)
- {
- case GT:
- xops[1] = GEN_INT (0x45);
- output_asm_insn (AS2 (and%B0,%1,%h0), xops);
- /* je label */
- break;
-
- case LT:
- xops[1] = GEN_INT (0x45);
- xops[2] = GEN_INT (0x01);
- output_asm_insn (AS2 (and%B0,%1,%h0), xops);
- output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
- /* je label */
- break;
-
- case GE:
- xops[1] = GEN_INT (0x05);
- output_asm_insn (AS2 (and%B0,%1,%h0), xops);
- /* je label */
- break;
-
- case LE:
- xops[1] = GEN_INT (0x45);
- xops[2] = GEN_INT (0x40);
- output_asm_insn (AS2 (and%B0,%1,%h0), xops);
- output_asm_insn (AS1 (dec%B0,%h0), xops);
- output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
- /* jb label */
- break;
-
- case EQ:
- xops[1] = GEN_INT (0x45);
- xops[2] = GEN_INT (0x40);
- output_asm_insn (AS2 (and%B0,%1,%h0), xops);
- output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
- /* je label */
- break;
-
- case NE:
- xops[1] = GEN_INT (0x44);
- xops[2] = GEN_INT (0x40);
- output_asm_insn (AS2 (and%B0,%1,%h0), xops);
- output_asm_insn (AS2 (xor%B0,%2,%h0), xops);
- /* jne label */
- break;
-
- case GTU:
- case LTU:
- case GEU:
- case LEU:
- default:
- abort ();
- }
- }
-
- return "";
-}
-
-#define MAX_386_STACK_LOCALS 2
-
-static rtx i386_stack_locals[(int) MAX_MACHINE_MODE][MAX_386_STACK_LOCALS];
-
-/* Define the structure for the machine field in struct function. */
-struct machine_function
-{
- rtx i386_stack_locals[(int) MAX_MACHINE_MODE][MAX_386_STACK_LOCALS];
- rtx pic_label_rtx;
- char pic_label_name[256];
-};
-
-/* Functions to save and restore i386_stack_locals.
- These will be called, via pointer variables,
- from push_function_context and pop_function_context. */
-
-void
-save_386_machine_status (p)
- struct function *p;
-{
- p->machine
- = (struct machine_function *) xmalloc (sizeof (struct machine_function));
- bcopy ((char *) i386_stack_locals, (char *) p->machine->i386_stack_locals,
- sizeof i386_stack_locals);
- p->machine->pic_label_rtx = pic_label_rtx;
- bcopy (pic_label_name, p->machine->pic_label_name, 256);
-}
-
-void
-restore_386_machine_status (p)
- struct function *p;
-{
- bcopy ((char *) p->machine->i386_stack_locals, (char *) i386_stack_locals,
- sizeof i386_stack_locals);
- pic_label_rtx = p->machine->pic_label_rtx;
- bcopy (p->machine->pic_label_name, pic_label_name, 256);
- free (p->machine);
- p->machine = NULL;
-}
-
-/* Clear stack slot assignments remembered from previous functions.
- This is called from INIT_EXPANDERS once before RTL is emitted for each
- function. */
-
-void
-clear_386_stack_locals ()
-{
- enum machine_mode mode;
- int n;
-
- for (mode = VOIDmode; (int) mode < (int) MAX_MACHINE_MODE;
- mode = (enum machine_mode) ((int) mode + 1))
- for (n = 0; n < MAX_386_STACK_LOCALS; n++)
- i386_stack_locals[(int) mode][n] = NULL_RTX;
-
- pic_label_rtx = NULL_RTX;
- bzero (pic_label_name, 256);
- /* Arrange to save and restore i386_stack_locals around nested functions. */
- save_machine_status = save_386_machine_status;
- restore_machine_status = restore_386_machine_status;
-}
-
-/* Return a MEM corresponding to a stack slot with mode MODE.
- Allocate a new slot if necessary.
-
- The RTL for a function can have several slots available: N is
- which slot to use. */
-
-rtx
-assign_386_stack_local (mode, n)
- enum machine_mode mode;
- int n;
-{
- if (n < 0 || n >= MAX_386_STACK_LOCALS)
- abort ();
-
- if (i386_stack_locals[(int) mode][n] == NULL_RTX)
- i386_stack_locals[(int) mode][n]
- = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
-
- return i386_stack_locals[(int) mode][n];
-}
-
-int is_mul(op,mode)
- register rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- return (GET_CODE (op) == MULT);
-}
-
-int is_div(op,mode)
- register rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- return (GET_CODE (op) == DIV);
-}
-
-#ifdef NOTYET
-/* Create a new copy of an rtx.
- Recursively copies the operands of the rtx,
- except for those few rtx codes that are sharable.
- Doesn't share CONST */
-
-rtx
-copy_all_rtx (orig)
- register rtx orig;
-{
- register rtx copy;
- register int i, j;
- register RTX_CODE code;
- register char *format_ptr;
-
- code = GET_CODE (orig);
-
- switch (code)
- {
- case REG:
- case QUEUED:
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case CODE_LABEL:
- case PC:
- case CC0:
- case SCRATCH:
- /* SCRATCH must be shared because they represent distinct values. */
- return orig;
-
-#if 0
- case CONST:
- /* CONST can be shared if it contains a SYMBOL_REF. If it contains
- a LABEL_REF, it isn't sharable. */
- if (GET_CODE (XEXP (orig, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
- && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
- return orig;
- break;
-#endif
- /* A MEM with a constant address is not sharable. The problem is that
- the constant address may need to be reloaded. If the mem is shared,
- then reloading one copy of this mem will cause all copies to appear
- to have been reloaded. */
- }
-
- copy = rtx_alloc (code);
- PUT_MODE (copy, GET_MODE (orig));
- copy->in_struct = orig->in_struct;
- copy->volatil = orig->volatil;
- copy->unchanging = orig->unchanging;
- copy->integrated = orig->integrated;
- /* intel1 */
- copy->is_spill_rtx = orig->is_spill_rtx;
-
- format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
-
- for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
- {
- switch (*format_ptr++)
- {
- case 'e':
- XEXP (copy, i) = XEXP (orig, i);
- if (XEXP (orig, i) != NULL)
- XEXP (copy, i) = copy_rtx (XEXP (orig, i));
- break;
-
- case '0':
- case 'u':
- XEXP (copy, i) = XEXP (orig, i);
- break;
-
- case 'E':
- case 'V':
- XVEC (copy, i) = XVEC (orig, i);
- if (XVEC (orig, i) != NULL)
- {
- XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
- for (j = 0; j < XVECLEN (copy, i); j++)
- XVECEXP (copy, i, j) = copy_rtx (XVECEXP (orig, i, j));
- }
- break;
-
- case 'w':
- XWINT (copy, i) = XWINT (orig, i);
- break;
-
- case 'i':
- XINT (copy, i) = XINT (orig, i);
- break;
-
- case 's':
- case 'S':
- XSTR (copy, i) = XSTR (orig, i);
- break;
-
- default:
- abort ();
- }
- }
- return copy;
-}
-
-
-/* Try to rewrite a memory address to make it valid */
-
-void
-rewrite_address (mem_rtx)
- rtx mem_rtx;
-{
- rtx index_rtx, base_rtx, offset_rtx, scale_rtx, ret_rtx;
- int scale = 1;
- int offset_adjust = 0;
- int was_only_offset = 0;
- rtx mem_addr = XEXP (mem_rtx, 0);
- char *storage = oballoc (0);
- int in_struct = 0;
- int is_spill_rtx = 0;
-
- in_struct = MEM_IN_STRUCT_P (mem_rtx);
- is_spill_rtx = RTX_IS_SPILL_P (mem_rtx);
-
- if (GET_CODE (mem_addr) == PLUS
- && GET_CODE (XEXP (mem_addr, 1)) == PLUS
- && GET_CODE (XEXP (XEXP (mem_addr, 1), 0)) == REG)
- {
- /* This part is utilized by the combiner. */
- ret_rtx
- = gen_rtx (PLUS, GET_MODE (mem_addr),
- gen_rtx (PLUS, GET_MODE (XEXP (mem_addr, 1)),
- XEXP (mem_addr, 0), XEXP (XEXP (mem_addr, 1), 0)),
- XEXP (XEXP (mem_addr, 1), 1));
-
- if (memory_address_p (GET_MODE (mem_rtx), ret_rtx))
- {
- XEXP (mem_rtx, 0) = ret_rtx;
- RTX_IS_SPILL_P (ret_rtx) = is_spill_rtx;
- return;
- }
-
- obfree (storage);
- }
-
- /* This part is utilized by loop.c.
- If the address contains PLUS (reg,const) and this pattern is invalid
- in this case - try to rewrite the address to make it valid. */
- storage = oballoc (0);
- index_rtx = base_rtx = offset_rtx = NULL;
-
- /* Find the base index and offset elements of the memory address. */
- if (GET_CODE (mem_addr) == PLUS)
- {
- if (GET_CODE (XEXP (mem_addr, 0)) == REG)
- {
- if (GET_CODE (XEXP (mem_addr, 1)) == REG)
- base_rtx = XEXP (mem_addr, 1), index_rtx = XEXP (mem_addr, 0);
- else
- base_rtx = XEXP (mem_addr, 0), offset_rtx = XEXP (mem_addr, 1);
- }
-
- else if (GET_CODE (XEXP (mem_addr, 0)) == MULT)
- {
- index_rtx = XEXP (mem_addr, 0);
- if (GET_CODE (XEXP (mem_addr, 1)) == REG)
- base_rtx = XEXP (mem_addr, 1);
- else
- offset_rtx = XEXP (mem_addr, 1);
- }
-
- else if (GET_CODE (XEXP (mem_addr, 0)) == PLUS)
- {
- if (GET_CODE (XEXP (XEXP (mem_addr, 0), 0)) == PLUS
- && GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0)) == MULT
- && (GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 0))
- == REG)
- && (GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 1))
- == CONST_INT)
- && (GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 1))
- == CONST_INT)
- && GET_CODE (XEXP (XEXP (mem_addr, 0), 1)) == REG
- && GET_CODE (XEXP (mem_addr, 1)) == SYMBOL_REF)
- {
- index_rtx = XEXP (XEXP (XEXP (mem_addr, 0), 0), 0);
- offset_rtx = XEXP (mem_addr, 1);
- base_rtx = XEXP (XEXP (mem_addr, 0), 1);
- offset_adjust = INTVAL (XEXP (XEXP (XEXP (mem_addr, 0), 0), 1));
- }
- else
- {
- offset_rtx = XEXP (mem_addr, 1);
- index_rtx = XEXP (XEXP (mem_addr, 0), 0);
- base_rtx = XEXP (XEXP (mem_addr, 0), 1);
- }
- }
-
- else if (GET_CODE (XEXP (mem_addr, 0)) == CONST_INT)
- {
- was_only_offset = 1;
- index_rtx = NULL;
- base_rtx = NULL;
- offset_rtx = XEXP (mem_addr, 1);
- offset_adjust = INTVAL (XEXP (mem_addr, 0));
- if (offset_adjust == 0)
- {
- XEXP (mem_rtx, 0) = offset_rtx;
- RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
- return;
- }
- }
- else
- {
- obfree (storage);
- return;
- }
- }
- else if (GET_CODE (mem_addr) == MULT)
- index_rtx = mem_addr;
- else
- {
- obfree (storage);
- return;
- }
-
- if (index_rtx != 0 && GET_CODE (index_rtx) == MULT)
- {
- if (GET_CODE (XEXP (index_rtx, 1)) != CONST_INT)
- {
- obfree (storage);
- return;
- }
-
- scale_rtx = XEXP (index_rtx, 1);
- scale = INTVAL (scale_rtx);
- index_rtx = copy_all_rtx (XEXP (index_rtx, 0));
- }
-
- /* Now find which of the elements are invalid and try to fix them. */
- if (index_rtx && GET_CODE (index_rtx) == CONST_INT && base_rtx == NULL)
- {
- offset_adjust = INTVAL (index_rtx) * scale;
-
- if (offset_rtx != 0 && CONSTANT_P (offset_rtx))
- offset_rtx = plus_constant (offset_rtx, offset_adjust);
- else if (offset_rtx == 0)
- offset_rtx = const0_rtx;
-
- RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
- XEXP (mem_rtx, 0) = offset_rtx;
- return;
- }
-
- if (base_rtx && GET_CODE (base_rtx) == PLUS
- && GET_CODE (XEXP (base_rtx, 0)) == REG
- && GET_CODE (XEXP (base_rtx, 1)) == CONST_INT)
- {
- offset_adjust += INTVAL (XEXP (base_rtx, 1));
- base_rtx = copy_all_rtx (XEXP (base_rtx, 0));
- }
-
- else if (base_rtx && GET_CODE (base_rtx) == CONST_INT)
- {
- offset_adjust += INTVAL (base_rtx);
- base_rtx = NULL;
- }
-
- if (index_rtx && GET_CODE (index_rtx) == PLUS
- && GET_CODE (XEXP (index_rtx, 0)) == REG
- && GET_CODE (XEXP (index_rtx, 1)) == CONST_INT)
- {
- offset_adjust += INTVAL (XEXP (index_rtx, 1)) * scale;
- index_rtx = copy_all_rtx (XEXP (index_rtx, 0));
- }
-
- if (index_rtx)
- {
- if (! LEGITIMATE_INDEX_P (index_rtx)
- && ! (index_rtx == stack_pointer_rtx && scale == 1
- && base_rtx == NULL))
- {
- obfree (storage);
- return;
- }
- }
-
- if (base_rtx)
- {
- if (! LEGITIMATE_INDEX_P (base_rtx) && GET_CODE (base_rtx) != REG)
- {
- obfree (storage);
- return;
- }
- }
-
- if (offset_adjust != 0)
- {
- if (offset_rtx != 0 && CONSTANT_P (offset_rtx))
- offset_rtx = plus_constant (offset_rtx, offset_adjust);
- else
- offset_rtx = const0_rtx;
-
- if (index_rtx)
- {
- if (base_rtx)
- {
- if (scale != 1)
- {
- ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx),
- gen_rtx (MULT, GET_MODE (index_rtx),
- index_rtx, scale_rtx),
- base_rtx);
-
- if (GET_CODE (offset_rtx) != CONST_INT
- || INTVAL (offset_rtx) != 0)
- ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
- ret_rtx, offset_rtx);
- }
- else
- {
- ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx),
- index_rtx, base_rtx);
-
- if (GET_CODE (offset_rtx) != CONST_INT
- || INTVAL (offset_rtx) != 0)
- ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
- ret_rtx, offset_rtx);
- }
- }
- else
- {
- if (scale != 1)
- {
- ret_rtx = gen_rtx (MULT, GET_MODE (index_rtx),
- index_rtx, scale_rtx);
-
- if (GET_CODE (offset_rtx) != CONST_INT
- || INTVAL (offset_rtx) != 0)
- ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
- ret_rtx, offset_rtx);
- }
- else
- {
- if (GET_CODE (offset_rtx) == CONST_INT
- && INTVAL (offset_rtx) == 0)
- ret_rtx = index_rtx;
- else
- ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx),
- index_rtx, offset_rtx);
- }
- }
- }
- else
- {
- if (base_rtx)
- {
- if (GET_CODE (offset_rtx) == CONST_INT
- && INTVAL (offset_rtx) == 0)
- ret_rtx = base_rtx;
- else
- ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx), base_rtx,
- offset_rtx);
- }
- else if (was_only_offset)
- ret_rtx = offset_rtx;
- else
- {
- obfree (storage);
- return;
- }
- }
-
- XEXP (mem_rtx, 0) = ret_rtx;
- RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
- return;
- }
- else
- {
- obfree (storage);
- return;
- }
-}
-#endif /* NOTYET */
-
-/* Return 1 if the first insn to set cc before INSN also sets the register
- REG_RTX; otherwise return 0. */
-int
-last_to_set_cc (reg_rtx, insn)
- rtx reg_rtx, insn;
-{
- rtx prev_insn = PREV_INSN (insn);
-
- while (prev_insn)
- {
- if (GET_CODE (prev_insn) == NOTE)
- ;
-
- else if (GET_CODE (prev_insn) == INSN)
- {
- if (GET_CODE (PATTERN (prev_insn)) != SET)
- return (0);
-
- if (rtx_equal_p (SET_DEST (PATTERN (prev_insn)), reg_rtx))
- {
- if (sets_condition_code (SET_SRC (PATTERN (prev_insn))))
- return (1);
-
- return (0);
- }
-
- else if (! doesnt_set_condition_code (SET_SRC (PATTERN (prev_insn))))
- return (0);
- }
-
- else
- return (0);
-
- prev_insn = PREV_INSN (prev_insn);
- }
-
- return (0);
-}
-
-int
-doesnt_set_condition_code (pat)
- rtx pat;
-{
- switch (GET_CODE (pat))
- {
- case MEM:
- case REG:
- return 1;
-
- default:
- return 0;
-
- }
-}
-
-int
-sets_condition_code (pat)
- rtx pat;
-{
- switch (GET_CODE (pat))
- {
- case PLUS:
- case MINUS:
- case AND:
- case IOR:
- case XOR:
- case NOT:
- case NEG:
- case MULT:
- case DIV:
- case MOD:
- case UDIV:
- case UMOD:
- return 1;
-
- default:
- return (0);
- }
-}
-
-int
-str_immediate_operand (op, mode)
- register rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (op) == CONST_INT && INTVAL (op) <= 32 && INTVAL (op) >= 0)
- return 1;
-
- return 0;
-}
-
-int
-is_fp_insn (insn)
- rtx insn;
-{
- if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
- && (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
- || GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
- || GET_MODE (SET_DEST (PATTERN (insn))) == XFmode))
- return 1;
-
- return 0;
-}
-
-/* Return 1 if the mode of the SET_DEST of insn is floating point
- and it is not an fld or a move from memory to memory.
- Otherwise return 0 */
-
-int
-is_fp_dest (insn)
- rtx insn;
-{
- if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
- && (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
- || GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
- || GET_MODE (SET_DEST (PATTERN (insn))) == XFmode)
- && GET_CODE (SET_DEST (PATTERN (insn))) == REG
- && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_FLOAT_REG
- && GET_CODE (SET_SRC (PATTERN (insn))) != MEM)
- return 1;
-
- return 0;
-}
-
-/* Return 1 if the mode of the SET_DEST of INSN is floating point and is
- memory and the source is a register. */
-
-int
-is_fp_store (insn)
- rtx insn;
-{
- if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
- && (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
- || GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
- || GET_MODE (SET_DEST (PATTERN (insn))) == XFmode)
- && GET_CODE (SET_DEST (PATTERN (insn))) == MEM
- && GET_CODE (SET_SRC (PATTERN (insn))) == REG)
- return 1;
-
- return 0;
-}
-
-/* Return 1 if DEP_INSN sets a register which INSN uses as a base
- or index to reference memory.
- otherwise return 0 */
-
-int
-agi_dependent (insn, dep_insn)
- rtx insn, dep_insn;
-{
- int push = 0, push_dep = 0;
- if (GET_CODE (dep_insn) == INSN
- && GET_CODE (PATTERN (dep_insn)) == SET
- && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG
- && reg_mentioned_in_mem (SET_DEST (PATTERN (dep_insn)), insn))
- return 1;
-
- if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
- && GET_CODE (SET_DEST (PATTERN (insn))) == MEM
- && push_operand (SET_DEST (PATTERN (insn)),
- GET_MODE (SET_DEST (PATTERN (insn)))))
- push = 1;
-
- if (GET_CODE (dep_insn) == INSN && GET_CODE (PATTERN (dep_insn)) == SET
- && GET_CODE (SET_DEST (PATTERN (dep_insn))) == MEM
- && push_operand (SET_DEST (PATTERN (dep_insn)),
- GET_MODE (SET_DEST (PATTERN (dep_insn)))))
- push_dep = 1;
-
- /* CPUs contain special hardware to allow two pushes. */
- if (push && push_dep)
- return 0;
-
- /* Push operation implicitly change stack pointer causing AGI stalls. */
- if (push_dep && reg_mentioned_in_mem (stack_pointer_rtx, insn))
- return 1;
-
- /* Push also implicitly read stack pointer. */
- if (push && modified_in_p (stack_pointer_rtx, dep_insn))
- return 1;
-
- return 0;
-}
-
-/* Return 1 if reg is used in rtl as a base or index for a memory ref
- otherwise return 0. */
-
-int
-reg_mentioned_in_mem (reg, rtl)
- rtx reg, rtl;
-{
- register char *fmt;
- register int i, j;
- register enum rtx_code code;
-
- if (rtl == NULL)
- return 0;
-
- code = GET_CODE (rtl);
-
- switch (code)
- {
- case HIGH:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case PC:
- case CC0:
- case SUBREG:
- return 0;
- default:
- break;
- }
-
- if (code == MEM && reg_mentioned_p (reg, rtl))
- return 1;
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- for (j = XVECLEN (rtl, i) - 1; j >= 0; j--)
- if (reg_mentioned_in_mem (reg, XVECEXP (rtl, i, j)))
- return 1;
- }
-
- else if (fmt[i] == 'e' && reg_mentioned_in_mem (reg, XEXP (rtl, i)))
- return 1;
- }
-
- return 0;
-}
-
-/* Output the appropriate insns for doing strlen if not just doing repnz; scasb
-
- operands[0] = result, initialized with the startaddress
- operands[1] = alignment of the address.
- operands[2] = scratch register, initialized with the startaddress when
- not aligned, otherwise undefined
-
- This is just the body. It needs the initialisations mentioned above and
- some address computing at the end. These things are done in i386.md. */
-
-char *
-output_strlen_unroll (operands)
- rtx operands[];
-{
- rtx xops[18];
-
- xops[0] = operands[0]; /* Result */
- /* operands[1]; * Alignment */
- xops[1] = operands[2]; /* Scratch */
- xops[2] = GEN_INT (0);
- xops[3] = GEN_INT (2);
- xops[4] = GEN_INT (3);
- xops[5] = GEN_INT (4);
- /* xops[6] = gen_label_rtx (); * label when aligned to 3-byte */
- /* xops[7] = gen_label_rtx (); * label when aligned to 2-byte */
- xops[8] = gen_label_rtx (); /* label of main loop */
-
- if (TARGET_USE_Q_REG && QI_REG_P (xops[1]))
- xops[9] = gen_label_rtx (); /* pentium optimisation */
-
- xops[10] = gen_label_rtx (); /* end label 2 */
- xops[11] = gen_label_rtx (); /* end label 1 */
- xops[12] = gen_label_rtx (); /* end label */
- /* xops[13] * Temporary used */
- xops[14] = GEN_INT (0xff);
- xops[15] = GEN_INT (0xff00);
- xops[16] = GEN_INT (0xff0000);
- xops[17] = GEN_INT (0xff000000);
-
- /* Loop to check 1..3 bytes for null to get an aligned pointer. */
-
- /* Is there a known alignment and is it less than 4? */
- if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) < 4)
- {
- /* Is there a known alignment and is it not 2? */
- if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
- {
- xops[6] = gen_label_rtx (); /* Label when aligned to 3-byte */
- xops[7] = gen_label_rtx (); /* Label when aligned to 2-byte */
-
- /* Leave just the 3 lower bits.
- If this is a q-register, then the high part is used later
- therefore use andl rather than andb. */
- output_asm_insn (AS2 (and%L1,%4,%1), xops);
-
- /* Is aligned to 4-byte address when zero */
- output_asm_insn (AS1 (je,%l8), xops);
-
- /* Side-effect even Parity when %eax == 3 */
- output_asm_insn (AS1 (jp,%6), xops);
-
- /* Is it aligned to 2 bytes ? */
- if (QI_REG_P (xops[1]))
- output_asm_insn (AS2 (cmp%L1,%3,%1), xops);
- else
- output_asm_insn (AS2 (cmp%L1,%3,%1), xops);
-
- output_asm_insn (AS1 (je,%7), xops);
- }
- else
- {
- /* Since the alignment is 2, we have to check 2 or 0 bytes;
- check if is aligned to 4 - byte. */
- output_asm_insn (AS2 (and%L1,%3,%1), xops);
-
- /* Is aligned to 4-byte address when zero */
- output_asm_insn (AS1 (je,%l8), xops);
- }
-
- xops[13] = gen_rtx_MEM (QImode, xops[0]);
-
- /* Now compare the bytes; compare with the high part of a q-reg
- gives shorter code. */
- if (QI_REG_P (xops[1]))
- {
- /* Compare the first n unaligned byte on a byte per byte basis. */
- output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
-
- /* When zero we reached the end. */
- output_asm_insn (AS1 (je,%l12), xops);
-
- /* Increment the address. */
- output_asm_insn (AS1 (inc%L0,%0), xops);
-
- /* Not needed with an alignment of 2 */
- if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
- {
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
- CODE_LABEL_NUMBER (xops[7]));
- output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
- output_asm_insn (AS1 (je,%l12), xops);
- output_asm_insn (AS1 (inc%L0,%0), xops);
-
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
- CODE_LABEL_NUMBER (xops[6]));
- }
-
- output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
- }
- else
- {
- output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
- output_asm_insn (AS1 (je,%l12), xops);
- output_asm_insn (AS1 (inc%L0,%0), xops);
-
- /* Not needed with an alignment of 2 */
- if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
- {
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
- CODE_LABEL_NUMBER (xops[7]));
- output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
- output_asm_insn (AS1 (je,%l12), xops);
- output_asm_insn (AS1 (inc%L0,%0), xops);
-
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
- CODE_LABEL_NUMBER (xops[6]));
- }
-
- output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
- }
-
- output_asm_insn (AS1 (je,%l12), xops);
- output_asm_insn (AS1 (inc%L0,%0), xops);
- }
-
- /* Generate loop to check 4 bytes at a time. It is not a good idea to
- align this loop. It gives only huge programs, but does not help to
- speed up. */
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[8]));
-
- xops[13] = gen_rtx_MEM (SImode, xops[0]);
- output_asm_insn (AS2 (mov%L1,%13,%1), xops);
-
- if (QI_REG_P (xops[1]))
- {
- /* On i586 it is faster to combine the hi- and lo- part as
- a kind of lookahead. If anding both yields zero, then one
- of both *could* be zero, otherwise none of both is zero;
- this saves one instruction, on i486 this is slower
- tested with P-90, i486DX2-66, AMD486DX2-66 */
- if (TARGET_PENTIUM)
- {
- output_asm_insn (AS2 (test%B1,%h1,%b1), xops);
- output_asm_insn (AS1 (jne,%l9), xops);
- }
-
- /* Check first byte. */
- output_asm_insn (AS2 (test%B1,%b1,%b1), xops);
- output_asm_insn (AS1 (je,%l12), xops);
-
- /* Check second byte. */
- output_asm_insn (AS2 (test%B1,%h1,%h1), xops);
- output_asm_insn (AS1 (je,%l11), xops);
-
- if (TARGET_PENTIUM)
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
- CODE_LABEL_NUMBER (xops[9]));
- }
-
- else
- {
- /* Check first byte. */
- output_asm_insn (AS2 (test%L1,%14,%1), xops);
- output_asm_insn (AS1 (je,%l12), xops);
-
- /* Check second byte. */
- output_asm_insn (AS2 (test%L1,%15,%1), xops);
- output_asm_insn (AS1 (je,%l11), xops);
- }
-
- /* Check third byte. */
- output_asm_insn (AS2 (test%L1,%16,%1), xops);
- output_asm_insn (AS1 (je,%l10), xops);
-
- /* Check fourth byte and increment address. */
- output_asm_insn (AS2 (add%L0,%5,%0), xops);
- output_asm_insn (AS2 (test%L1,%17,%1), xops);
- output_asm_insn (AS1 (jne,%l8), xops);
-
- /* Now generate fixups when the compare stops within a 4-byte word. */
- output_asm_insn (AS2 (sub%L0,%4,%0), xops);
-
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[10]));
- output_asm_insn (AS1 (inc%L0,%0), xops);
-
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[11]));
- output_asm_insn (AS1 (inc%L0,%0), xops);
-
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[12]));
-
- return "";
-}
-
-char *
-output_fp_conditional_move (which_alternative, operands)
- int which_alternative;
- rtx operands[];
-{
- enum rtx_code code = GET_CODE (operands[1]);
-
- /* This should never happen. */
- if (!(cc_prev_status.flags & CC_IN_80387)
- && (code == GT || code == LE || code == GE || code == LT))
- abort ();
-
- switch (which_alternative)
- {
- case 0:
- /* r <- cond ? arg : r */
- output_asm_insn (AS2 (fcmov%F1,%2,%0), operands);
- break;
-
- case 1:
- /* r <- cond ? r : arg */
- output_asm_insn (AS2 (fcmov%f1,%3,%0), operands);
- break;
-
- default:
- abort ();
- }
-
- return "";
-}
-
-char *
-output_int_conditional_move (which_alternative, operands)
- int which_alternative;
- rtx operands[];
-{
- enum rtx_code code = GET_CODE (operands[1]);
-
- /* This is very tricky. We have to do it right. For a code segement
- like:
-
- int foo, bar;
- ....
- foo = foo - x;
- if (foo >= 0)
- bar = y;
-
- final_scan_insn () may delete the insn which sets CC. We have to
- tell final_scan_insn () if it should be reinserted. When CODE is
- GT or LE, we have to check the CC_NO_OVERFLOW bit and return
- NULL_PTR to tell final to reinsert the test insn because the
- conditional move cannot be handled properly without it. */
- if ((code == GT || code == LE)
- && (cc_prev_status.flags & CC_NO_OVERFLOW))
- return NULL_PTR;
-
- switch (which_alternative)
- {
- case 0:
- /* r <- cond ? arg : r */
- output_asm_insn (AS2 (cmov%C1,%2,%0), operands);
- break;
-
- case 1:
- /* r <- cond ? r : arg */
- output_asm_insn (AS2 (cmov%c1,%3,%0), operands);
- break;
-
- default:
- abort ();
- }
-
- return "";
-}
-
-int
-x86_adjust_cost (insn, link, dep_insn, cost)
- rtx insn, link, dep_insn;
- int cost;
-{
- rtx next_inst;
-
- if (GET_CODE (dep_insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
- return 0;
-
- if (GET_CODE (dep_insn) == INSN
- && GET_CODE (PATTERN (dep_insn)) == SET
- && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG
- && GET_CODE (insn) == INSN
- && GET_CODE (PATTERN (insn)) == SET
- && !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)),
- SET_SRC (PATTERN (insn))))
- return 0; /* ??? */
-
-
- switch (ix86_cpu)
- {
- case PROCESSOR_PENTIUM:
- if (cost != 0 && is_fp_insn (insn) && is_fp_insn (dep_insn)
- && !is_fp_dest (dep_insn))
- return 0;
-
- if (agi_dependent (insn, dep_insn))
- return cost ? cost + 1 : 2;
-
- if (GET_CODE (insn) == INSN
- && GET_CODE (PATTERN (insn)) == SET
- && SET_DEST (PATTERN (insn)) == cc0_rtx
- && (next_inst = next_nonnote_insn (insn))
- && GET_CODE (next_inst) == JUMP_INSN)
- /* compare probably paired with jump */
- return 0;
-
- /* Stores stalls one cycle longer than other insns. */
- if (is_fp_insn (insn) && cost && is_fp_store (dep_insn))
- cost++;
- break;
- case PROCESSOR_K6:
- default:
- if (!is_fp_dest (dep_insn))
- {
- if(!agi_dependent (insn, dep_insn))
- return 0;
- if (TARGET_486)
- return 2;
- }
- else
- if (is_fp_store (insn) && is_fp_insn (dep_insn)
- && NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn))
- && NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))
- && (GET_CODE (NEXT_INSN (insn)) == INSN)
- && (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN)
- && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE)
- && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))))
- == NOTE_INSN_LOOP_END))
- return 3;
- break;
- }
-
- return cost;
-}
-
-/* Output assembly code for a left shift.
-
- Always use "sal" when shifting a memory operand or for a non constant
- shift count.
-
- When optimizing for size, we know that src == dest, and we should always
- use "sal". If src != dest, then copy src to dest and use "sal".
-
- Pentium and PPro (speed):
-
- When src == dest, use "add" for a shift counts of one, else use
- "sal". If we modeled Pentium AGI stalls and U/V pipelining better we
- would want to generate lea for some shifts on the Pentium.
-
- When src != dest, use "lea" for small shift counts. Otherwise,
- copy src to dest and use the normal shifting code. Exception for
- TARGET_DOUBLE_WITH_ADD. */
-
-char *
-output_ashl (insn, operands)
- rtx insn, *operands;
-{
- /* Handle case where srcreg != dstreg. */
- if (REG_P (operands[0]) && REGNO (operands[0]) != REGNO (operands[1]))
- {
- if (TARGET_DOUBLE_WITH_ADD && INTVAL (operands[2]) == 1)
- switch (GET_MODE (operands[0]))
- {
- case SImode:
- output_asm_insn (AS2 (mov%L0,%1,%0), operands);
- return AS2 (add%L0,%1,%0);
- case HImode:
- output_asm_insn (AS2 (mov%L0,%k1,%k0), operands);
- if (i386_cc_probably_useless_p (insn))
- {
- CC_STATUS_INIT;
- return AS2 (add%L0,%k1,%k0);
- }
- return AS2 (add%W0,%k1,%k0);
- case QImode:
- output_asm_insn (AS2 (mov%B0,%1,%0), operands);
- return AS2 (add%B0,%1,%0);
- default:
- abort ();
- }
- else
- {
- CC_STATUS_INIT;
-
- /* This should be extremely rare (impossible?). We can not encode a
- shift of the stack pointer using an lea instruction. So copy the
- stack pointer into the destination register and use an lea. */
- if (operands[1] == stack_pointer_rtx)
- {
- output_asm_insn (AS2 (mov%L0,%k1,%k0), operands);
- operands[1] = operands[0];
- }
-
- /* For shifts up to and including 3 bits, use lea. */
- operands[1] = gen_rtx_MULT (SImode,
- gen_rtx_REG (SImode, REGNO (operands[1])),
- GEN_INT (1 << INTVAL (operands[2])));
- return AS2 (lea%L0,%a1,%k0);
- }
- }
-
- /* Source and destination match. */
-
- /* Handle variable shift. */
- if (REG_P (operands[2]))
- switch (GET_MODE (operands[0]))
- {
- case SImode:
- return AS2 (sal%L0,%b2,%0);
- case HImode:
- if (REG_P (operands[0]) && i386_cc_probably_useless_p (insn))
- {
- CC_STATUS_INIT;
- return AS2 (sal%L0,%b2,%k0);
- }
- else
- return AS2 (sal%W0,%b2,%0);
- case QImode:
- return AS2 (sal%B0,%b2,%0);
- default:
- abort ();
- }
-
- /* Always perform shift by 1 using an add instruction. */
- if (REG_P (operands[0]) && operands[2] == const1_rtx)
- switch (GET_MODE (operands[0]))
- {
- case SImode:
- return AS2 (add%L0,%0,%0);
- case HImode:
- if (REG_P (operands[0]) && i386_cc_probably_useless_p (insn))
- {
- CC_STATUS_INIT;
- return AS2 (add%L0,%k0,%k0);
- }
- else
- return AS2 (add%W0,%0,%0);
- case QImode:
- return AS2 (add%B0,%0,%0);
- default:
- abort ();
- }
-
-#if 0
- /* ??? Currently disabled. Because our model of Pentium is far from being
- exact, this change will need some benchmarking. */
- /* Shift reg by 2 or 3 use an lea instruction for Pentium if this is
- insn is expected to issue into the V pipe (the insn's mode will be
- TImode for a U pipe, and !TImode for a V pipe instruction). */
- if (! optimize_size
- && REG_P (operands[0])
- && GET_CODE (operands[2]) == CONST_INT
- && INTVAL (operands[2]) <= 3
- && (int)ix86_cpu == (int)PROCESSOR_PENTIUM
- && GET_MODE (insn) != TImode)
- {
- CC_STATUS_INIT;
- operands[1] = gen_rtx_MULT (SImode, gen_rtx_REG (SImode, REGNO (operands[1])),
- GEN_INT (1 << INTVAL (operands[2])));
- return AS2 (lea%L0,%a1,%0);
- }
-#endif
-
- /* Otherwise use a shift instruction. */
- switch (GET_MODE (operands[0]))
- {
- case SImode:
- return AS2 (sal%L0,%2,%0);
- case HImode:
- if (REG_P (operands[0]) && i386_cc_probably_useless_p (insn))
- {
- CC_STATUS_INIT;
- return AS2 (sal%L0,%2,%k0);
- }
- else
- return AS2 (sal%W0,%2,%0);
- case QImode:
- return AS2 (sal%B0,%2,%0);
- default:
- abort ();
- }
-}
-
-/* Given the memory address ADDR, calculate the length of the address or
- the length of just the displacement (controlled by DISP_LENGTH).
-
- The length returned does not include the one-byte modrm, opcode,
- or prefix. */
-
-int
-memory_address_info (addr, disp_length)
- rtx addr;
- int disp_length;
-{
- rtx base, index, disp, scale;
- rtx op0, op1;
- int len;
-
- if (GET_CODE (addr) == PRE_DEC
- || GET_CODE (addr) == POST_INC)
- return 0;
-
- /* Register Indirect. */
- if (register_operand (addr, Pmode))
- {
- /* Special cases: ebp and esp need the two-byte modrm form.
-
- We change [ESI] to [ESI+0] on the K6 when not optimizing
- for size. */
- if (addr == stack_pointer_rtx
- || addr == arg_pointer_rtx
- || addr == frame_pointer_rtx
- || (REGNO_REG_CLASS (REGNO (addr)) == SIREG
- && ix86_cpu == PROCESSOR_K6 && !optimize_size))
- return 1;
- else
- return 0;
- }
-
- /* Direct Addressing. */
- if (CONSTANT_P (addr))
- return 4;
-
- index = base = disp = scale = NULL_RTX;
- op0 = XEXP (addr, 0);
- op1 = XEXP (addr, 1);
-
- if (GET_CODE (addr) == PLUS)
- {
- if (register_operand (op0, Pmode))
- {
- if (register_operand (op1, Pmode))
- index = op0, base = op1;
- else
- base = op0, disp = op1;
- }
- else if (GET_CODE (op0) == MULT)
- {
- index = XEXP (op0, 0);
- scale = XEXP (op0, 1);
- if (register_operand (op1, Pmode))
- base = op1;
- else
- disp = op1;
- }
- else if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 0)) == MULT)
- {
- index = XEXP (XEXP (op0, 0), 0);
- scale = XEXP (XEXP (op0, 0), 1);
- base = XEXP (op0, 1);
- disp = op1;
- }
- else if (GET_CODE (op0) == PLUS)
- {
- index = XEXP (op0, 0);
- base = XEXP (op0, 1);
- disp = op1;
- }
- else
- abort ();
- }
- else if (GET_CODE (addr) == MULT
- /* We're called for lea too, which implements ashift on occasion. */
- || GET_CODE (addr) == ASHIFT)
- {
- index = XEXP (addr, 0);
- scale = XEXP (addr, 1);
- }
- else
- abort ();
-
- /* Allow arg pointer and stack pointer as index if there is not scaling */
- if (base && index && !scale
- && (index == stack_pointer_rtx
- || index == arg_pointer_rtx
- || index == frame_pointer_rtx))
- {
- rtx tmp = base;
- base = index;
- index = tmp;
- }
-
- /* Special case: ebp cannot be encoded as a base without a displacement. */
- if (base == frame_pointer_rtx && !disp)
- disp = const0_rtx;
-
- /* Scaling can not be encoded without base or displacement.
- Except for scale == 1 where we can encode reg + reg instead of reg * 2. */
- if (!base && index
- && (!scale || GET_CODE (scale) != CONST_INT || (INTVAL (scale) != 1)))
- disp = const0_rtx;
-
- /* Find the length of the displacement constant. */
- len = 0;
- if (disp)
- {
- if (GET_CODE (disp) == CONST_INT
- && CONST_OK_FOR_LETTER_P (INTVAL (disp), 'K'))
- len = 1;
- else
- len = 4;
- }
-
- /* An index requires the two-byte modrm form. Not important
- if we are computing just length of the displacement. */
- if (index && ! disp_length)
- len += 1;
-
- return len;
-}