aboutsummaryrefslogtreecommitdiff
path: root/contrib/gcc/config/alpha/alpha.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/config/alpha/alpha.h')
-rw-r--r--contrib/gcc/config/alpha/alpha.h2550
1 files changed, 0 insertions, 2550 deletions
diff --git a/contrib/gcc/config/alpha/alpha.h b/contrib/gcc/config/alpha/alpha.h
deleted file mode 100644
index e9c3f6d2f684..000000000000
--- a/contrib/gcc/config/alpha/alpha.h
+++ /dev/null
@@ -1,2550 +0,0 @@
-/* Definitions of target machine for GNU compiler, for DEC Alpha.
- Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
- Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-
-/* Write out the correct language type definition for the header files.
- Unless we have assembler language, write out the symbols for C. */
-#define CPP_SPEC "\
-%{!undef:\
-%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
-%{.cc|.cxx|.C:-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus }\
-%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
-%{!.S:%{!.cc:%{!.cxx:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}\
-%{mieee:-D_IEEE_FP }\
-%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
-%(cpp_cpu) %(cpp_subtarget)"
-
-#ifndef CPP_SUBTARGET_SPEC
-#define CPP_SUBTARGET_SPEC ""
-#endif
-
-/* Set the spec to use for signed char. The default tests the above macro
- but DEC's compiler can't handle the conditional in a "constant"
- operand. */
-
-#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
-
-#define WORD_SWITCH_TAKES_ARG(STR) \
- (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
- || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
- || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
- || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
- || !strcmp (STR, "isystem"))
-
-/* Print subsidiary information on the compiler version in use. */
-#define TARGET_VERSION
-
-/* Run-time compilation parameters selecting different hardware subsets. */
-
-/* Which processor to schedule for. The cpu attribute defines a list that
- mirrors this list, so changes to alpha.md must be made at the same time. */
-
-enum processor_type
- {PROCESSOR_EV4, /* 2106[46]{a,} */
- PROCESSOR_EV5, /* 21164{a,pc,} */
- PROCESSOR_EV6}; /* 21264 */
-
-extern enum processor_type alpha_cpu;
-
-enum alpha_trap_precision
-{
- ALPHA_TP_PROG, /* No precision (default). */
- ALPHA_TP_FUNC, /* Trap contained within originating function. */
- ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
-};
-
-enum alpha_fp_rounding_mode
-{
- ALPHA_FPRM_NORM, /* Normal rounding mode. */
- ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
- ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
- ALPHA_FPRM_DYN /* Dynamic rounding mode. */
-};
-
-enum alpha_fp_trap_mode
-{
- ALPHA_FPTM_N, /* Normal trap mode. */
- ALPHA_FPTM_U, /* Underflow traps enabled. */
- ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
- ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
-};
-
-extern int target_flags;
-
-extern enum alpha_trap_precision alpha_tp;
-extern enum alpha_fp_rounding_mode alpha_fprm;
-extern enum alpha_fp_trap_mode alpha_fptm;
-
-/* This means that floating-point support exists in the target implementation
- of the Alpha architecture. This is usually the default. */
-#define MASK_FP (1 << 0)
-#define TARGET_FP (target_flags & MASK_FP)
-
-/* This means that floating-point registers are allowed to be used. Note
- that Alpha implementations without FP operations are required to
- provide the FP registers. */
-
-#define MASK_FPREGS (1 << 1)
-#define TARGET_FPREGS (target_flags & MASK_FPREGS)
-
-/* This means that gas is used to process the assembler file. */
-
-#define MASK_GAS (1 << 2)
-#define TARGET_GAS (target_flags & MASK_GAS)
-
-/* This means that we should mark procedures as IEEE conformant. */
-
-#define MASK_IEEE_CONFORMANT (1 << 3)
-#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
-
-/* This means we should be IEEE-compliant except for inexact. */
-
-#define MASK_IEEE (1 << 4)
-#define TARGET_IEEE (target_flags & MASK_IEEE)
-
-/* This means we should be fully IEEE-compliant. */
-
-#define MASK_IEEE_WITH_INEXACT (1 << 5)
-#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
-
-/* This means we must construct all constants rather than emitting
- them as literal data. */
-
-#define MASK_BUILD_CONSTANTS (1 << 6)
-#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
-
-/* This means we handle floating points in VAX F- (float)
- or G- (double) Format. */
-
-#define MASK_FLOAT_VAX (1 << 7)
-#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
-
-/* This means that the processor has byte and half word loads and stores
- (the BWX extension). */
-
-#define MASK_BWX (1 << 8)
-#define TARGET_BWX (target_flags & MASK_BWX)
-
-/* This means that the processor has the MAX extension. */
-#define MASK_MAX (1 << 9)
-#define TARGET_MAX (target_flags & MASK_MAX)
-
-/* This means that the processor has the FIX extension. */
-#define MASK_FIX (1 << 10)
-#define TARGET_FIX (target_flags & MASK_FIX)
-
-/* This means that the processor has the CIX extension. */
-#define MASK_CIX (1 << 11)
-#define TARGET_CIX (target_flags & MASK_CIX)
-
-/* This means that the processor is an EV5, EV56, or PCA56. This is defined
- only in TARGET_CPU_DEFAULT. */
-#define MASK_CPU_EV5 (1 << 28)
-
-/* Likewise for EV6. */
-#define MASK_CPU_EV6 (1 << 29)
-
-/* This means we support the .arch directive in the assembler. Only
- defined in TARGET_CPU_DEFAULT. */
-#define MASK_SUPPORT_ARCH (1 << 30)
-#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
-
-/* These are for target os support and cannot be changed at runtime. */
-#ifndef TARGET_WINDOWS_NT
-#define TARGET_WINDOWS_NT 0
-#endif
-#ifndef TARGET_OPEN_VMS
-#define TARGET_OPEN_VMS 0
-#endif
-
-#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
-#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
-#endif
-#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
-#define TARGET_CAN_FAULT_IN_PROLOGUE 0
-#endif
-
-/* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
-#define TARGET_SWITCHES \
- { {"no-soft-float", MASK_FP, "Use hardware fp"}, \
- {"soft-float", - MASK_FP, "Do not use hardware fp"}, \
- {"fp-regs", MASK_FPREGS, "Use fp registers"}, \
- {"no-fp-regs", - (MASK_FP|MASK_FPREGS), "Do not use fp registers"}, \
- {"alpha-as", -MASK_GAS, "Do not assume GAS"}, \
- {"gas", MASK_GAS, "Assume GAS"}, \
- {"ieee-conformant", MASK_IEEE_CONFORMANT, \
- "Request IEEE-conformant math library routines (OSF/1)"}, \
- {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
- "Emit IEEE-conformant code, without inexact exceptions"}, \
- {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
- "Emit IEEE-conformant code, with inexact exceptions"}, \
- {"build-constants", MASK_BUILD_CONSTANTS, \
- "Do not emit complex integer constants to read-only memory"}, \
- {"float-vax", MASK_FLOAT_VAX, "Use VAX fp"}, \
- {"float-ieee", -MASK_FLOAT_VAX, "Do not use VAX fp"}, \
- {"bwx", MASK_BWX, "Emit code for the byte/word ISA extension"}, \
- {"no-bwx", -MASK_BWX, ""}, \
- {"max", MASK_MAX, "Emit code for the motion video ISA extension"}, \
- {"no-max", -MASK_MAX, ""}, \
- {"fix", MASK_FIX, "Emit code for the fp move and sqrt ISA extension"}, \
- {"no-fix", -MASK_FIX, ""}, \
- {"cix", MASK_CIX, "Emit code for the counting ISA extension"}, \
- {"no-cix", -MASK_CIX, ""}, \
- {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }
-
-#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
-
-#ifndef TARGET_CPU_DEFAULT
-#define TARGET_CPU_DEFAULT 0
-#endif
-
-/* This macro is similar to `TARGET_SWITCHES' but defines names of
- command options that have values. Its definition is an initializer
- with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the fixed
- part of the option name, and the address of a variable. The
- variable, type `char *', is set to the variable part of the given
- option if the fixed part matches. The actual option name is made
- by appending `-m' to the specified name.
-
- Here is an example which defines `-mshort-data-NUMBER'. If the
- given option is `-mshort-data-512', the variable `m88k_short_data'
- will be set to the string `"512"'.
-
- extern char *m88k_short_data;
- #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
-
-extern const char *alpha_cpu_string; /* For -mcpu= */
-extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
-extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
-extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
-extern const char *alpha_mlat_string; /* For -mmemory-latency= */
-
-#define TARGET_OPTIONS \
-{ \
- {"cpu=", &alpha_cpu_string, \
- "Generate code for a given CPU"}, \
- {"fp-rounding-mode=", &alpha_fprm_string, \
- "Control the generated fp rounding mode"}, \
- {"fp-trap-mode=", &alpha_fptm_string, \
- "Control the IEEE trap mode"}, \
- {"trap-precision=", &alpha_tp_string, \
- "Control the precision given to fp exceptions"}, \
- {"memory-latency=", &alpha_mlat_string, \
- "Tune expected memory latency"}, \
-}
-
-/* Attempt to describe CPU characteristics to the preprocessor. */
-
-/* Corresponding to amask... */
-#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu(bwx)"
-#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu(max)"
-#define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu(fix)"
-#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu(cix)"
-
-/* Corresponding to implver... */
-#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu(ev4)"
-#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu(ev5)"
-#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu(ev6)"
-
-/* Common combinations. */
-#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
-#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
-#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
-#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
-#define CPP_CPU_EV6_SPEC "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"
-
-#ifndef CPP_CPU_DEFAULT_SPEC
-# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
-# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
-# else
-# if TARGET_CPU_DEFAULT & MASK_CPU_EV5
-# if TARGET_CPU_DEFAULT & MASK_MAX
-# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
-# else
-# if TARGET_CPU_DEFAULT & MASK_BWX
-# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
-# else
-# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
-# endif
-# endif
-# else
-# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
-# endif
-# endif
-#endif /* CPP_CPU_DEFAULT_SPEC */
-
-#ifndef CPP_CPU_SPEC
-#define CPP_CPU_SPEC "\
-%{!undef:-Acpu(alpha) -Amachine(alpha) -D__alpha -D__alpha__ \
-%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
-%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
-%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
-%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
-%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
-%{!mcpu*:%(cpp_cpu_default) }}"
-#endif
-
-/* This macro defines names of additional specifications to put in the
- specs that can be used in various specifications like CC1_SPEC. Its
- definition is an initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- specification name, and a string constant that used by the GNU CC driver
- program.
-
- Do not define this macro if it does not need to do anything. */
-
-#ifndef SUBTARGET_EXTRA_SPECS
-#define SUBTARGET_EXTRA_SPECS
-#endif
-
-#define EXTRA_SPECS \
- { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
- { "cpp_am_max", CPP_AM_MAX_SPEC }, \
- { "cpp_am_fix", CPP_AM_FIX_SPEC }, \
- { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
- { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
- { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
- { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
- { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
- { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
- { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
- { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
- { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
- { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
- { "cpp_cpu", CPP_CPU_SPEC }, \
- { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
- SUBTARGET_EXTRA_SPECS
-
-
-/* Sometimes certain combinations of command options do not make sense
- on a particular target machine. You can define a macro
- `OVERRIDE_OPTIONS' to take account of this. This macro, if
- defined, is executed once just after all the command options have
- been parsed.
-
- On the Alpha, it is used to translate target-option strings into
- numeric values. */
-
-extern void override_options ();
-#define OVERRIDE_OPTIONS override_options ()
-
-
-/* Define this macro to change register usage conditional on target flags.
-
- On the Alpha, we use this to disable the floating-point registers when
- they don't exist. */
-
-#define CONDITIONAL_REGISTER_USAGE \
- if (! TARGET_FPREGS) \
- for (i = 32; i < 63; i++) \
- fixed_regs[i] = call_used_regs[i] = 1;
-
-/* Show we can debug even without a frame pointer. */
-#define CAN_DEBUG_WITHOUT_FP
-
-/* target machine storage layout */
-
-/* Define to enable software floating point emulation. */
-#define REAL_ARITHMETIC
-
-/* The following #defines are used when compiling the routines in
- libgcc1.c. Since the Alpha calling conventions require single
- precision floats to be passed in the floating-point registers
- (rather than in the general registers) we have to build the
- libgcc1.c routines in such a way that they know the actual types
- of their formal arguments and the actual types of their return
- values. Otherwise, gcc will generate calls to the libgcc1.c
- routines, passing arguments in the floating-point registers,
- but the libgcc1.c routines will expect their arguments on the
- stack (where the Alpha calling conventions require structs &
- unions to be passed). */
-
-#define FLOAT_VALUE_TYPE double
-#define INTIFY(FLOATVAL) (FLOATVAL)
-#define FLOATIFY(INTVAL) (INTVAL)
-#define FLOAT_ARG_TYPE double
-
-/* Define the size of `int'. The default is the same as the word size. */
-#define INT_TYPE_SIZE 32
-
-/* Define the size of `long long'. The default is the twice the word size. */
-#define LONG_LONG_TYPE_SIZE 64
-
-/* The two floating-point formats we support are S-floating, which is
- 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
- and `long double' are T. */
-
-#define FLOAT_TYPE_SIZE 32
-#define DOUBLE_TYPE_SIZE 64
-#define LONG_DOUBLE_TYPE_SIZE 64
-
-#define WCHAR_TYPE "unsigned int"
-#define WCHAR_TYPE_SIZE 32
-
-/* Define this macro if it is advisable to hold scalars in registers
- in a wider mode than that declared by the program. In such cases,
- the value is constrained to be within the bounds of the declared
- type, but kept valid in the wider mode. The signedness of the
- extension may differ from that of the type.
-
- For Alpha, we always store objects in a full register. 32-bit objects
- are always sign-extended, but smaller objects retain their signedness. */
-
-#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
- if (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
- { \
- if ((MODE) == SImode) \
- (UNSIGNEDP) = 0; \
- (MODE) = DImode; \
- }
-
-/* Define this if function arguments should also be promoted using the above
- procedure. */
-
-#define PROMOTE_FUNCTION_ARGS
-
-/* Likewise, if the function return value is promoted. */
-
-#define PROMOTE_FUNCTION_RETURN
-
-/* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
-
- There are no such instructions on the Alpha, but the documentation
- is little endian. */
-#define BITS_BIG_ENDIAN 0
-
-/* Define this if most significant byte of a word is the lowest numbered.
- This is false on the Alpha. */
-#define BYTES_BIG_ENDIAN 0
-
-/* Define this if most significant word of a multiword number is lowest
- numbered.
-
- For Alpha we can decide arbitrarily since there are no machine instructions
- for them. Might as well be consistent with bytes. */
-#define WORDS_BIG_ENDIAN 0
-
-/* number of bits in an addressable storage unit */
-#define BITS_PER_UNIT 8
-
-/* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
-#define BITS_PER_WORD 64
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD 8
-
-/* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
-#define POINTER_SIZE 64
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY 64
-
-/* Boundary (in *bits*) on which stack pointer should be aligned. */
-#define STACK_BOUNDARY 64
-
-/* Allocation boundary (in *bits*) for the code of a function. */
-#define FUNCTION_BOUNDARY 256
-
-/* Alignment of field after `int : 0' in a structure. */
-#define EMPTY_FIELD_BOUNDARY 64
-
-/* Every structure's size must be a multiple of this. */
-#define STRUCTURE_SIZE_BOUNDARY 8
-
-/* A bitfield declared as `int' forces `int' alignment for the struct. */
-#define PCC_BITFIELD_TYPE_MATTERS 1
-
-/* Align loop starts for optimal branching.
-
- ??? Kludge this and the next macro for the moment by not doing anything if
- we don't optimize and also if we are writing ECOFF symbols to work around
- a bug in DEC's assembler. */
-
-#define LOOP_ALIGN(LABEL) \
- (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
-
-/* This is how to align an instruction for optimal branching. On
- Alpha we'll get better performance by aligning on an octaword
- boundary. */
-
-#define LABEL_ALIGN_AFTER_BARRIER(FILE) \
- (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
-
-/* No data type wants to be aligned rounder than this. */
-#define BIGGEST_ALIGNMENT 64
-
-/* For atomic access to objects, must have at least 32-bit alignment
- unless the machine has byte operations. */
-#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
-
-/* Align all constants and variables to at least a word boundary so
- we can pick up pieces of them faster. */
-/* ??? Only if block-move stuff knows about different source/destination
- alignment. */
-#if 0
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
-#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
-#endif
-
-/* Set this non-zero if move instructions will actually fail to work
- when given unaligned data.
-
- Since we get an error message when we do one, call them invalid. */
-
-#define STRICT_ALIGNMENT 1
-
-/* Set this non-zero if unaligned move instructions are extremely slow.
-
- On the Alpha, they trap. */
-
-#define SLOW_UNALIGNED_ACCESS 1
-
-/* Standard register usage. */
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- We define all 32 integer registers, even though $31 is always zero,
- and all 32 floating-point registers, even though $f31 is also
- always zero. We do not bother defining the FP status register and
- there are no other registers.
-
- Since $31 is always zero, we will use register number 31 as the
- argument pointer. It will never appear in the generated code
- because we will always be eliminating it in favor of the stack
- pointer or hardware frame pointer.
-
- Likewise, we use $f31 for the frame pointer, which will always
- be eliminated in favor of the hardware frame pointer or the
- stack pointer. */
-
-#define FIRST_PSEUDO_REGISTER 64
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator. */
-
-#define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-#define CALL_USED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
- 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
-
-/* List the order in which to allocate registers. Each register must be
- listed once, even those in FIXED_REGISTERS.
-
- We allocate in the following order:
- $f10-$f15 (nonsaved floating-point register)
- $f22-$f30 (likewise)
- $f21-$f16 (likewise, but input args)
- $f0 (nonsaved, but return value)
- $f1 (nonsaved, but immediate before saved)
- $f2-$f9 (saved floating-point registers)
- $1-$8 (nonsaved integer registers)
- $22-$25 (likewise)
- $28 (likewise)
- $0 (likewise, but return value)
- $21-$16 (likewise, but input args)
- $27 (procedure value in OSF, nonsaved in NT)
- $9-$14 (saved integer registers)
- $26 (return PC)
- $15 (frame pointer)
- $29 (global pointer)
- $30, $31, $f31 (stack pointer and always zero/ap & fp) */
-
-#define REG_ALLOC_ORDER \
- {42, 43, 44, 45, 46, 47, \
- 54, 55, 56, 57, 58, 59, 60, 61, 62, \
- 53, 52, 51, 50, 49, 48, \
- 32, 33, \
- 34, 35, 36, 37, 38, 39, 40, 41, \
- 1, 2, 3, 4, 5, 6, 7, 8, \
- 22, 23, 24, 25, \
- 28, \
- 0, \
- 21, 20, 19, 18, 17, 16, \
- 27, \
- 9, 10, 11, 12, 13, 14, \
- 26, \
- 15, \
- 29, \
- 30, 31, 63 }
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers. */
-
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On Alpha, the integer registers can hold any mode. The floating-point
- registers can hold 32-bit and 64-bit integers as well, but not 16-bit
- or 8-bit values. */
-
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((REGNO) >= 32 && (REGNO) <= 62 \
- ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
- : 1)
-
-/* A C expression that is nonzero if a value of mode
- MODE1 is accessible in mode MODE2 without copying.
-
- This asymmetric test is true when MODE1 could be put
- in an FP register but MODE2 could not. */
-
-#define MODES_TIEABLE_P(MODE1, MODE2) \
- (HARD_REGNO_MODE_OK (32, (MODE1)) \
- ? HARD_REGNO_MODE_OK (32, (MODE2)) \
- : 1)
-
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* Alpha pc isn't overloaded on a register that the compiler knows about. */
-/* #define PC_REGNUM */
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 30
-
-/* Base register for access to local variables of the function. */
-#define HARD_FRAME_POINTER_REGNUM 15
-
-/* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
-#define FRAME_POINTER_REQUIRED 0
-
-/* Base register for access to arguments of the function. */
-#define ARG_POINTER_REGNUM 31
-
-/* Base register for access to local variables of function. */
-#define FRAME_POINTER_REGNUM 63
-
-/* Register in which static-chain is passed to a function.
-
- For the Alpha, this is based on an example; the calling sequence
- doesn't seem to specify this. */
-#define STATIC_CHAIN_REGNUM 1
-
-/* Register in which address to store a structure value
- arrives in the function. On the Alpha, the address is passed
- as a hidden argument. */
-#define STRUCT_VALUE 0
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
-enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
- LIM_REG_CLASSES };
-
-#define N_REG_CLASSES (int) LIM_REG_CLASSES
-
-/* Give names of register classes as strings for dump file. */
-
-#define REG_CLASS_NAMES \
- {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-#define REG_CLASS_CONTENTS \
- { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-#define REGNO_REG_CLASS(REGNO) \
- ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
-
-/* The class value for index registers, and the one for base regs. */
-#define INDEX_REG_CLASS NO_REGS
-#define BASE_REG_CLASS GENERAL_REGS
-
-/* Get reg_class from a letter such as appears in the machine description. */
-
-#define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'f' ? FLOAT_REGS : NO_REGS)
-
-/* Define this macro to change register usage conditional on target flags. */
-/* #define CONDITIONAL_REGISTER_USAGE */
-
-/* The letters I, J, K, L, M, N, O, and P in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- For Alpha:
- `I' is used for the range of constants most insns can contain.
- `J' is the constant zero.
- `K' is used for the constant in an LDA insn.
- `L' is used for the constant in a LDAH insn.
- `M' is used for the constants that can be AND'ed with using a ZAP insn.
- `N' is used for complemented 8-bit constants.
- `O' is used for negated 8-bit constants.
- `P' is used for the constants 1, 2 and 3. */
-
-#define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
- : (C) == 'J' ? (VALUE) == 0 \
- : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
- : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
- && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
- : (C) == 'M' ? zap_mask (VALUE) \
- : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
- : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
- : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
- : 0)
-
-/* Similar, but for floating or large integer constants, and defining letters
- G and H. Here VALUE is the CONST_DOUBLE rtx itself.
-
- For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
- that is the operand of a ZAP insn. */
-
-#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
- && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
- : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
- && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
- && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
- : 0)
-
-/* Optional extra constraints for this machine.
-
- For the Alpha, `Q' means that this is a memory operand but not a
- reference to an unaligned location.
-
- `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
- function.
-
- 'S' is a 6-bit constant (valid for a shift insn). */
-
-#define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \
- : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
- : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
- && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
- : 0)
-extern int normal_memory_operand ();
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
-
- On the Alpha, all constants except zero go into a floating-point
- register via memory. */
-
-#define PREFERRED_RELOAD_CLASS(X, CLASS) \
- (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
- ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
- : (CLASS))
-
-/* Loading and storing HImode or QImode values to and from memory
- usually requires a scratch register. The exceptions are loading
- QImode and HImode from an aligned address to a general register
- unless byte instructions are permitted.
- We also cannot load an unaligned address or a paradoxical SUBREG into an
- FP register. */
-
-#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
-(((GET_CODE (IN) == MEM \
- || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
- || (GET_CODE (IN) == SUBREG \
- && (GET_CODE (SUBREG_REG (IN)) == MEM \
- || (GET_CODE (SUBREG_REG (IN)) == REG \
- && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
- && (((CLASS) == FLOAT_REGS \
- && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
- || (((MODE) == QImode || (MODE) == HImode) \
- && ! TARGET_BWX && ! aligned_memory_operand (IN, MODE)))) \
- ? GENERAL_REGS \
- : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
- && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
- : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
- && (GET_MODE_SIZE (GET_MODE (IN)) \
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
- : NO_REGS)
-
-#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
-(((GET_CODE (OUT) == MEM \
- || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
- || (GET_CODE (OUT) == SUBREG \
- && (GET_CODE (SUBREG_REG (OUT)) == MEM \
- || (GET_CODE (SUBREG_REG (OUT)) == REG \
- && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
- && ((((MODE) == HImode || (MODE) == QImode) \
- && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
- || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
- ? GENERAL_REGS \
- : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
- && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
- : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
- && (GET_MODE_SIZE (GET_MODE (OUT)) \
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
- : NO_REGS)
-
-/* If we are copying between general and FP registers, we need a memory
- location unless the FIX extension is available. */
-
-#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
- (! TARGET_FIX && (CLASS1) != (CLASS2))
-
-/* Specify the mode to be used for memory when a secondary memory
- location is needed. If MODE is floating-point, use it. Otherwise,
- widen to a word like the default. This is needed because we always
- store integers in FP registers in quadword format. This whole
- area is very tricky! */
-#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
- (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
- : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
- : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
-
-#define CLASS_MAX_NREGS(CLASS, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
-/* If defined, gives a class of registers that cannot be used as the
- operand of a SUBREG that changes the size of the object. */
-
-#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
-
-/* Define the cost of moving between registers of various classes. Moving
- between FLOAT_REGS and anything else except float regs is expensive.
- In fact, we make it quite expensive because we really don't want to
- do these moves unless it is clearly worth it. Optimizations may
- reduce the impact of not being able to allocate a pseudo to a
- hard register. */
-
-#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
- ? 2 \
- : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
-
-/* A C expressions returning the cost of moving data of MODE from a register to
- or from memory.
-
- On the Alpha, bump this up a bit. */
-
-extern int alpha_memory_latency;
-#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
-
-/* Provide the cost of a branch. Exact meaning under development. */
-#define BRANCH_COST 5
-
-/* Adjust the cost of dependencies. */
-
-#define ADJUST_COST(INSN,LINK,DEP,COST) \
- (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-#define STACK_GROWS_DOWNWARD
-
-/* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
-/* #define FRAME_GROWS_DOWNWARD */
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
-
-#define STARTING_FRAME_OFFSET 0
-
-/* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On Alpha, don't define this because there are no push insns. */
-/* #define PUSH_ROUNDING(BYTES) */
-
-/* Define this to be nonzero if stack checking is built into the ABI. */
-#define STACK_CHECK_BUILTIN 1
-
-/* Define this if the maximum size of all the outgoing args is to be
- accumulated and pushed during the prologue. The amount can be
- found in the variable current_function_outgoing_args_size. */
-#define ACCUMULATE_OUTGOING_ARGS
-
-/* Offset of first parameter from the argument pointer register value. */
-
-#define FIRST_PARM_OFFSET(FNDECL) 0
-
-/* Definitions for register eliminations.
-
- We have two registers that can be eliminated on the Alpha. First, the
- frame pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the argument pointer register can always be
- eliminated; it is replaced with either the stack or frame pointer. */
-
-/* This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference. */
-
-#define ELIMINABLE_REGS \
-{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
-
-/* Given FROM and TO register numbers, say whether this elimination is allowed.
- Frame pointer elimination is automatically handled.
-
- All eliminations are valid since the cases where FP can't be
- eliminated are already handled. */
-
-#define CAN_ELIMINATE(FROM, TO) 1
-
-/* Round up to a multiple of 16 bytes. */
-#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
-
-/* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
-{ if ((FROM) == FRAME_POINTER_REGNUM) \
- (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
- + alpha_sa_size ()); \
- else if ((FROM) == ARG_POINTER_REGNUM) \
- (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
- + alpha_sa_size () \
- + (ALPHA_ROUND (get_frame_size () \
- + current_function_pretend_args_size) \
- - current_function_pretend_args_size)); \
-}
-
-/* Define this if stack space is still allocated for a parameter passed
- in a register. */
-/* #define REG_PARM_STACK_SPACE */
-
-/* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack. */
-
-#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
-
-/* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0.
-
- On Alpha the value is found in $0 for integer functions and
- $f0 for floating-point functions. */
-
-#define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
- && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
- || POINTER_TYPE_P (VALTYPE)) \
- ? word_mode : TYPE_MODE (VALTYPE), \
- ((TARGET_FPREGS \
- && (TREE_CODE (VALTYPE) == REAL_TYPE \
- || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
- ? 32 : 0))
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
-#define LIBCALL_VALUE(MODE) \
- gen_rtx_REG (MODE, \
- (TARGET_FPREGS \
- && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
- || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
- ? 32 : 0))
-
-/* The definition of this macro implies that there are cases where
- a scalar value cannot be returned in registers.
-
- For the Alpha, any structure or union type is returned in memory, as
- are integers whose size is larger than 64 bits. */
-
-#define RETURN_IN_MEMORY(TYPE) \
- (TYPE_MODE (TYPE) == BLKmode \
- || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
-
-/* 1 if N is a possible register number for a function value
- as seen by the caller. */
-
-#define FUNCTION_VALUE_REGNO_P(N) \
- ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
-
-/* 1 if N is a possible register number for function argument passing.
- On Alpha, these are $16-$21 and $f16-$f21. */
-
-#define FUNCTION_ARG_REGNO_P(N) \
- (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On Alpha, this is a single integer, which is a number of words
- of arguments scanned so far.
- Thus 6 or more means all following args should go on the stack. */
-
-#define CUMULATIVE_ARGS int
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
-#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
-
-/* Define intermediate macro to compute the size (in registers) of an argument
- for the Alpha. */
-
-#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
-((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
- : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- if (MUST_PASS_IN_STACK (MODE, TYPE)) \
- (CUM) = 6; \
- else \
- (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
-
-/* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- On Alpha the first 6 words of args are normally in registers
- and the rest are pushed. */
-
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
-((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
- ? gen_rtx(REG, (MODE), \
- (CUM) + 16 + ((TARGET_FPREGS \
- && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
- || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
- * 32)) \
- : 0)
-
-/* Specify the padding direction of arguments.
-
- On the Alpha, we must pad upwards in order to be able to pass args in
- registers. */
-
-#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
-
-/* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
-((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
- ? 6 - (CUM) : 0)
-
-/* Perform any needed actions needed for a function that is receiving a
- variable number of arguments.
-
- CUM is as above.
-
- MODE and TYPE are the mode and type of the current parameter.
-
- PRETEND_SIZE is a variable that should be set to the amount of stack
- that must be pushed by the prolog to pretend that our caller pushed
- it.
-
- Normally, this macro will push all remaining incoming registers on the
- stack and set PRETEND_SIZE to the length of the registers pushed.
-
- On the Alpha, we allocate space for all 12 arg registers, but only
- push those that are remaining.
-
- However, if NO registers need to be saved, don't allocate any space.
- This is not only because we won't need the space, but because AP includes
- the current_pretend_args_size and we don't want to mess up any
- ap-relative addresses already made.
-
- If we are not to use the floating-point registers, save the integer
- registers where we would put the floating-point registers. This is
- not the most efficient way to implement varargs with just one register
- class, but it isn't worth doing anything more efficient in this rare
- case. */
-
-
-#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
-{ if ((CUM) < 6) \
- { \
- if (! (NO_RTL)) \
- { \
- move_block_from_reg \
- (16 + CUM, \
- gen_rtx (MEM, BLKmode, \
- plus_constant (virtual_incoming_args_rtx, \
- ((CUM) + 6)* UNITS_PER_WORD)), \
- 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
- move_block_from_reg \
- (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
- gen_rtx (MEM, BLKmode, \
- plus_constant (virtual_incoming_args_rtx, \
- (CUM) * UNITS_PER_WORD)), \
- 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
- emit_insn (gen_blockage ()); \
- } \
- PRETEND_SIZE = 12 * UNITS_PER_WORD; \
- } \
-}
-
-/* Try to output insns to set TARGET equal to the constant C if it can be
- done in less than N insns. Do all computations in MODE. Returns the place
- where the output has been placed if it can be done and the insns have been
- emitted. If it would take more than N insns, zero is returned and no
- insns and emitted. */
-extern struct rtx_def *alpha_emit_set_const ();
-extern struct rtx_def *alpha_emit_set_long_const ();
-extern struct rtx_def *alpha_emit_conditional_branch ();
-extern struct rtx_def *alpha_emit_conditional_move ();
-
-/* Generate necessary RTL for __builtin_saveregs().
- ARGLIST is the argument list; see expr.c. */
-extern struct rtx_def *alpha_builtin_saveregs ();
-#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
-
-/* Define the information needed to generate branch and scc insns. This is
- stored from the compare operation. Note that we can't use "rtx" here
- since it hasn't been defined! */
-
-extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
-extern int alpha_compare_fp_p;
-
-/* Define the information needed to modify the epilogue for EH. */
-
-extern struct rtx_def *alpha_eh_epilogue_sp_ofs;
-
-/* Make (or fake) .linkage entry for function call.
- IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
-extern void alpha_need_linkage ();
-
-/* This macro defines the start of an assembly comment. */
-
-#define ASM_COMMENT_START " #"
-
-/* This macro produces the initial definition of a function. */
-
-#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
- alpha_start_function(FILE,NAME,DECL);
-extern void alpha_start_function ();
-
-/* This macro closes up a function definition for the assembler. */
-
-#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
- alpha_end_function(FILE,NAME,DECL)
-extern void alpha_end_function ();
-
-/* This macro notes the end of the prologue. */
-
-#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
-extern void output_end_prologue ();
-
-/* Output any profiling code before the prologue. */
-
-#define PROFILE_BEFORE_PROLOGUE 1
-
-/* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. Under OSF/1, profiling is enabled
- by simply passing -pg to the assembler and linker. */
-
-#define FUNCTION_PROFILER(FILE, LABELNO)
-
-/* Output assembler code to FILE to initialize this source file's
- basic block profiling info, if that has not already been done.
- This assumes that __bb_init_func doesn't garble a1-a5. */
-
-#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
- do { \
- ASM_OUTPUT_REG_PUSH (FILE, 16); \
- fputs ("\tlda $16,$PBX32\n", (FILE)); \
- fputs ("\tldq $26,0($16)\n", (FILE)); \
- fputs ("\tbne $26,1f\n", (FILE)); \
- fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
- fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
- fputs ("\tldgp $29,0($26)\n", (FILE)); \
- fputs ("1:\n", (FILE)); \
- ASM_OUTPUT_REG_POP (FILE, 16); \
- } while (0);
-
-/* Output assembler code to FILE to increment the entry-count for
- the BLOCKNO'th basic block in this source file. */
-
-#define BLOCK_PROFILER(FILE, BLOCKNO) \
- do { \
- int blockn = (BLOCKNO); \
- fputs ("\tsubq $30,16,$30\n", (FILE)); \
- fputs ("\tstq $26,0($30)\n", (FILE)); \
- fputs ("\tstq $27,8($30)\n", (FILE)); \
- fputs ("\tlda $26,$PBX34\n", (FILE)); \
- fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
- fputs ("\taddq $27,1,$27\n", (FILE)); \
- fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
- fputs ("\tldq $26,0($30)\n", (FILE)); \
- fputs ("\tldq $27,8($30)\n", (FILE)); \
- fputs ("\taddq $30,16,$30\n", (FILE)); \
- } while (0)
-
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
-#define EXIT_IGNORE_STACK 1
-
-/* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts.
-
- The trampoline should set the static chain pointer to value placed
- into the trampoline and should branch to the specified routine.
- Note that $27 has been set to the address of the trampoline, so we can
- use it for addressability of the two data items. Trampolines are always
- aligned to FUNCTION_BOUNDARY, which is 64 bits. */
-
-#define TRAMPOLINE_TEMPLATE(FILE) \
-do { \
- fprintf (FILE, "\tldq $1,24($27)\n"); \
- fprintf (FILE, "\tldq $27,16($27)\n"); \
- fprintf (FILE, "\tjmp $31,($27),0\n"); \
- fprintf (FILE, "\tnop\n"); \
- fprintf (FILE, "\t.quad 0,0\n"); \
-} while (0)
-
-/* Section in which to place the trampoline. On Alpha, instructions
- may only be placed in a text segment. */
-
-#define TRAMPOLINE_SECTION text_section
-
-/* Length in units of the trampoline for entering a nested function. */
-
-#define TRAMPOLINE_SIZE 32
-
-/* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
-#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
-extern void alpha_initialize_trampoline ();
-
-/* A C expression whose value is RTL representing the value of the return
- address for the frame COUNT steps up from the current frame.
- FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
- the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
-
-#define RETURN_ADDR_RTX alpha_return_addr
-extern struct rtx_def *alpha_return_addr ();
-
-/* Before the prologue, RA lives in $26. */
-#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
-
-/* Initialize data used by insn expanders. This is called from insn_emit,
- once for every function before code is generated. */
-
-#define INIT_EXPANDERS alpha_init_expanders ()
-extern void alpha_init_expanders ();
-
-/* Addressing modes, and classification of registers for them. */
-
-/* #define HAVE_POST_INCREMENT 0 */
-/* #define HAVE_POST_DECREMENT 0 */
-
-/* #define HAVE_PRE_DECREMENT 0 */
-/* #define HAVE_PRE_INCREMENT 0 */
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
-#define REGNO_OK_FOR_INDEX_P(REGNO) 0
-#define REGNO_OK_FOR_BASE_P(REGNO) \
-((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
- || (REGNO) == 63 || reg_renumber[REGNO] == 63)
-
-/* Maximum number of registers that can appear in a valid memory address. */
-#define MAX_REGS_PER_ADDRESS 1
-
-/* Recognize any constant value that is a valid address. For the Alpha,
- there are only constants none since we want to use LDA to load any
- symbolic addresses into registers. */
-
-#define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == CONST_INT \
- && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
-
-/* Include all constant integers and constant doubles, but not
- floating-point, except for floating-point zero. */
-
-#define LEGITIMATE_CONSTANT_P(X) \
- (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
- || (X) == CONST0_RTX (GET_MODE (X)))
-
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
-#ifndef REG_OK_STRICT
-
-/* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
-#define REG_OK_FOR_INDEX_P(X) 0
-
-/* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
-#define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-/* ??? Nonzero if X is the frame pointer, or some virtual register
- that may eliminate to the frame pointer. These will be allowed to
- have offsets greater than 32K. This is done because register
- elimination offsets will change the hi/lo split, and if we split
- before reload, we will require additional instructions. */
-#define REG_OK_FP_BASE_P(X) \
- (REGNO (X) == 31 || REGNO (X) == 63 \
- || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
- && REGNO (X) < LAST_VIRTUAL_REGISTER))
-
-#else
-
-/* Nonzero if X is a hard reg that can be used as an index. */
-#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-
-/* Nonzero if X is a hard reg that can be used as a base reg. */
-#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
-#define REG_OK_FP_BASE_P(X) 0
-
-#endif
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- For Alpha, we have either a constant address or the sum of a register
- and a constant address, or just a register. For DImode, any of those
- forms can be surrounded with an AND that clear the low-order three bits;
- this is an "unaligned" access.
-
- First define the basic valid address. */
-
-#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
-{ \
- rtx tmp = (X); \
- if (GET_CODE (tmp) == SUBREG \
- && (GET_MODE_SIZE (GET_MODE (tmp)) \
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
- tmp = SUBREG_REG (tmp); \
- if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp)) \
- goto ADDR; \
- if (CONSTANT_ADDRESS_P (X)) \
- goto ADDR; \
- if (GET_CODE (X) == PLUS) \
- { \
- tmp = XEXP (X, 0); \
- if (GET_CODE (tmp) == SUBREG \
- && (GET_MODE_SIZE (GET_MODE (tmp)) \
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
- tmp = SUBREG_REG (tmp); \
- if (REG_P (tmp)) \
- { \
- if (REG_OK_FP_BASE_P (tmp) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT) \
- goto ADDR; \
- if (REG_OK_FOR_BASE_P (tmp) \
- && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- goto ADDR; \
- } \
- } \
-}
-
-/* Now accept the simple address, or, for DImode only, an AND of a simple
- address that turns off the low three bits. */
-
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
-{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
- if ((MODE) == DImode \
- && GET_CODE (X) == AND \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && INTVAL (XEXP (X, 1)) == -8) \
- GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
-}
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the Alpha, there are three cases we handle:
-
- (1) If the address is (plus reg const_int) and the CONST_INT is not a
- valid offset, compute the high part of the constant and add it to the
- register. Then our address is (plus temp low-part-const).
- (2) If the address is (const (plus FOO const_int)), find the low-order
- part of the CONST_INT. Then load FOO plus any high-order part of the
- CONST_INT into a register. Our address is (plus reg low-part-const).
- This is done to reduce the number of GOT entries.
- (3) If we have a (plus reg const), emit the load as in (2), then add
- the two registers, and finally generate (plus reg low-part-const) as
- our address. */
-
-#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
-{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
- HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
- HOST_WIDE_INT highpart = val - lowpart; \
- rtx high = GEN_INT (highpart); \
- rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
- high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
- \
- (X) = plus_constant (temp, lowpart); \
- goto WIN; \
- } \
- else if (GET_CODE (X) == CONST \
- && GET_CODE (XEXP (X, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
- HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
- HOST_WIDE_INT highpart = val - lowpart; \
- rtx high = XEXP (XEXP (X, 0), 0); \
- \
- if (highpart) \
- high = plus_constant (high, highpart); \
- \
- (X) = plus_constant (force_reg (Pmode, high), lowpart); \
- goto WIN; \
- } \
- else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
- && GET_CODE (XEXP (X, 1)) == CONST \
- && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
- HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
- HOST_WIDE_INT highpart = val - lowpart; \
- rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
- \
- if (highpart) \
- high = plus_constant (high, highpart); \
- \
- high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
- force_reg (Pmode, high), \
- high, 1, OPTAB_LIB_WIDEN); \
- (X) = plus_constant (high, lowpart); \
- goto WIN; \
- } \
-}
-
-/* Try a machine-dependent way of reloading an illegitimate address
- operand. If we find one, push the reload and jump to WIN. This
- macro is used in only one place: `find_reloads_address' in reload.c.
-
- For the Alpha, we wish to handle large displacements off a base
- register by splitting the addend across an ldah and the mem insn.
- This cuts number of extra insns needed from 3 to 1. */
-
-#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
-do { \
- /* We must recognize output that we have already generated ourselves. */ \
- if (GET_CODE (X) == PLUS \
- && GET_CODE (XEXP (X, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
- && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
- && GET_CODE (XEXP (X, 1)) == CONST_INT) \
- { \
- push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
- BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
- OPNUM, TYPE); \
- goto WIN; \
- } \
- if (GET_CODE (X) == PLUS \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
- && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
- HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
- HOST_WIDE_INT high \
- = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
- \
- /* Check for 32-bit overflow. */ \
- if (high + low != val) \
- break; \
- \
- /* Reload the high part into a base reg; leave the low part \
- in the mem directly. */ \
- \
- X = gen_rtx_PLUS (GET_MODE (X), \
- gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
- GEN_INT (high)), \
- GEN_INT (low)); \
- \
- push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
- BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
- OPNUM, TYPE); \
- goto WIN; \
- } \
-} while (0)
-
-/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the Alpha this is true only for the unaligned modes. We can
- simplify this test since we know that the address must be valid. */
-
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
-{ if (GET_CODE (ADDR) == AND) goto LABEL; }
-
-/* Compute the cost of an address. For the Alpha, all valid addresses are
- the same cost. */
-
-#define ADDRESS_COST(X) 0
-
-/* Machine-dependent reorg pass. */
-#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE SImode
-
-/* Define as C expression which evaluates to nonzero if the tablejump
- instruction expects the table to contain offsets from the address of the
- table.
-
- Do not define this if the table should contain absolute addresses.
- On the Alpha, the table is really GP-relative, not relative to the PC
- of the table, but we pretend that it is PC-relative; this should be OK,
- but we should try to find some better way sometime. */
-#define CASE_VECTOR_PC_RELATIVE 1
-
-/* Specify the tree operation to be used to convert reals to integers. */
-#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
-/* This is the kind of divide that is easiest to do in the general case. */
-#define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
-/* Define this as 1 if `char' should by default be signed; else as 0. */
-#define DEFAULT_SIGNED_CHAR 1
-
-/* This flag, if defined, says the same insns that convert to a signed fixnum
- also convert validly to an unsigned one.
-
- We actually lie a bit here as overflow conditions are different. But
- they aren't being checked anyway. */
-
-#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
-
-/* Max number of bytes we can move to or from memory
- in one reasonably fast instruction. */
-
-#define MOVE_MAX 8
-
-/* If a memory-to-memory move would take MOVE_RATIO or more simple
- move-instruction pairs, we will do a movstr or libcall instead.
-
- Without byte/word accesses, we want no more than four instructions;
- with, several single byte accesses are better. */
-
-#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
-
-/* Largest number of bytes of an object that can be placed in a register.
- On the Alpha we have plenty of registers, so use TImode. */
-#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
-
-/* Nonzero if access to memory by bytes is no faster than for words.
- Also non-zero if doing byte operations (specifically shifts) in registers
- is undesirable.
-
- On the Alpha, we want to not use the byte operation and instead use
- masking operations to access fields; these will save instructions. */
-
-#define SLOW_BYTE_ACCESS 1
-
-/* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
-#define WORD_REGISTER_OPERATIONS
-
-/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
-#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
-
-/* Define if loading short immediate values into registers sign extends. */
-#define SHORT_IMMEDIATES_SIGN_EXTEND
-
-/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-/* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
-#define STORE_FLAG_VALUE 1
-
-/* Define the value returned by a floating-point comparison instruction. */
-
-#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
-
-/* Canonicalize a comparison from one we don't have to one we do have. */
-
-#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
- do { \
- if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
- && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
- { \
- rtx tem = (OP0); \
- (OP0) = (OP1); \
- (OP1) = tem; \
- (CODE) = swap_condition (CODE); \
- } \
- if (((CODE) == LT || (CODE) == LTU) \
- && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
- { \
- (CODE) = (CODE) == LT ? LE : LEU; \
- (OP1) = GEN_INT (255); \
- } \
- } while (0)
-
-/* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
-#define Pmode DImode
-
-/* Mode of a function address in a call instruction (for indexing purposes). */
-
-#define FUNCTION_MODE Pmode
-
-/* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap.
-
- We define this on the Alpha so that gen_call and gen_call_value
- get to see the SYMBOL_REF (for the hint field of the jsr). It will
- then copy it into a register, thus actually letting the address be
- cse'ed. */
-
-#define NO_FUNCTION_CSE
-
-/* Define this to be nonzero if shift instructions ignore all but the low-order
- few bits. */
-#define SHIFT_COUNT_TRUNCATED 1
-
-/* Use atexit for static constructors/destructors, instead of defining
- our own exit function. */
-#define HAVE_ATEXIT
-
-/* The EV4 is dual issue; EV5/EV6 are quad issue. */
-#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
-
-/* Describe the fact that MULTI instructions are multiple instructions
- and so to assume they don't pair with anything. */
-#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
- if (recog_memoized (INSN) < 0 || get_attr_type (INSN) == TYPE_MULTI) \
- (CAN_ISSUE_MORE) = 0
-
-/* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch.
-
- If this is an 8-bit constant, return zero since it can be used
- nearly anywhere with no cost. If it is a valid operand for an
- ADD or AND, likewise return 0 if we know it will be used in that
- context. Otherwise, return 2 since it might be used there later.
- All other constants take at least two insns. */
-
-#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
- return 0; \
- case CONST_DOUBLE: \
- if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
- return 0; \
- else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
- || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
- return 0; \
- else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
- return 2; \
- else \
- return COSTS_N_INSNS (2); \
- case CONST: \
- case SYMBOL_REF: \
- case LABEL_REF: \
- switch (alpha_cpu) \
- { \
- case PROCESSOR_EV4: \
- return COSTS_N_INSNS (3); \
- case PROCESSOR_EV5: \
- case PROCESSOR_EV6: \
- return COSTS_N_INSNS (2); \
- default: abort(); \
- }
-
-/* Provide the costs of a rtl expression. This is in the body of a
- switch on CODE. */
-
-#define RTX_COSTS(X,CODE,OUTER_CODE) \
- case PLUS: case MINUS: \
- if (FLOAT_MODE_P (GET_MODE (X))) \
- switch (alpha_cpu) \
- { \
- case PROCESSOR_EV4: \
- return COSTS_N_INSNS (6); \
- case PROCESSOR_EV5: \
- case PROCESSOR_EV6: \
- return COSTS_N_INSNS (4); \
- default: abort(); \
- } \
- else if (GET_CODE (XEXP (X, 0)) == MULT \
- && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
- return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
- + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
- break; \
- case MULT: \
- switch (alpha_cpu) \
- { \
- case PROCESSOR_EV4: \
- if (FLOAT_MODE_P (GET_MODE (X))) \
- return COSTS_N_INSNS (6); \
- return COSTS_N_INSNS (23); \
- case PROCESSOR_EV5: \
- if (FLOAT_MODE_P (GET_MODE (X))) \
- return COSTS_N_INSNS (4); \
- else if (GET_MODE (X) == DImode) \
- return COSTS_N_INSNS (12); \
- else \
- return COSTS_N_INSNS (8); \
- case PROCESSOR_EV6: \
- if (FLOAT_MODE_P (GET_MODE (X))) \
- return COSTS_N_INSNS (4); \
- else \
- return COSTS_N_INSNS (7); \
- default: abort(); \
- } \
- case ASHIFT: \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && INTVAL (XEXP (X, 1)) <= 3) \
- break; \
- /* ... fall through ... */ \
- case ASHIFTRT: case LSHIFTRT: \
- switch (alpha_cpu) \
- { \
- case PROCESSOR_EV4: \
- return COSTS_N_INSNS (2); \
- case PROCESSOR_EV5: \
- case PROCESSOR_EV6: \
- return COSTS_N_INSNS (1); \
- default: abort(); \
- } \
- case IF_THEN_ELSE: \
- switch (alpha_cpu) \
- { \
- case PROCESSOR_EV4: \
- case PROCESSOR_EV6: \
- return COSTS_N_INSNS (2); \
- case PROCESSOR_EV5: \
- return COSTS_N_INSNS (1); \
- default: abort(); \
- } \
- case DIV: case UDIV: case MOD: case UMOD: \
- switch (alpha_cpu) \
- { \
- case PROCESSOR_EV4: \
- if (GET_MODE (X) == SFmode) \
- return COSTS_N_INSNS (34); \
- else if (GET_MODE (X) == DFmode) \
- return COSTS_N_INSNS (63); \
- else \
- return COSTS_N_INSNS (70); \
- case PROCESSOR_EV5: \
- if (GET_MODE (X) == SFmode) \
- return COSTS_N_INSNS (15); \
- else if (GET_MODE (X) == DFmode) \
- return COSTS_N_INSNS (22); \
- else \
- return COSTS_N_INSNS (70); /* ??? */ \
- case PROCESSOR_EV6: \
- if (GET_MODE (X) == SFmode) \
- return COSTS_N_INSNS (12); \
- else if (GET_MODE (X) == DFmode) \
- return COSTS_N_INSNS (15); \
- else \
- return COSTS_N_INSNS (70); /* ??? */ \
- default: abort(); \
- } \
- case MEM: \
- switch (alpha_cpu) \
- { \
- case PROCESSOR_EV4: \
- case PROCESSOR_EV6: \
- return COSTS_N_INSNS (3); \
- case PROCESSOR_EV5: \
- return COSTS_N_INSNS (2); \
- default: abort(); \
- } \
- case NEG: case ABS: \
- if (! FLOAT_MODE_P (GET_MODE (X))) \
- break; \
- /* ... fall through ... */ \
- case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
- case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
- switch (alpha_cpu) \
- { \
- case PROCESSOR_EV4: \
- return COSTS_N_INSNS (6); \
- case PROCESSOR_EV5: \
- case PROCESSOR_EV6: \
- return COSTS_N_INSNS (4); \
- default: abort(); \
- }
-
-/* Control the assembler format that we output. */
-
-/* We don't emit these labels, so as to avoid getting linker errors about
- missing exception handling info. If we emit a gcc_compiled. label into
- text, and the file has no code, then the DEC assembler gives us a zero
- sized text section with no associated exception handling info. The
- DEC linker sees this text section, and gives a warning saying that
- the exception handling info is missing. */
-#define ASM_IDENTIFY_GCC(x)
-#define ASM_IDENTIFY_LANGUAGE(x)
-
-/* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
-#define ASM_APP_ON ""
-
-/* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
-#define ASM_APP_OFF ""
-
-#define TEXT_SECTION_ASM_OP ".text"
-
-/* Output before read-only data. */
-
-#define READONLY_DATA_SECTION_ASM_OP ".rdata"
-
-/* Output before writable data. */
-
-#define DATA_SECTION_ASM_OP ".data"
-
-/* Define an extra section for read-only data, a routine to enter it, and
- indicate that it is for read-only data.
-
- The first time we enter the readonly data section for a file, we write
- eight bytes of zero. This works around a bug in DEC's assembler in
- some versions of OSF/1 V3.x. */
-
-#define EXTRA_SECTIONS readonly_data
-
-#define EXTRA_SECTION_FUNCTIONS \
-void \
-literal_section () \
-{ \
- if (in_section != readonly_data) \
- { \
- static int firsttime = 1; \
- \
- fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
- if (firsttime) \
- { \
- firsttime = 0; \
- ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
- } \
- \
- in_section = readonly_data; \
- } \
-} \
-
-#define READONLY_DATA_SECTION literal_section
-
-/* If we are referencing a function that is static, make the SYMBOL_REF
- special. We use this to see indicate we can branch to this function
- without setting PV or restoring GP. */
-
-#define ENCODE_SECTION_INFO(DECL) \
- if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
- SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
-
-/* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
-#define REGISTER_NAMES \
-{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
- "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
- "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
- "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
- "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
- "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
- "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
- "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
-
-/* How to renumber registers for dbx and gdb. */
-
-#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
-/* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
-#define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
-/* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
-#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
-
-/* The prefix to add to user-visible assembler symbols. */
-
-#define USER_LABEL_PREFIX ""
-
-/* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
-#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
-
-/* This is how to output a label for a jump table. Arguments are the same as
- for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
- passed. */
-
-#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
-{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
-
-/* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
-#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
-
-/* Check a floating-point value for validity for a particular machine mode. */
-
-#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
- ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
-
-/* This is how to output an assembler line defining a `double' constant. */
-
-#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- { \
- if (REAL_VALUE_ISINF (VALUE) \
- || REAL_VALUE_ISNAN (VALUE) \
- || REAL_VALUE_MINUS_ZERO (VALUE)) \
- { \
- long t[2]; \
- REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
- fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
- t[1] & 0xffffffff, t[0] & 0xffffffff); \
- } \
- else \
- { \
- char str[30]; \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
- fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
- } \
- }
-
-/* This is how to output an assembler line defining a `float' constant. */
-
-#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- do { \
- long t; \
- REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
- fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
-} while (0)
-
-/* This is how to output an assembler line defining an `int' constant. */
-
-#define ASM_OUTPUT_INT(FILE,VALUE) \
-( fprintf (FILE, "\t.long "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-/* This is how to output an assembler line defining a `long' constant. */
-
-#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
-( fprintf (FILE, "\t.quad "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-/* Likewise for `char' and `short' constants. */
-
-#define ASM_OUTPUT_SHORT(FILE,VALUE) \
- fprintf (FILE, "\t.word %d\n", \
- (int)(GET_CODE (VALUE) == CONST_INT \
- ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
-
-#define ASM_OUTPUT_CHAR(FILE,VALUE) \
- fprintf (FILE, "\t.byte %d\n", \
- (int)(GET_CODE (VALUE) == CONST_INT \
- ? INTVAL (VALUE) & 0xff : (abort (), 0)))
-
-/* We use the default ASCII-output routine, except that we don't write more
- than 50 characters since the assembler doesn't support very long lines. */
-
-#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
- do { \
- FILE *_hide_asm_out_file = (MYFILE); \
- unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
- int _hide_thissize = (MYLENGTH); \
- int _size_so_far = 0; \
- { \
- FILE *asm_out_file = _hide_asm_out_file; \
- unsigned char *p = _hide_p; \
- int thissize = _hide_thissize; \
- int i; \
- fprintf (asm_out_file, "\t.ascii \""); \
- \
- for (i = 0; i < thissize; i++) \
- { \
- register int c = p[i]; \
- \
- if (_size_so_far ++ > 50 && i < thissize - 4) \
- _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
- \
- if (c == '\"' || c == '\\') \
- putc ('\\', asm_out_file); \
- if (c >= ' ' && c < 0177) \
- putc (c, asm_out_file); \
- else \
- { \
- fprintf (asm_out_file, "\\%o", c); \
- /* After an octal-escape, if a digit follows, \
- terminate one string constant and start another. \
- The Vax assembler fails to stop reading the escape \
- after three digits, so this is the only way we \
- can get it to parse the data properly. */ \
- if (i < thissize - 1 \
- && p[i + 1] >= '0' && p[i + 1] <= '9') \
- _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
- } \
- } \
- fprintf (asm_out_file, "\"\n"); \
- } \
- } \
- while (0)
-
-/* To get unaligned data, we have to turn off auto alignment. */
-#define UNALIGNED_SHORT_ASM_OP ".align 0\n\t.word"
-#define UNALIGNED_INT_ASM_OP ".align 0\n\t.long"
-#define UNALIGNED_DOUBLE_INT_ASM_OP ".align 0\n\t.quad"
-
-/* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
- (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
- (REGNO) & 31);
-
-/* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
- (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
- (REGNO) & 31);
-
-/* This is how to output an assembler line for a numeric constant byte. */
-
-#define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
-
-/* This is how to output an element of a case-vector that is absolute.
- (Alpha does not use such vectors, but we must define this macro anyway.) */
-
-#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
-
-/* This is how to output an element of a case-vector that is relative. */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
- fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
- (VALUE))
-
-/* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
-#define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", LOG);
-
-/* This is how to advance the location counter by SIZE bytes. */
-
-#define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.space %d\n", (SIZE))
-
-/* This says how to output an assembler line
- to define a global common symbol. */
-
-#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
-( fputs ("\t.comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
-
-/* This says how to output an assembler line
- to define a local common symbol. */
-
-#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
-( fputs ("\t.lcomm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
-
-/* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
-#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
-( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
-/* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
-#define ASM_OPEN_PAREN "("
-#define ASM_CLOSE_PAREN ")"
-
-/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
- Used for C++ multiple inheritance. */
-
-#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
-do { \
- char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
- int reg; \
- \
- /* Mark end of prologue. */ \
- output_end_prologue (FILE); \
- \
- /* Rely on the assembler to macro expand a large delta. */ \
- reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \
- fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \
- \
- if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
- { \
- fprintf (FILE, "\tbr $31,$"); \
- assemble_name (FILE, fn_name); \
- fprintf (FILE, "..ng\n"); \
- } \
- else \
- { \
- fprintf (FILE, "\tjmp $31,"); \
- assemble_name (FILE, fn_name); \
- fputc ('\n', FILE); \
- } \
-} while (0)
-
-
-/* Define results of standard character escape sequences. */
-#define TARGET_BELL 007
-#define TARGET_BS 010
-#define TARGET_TAB 011
-#define TARGET_NEWLINE 012
-#define TARGET_VT 013
-#define TARGET_FF 014
-#define TARGET_CR 015
-
-/* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null. */
-
-#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
-
-/* Determine which codes are valid without a following integer. These must
- not be alphabetic (the characters are chosen so that
- PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
- using ASCII).
-
- & Generates fp-rounding mode suffix: nothing for normal, 'c' for
- chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
- mode. alpha_fprm controls which suffix is generated.
-
- ' Generates trap-mode suffix for instructions that accept the
- su suffix only (cmpt et al).
-
- ` Generates trap-mode suffix for instructions that accept the
- v and sv suffix. The only instruction that needs this is cvtql.
-
- ( Generates trap-mode suffix for instructions that accept the
- v, sv, and svi suffix. The only instruction that needs this
- is cvttq.
-
- ) Generates trap-mode suffix for instructions that accept the
- u, su, and sui suffix. This is the bulk of the IEEE floating
- point instructions (addt et al).
-
- + Generates trap-mode suffix for instructions that accept the
- sui suffix (cvtqt and cvtqs).
-
- , Generates single precision suffix for floating point
- instructions (s for IEEE, f for VAX)
-
- - Generates double precision suffix for floating point
- instructions (t for IEEE, g for VAX)
- */
-
-#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
- || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
-
-/* Print a memory address as an operand to reference that memory location. */
-
-#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- print_operand_address((FILE), (ADDR))
-
-/* Define the codes that are matched by predicates in alpha.c. */
-
-#define PREDICATE_CODES \
- {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
- {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
- {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
- {"cint8_operand", {CONST_INT}}, \
- {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
- {"add_operand", {SUBREG, REG, CONST_INT}}, \
- {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
- {"const48_operand", {CONST_INT}}, \
- {"and_operand", {SUBREG, REG, CONST_INT}}, \
- {"or_operand", {SUBREG, REG, CONST_INT}}, \
- {"mode_mask_operand", {CONST_INT}}, \
- {"mul8_operand", {CONST_INT}}, \
- {"mode_width_operand", {CONST_INT}}, \
- {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
- {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
- {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
- {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
- {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
- {"fp0_operand", {CONST_DOUBLE}}, \
- {"current_file_function_operand", {SYMBOL_REF}}, \
- {"call_operand", {REG, SYMBOL_REF}}, \
- {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
- SYMBOL_REF, CONST, LABEL_REF}}, \
- {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
- SYMBOL_REF, CONST, LABEL_REF}}, \
- {"aligned_memory_operand", {MEM}}, \
- {"unaligned_memory_operand", {MEM}}, \
- {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
- {"any_memory_operand", {MEM}}, \
- {"hard_fp_register_operand", {SUBREG, REG}}, \
- {"reg_not_elim_operand", {SUBREG, REG}}, \
- {"reg_no_subreg_operand", {REG}},
-
-/* Tell collect that the object format is ECOFF. */
-#define OBJECT_FORMAT_COFF
-#define EXTENDED_COFF
-
-/* If we use NM, pass -g to it so it only lists globals. */
-#define NM_FLAGS "-pg"
-
-/* Definitions for debugging. */
-
-#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
-#define DBX_DEBUGGING_INFO /* generate embedded stabs */
-#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
-
-#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
-#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
-#endif
-
-
-/* Correct the offset of automatic variables and arguments. Note that
- the Alpha debug format wants all automatic variables and arguments
- to be in terms of two different offsets from the virtual frame pointer,
- which is the stack pointer before any adjustment in the function.
- The offset for the argument pointer is fixed for the native compiler,
- it is either zero (for the no arguments case) or large enough to hold
- all argument registers.
- The offset for the auto pointer is the fourth argument to the .frame
- directive (local_offset).
- To stay compatible with the native tools we use the same offsets
- from the virtual frame pointer and adjust the debugger arg/auto offsets
- accordingly. These debugger offsets are set up in output_prolog. */
-
-extern long alpha_arg_offset;
-extern long alpha_auto_offset;
-#define DEBUGGER_AUTO_OFFSET(X) \
- ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
-#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
-
-
-#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
- alpha_output_lineno (STREAM, LINE)
-extern void alpha_output_lineno ();
-
-#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
- alpha_output_filename (STREAM, NAME)
-extern void alpha_output_filename ();
-
-/* mips-tfile.c limits us to strings of one page. We must underestimate this
- number, because the real length runs past this up to the next
- continuation point. This is really a dbxout.c bug. */
-#define DBX_CONTIN_LENGTH 3000
-
-/* By default, turn on GDB extensions. */
-#define DEFAULT_GDB_EXTENSIONS 1
-
-/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
-#define NO_DBX_FUNCTION_END 1
-
-/* If we are smuggling stabs through the ALPHA ECOFF object
- format, put a comment in front of the .stab<x> operation so
- that the ALPHA assembler does not choke. The mips-tfile program
- will correctly put the stab into the object file. */
-
-#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
-#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
-#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
-
-/* Forward references to tags are allowed. */
-#define SDB_ALLOW_FORWARD_REFERENCES
-
-/* Unknown tags are also allowed. */
-#define SDB_ALLOW_UNKNOWN_REFERENCES
-
-#define PUT_SDB_DEF(a) \
-do { \
- fprintf (asm_out_file, "\t%s.def\t", \
- (TARGET_GAS) ? "" : "#"); \
- ASM_OUTPUT_LABELREF (asm_out_file, a); \
- fputc (';', asm_out_file); \
-} while (0)
-
-#define PUT_SDB_PLAIN_DEF(a) \
-do { \
- fprintf (asm_out_file, "\t%s.def\t.%s;", \
- (TARGET_GAS) ? "" : "#", (a)); \
-} while (0)
-
-#define PUT_SDB_TYPE(a) \
-do { \
- fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
-} while (0)
-
-/* For block start and end, we create labels, so that
- later we can figure out where the correct offset is.
- The normal .ent/.end serve well enough for functions,
- so those are just commented out. */
-
-extern int sdb_label_count; /* block start/end next label # */
-
-#define PUT_SDB_BLOCK_START(LINE) \
-do { \
- fprintf (asm_out_file, \
- "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
- sdb_label_count, \
- (TARGET_GAS) ? "" : "#", \
- sdb_label_count, \
- (LINE)); \
- sdb_label_count++; \
-} while (0)
-
-#define PUT_SDB_BLOCK_END(LINE) \
-do { \
- fprintf (asm_out_file, \
- "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
- sdb_label_count, \
- (TARGET_GAS) ? "" : "#", \
- sdb_label_count, \
- (LINE)); \
- sdb_label_count++; \
-} while (0)
-
-#define PUT_SDB_FUNCTION_START(LINE)
-
-#define PUT_SDB_FUNCTION_END(LINE)
-
-#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
-
-/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
- mips-tdump.c to print them out.
-
- These must match the corresponding definitions in gdb/mipsread.c.
- Unfortunately, gcc and gdb do not currently share any directories. */
-
-#define CODE_MASK 0x8F300
-#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
-#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
-#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
-
-/* Override some mips-tfile definitions. */
-
-#define SHASH_SIZE 511
-#define THASH_SIZE 55
-
-/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
-
-#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
-
-/* The linker will stick __main into the .init section. */
-#define HAS_INIT_SECTION
-#define LD_INIT_SWITCH "-init"
-#define LD_FINI_SWITCH "-fini"
-
-/* The system headers under Alpha systems are generally C++-aware. */
-#define NO_IMPLICIT_EXTERN_C
-
-/* Prototypes for alpha.c functions used in the md file & elsewhere. */
-extern struct rtx_def *get_unaligned_address ();
-extern void alpha_write_verstamp ();
-extern void alpha_reorg ();
-extern int check_float_value ();
-extern int direct_return ();
-extern int const48_operand ();
-extern int add_operand ();
-extern int and_operand ();
-extern int unaligned_memory_operand ();
-extern int zap_mask ();
-extern int current_file_function_operand ();
-extern int alpha_sa_size ();
-extern int alpha_adjust_cost ();
-extern void print_operand ();
-extern void print_operand_address ();
-extern int reg_or_0_operand ();
-extern int reg_or_8bit_operand ();
-extern int mul8_operand ();
-extern int reg_or_6bit_operand ();
-extern int alpha_comparison_operator ();
-extern int alpha_swapped_comparison_operator ();
-extern int sext_add_operand ();
-extern int cint8_operand ();
-extern int mode_mask_operand ();
-extern int or_operand ();
-extern int mode_width_operand ();
-extern int reg_or_fp0_operand ();
-extern int signed_comparison_operator ();
-extern int fp0_operand ();
-extern int some_operand ();
-extern int input_operand ();
-extern int divmod_operator ();
-extern int call_operand ();
-extern int reg_or_cint_operand ();
-extern int hard_fp_register_operand ();
-extern int reg_not_elim_operand ();
-extern void alpha_set_memflags ();
-extern int aligned_memory_operand ();
-extern void get_aligned_mem ();
-extern void alpha_expand_unaligned_load ();
-extern void alpha_expand_unaligned_store ();
-extern int alpha_expand_block_move ();
-extern int alpha_expand_block_clear ();
-extern void alpha_expand_prologue ();
-extern void alpha_expand_epilogue ();