diff options
Diffstat (limited to 'contrib/gcc/config/alpha/alpha.h')
-rw-r--r-- | contrib/gcc/config/alpha/alpha.h | 2550 |
1 files changed, 0 insertions, 2550 deletions
diff --git a/contrib/gcc/config/alpha/alpha.h b/contrib/gcc/config/alpha/alpha.h deleted file mode 100644 index e9c3f6d2f684..000000000000 --- a/contrib/gcc/config/alpha/alpha.h +++ /dev/null @@ -1,2550 +0,0 @@ -/* Definitions of target machine for GNU compiler, for DEC Alpha. - Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc. - Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) - -This file is part of GNU CC. - -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - - -/* Write out the correct language type definition for the header files. - Unless we have assembler language, write out the symbols for C. */ -#define CPP_SPEC "\ -%{!undef:\ -%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\ -%{.cc|.cxx|.C:-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus }\ -%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\ -%{!.S:%{!.cc:%{!.cxx:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}\ -%{mieee:-D_IEEE_FP }\ -%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\ -%(cpp_cpu) %(cpp_subtarget)" - -#ifndef CPP_SUBTARGET_SPEC -#define CPP_SUBTARGET_SPEC "" -#endif - -/* Set the spec to use for signed char. The default tests the above macro - but DEC's compiler can't handle the conditional in a "constant" - operand. */ - -#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}" - -#define WORD_SWITCH_TAKES_ARG(STR) \ - (!strcmp (STR, "rpath") || !strcmp (STR, "include") \ - || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \ - || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \ - || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \ - || !strcmp (STR, "isystem")) - -/* Print subsidiary information on the compiler version in use. */ -#define TARGET_VERSION - -/* Run-time compilation parameters selecting different hardware subsets. */ - -/* Which processor to schedule for. The cpu attribute defines a list that - mirrors this list, so changes to alpha.md must be made at the same time. */ - -enum processor_type - {PROCESSOR_EV4, /* 2106[46]{a,} */ - PROCESSOR_EV5, /* 21164{a,pc,} */ - PROCESSOR_EV6}; /* 21264 */ - -extern enum processor_type alpha_cpu; - -enum alpha_trap_precision -{ - ALPHA_TP_PROG, /* No precision (default). */ - ALPHA_TP_FUNC, /* Trap contained within originating function. */ - ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */ -}; - -enum alpha_fp_rounding_mode -{ - ALPHA_FPRM_NORM, /* Normal rounding mode. */ - ALPHA_FPRM_MINF, /* Round towards minus-infinity. */ - ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */ - ALPHA_FPRM_DYN /* Dynamic rounding mode. */ -}; - -enum alpha_fp_trap_mode -{ - ALPHA_FPTM_N, /* Normal trap mode. */ - ALPHA_FPTM_U, /* Underflow traps enabled. */ - ALPHA_FPTM_SU, /* Software completion, w/underflow traps */ - ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */ -}; - -extern int target_flags; - -extern enum alpha_trap_precision alpha_tp; -extern enum alpha_fp_rounding_mode alpha_fprm; -extern enum alpha_fp_trap_mode alpha_fptm; - -/* This means that floating-point support exists in the target implementation - of the Alpha architecture. This is usually the default. */ -#define MASK_FP (1 << 0) -#define TARGET_FP (target_flags & MASK_FP) - -/* This means that floating-point registers are allowed to be used. Note - that Alpha implementations without FP operations are required to - provide the FP registers. */ - -#define MASK_FPREGS (1 << 1) -#define TARGET_FPREGS (target_flags & MASK_FPREGS) - -/* This means that gas is used to process the assembler file. */ - -#define MASK_GAS (1 << 2) -#define TARGET_GAS (target_flags & MASK_GAS) - -/* This means that we should mark procedures as IEEE conformant. */ - -#define MASK_IEEE_CONFORMANT (1 << 3) -#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT) - -/* This means we should be IEEE-compliant except for inexact. */ - -#define MASK_IEEE (1 << 4) -#define TARGET_IEEE (target_flags & MASK_IEEE) - -/* This means we should be fully IEEE-compliant. */ - -#define MASK_IEEE_WITH_INEXACT (1 << 5) -#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT) - -/* This means we must construct all constants rather than emitting - them as literal data. */ - -#define MASK_BUILD_CONSTANTS (1 << 6) -#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS) - -/* This means we handle floating points in VAX F- (float) - or G- (double) Format. */ - -#define MASK_FLOAT_VAX (1 << 7) -#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX) - -/* This means that the processor has byte and half word loads and stores - (the BWX extension). */ - -#define MASK_BWX (1 << 8) -#define TARGET_BWX (target_flags & MASK_BWX) - -/* This means that the processor has the MAX extension. */ -#define MASK_MAX (1 << 9) -#define TARGET_MAX (target_flags & MASK_MAX) - -/* This means that the processor has the FIX extension. */ -#define MASK_FIX (1 << 10) -#define TARGET_FIX (target_flags & MASK_FIX) - -/* This means that the processor has the CIX extension. */ -#define MASK_CIX (1 << 11) -#define TARGET_CIX (target_flags & MASK_CIX) - -/* This means that the processor is an EV5, EV56, or PCA56. This is defined - only in TARGET_CPU_DEFAULT. */ -#define MASK_CPU_EV5 (1 << 28) - -/* Likewise for EV6. */ -#define MASK_CPU_EV6 (1 << 29) - -/* This means we support the .arch directive in the assembler. Only - defined in TARGET_CPU_DEFAULT. */ -#define MASK_SUPPORT_ARCH (1 << 30) -#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH) - -/* These are for target os support and cannot be changed at runtime. */ -#ifndef TARGET_WINDOWS_NT -#define TARGET_WINDOWS_NT 0 -#endif -#ifndef TARGET_OPEN_VMS -#define TARGET_OPEN_VMS 0 -#endif - -#ifndef TARGET_AS_CAN_SUBTRACT_LABELS -#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS -#endif -#ifndef TARGET_CAN_FAULT_IN_PROLOGUE -#define TARGET_CAN_FAULT_IN_PROLOGUE 0 -#endif - -/* Macro to define tables used to set the flags. - This is a list in braces of pairs in braces, - each pair being { "NAME", VALUE } - where VALUE is the bits to set or minus the bits to clear. - An empty string NAME is used to identify the default VALUE. */ - -#define TARGET_SWITCHES \ - { {"no-soft-float", MASK_FP, "Use hardware fp"}, \ - {"soft-float", - MASK_FP, "Do not use hardware fp"}, \ - {"fp-regs", MASK_FPREGS, "Use fp registers"}, \ - {"no-fp-regs", - (MASK_FP|MASK_FPREGS), "Do not use fp registers"}, \ - {"alpha-as", -MASK_GAS, "Do not assume GAS"}, \ - {"gas", MASK_GAS, "Assume GAS"}, \ - {"ieee-conformant", MASK_IEEE_CONFORMANT, \ - "Request IEEE-conformant math library routines (OSF/1)"}, \ - {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \ - "Emit IEEE-conformant code, without inexact exceptions"}, \ - {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \ - "Emit IEEE-conformant code, with inexact exceptions"}, \ - {"build-constants", MASK_BUILD_CONSTANTS, \ - "Do not emit complex integer constants to read-only memory"}, \ - {"float-vax", MASK_FLOAT_VAX, "Use VAX fp"}, \ - {"float-ieee", -MASK_FLOAT_VAX, "Do not use VAX fp"}, \ - {"bwx", MASK_BWX, "Emit code for the byte/word ISA extension"}, \ - {"no-bwx", -MASK_BWX, ""}, \ - {"max", MASK_MAX, "Emit code for the motion video ISA extension"}, \ - {"no-max", -MASK_MAX, ""}, \ - {"fix", MASK_FIX, "Emit code for the fp move and sqrt ISA extension"}, \ - {"no-fix", -MASK_FIX, ""}, \ - {"cix", MASK_CIX, "Emit code for the counting ISA extension"}, \ - {"no-cix", -MASK_CIX, ""}, \ - {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} } - -#define TARGET_DEFAULT MASK_FP|MASK_FPREGS - -#ifndef TARGET_CPU_DEFAULT -#define TARGET_CPU_DEFAULT 0 -#endif - -/* This macro is similar to `TARGET_SWITCHES' but defines names of - command options that have values. Its definition is an initializer - with a subgrouping for each command option. - - Each subgrouping contains a string constant, that defines the fixed - part of the option name, and the address of a variable. The - variable, type `char *', is set to the variable part of the given - option if the fixed part matches. The actual option name is made - by appending `-m' to the specified name. - - Here is an example which defines `-mshort-data-NUMBER'. If the - given option is `-mshort-data-512', the variable `m88k_short_data' - will be set to the string `"512"'. - - extern char *m88k_short_data; - #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */ - -extern const char *alpha_cpu_string; /* For -mcpu= */ -extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */ -extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */ -extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */ -extern const char *alpha_mlat_string; /* For -mmemory-latency= */ - -#define TARGET_OPTIONS \ -{ \ - {"cpu=", &alpha_cpu_string, \ - "Generate code for a given CPU"}, \ - {"fp-rounding-mode=", &alpha_fprm_string, \ - "Control the generated fp rounding mode"}, \ - {"fp-trap-mode=", &alpha_fptm_string, \ - "Control the IEEE trap mode"}, \ - {"trap-precision=", &alpha_tp_string, \ - "Control the precision given to fp exceptions"}, \ - {"memory-latency=", &alpha_mlat_string, \ - "Tune expected memory latency"}, \ -} - -/* Attempt to describe CPU characteristics to the preprocessor. */ - -/* Corresponding to amask... */ -#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu(bwx)" -#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu(max)" -#define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu(fix)" -#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu(cix)" - -/* Corresponding to implver... */ -#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu(ev4)" -#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu(ev5)" -#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu(ev6)" - -/* Common combinations. */ -#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)" -#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)" -#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)" -#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)" -#define CPP_CPU_EV6_SPEC "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)" - -#ifndef CPP_CPU_DEFAULT_SPEC -# if TARGET_CPU_DEFAULT & MASK_CPU_EV6 -# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC -# else -# if TARGET_CPU_DEFAULT & MASK_CPU_EV5 -# if TARGET_CPU_DEFAULT & MASK_MAX -# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC -# else -# if TARGET_CPU_DEFAULT & MASK_BWX -# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC -# else -# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC -# endif -# endif -# else -# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC -# endif -# endif -#endif /* CPP_CPU_DEFAULT_SPEC */ - -#ifndef CPP_CPU_SPEC -#define CPP_CPU_SPEC "\ -%{!undef:-Acpu(alpha) -Amachine(alpha) -D__alpha -D__alpha__ \ -%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\ -%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\ -%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\ -%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\ -%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\ -%{!mcpu*:%(cpp_cpu_default) }}" -#endif - -/* This macro defines names of additional specifications to put in the - specs that can be used in various specifications like CC1_SPEC. Its - definition is an initializer with a subgrouping for each command option. - - Each subgrouping contains a string constant, that defines the - specification name, and a string constant that used by the GNU CC driver - program. - - Do not define this macro if it does not need to do anything. */ - -#ifndef SUBTARGET_EXTRA_SPECS -#define SUBTARGET_EXTRA_SPECS -#endif - -#define EXTRA_SPECS \ - { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \ - { "cpp_am_max", CPP_AM_MAX_SPEC }, \ - { "cpp_am_fix", CPP_AM_FIX_SPEC }, \ - { "cpp_am_cix", CPP_AM_CIX_SPEC }, \ - { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \ - { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \ - { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \ - { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \ - { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \ - { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \ - { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \ - { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \ - { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \ - { "cpp_cpu", CPP_CPU_SPEC }, \ - { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \ - SUBTARGET_EXTRA_SPECS - - -/* Sometimes certain combinations of command options do not make sense - on a particular target machine. You can define a macro - `OVERRIDE_OPTIONS' to take account of this. This macro, if - defined, is executed once just after all the command options have - been parsed. - - On the Alpha, it is used to translate target-option strings into - numeric values. */ - -extern void override_options (); -#define OVERRIDE_OPTIONS override_options () - - -/* Define this macro to change register usage conditional on target flags. - - On the Alpha, we use this to disable the floating-point registers when - they don't exist. */ - -#define CONDITIONAL_REGISTER_USAGE \ - if (! TARGET_FPREGS) \ - for (i = 32; i < 63; i++) \ - fixed_regs[i] = call_used_regs[i] = 1; - -/* Show we can debug even without a frame pointer. */ -#define CAN_DEBUG_WITHOUT_FP - -/* target machine storage layout */ - -/* Define to enable software floating point emulation. */ -#define REAL_ARITHMETIC - -/* The following #defines are used when compiling the routines in - libgcc1.c. Since the Alpha calling conventions require single - precision floats to be passed in the floating-point registers - (rather than in the general registers) we have to build the - libgcc1.c routines in such a way that they know the actual types - of their formal arguments and the actual types of their return - values. Otherwise, gcc will generate calls to the libgcc1.c - routines, passing arguments in the floating-point registers, - but the libgcc1.c routines will expect their arguments on the - stack (where the Alpha calling conventions require structs & - unions to be passed). */ - -#define FLOAT_VALUE_TYPE double -#define INTIFY(FLOATVAL) (FLOATVAL) -#define FLOATIFY(INTVAL) (INTVAL) -#define FLOAT_ARG_TYPE double - -/* Define the size of `int'. The default is the same as the word size. */ -#define INT_TYPE_SIZE 32 - -/* Define the size of `long long'. The default is the twice the word size. */ -#define LONG_LONG_TYPE_SIZE 64 - -/* The two floating-point formats we support are S-floating, which is - 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double' - and `long double' are T. */ - -#define FLOAT_TYPE_SIZE 32 -#define DOUBLE_TYPE_SIZE 64 -#define LONG_DOUBLE_TYPE_SIZE 64 - -#define WCHAR_TYPE "unsigned int" -#define WCHAR_TYPE_SIZE 32 - -/* Define this macro if it is advisable to hold scalars in registers - in a wider mode than that declared by the program. In such cases, - the value is constrained to be within the bounds of the declared - type, but kept valid in the wider mode. The signedness of the - extension may differ from that of the type. - - For Alpha, we always store objects in a full register. 32-bit objects - are always sign-extended, but smaller objects retain their signedness. */ - -#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ - if (GET_MODE_CLASS (MODE) == MODE_INT \ - && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ - { \ - if ((MODE) == SImode) \ - (UNSIGNEDP) = 0; \ - (MODE) = DImode; \ - } - -/* Define this if function arguments should also be promoted using the above - procedure. */ - -#define PROMOTE_FUNCTION_ARGS - -/* Likewise, if the function return value is promoted. */ - -#define PROMOTE_FUNCTION_RETURN - -/* Define this if most significant bit is lowest numbered - in instructions that operate on numbered bit-fields. - - There are no such instructions on the Alpha, but the documentation - is little endian. */ -#define BITS_BIG_ENDIAN 0 - -/* Define this if most significant byte of a word is the lowest numbered. - This is false on the Alpha. */ -#define BYTES_BIG_ENDIAN 0 - -/* Define this if most significant word of a multiword number is lowest - numbered. - - For Alpha we can decide arbitrarily since there are no machine instructions - for them. Might as well be consistent with bytes. */ -#define WORDS_BIG_ENDIAN 0 - -/* number of bits in an addressable storage unit */ -#define BITS_PER_UNIT 8 - -/* Width in bits of a "word", which is the contents of a machine register. - Note that this is not necessarily the width of data type `int'; - if using 16-bit ints on a 68000, this would still be 32. - But on a machine with 16-bit registers, this would be 16. */ -#define BITS_PER_WORD 64 - -/* Width of a word, in units (bytes). */ -#define UNITS_PER_WORD 8 - -/* Width in bits of a pointer. - See also the macro `Pmode' defined below. */ -#define POINTER_SIZE 64 - -/* Allocation boundary (in *bits*) for storing arguments in argument list. */ -#define PARM_BOUNDARY 64 - -/* Boundary (in *bits*) on which stack pointer should be aligned. */ -#define STACK_BOUNDARY 64 - -/* Allocation boundary (in *bits*) for the code of a function. */ -#define FUNCTION_BOUNDARY 256 - -/* Alignment of field after `int : 0' in a structure. */ -#define EMPTY_FIELD_BOUNDARY 64 - -/* Every structure's size must be a multiple of this. */ -#define STRUCTURE_SIZE_BOUNDARY 8 - -/* A bitfield declared as `int' forces `int' alignment for the struct. */ -#define PCC_BITFIELD_TYPE_MATTERS 1 - -/* Align loop starts for optimal branching. - - ??? Kludge this and the next macro for the moment by not doing anything if - we don't optimize and also if we are writing ECOFF symbols to work around - a bug in DEC's assembler. */ - -#define LOOP_ALIGN(LABEL) \ - (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0) - -/* This is how to align an instruction for optimal branching. On - Alpha we'll get better performance by aligning on an octaword - boundary. */ - -#define LABEL_ALIGN_AFTER_BARRIER(FILE) \ - (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0) - -/* No data type wants to be aligned rounder than this. */ -#define BIGGEST_ALIGNMENT 64 - -/* For atomic access to objects, must have at least 32-bit alignment - unless the machine has byte operations. */ -#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32) - -/* Align all constants and variables to at least a word boundary so - we can pick up pieces of them faster. */ -/* ??? Only if block-move stuff knows about different source/destination - alignment. */ -#if 0 -#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD) -#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD) -#endif - -/* Set this non-zero if move instructions will actually fail to work - when given unaligned data. - - Since we get an error message when we do one, call them invalid. */ - -#define STRICT_ALIGNMENT 1 - -/* Set this non-zero if unaligned move instructions are extremely slow. - - On the Alpha, they trap. */ - -#define SLOW_UNALIGNED_ACCESS 1 - -/* Standard register usage. */ - -/* Number of actual hardware registers. - The hardware registers are assigned numbers for the compiler - from 0 to just below FIRST_PSEUDO_REGISTER. - All registers that the compiler knows about must be given numbers, - even those that are not normally considered general registers. - - We define all 32 integer registers, even though $31 is always zero, - and all 32 floating-point registers, even though $f31 is also - always zero. We do not bother defining the FP status register and - there are no other registers. - - Since $31 is always zero, we will use register number 31 as the - argument pointer. It will never appear in the generated code - because we will always be eliminating it in favor of the stack - pointer or hardware frame pointer. - - Likewise, we use $f31 for the frame pointer, which will always - be eliminated in favor of the hardware frame pointer or the - stack pointer. */ - -#define FIRST_PSEUDO_REGISTER 64 - -/* 1 for registers that have pervasive standard uses - and are not available for the register allocator. */ - -#define FIXED_REGISTERS \ - {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } - -/* 1 for registers not available across function calls. - These must include the FIXED_REGISTERS and also any - registers that can be used without being saved. - The latter must include the registers where values are returned - and the register where structure-value addresses are passed. - Aside from that, you can include as many other registers as you like. */ -#define CALL_USED_REGISTERS \ - {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \ - 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } - -/* List the order in which to allocate registers. Each register must be - listed once, even those in FIXED_REGISTERS. - - We allocate in the following order: - $f10-$f15 (nonsaved floating-point register) - $f22-$f30 (likewise) - $f21-$f16 (likewise, but input args) - $f0 (nonsaved, but return value) - $f1 (nonsaved, but immediate before saved) - $f2-$f9 (saved floating-point registers) - $1-$8 (nonsaved integer registers) - $22-$25 (likewise) - $28 (likewise) - $0 (likewise, but return value) - $21-$16 (likewise, but input args) - $27 (procedure value in OSF, nonsaved in NT) - $9-$14 (saved integer registers) - $26 (return PC) - $15 (frame pointer) - $29 (global pointer) - $30, $31, $f31 (stack pointer and always zero/ap & fp) */ - -#define REG_ALLOC_ORDER \ - {42, 43, 44, 45, 46, 47, \ - 54, 55, 56, 57, 58, 59, 60, 61, 62, \ - 53, 52, 51, 50, 49, 48, \ - 32, 33, \ - 34, 35, 36, 37, 38, 39, 40, 41, \ - 1, 2, 3, 4, 5, 6, 7, 8, \ - 22, 23, 24, 25, \ - 28, \ - 0, \ - 21, 20, 19, 18, 17, 16, \ - 27, \ - 9, 10, 11, 12, 13, 14, \ - 26, \ - 15, \ - 29, \ - 30, 31, 63 } - -/* Return number of consecutive hard regs needed starting at reg REGNO - to hold something of mode MODE. - This is ordinarily the length in words of a value of mode MODE - but can be less for certain modes in special long registers. */ - -#define HARD_REGNO_NREGS(REGNO, MODE) \ - ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) - -/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. - On Alpha, the integer registers can hold any mode. The floating-point - registers can hold 32-bit and 64-bit integers as well, but not 16-bit - or 8-bit values. */ - -#define HARD_REGNO_MODE_OK(REGNO, MODE) \ - ((REGNO) >= 32 && (REGNO) <= 62 \ - ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \ - : 1) - -/* A C expression that is nonzero if a value of mode - MODE1 is accessible in mode MODE2 without copying. - - This asymmetric test is true when MODE1 could be put - in an FP register but MODE2 could not. */ - -#define MODES_TIEABLE_P(MODE1, MODE2) \ - (HARD_REGNO_MODE_OK (32, (MODE1)) \ - ? HARD_REGNO_MODE_OK (32, (MODE2)) \ - : 1) - -/* Specify the registers used for certain standard purposes. - The values of these macros are register numbers. */ - -/* Alpha pc isn't overloaded on a register that the compiler knows about. */ -/* #define PC_REGNUM */ - -/* Register to use for pushing function arguments. */ -#define STACK_POINTER_REGNUM 30 - -/* Base register for access to local variables of the function. */ -#define HARD_FRAME_POINTER_REGNUM 15 - -/* Value should be nonzero if functions must have frame pointers. - Zero means the frame pointer need not be set up (and parms - may be accessed via the stack pointer) in functions that seem suitable. - This is computed in `reload', in reload1.c. */ -#define FRAME_POINTER_REQUIRED 0 - -/* Base register for access to arguments of the function. */ -#define ARG_POINTER_REGNUM 31 - -/* Base register for access to local variables of function. */ -#define FRAME_POINTER_REGNUM 63 - -/* Register in which static-chain is passed to a function. - - For the Alpha, this is based on an example; the calling sequence - doesn't seem to specify this. */ -#define STATIC_CHAIN_REGNUM 1 - -/* Register in which address to store a structure value - arrives in the function. On the Alpha, the address is passed - as a hidden argument. */ -#define STRUCT_VALUE 0 - -/* Define the classes of registers for register constraints in the - machine description. Also define ranges of constants. - - One of the classes must always be named ALL_REGS and include all hard regs. - If there is more than one class, another class must be named NO_REGS - and contain no registers. - - The name GENERAL_REGS must be the name of a class (or an alias for - another name such as ALL_REGS). This is the class of registers - that is allowed by "g" or "r" in a register constraint. - Also, registers outside this class are allocated only when - instructions express preferences for them. - - The classes must be numbered in nondecreasing order; that is, - a larger-numbered class must never be contained completely - in a smaller-numbered class. - - For any two classes, it is very desirable that there be another - class that represents their union. */ - -enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS, - LIM_REG_CLASSES }; - -#define N_REG_CLASSES (int) LIM_REG_CLASSES - -/* Give names of register classes as strings for dump file. */ - -#define REG_CLASS_NAMES \ - {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" } - -/* Define which registers fit in which classes. - This is an initializer for a vector of HARD_REG_SET - of length N_REG_CLASSES. */ - -#define REG_CLASS_CONTENTS \ - { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} } - -/* The same information, inverted: - Return the class number of the smallest class containing - reg number REGNO. This could be a conditional expression - or could index an array. */ - -#define REGNO_REG_CLASS(REGNO) \ - ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS) - -/* The class value for index registers, and the one for base regs. */ -#define INDEX_REG_CLASS NO_REGS -#define BASE_REG_CLASS GENERAL_REGS - -/* Get reg_class from a letter such as appears in the machine description. */ - -#define REG_CLASS_FROM_LETTER(C) \ - ((C) == 'f' ? FLOAT_REGS : NO_REGS) - -/* Define this macro to change register usage conditional on target flags. */ -/* #define CONDITIONAL_REGISTER_USAGE */ - -/* The letters I, J, K, L, M, N, O, and P in a register constraint string - can be used to stand for particular ranges of immediate operands. - This macro defines what the ranges are. - C is the letter, and VALUE is a constant value. - Return 1 if VALUE is in the range specified by C. - - For Alpha: - `I' is used for the range of constants most insns can contain. - `J' is the constant zero. - `K' is used for the constant in an LDA insn. - `L' is used for the constant in a LDAH insn. - `M' is used for the constants that can be AND'ed with using a ZAP insn. - `N' is used for complemented 8-bit constants. - `O' is used for negated 8-bit constants. - `P' is used for the constants 1, 2 and 3. */ - -#define CONST_OK_FOR_LETTER_P(VALUE, C) \ - ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \ - : (C) == 'J' ? (VALUE) == 0 \ - : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \ - : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \ - && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \ - : (C) == 'M' ? zap_mask (VALUE) \ - : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \ - : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \ - : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \ - : 0) - -/* Similar, but for floating or large integer constants, and defining letters - G and H. Here VALUE is the CONST_DOUBLE rtx itself. - - For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE - that is the operand of a ZAP insn. */ - -#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ - ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \ - && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \ - : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \ - && zap_mask (CONST_DOUBLE_LOW (VALUE)) \ - && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \ - : 0) - -/* Optional extra constraints for this machine. - - For the Alpha, `Q' means that this is a memory operand but not a - reference to an unaligned location. - - `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current - function. - - 'S' is a 6-bit constant (valid for a shift insn). */ - -#define EXTRA_CONSTRAINT(OP, C) \ - ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \ - : (C) == 'R' ? current_file_function_operand (OP, Pmode) \ - : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \ - && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \ - : 0) -extern int normal_memory_operand (); - -/* Given an rtx X being reloaded into a reg required to be - in class CLASS, return the class of reg to actually use. - In general this is just CLASS; but on some machines - in some cases it is preferable to use a more restrictive class. - - On the Alpha, all constants except zero go into a floating-point - register via memory. */ - -#define PREFERRED_RELOAD_CLASS(X, CLASS) \ - (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \ - ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\ - : (CLASS)) - -/* Loading and storing HImode or QImode values to and from memory - usually requires a scratch register. The exceptions are loading - QImode and HImode from an aligned address to a general register - unless byte instructions are permitted. - We also cannot load an unaligned address or a paradoxical SUBREG into an - FP register. */ - -#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \ -(((GET_CODE (IN) == MEM \ - || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \ - || (GET_CODE (IN) == SUBREG \ - && (GET_CODE (SUBREG_REG (IN)) == MEM \ - || (GET_CODE (SUBREG_REG (IN)) == REG \ - && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \ - && (((CLASS) == FLOAT_REGS \ - && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \ - || (((MODE) == QImode || (MODE) == HImode) \ - && ! TARGET_BWX && ! aligned_memory_operand (IN, MODE)))) \ - ? GENERAL_REGS \ - : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \ - && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \ - : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \ - && (GET_MODE_SIZE (GET_MODE (IN)) \ - > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \ - : NO_REGS) - -#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \ -(((GET_CODE (OUT) == MEM \ - || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \ - || (GET_CODE (OUT) == SUBREG \ - && (GET_CODE (SUBREG_REG (OUT)) == MEM \ - || (GET_CODE (SUBREG_REG (OUT)) == REG \ - && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \ - && ((((MODE) == HImode || (MODE) == QImode) \ - && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \ - || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \ - ? GENERAL_REGS \ - : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \ - && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \ - : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \ - && (GET_MODE_SIZE (GET_MODE (OUT)) \ - > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \ - : NO_REGS) - -/* If we are copying between general and FP registers, we need a memory - location unless the FIX extension is available. */ - -#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \ - (! TARGET_FIX && (CLASS1) != (CLASS2)) - -/* Specify the mode to be used for memory when a secondary memory - location is needed. If MODE is floating-point, use it. Otherwise, - widen to a word like the default. This is needed because we always - store integers in FP registers in quadword format. This whole - area is very tricky! */ -#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \ - (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \ - : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \ - : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0)) - -/* Return the maximum number of consecutive registers - needed to represent mode MODE in a register of class CLASS. */ - -#define CLASS_MAX_NREGS(CLASS, MODE) \ - ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) - -/* If defined, gives a class of registers that cannot be used as the - operand of a SUBREG that changes the size of the object. */ - -#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS - -/* Define the cost of moving between registers of various classes. Moving - between FLOAT_REGS and anything else except float regs is expensive. - In fact, we make it quite expensive because we really don't want to - do these moves unless it is clearly worth it. Optimizations may - reduce the impact of not being able to allocate a pseudo to a - hard register. */ - -#define REGISTER_MOVE_COST(CLASS1, CLASS2) \ - (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \ - ? 2 \ - : TARGET_FIX ? 3 : 4+2*alpha_memory_latency) - -/* A C expressions returning the cost of moving data of MODE from a register to - or from memory. - - On the Alpha, bump this up a bit. */ - -extern int alpha_memory_latency; -#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency) - -/* Provide the cost of a branch. Exact meaning under development. */ -#define BRANCH_COST 5 - -/* Adjust the cost of dependencies. */ - -#define ADJUST_COST(INSN,LINK,DEP,COST) \ - (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST) - -/* Stack layout; function entry, exit and calling. */ - -/* Define this if pushing a word on the stack - makes the stack pointer a smaller address. */ -#define STACK_GROWS_DOWNWARD - -/* Define this if the nominal address of the stack frame - is at the high-address end of the local variables; - that is, each additional local variable allocated - goes at a more negative offset in the frame. */ -/* #define FRAME_GROWS_DOWNWARD */ - -/* Offset within stack frame to start allocating local variables at. - If FRAME_GROWS_DOWNWARD, this is the offset to the END of the - first local allocated. Otherwise, it is the offset to the BEGINNING - of the first local allocated. */ - -#define STARTING_FRAME_OFFSET 0 - -/* If we generate an insn to push BYTES bytes, - this says how many the stack pointer really advances by. - On Alpha, don't define this because there are no push insns. */ -/* #define PUSH_ROUNDING(BYTES) */ - -/* Define this to be nonzero if stack checking is built into the ABI. */ -#define STACK_CHECK_BUILTIN 1 - -/* Define this if the maximum size of all the outgoing args is to be - accumulated and pushed during the prologue. The amount can be - found in the variable current_function_outgoing_args_size. */ -#define ACCUMULATE_OUTGOING_ARGS - -/* Offset of first parameter from the argument pointer register value. */ - -#define FIRST_PARM_OFFSET(FNDECL) 0 - -/* Definitions for register eliminations. - - We have two registers that can be eliminated on the Alpha. First, the - frame pointer register can often be eliminated in favor of the stack - pointer register. Secondly, the argument pointer register can always be - eliminated; it is replaced with either the stack or frame pointer. */ - -/* This is an array of structures. Each structure initializes one pair - of eliminable registers. The "from" register number is given first, - followed by "to". Eliminations of the same "from" register are listed - in order of preference. */ - -#define ELIMINABLE_REGS \ -{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ - { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} - -/* Given FROM and TO register numbers, say whether this elimination is allowed. - Frame pointer elimination is automatically handled. - - All eliminations are valid since the cases where FP can't be - eliminated are already handled. */ - -#define CAN_ELIMINATE(FROM, TO) 1 - -/* Round up to a multiple of 16 bytes. */ -#define ALPHA_ROUND(X) (((X) + 15) & ~ 15) - -/* Define the offset between two registers, one to be eliminated, and the other - its replacement, at the start of a routine. */ -#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ -{ if ((FROM) == FRAME_POINTER_REGNUM) \ - (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \ - + alpha_sa_size ()); \ - else if ((FROM) == ARG_POINTER_REGNUM) \ - (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \ - + alpha_sa_size () \ - + (ALPHA_ROUND (get_frame_size () \ - + current_function_pretend_args_size) \ - - current_function_pretend_args_size)); \ -} - -/* Define this if stack space is still allocated for a parameter passed - in a register. */ -/* #define REG_PARM_STACK_SPACE */ - -/* Value is the number of bytes of arguments automatically - popped when returning from a subroutine call. - FUNDECL is the declaration node of the function (as a tree), - FUNTYPE is the data type of the function (as a tree), - or for a library call it is an identifier node for the subroutine name. - SIZE is the number of bytes of arguments passed on the stack. */ - -#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 - -/* Define how to find the value returned by a function. - VALTYPE is the data type of the value (as a tree). - If the precise function being called is known, FUNC is its FUNCTION_DECL; - otherwise, FUNC is 0. - - On Alpha the value is found in $0 for integer functions and - $f0 for floating-point functions. */ - -#define FUNCTION_VALUE(VALTYPE, FUNC) \ - gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \ - && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \ - || POINTER_TYPE_P (VALTYPE)) \ - ? word_mode : TYPE_MODE (VALTYPE), \ - ((TARGET_FPREGS \ - && (TREE_CODE (VALTYPE) == REAL_TYPE \ - || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \ - ? 32 : 0)) - -/* Define how to find the value returned by a library function - assuming the value has mode MODE. */ - -#define LIBCALL_VALUE(MODE) \ - gen_rtx_REG (MODE, \ - (TARGET_FPREGS \ - && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ - || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \ - ? 32 : 0)) - -/* The definition of this macro implies that there are cases where - a scalar value cannot be returned in registers. - - For the Alpha, any structure or union type is returned in memory, as - are integers whose size is larger than 64 bits. */ - -#define RETURN_IN_MEMORY(TYPE) \ - (TYPE_MODE (TYPE) == BLKmode \ - || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64)) - -/* 1 if N is a possible register number for a function value - as seen by the caller. */ - -#define FUNCTION_VALUE_REGNO_P(N) \ - ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33) - -/* 1 if N is a possible register number for function argument passing. - On Alpha, these are $16-$21 and $f16-$f21. */ - -#define FUNCTION_ARG_REGNO_P(N) \ - (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32)) - -/* Define a data type for recording info about an argument list - during the scan of that argument list. This data type should - hold all necessary information about the function itself - and about the args processed so far, enough to enable macros - such as FUNCTION_ARG to determine where the next arg should go. - - On Alpha, this is a single integer, which is a number of words - of arguments scanned so far. - Thus 6 or more means all following args should go on the stack. */ - -#define CUMULATIVE_ARGS int - -/* Initialize a variable CUM of type CUMULATIVE_ARGS - for a call to a function whose data type is FNTYPE. - For a library call, FNTYPE is 0. */ - -#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0 - -/* Define intermediate macro to compute the size (in registers) of an argument - for the Alpha. */ - -#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \ -((MODE) != BLKmode \ - ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \ - : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) - -/* Update the data in CUM to advance over an argument - of mode MODE and data type TYPE. - (TYPE is null for libcalls where that information may not be available.) */ - -#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ - if (MUST_PASS_IN_STACK (MODE, TYPE)) \ - (CUM) = 6; \ - else \ - (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED) - -/* Determine where to put an argument to a function. - Value is zero to push the argument on the stack, - or a hard register in which to store the argument. - - MODE is the argument's machine mode. - TYPE is the data type of the argument (as a tree). - This is null for libcalls where that information may - not be available. - CUM is a variable of type CUMULATIVE_ARGS which gives info about - the preceding args and about the function being called. - NAMED is nonzero if this argument is a named parameter - (otherwise it is an extra parameter matching an ellipsis). - - On Alpha the first 6 words of args are normally in registers - and the rest are pushed. */ - -#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ -((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \ - ? gen_rtx(REG, (MODE), \ - (CUM) + 16 + ((TARGET_FPREGS \ - && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \ - || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \ - * 32)) \ - : 0) - -/* Specify the padding direction of arguments. - - On the Alpha, we must pad upwards in order to be able to pass args in - registers. */ - -#define FUNCTION_ARG_PADDING(MODE, TYPE) upward - -/* For an arg passed partly in registers and partly in memory, - this is the number of registers used. - For args passed entirely in registers or entirely in memory, zero. */ - -#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ -((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \ - ? 6 - (CUM) : 0) - -/* Perform any needed actions needed for a function that is receiving a - variable number of arguments. - - CUM is as above. - - MODE and TYPE are the mode and type of the current parameter. - - PRETEND_SIZE is a variable that should be set to the amount of stack - that must be pushed by the prolog to pretend that our caller pushed - it. - - Normally, this macro will push all remaining incoming registers on the - stack and set PRETEND_SIZE to the length of the registers pushed. - - On the Alpha, we allocate space for all 12 arg registers, but only - push those that are remaining. - - However, if NO registers need to be saved, don't allocate any space. - This is not only because we won't need the space, but because AP includes - the current_pretend_args_size and we don't want to mess up any - ap-relative addresses already made. - - If we are not to use the floating-point registers, save the integer - registers where we would put the floating-point registers. This is - not the most efficient way to implement varargs with just one register - class, but it isn't worth doing anything more efficient in this rare - case. */ - - -#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \ -{ if ((CUM) < 6) \ - { \ - if (! (NO_RTL)) \ - { \ - move_block_from_reg \ - (16 + CUM, \ - gen_rtx (MEM, BLKmode, \ - plus_constant (virtual_incoming_args_rtx, \ - ((CUM) + 6)* UNITS_PER_WORD)), \ - 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \ - move_block_from_reg \ - (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \ - gen_rtx (MEM, BLKmode, \ - plus_constant (virtual_incoming_args_rtx, \ - (CUM) * UNITS_PER_WORD)), \ - 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \ - emit_insn (gen_blockage ()); \ - } \ - PRETEND_SIZE = 12 * UNITS_PER_WORD; \ - } \ -} - -/* Try to output insns to set TARGET equal to the constant C if it can be - done in less than N insns. Do all computations in MODE. Returns the place - where the output has been placed if it can be done and the insns have been - emitted. If it would take more than N insns, zero is returned and no - insns and emitted. */ -extern struct rtx_def *alpha_emit_set_const (); -extern struct rtx_def *alpha_emit_set_long_const (); -extern struct rtx_def *alpha_emit_conditional_branch (); -extern struct rtx_def *alpha_emit_conditional_move (); - -/* Generate necessary RTL for __builtin_saveregs(). - ARGLIST is the argument list; see expr.c. */ -extern struct rtx_def *alpha_builtin_saveregs (); -#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST) - -/* Define the information needed to generate branch and scc insns. This is - stored from the compare operation. Note that we can't use "rtx" here - since it hasn't been defined! */ - -extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1; -extern int alpha_compare_fp_p; - -/* Define the information needed to modify the epilogue for EH. */ - -extern struct rtx_def *alpha_eh_epilogue_sp_ofs; - -/* Make (or fake) .linkage entry for function call. - IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */ -extern void alpha_need_linkage (); - -/* This macro defines the start of an assembly comment. */ - -#define ASM_COMMENT_START " #" - -/* This macro produces the initial definition of a function. */ - -#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \ - alpha_start_function(FILE,NAME,DECL); -extern void alpha_start_function (); - -/* This macro closes up a function definition for the assembler. */ - -#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \ - alpha_end_function(FILE,NAME,DECL) -extern void alpha_end_function (); - -/* This macro notes the end of the prologue. */ - -#define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE) -extern void output_end_prologue (); - -/* Output any profiling code before the prologue. */ - -#define PROFILE_BEFORE_PROLOGUE 1 - -/* Output assembler code to FILE to increment profiler label # LABELNO - for profiling a function entry. Under OSF/1, profiling is enabled - by simply passing -pg to the assembler and linker. */ - -#define FUNCTION_PROFILER(FILE, LABELNO) - -/* Output assembler code to FILE to initialize this source file's - basic block profiling info, if that has not already been done. - This assumes that __bb_init_func doesn't garble a1-a5. */ - -#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \ - do { \ - ASM_OUTPUT_REG_PUSH (FILE, 16); \ - fputs ("\tlda $16,$PBX32\n", (FILE)); \ - fputs ("\tldq $26,0($16)\n", (FILE)); \ - fputs ("\tbne $26,1f\n", (FILE)); \ - fputs ("\tlda $27,__bb_init_func\n", (FILE)); \ - fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \ - fputs ("\tldgp $29,0($26)\n", (FILE)); \ - fputs ("1:\n", (FILE)); \ - ASM_OUTPUT_REG_POP (FILE, 16); \ - } while (0); - -/* Output assembler code to FILE to increment the entry-count for - the BLOCKNO'th basic block in this source file. */ - -#define BLOCK_PROFILER(FILE, BLOCKNO) \ - do { \ - int blockn = (BLOCKNO); \ - fputs ("\tsubq $30,16,$30\n", (FILE)); \ - fputs ("\tstq $26,0($30)\n", (FILE)); \ - fputs ("\tstq $27,8($30)\n", (FILE)); \ - fputs ("\tlda $26,$PBX34\n", (FILE)); \ - fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \ - fputs ("\taddq $27,1,$27\n", (FILE)); \ - fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \ - fputs ("\tldq $26,0($30)\n", (FILE)); \ - fputs ("\tldq $27,8($30)\n", (FILE)); \ - fputs ("\taddq $30,16,$30\n", (FILE)); \ - } while (0) - - -/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, - the stack pointer does not matter. The value is tested only in - functions that have frame pointers. - No definition is equivalent to always zero. */ - -#define EXIT_IGNORE_STACK 1 - -/* Output assembler code for a block containing the constant parts - of a trampoline, leaving space for the variable parts. - - The trampoline should set the static chain pointer to value placed - into the trampoline and should branch to the specified routine. - Note that $27 has been set to the address of the trampoline, so we can - use it for addressability of the two data items. Trampolines are always - aligned to FUNCTION_BOUNDARY, which is 64 bits. */ - -#define TRAMPOLINE_TEMPLATE(FILE) \ -do { \ - fprintf (FILE, "\tldq $1,24($27)\n"); \ - fprintf (FILE, "\tldq $27,16($27)\n"); \ - fprintf (FILE, "\tjmp $31,($27),0\n"); \ - fprintf (FILE, "\tnop\n"); \ - fprintf (FILE, "\t.quad 0,0\n"); \ -} while (0) - -/* Section in which to place the trampoline. On Alpha, instructions - may only be placed in a text segment. */ - -#define TRAMPOLINE_SECTION text_section - -/* Length in units of the trampoline for entering a nested function. */ - -#define TRAMPOLINE_SIZE 32 - -/* Emit RTL insns to initialize the variable parts of a trampoline. - FNADDR is an RTX for the address of the function's pure code. - CXT is an RTX for the static chain value for the function. */ - -#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ - alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8) -extern void alpha_initialize_trampoline (); - -/* A C expression whose value is RTL representing the value of the return - address for the frame COUNT steps up from the current frame. - FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of - the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */ - -#define RETURN_ADDR_RTX alpha_return_addr -extern struct rtx_def *alpha_return_addr (); - -/* Before the prologue, RA lives in $26. */ -#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26) - -/* Initialize data used by insn expanders. This is called from insn_emit, - once for every function before code is generated. */ - -#define INIT_EXPANDERS alpha_init_expanders () -extern void alpha_init_expanders (); - -/* Addressing modes, and classification of registers for them. */ - -/* #define HAVE_POST_INCREMENT 0 */ -/* #define HAVE_POST_DECREMENT 0 */ - -/* #define HAVE_PRE_DECREMENT 0 */ -/* #define HAVE_PRE_INCREMENT 0 */ - -/* Macros to check register numbers against specific register classes. */ - -/* These assume that REGNO is a hard or pseudo reg number. - They give nonzero only if REGNO is a hard reg of the suitable class - or a pseudo reg currently allocated to a suitable hard reg. - Since they use reg_renumber, they are safe only once reg_renumber - has been allocated, which happens in local-alloc.c. */ - -#define REGNO_OK_FOR_INDEX_P(REGNO) 0 -#define REGNO_OK_FOR_BASE_P(REGNO) \ -((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \ - || (REGNO) == 63 || reg_renumber[REGNO] == 63) - -/* Maximum number of registers that can appear in a valid memory address. */ -#define MAX_REGS_PER_ADDRESS 1 - -/* Recognize any constant value that is a valid address. For the Alpha, - there are only constants none since we want to use LDA to load any - symbolic addresses into registers. */ - -#define CONSTANT_ADDRESS_P(X) \ - (GET_CODE (X) == CONST_INT \ - && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000) - -/* Include all constant integers and constant doubles, but not - floating-point, except for floating-point zero. */ - -#define LEGITIMATE_CONSTANT_P(X) \ - (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \ - || (X) == CONST0_RTX (GET_MODE (X))) - -/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx - and check its validity for a certain class. - We have two alternate definitions for each of them. - The usual definition accepts all pseudo regs; the other rejects - them unless they have been allocated suitable hard regs. - The symbol REG_OK_STRICT causes the latter definition to be used. - - Most source files want to accept pseudo regs in the hope that - they will get allocated to the class that the insn wants them to be in. - Source files for reload pass need to be strict. - After reload, it makes no difference, since pseudo regs have - been eliminated by then. */ - -#ifndef REG_OK_STRICT - -/* Nonzero if X is a hard reg that can be used as an index - or if it is a pseudo reg. */ -#define REG_OK_FOR_INDEX_P(X) 0 - -/* Nonzero if X is a hard reg that can be used as a base reg - or if it is a pseudo reg. */ -#define REG_OK_FOR_BASE_P(X) \ - (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER) - -/* ??? Nonzero if X is the frame pointer, or some virtual register - that may eliminate to the frame pointer. These will be allowed to - have offsets greater than 32K. This is done because register - elimination offsets will change the hi/lo split, and if we split - before reload, we will require additional instructions. */ -#define REG_OK_FP_BASE_P(X) \ - (REGNO (X) == 31 || REGNO (X) == 63 \ - || (REGNO (X) >= FIRST_PSEUDO_REGISTER \ - && REGNO (X) < LAST_VIRTUAL_REGISTER)) - -#else - -/* Nonzero if X is a hard reg that can be used as an index. */ -#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) - -/* Nonzero if X is a hard reg that can be used as a base reg. */ -#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) - -#define REG_OK_FP_BASE_P(X) 0 - -#endif - -/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression - that is a valid memory address for an instruction. - The MODE argument is the machine mode for the MEM expression - that wants to use this address. - - For Alpha, we have either a constant address or the sum of a register - and a constant address, or just a register. For DImode, any of those - forms can be surrounded with an AND that clear the low-order three bits; - this is an "unaligned" access. - - First define the basic valid address. */ - -#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \ -{ \ - rtx tmp = (X); \ - if (GET_CODE (tmp) == SUBREG \ - && (GET_MODE_SIZE (GET_MODE (tmp)) \ - < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \ - tmp = SUBREG_REG (tmp); \ - if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp)) \ - goto ADDR; \ - if (CONSTANT_ADDRESS_P (X)) \ - goto ADDR; \ - if (GET_CODE (X) == PLUS) \ - { \ - tmp = XEXP (X, 0); \ - if (GET_CODE (tmp) == SUBREG \ - && (GET_MODE_SIZE (GET_MODE (tmp)) \ - < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \ - tmp = SUBREG_REG (tmp); \ - if (REG_P (tmp)) \ - { \ - if (REG_OK_FP_BASE_P (tmp) \ - && GET_CODE (XEXP (X, 1)) == CONST_INT) \ - goto ADDR; \ - if (REG_OK_FOR_BASE_P (tmp) \ - && CONSTANT_ADDRESS_P (XEXP (X, 1))) \ - goto ADDR; \ - } \ - } \ -} - -/* Now accept the simple address, or, for DImode only, an AND of a simple - address that turns off the low three bits. */ - -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \ - if ((MODE) == DImode \ - && GET_CODE (X) == AND \ - && GET_CODE (XEXP (X, 1)) == CONST_INT \ - && INTVAL (XEXP (X, 1)) == -8) \ - GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \ -} - -/* Try machine-dependent ways of modifying an illegitimate address - to be legitimate. If we find one, return the new, valid address. - This macro is used in only one place: `memory_address' in explow.c. - - OLDX is the address as it was before break_out_memory_refs was called. - In some cases it is useful to look at this to decide what needs to be done. - - MODE and WIN are passed so that this macro can use - GO_IF_LEGITIMATE_ADDRESS. - - It is always safe for this macro to do nothing. It exists to recognize - opportunities to optimize the output. - - For the Alpha, there are three cases we handle: - - (1) If the address is (plus reg const_int) and the CONST_INT is not a - valid offset, compute the high part of the constant and add it to the - register. Then our address is (plus temp low-part-const). - (2) If the address is (const (plus FOO const_int)), find the low-order - part of the CONST_INT. Then load FOO plus any high-order part of the - CONST_INT into a register. Our address is (plus reg low-part-const). - This is done to reduce the number of GOT entries. - (3) If we have a (plus reg const), emit the load as in (2), then add - the two registers, and finally generate (plus reg low-part-const) as - our address. */ - -#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ -{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ - && GET_CODE (XEXP (X, 1)) == CONST_INT \ - && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \ - { \ - HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \ - HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \ - HOST_WIDE_INT highpart = val - lowpart; \ - rtx high = GEN_INT (highpart); \ - rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \ - high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \ - \ - (X) = plus_constant (temp, lowpart); \ - goto WIN; \ - } \ - else if (GET_CODE (X) == CONST \ - && GET_CODE (XEXP (X, 0)) == PLUS \ - && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \ - { \ - HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \ - HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \ - HOST_WIDE_INT highpart = val - lowpart; \ - rtx high = XEXP (XEXP (X, 0), 0); \ - \ - if (highpart) \ - high = plus_constant (high, highpart); \ - \ - (X) = plus_constant (force_reg (Pmode, high), lowpart); \ - goto WIN; \ - } \ - else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ - && GET_CODE (XEXP (X, 1)) == CONST \ - && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \ - && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \ - { \ - HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \ - HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \ - HOST_WIDE_INT highpart = val - lowpart; \ - rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \ - \ - if (highpart) \ - high = plus_constant (high, highpart); \ - \ - high = expand_binop (Pmode, add_optab, XEXP (X, 0), \ - force_reg (Pmode, high), \ - high, 1, OPTAB_LIB_WIDEN); \ - (X) = plus_constant (high, lowpart); \ - goto WIN; \ - } \ -} - -/* Try a machine-dependent way of reloading an illegitimate address - operand. If we find one, push the reload and jump to WIN. This - macro is used in only one place: `find_reloads_address' in reload.c. - - For the Alpha, we wish to handle large displacements off a base - register by splitting the addend across an ldah and the mem insn. - This cuts number of extra insns needed from 3 to 1. */ - -#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \ -do { \ - /* We must recognize output that we have already generated ourselves. */ \ - if (GET_CODE (X) == PLUS \ - && GET_CODE (XEXP (X, 0)) == PLUS \ - && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \ - && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \ - && GET_CODE (XEXP (X, 1)) == CONST_INT) \ - { \ - push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \ - BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \ - OPNUM, TYPE); \ - goto WIN; \ - } \ - if (GET_CODE (X) == PLUS \ - && GET_CODE (XEXP (X, 0)) == REG \ - && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \ - && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \ - && GET_CODE (XEXP (X, 1)) == CONST_INT) \ - { \ - HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \ - HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \ - HOST_WIDE_INT high \ - = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \ - \ - /* Check for 32-bit overflow. */ \ - if (high + low != val) \ - break; \ - \ - /* Reload the high part into a base reg; leave the low part \ - in the mem directly. */ \ - \ - X = gen_rtx_PLUS (GET_MODE (X), \ - gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \ - GEN_INT (high)), \ - GEN_INT (low)); \ - \ - push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \ - BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \ - OPNUM, TYPE); \ - goto WIN; \ - } \ -} while (0) - -/* Go to LABEL if ADDR (a legitimate address expression) - has an effect that depends on the machine mode it is used for. - On the Alpha this is true only for the unaligned modes. We can - simplify this test since we know that the address must be valid. */ - -#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ -{ if (GET_CODE (ADDR) == AND) goto LABEL; } - -/* Compute the cost of an address. For the Alpha, all valid addresses are - the same cost. */ - -#define ADDRESS_COST(X) 0 - -/* Machine-dependent reorg pass. */ -#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X) - -/* Specify the machine mode that this machine uses - for the index in the tablejump instruction. */ -#define CASE_VECTOR_MODE SImode - -/* Define as C expression which evaluates to nonzero if the tablejump - instruction expects the table to contain offsets from the address of the - table. - - Do not define this if the table should contain absolute addresses. - On the Alpha, the table is really GP-relative, not relative to the PC - of the table, but we pretend that it is PC-relative; this should be OK, - but we should try to find some better way sometime. */ -#define CASE_VECTOR_PC_RELATIVE 1 - -/* Specify the tree operation to be used to convert reals to integers. */ -#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR - -/* This is the kind of divide that is easiest to do in the general case. */ -#define EASY_DIV_EXPR TRUNC_DIV_EXPR - -/* Define this as 1 if `char' should by default be signed; else as 0. */ -#define DEFAULT_SIGNED_CHAR 1 - -/* This flag, if defined, says the same insns that convert to a signed fixnum - also convert validly to an unsigned one. - - We actually lie a bit here as overflow conditions are different. But - they aren't being checked anyway. */ - -#define FIXUNS_TRUNC_LIKE_FIX_TRUNC - -/* Max number of bytes we can move to or from memory - in one reasonably fast instruction. */ - -#define MOVE_MAX 8 - -/* If a memory-to-memory move would take MOVE_RATIO or more simple - move-instruction pairs, we will do a movstr or libcall instead. - - Without byte/word accesses, we want no more than four instructions; - with, several single byte accesses are better. */ - -#define MOVE_RATIO (TARGET_BWX ? 7 : 2) - -/* Largest number of bytes of an object that can be placed in a register. - On the Alpha we have plenty of registers, so use TImode. */ -#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode) - -/* Nonzero if access to memory by bytes is no faster than for words. - Also non-zero if doing byte operations (specifically shifts) in registers - is undesirable. - - On the Alpha, we want to not use the byte operation and instead use - masking operations to access fields; these will save instructions. */ - -#define SLOW_BYTE_ACCESS 1 - -/* Define if operations between registers always perform the operation - on the full register even if a narrower mode is specified. */ -#define WORD_REGISTER_OPERATIONS - -/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD - will either zero-extend or sign-extend. The value of this macro should - be the code that says which one of the two operations is implicitly - done, NIL if none. */ -#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND) - -/* Define if loading short immediate values into registers sign extends. */ -#define SHORT_IMMEDIATES_SIGN_EXTEND - -/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits - is done just by pretending it is already truncated. */ -#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 - -/* We assume that the store-condition-codes instructions store 0 for false - and some other value for true. This is the value stored for true. */ - -#define STORE_FLAG_VALUE 1 - -/* Define the value returned by a floating-point comparison instruction. */ - -#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0) - -/* Canonicalize a comparison from one we don't have to one we do have. */ - -#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \ - do { \ - if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \ - && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \ - { \ - rtx tem = (OP0); \ - (OP0) = (OP1); \ - (OP1) = tem; \ - (CODE) = swap_condition (CODE); \ - } \ - if (((CODE) == LT || (CODE) == LTU) \ - && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \ - { \ - (CODE) = (CODE) == LT ? LE : LEU; \ - (OP1) = GEN_INT (255); \ - } \ - } while (0) - -/* Specify the machine mode that pointers have. - After generation of rtl, the compiler makes no further distinction - between pointers and any other objects of this machine mode. */ -#define Pmode DImode - -/* Mode of a function address in a call instruction (for indexing purposes). */ - -#define FUNCTION_MODE Pmode - -/* Define this if addresses of constant functions - shouldn't be put through pseudo regs where they can be cse'd. - Desirable on machines where ordinary constants are expensive - but a CALL with constant address is cheap. - - We define this on the Alpha so that gen_call and gen_call_value - get to see the SYMBOL_REF (for the hint field of the jsr). It will - then copy it into a register, thus actually letting the address be - cse'ed. */ - -#define NO_FUNCTION_CSE - -/* Define this to be nonzero if shift instructions ignore all but the low-order - few bits. */ -#define SHIFT_COUNT_TRUNCATED 1 - -/* Use atexit for static constructors/destructors, instead of defining - our own exit function. */ -#define HAVE_ATEXIT - -/* The EV4 is dual issue; EV5/EV6 are quad issue. */ -#define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4) - -/* Describe the fact that MULTI instructions are multiple instructions - and so to assume they don't pair with anything. */ -#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \ - if (recog_memoized (INSN) < 0 || get_attr_type (INSN) == TYPE_MULTI) \ - (CAN_ISSUE_MORE) = 0 - -/* Compute the cost of computing a constant rtl expression RTX - whose rtx-code is CODE. The body of this macro is a portion - of a switch statement. If the code is computed here, - return it with a return statement. Otherwise, break from the switch. - - If this is an 8-bit constant, return zero since it can be used - nearly anywhere with no cost. If it is a valid operand for an - ADD or AND, likewise return 0 if we know it will be used in that - context. Otherwise, return 2 since it might be used there later. - All other constants take at least two insns. */ - -#define CONST_COSTS(RTX,CODE,OUTER_CODE) \ - case CONST_INT: \ - if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \ - return 0; \ - case CONST_DOUBLE: \ - if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \ - return 0; \ - else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \ - || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \ - return 0; \ - else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \ - return 2; \ - else \ - return COSTS_N_INSNS (2); \ - case CONST: \ - case SYMBOL_REF: \ - case LABEL_REF: \ - switch (alpha_cpu) \ - { \ - case PROCESSOR_EV4: \ - return COSTS_N_INSNS (3); \ - case PROCESSOR_EV5: \ - case PROCESSOR_EV6: \ - return COSTS_N_INSNS (2); \ - default: abort(); \ - } - -/* Provide the costs of a rtl expression. This is in the body of a - switch on CODE. */ - -#define RTX_COSTS(X,CODE,OUTER_CODE) \ - case PLUS: case MINUS: \ - if (FLOAT_MODE_P (GET_MODE (X))) \ - switch (alpha_cpu) \ - { \ - case PROCESSOR_EV4: \ - return COSTS_N_INSNS (6); \ - case PROCESSOR_EV5: \ - case PROCESSOR_EV6: \ - return COSTS_N_INSNS (4); \ - default: abort(); \ - } \ - else if (GET_CODE (XEXP (X, 0)) == MULT \ - && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \ - return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \ - + rtx_cost (XEXP (X, 1), OUTER_CODE)); \ - break; \ - case MULT: \ - switch (alpha_cpu) \ - { \ - case PROCESSOR_EV4: \ - if (FLOAT_MODE_P (GET_MODE (X))) \ - return COSTS_N_INSNS (6); \ - return COSTS_N_INSNS (23); \ - case PROCESSOR_EV5: \ - if (FLOAT_MODE_P (GET_MODE (X))) \ - return COSTS_N_INSNS (4); \ - else if (GET_MODE (X) == DImode) \ - return COSTS_N_INSNS (12); \ - else \ - return COSTS_N_INSNS (8); \ - case PROCESSOR_EV6: \ - if (FLOAT_MODE_P (GET_MODE (X))) \ - return COSTS_N_INSNS (4); \ - else \ - return COSTS_N_INSNS (7); \ - default: abort(); \ - } \ - case ASHIFT: \ - if (GET_CODE (XEXP (X, 1)) == CONST_INT \ - && INTVAL (XEXP (X, 1)) <= 3) \ - break; \ - /* ... fall through ... */ \ - case ASHIFTRT: case LSHIFTRT: \ - switch (alpha_cpu) \ - { \ - case PROCESSOR_EV4: \ - return COSTS_N_INSNS (2); \ - case PROCESSOR_EV5: \ - case PROCESSOR_EV6: \ - return COSTS_N_INSNS (1); \ - default: abort(); \ - } \ - case IF_THEN_ELSE: \ - switch (alpha_cpu) \ - { \ - case PROCESSOR_EV4: \ - case PROCESSOR_EV6: \ - return COSTS_N_INSNS (2); \ - case PROCESSOR_EV5: \ - return COSTS_N_INSNS (1); \ - default: abort(); \ - } \ - case DIV: case UDIV: case MOD: case UMOD: \ - switch (alpha_cpu) \ - { \ - case PROCESSOR_EV4: \ - if (GET_MODE (X) == SFmode) \ - return COSTS_N_INSNS (34); \ - else if (GET_MODE (X) == DFmode) \ - return COSTS_N_INSNS (63); \ - else \ - return COSTS_N_INSNS (70); \ - case PROCESSOR_EV5: \ - if (GET_MODE (X) == SFmode) \ - return COSTS_N_INSNS (15); \ - else if (GET_MODE (X) == DFmode) \ - return COSTS_N_INSNS (22); \ - else \ - return COSTS_N_INSNS (70); /* ??? */ \ - case PROCESSOR_EV6: \ - if (GET_MODE (X) == SFmode) \ - return COSTS_N_INSNS (12); \ - else if (GET_MODE (X) == DFmode) \ - return COSTS_N_INSNS (15); \ - else \ - return COSTS_N_INSNS (70); /* ??? */ \ - default: abort(); \ - } \ - case MEM: \ - switch (alpha_cpu) \ - { \ - case PROCESSOR_EV4: \ - case PROCESSOR_EV6: \ - return COSTS_N_INSNS (3); \ - case PROCESSOR_EV5: \ - return COSTS_N_INSNS (2); \ - default: abort(); \ - } \ - case NEG: case ABS: \ - if (! FLOAT_MODE_P (GET_MODE (X))) \ - break; \ - /* ... fall through ... */ \ - case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \ - case FLOAT_EXTEND: case FLOAT_TRUNCATE: \ - switch (alpha_cpu) \ - { \ - case PROCESSOR_EV4: \ - return COSTS_N_INSNS (6); \ - case PROCESSOR_EV5: \ - case PROCESSOR_EV6: \ - return COSTS_N_INSNS (4); \ - default: abort(); \ - } - -/* Control the assembler format that we output. */ - -/* We don't emit these labels, so as to avoid getting linker errors about - missing exception handling info. If we emit a gcc_compiled. label into - text, and the file has no code, then the DEC assembler gives us a zero - sized text section with no associated exception handling info. The - DEC linker sees this text section, and gives a warning saying that - the exception handling info is missing. */ -#define ASM_IDENTIFY_GCC(x) -#define ASM_IDENTIFY_LANGUAGE(x) - -/* Output to assembler file text saying following lines - may contain character constants, extra white space, comments, etc. */ - -#define ASM_APP_ON "" - -/* Output to assembler file text saying following lines - no longer contain unusual constructs. */ - -#define ASM_APP_OFF "" - -#define TEXT_SECTION_ASM_OP ".text" - -/* Output before read-only data. */ - -#define READONLY_DATA_SECTION_ASM_OP ".rdata" - -/* Output before writable data. */ - -#define DATA_SECTION_ASM_OP ".data" - -/* Define an extra section for read-only data, a routine to enter it, and - indicate that it is for read-only data. - - The first time we enter the readonly data section for a file, we write - eight bytes of zero. This works around a bug in DEC's assembler in - some versions of OSF/1 V3.x. */ - -#define EXTRA_SECTIONS readonly_data - -#define EXTRA_SECTION_FUNCTIONS \ -void \ -literal_section () \ -{ \ - if (in_section != readonly_data) \ - { \ - static int firsttime = 1; \ - \ - fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \ - if (firsttime) \ - { \ - firsttime = 0; \ - ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \ - } \ - \ - in_section = readonly_data; \ - } \ -} \ - -#define READONLY_DATA_SECTION literal_section - -/* If we are referencing a function that is static, make the SYMBOL_REF - special. We use this to see indicate we can branch to this function - without setting PV or restoring GP. */ - -#define ENCODE_SECTION_INFO(DECL) \ - if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \ - SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; - -/* How to refer to registers in assembler output. - This sequence is indexed by compiler's hard-register-number (see above). */ - -#define REGISTER_NAMES \ -{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \ - "$9", "$10", "$11", "$12", "$13", "$14", "$15", \ - "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \ - "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \ - "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \ - "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \ - "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\ - "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"} - -/* How to renumber registers for dbx and gdb. */ - -#define DBX_REGISTER_NUMBER(REGNO) (REGNO) - -/* This is how to output the definition of a user-level label named NAME, - such as the label on a static function or variable NAME. */ - -#define ASM_OUTPUT_LABEL(FILE,NAME) \ - do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) - -/* This is how to output a command to make the user-level label named NAME - defined for reference from other files. */ - -#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ - do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) - -/* The prefix to add to user-visible assembler symbols. */ - -#define USER_LABEL_PREFIX "" - -/* This is how to output an internal numbered label where - PREFIX is the class of label and NUM is the number within the class. */ - -#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ - fprintf (FILE, "$%s%d:\n", PREFIX, NUM) - -/* This is how to output a label for a jump table. Arguments are the same as - for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is - passed. */ - -#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \ -{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); } - -/* This is how to store into the string LABEL - the symbol_ref name of an internal numbered label where - PREFIX is the class of label and NUM is the number within the class. - This is suitable for output with `assemble_name'. */ - -#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ - sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM)) - -/* Check a floating-point value for validity for a particular machine mode. */ - -#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \ - ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW)) - -/* This is how to output an assembler line defining a `double' constant. */ - -#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ - { \ - if (REAL_VALUE_ISINF (VALUE) \ - || REAL_VALUE_ISNAN (VALUE) \ - || REAL_VALUE_MINUS_ZERO (VALUE)) \ - { \ - long t[2]; \ - REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \ - fprintf (FILE, "\t.quad 0x%lx%08lx\n", \ - t[1] & 0xffffffff, t[0] & 0xffffffff); \ - } \ - else \ - { \ - char str[30]; \ - REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \ - fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \ - } \ - } - -/* This is how to output an assembler line defining a `float' constant. */ - -#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ - do { \ - long t; \ - REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \ - fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \ -} while (0) - -/* This is how to output an assembler line defining an `int' constant. */ - -#define ASM_OUTPUT_INT(FILE,VALUE) \ -( fprintf (FILE, "\t.long "), \ - output_addr_const (FILE, (VALUE)), \ - fprintf (FILE, "\n")) - -/* This is how to output an assembler line defining a `long' constant. */ - -#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \ -( fprintf (FILE, "\t.quad "), \ - output_addr_const (FILE, (VALUE)), \ - fprintf (FILE, "\n")) - -/* Likewise for `char' and `short' constants. */ - -#define ASM_OUTPUT_SHORT(FILE,VALUE) \ - fprintf (FILE, "\t.word %d\n", \ - (int)(GET_CODE (VALUE) == CONST_INT \ - ? INTVAL (VALUE) & 0xffff : (abort (), 0))) - -#define ASM_OUTPUT_CHAR(FILE,VALUE) \ - fprintf (FILE, "\t.byte %d\n", \ - (int)(GET_CODE (VALUE) == CONST_INT \ - ? INTVAL (VALUE) & 0xff : (abort (), 0))) - -/* We use the default ASCII-output routine, except that we don't write more - than 50 characters since the assembler doesn't support very long lines. */ - -#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \ - do { \ - FILE *_hide_asm_out_file = (MYFILE); \ - unsigned char *_hide_p = (unsigned char *) (MYSTRING); \ - int _hide_thissize = (MYLENGTH); \ - int _size_so_far = 0; \ - { \ - FILE *asm_out_file = _hide_asm_out_file; \ - unsigned char *p = _hide_p; \ - int thissize = _hide_thissize; \ - int i; \ - fprintf (asm_out_file, "\t.ascii \""); \ - \ - for (i = 0; i < thissize; i++) \ - { \ - register int c = p[i]; \ - \ - if (_size_so_far ++ > 50 && i < thissize - 4) \ - _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \ - \ - if (c == '\"' || c == '\\') \ - putc ('\\', asm_out_file); \ - if (c >= ' ' && c < 0177) \ - putc (c, asm_out_file); \ - else \ - { \ - fprintf (asm_out_file, "\\%o", c); \ - /* After an octal-escape, if a digit follows, \ - terminate one string constant and start another. \ - The Vax assembler fails to stop reading the escape \ - after three digits, so this is the only way we \ - can get it to parse the data properly. */ \ - if (i < thissize - 1 \ - && p[i + 1] >= '0' && p[i + 1] <= '9') \ - _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \ - } \ - } \ - fprintf (asm_out_file, "\"\n"); \ - } \ - } \ - while (0) - -/* To get unaligned data, we have to turn off auto alignment. */ -#define UNALIGNED_SHORT_ASM_OP ".align 0\n\t.word" -#define UNALIGNED_INT_ASM_OP ".align 0\n\t.long" -#define UNALIGNED_DOUBLE_INT_ASM_OP ".align 0\n\t.quad" - -/* This is how to output an insn to push a register on the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ - fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \ - (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \ - (REGNO) & 31); - -/* This is how to output an insn to pop a register from the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ - fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \ - (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \ - (REGNO) & 31); - -/* This is how to output an assembler line for a numeric constant byte. */ - -#define ASM_OUTPUT_BYTE(FILE,VALUE) \ - fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff)) - -/* This is how to output an element of a case-vector that is absolute. - (Alpha does not use such vectors, but we must define this macro anyway.) */ - -#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort () - -/* This is how to output an element of a case-vector that is relative. */ - -#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ - fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \ - (VALUE)) - -/* This is how to output an assembler line - that says to advance the location counter - to a multiple of 2**LOG bytes. */ - -#define ASM_OUTPUT_ALIGN(FILE,LOG) \ - if ((LOG) != 0) \ - fprintf (FILE, "\t.align %d\n", LOG); - -/* This is how to advance the location counter by SIZE bytes. */ - -#define ASM_OUTPUT_SKIP(FILE,SIZE) \ - fprintf (FILE, "\t.space %d\n", (SIZE)) - -/* This says how to output an assembler line - to define a global common symbol. */ - -#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ -( fputs ("\t.comm ", (FILE)), \ - assemble_name ((FILE), (NAME)), \ - fprintf ((FILE), ",%d\n", (SIZE))) - -/* This says how to output an assembler line - to define a local common symbol. */ - -#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \ -( fputs ("\t.lcomm ", (FILE)), \ - assemble_name ((FILE), (NAME)), \ - fprintf ((FILE), ",%d\n", (SIZE))) - -/* Store in OUTPUT a string (made with alloca) containing - an assembler-name for a local static variable named NAME. - LABELNO is an integer which is different for each call. */ - -#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ -( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ - sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) - -/* Define the parentheses used to group arithmetic operations - in assembler code. */ - -#define ASM_OPEN_PAREN "(" -#define ASM_CLOSE_PAREN ")" - -/* Output code to add DELTA to the first argument, and then jump to FUNCTION. - Used for C++ multiple inheritance. */ - -#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \ -do { \ - char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \ - int reg; \ - \ - /* Mark end of prologue. */ \ - output_end_prologue (FILE); \ - \ - /* Rely on the assembler to macro expand a large delta. */ \ - reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \ - fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \ - \ - if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \ - { \ - fprintf (FILE, "\tbr $31,$"); \ - assemble_name (FILE, fn_name); \ - fprintf (FILE, "..ng\n"); \ - } \ - else \ - { \ - fprintf (FILE, "\tjmp $31,"); \ - assemble_name (FILE, fn_name); \ - fputc ('\n', FILE); \ - } \ -} while (0) - - -/* Define results of standard character escape sequences. */ -#define TARGET_BELL 007 -#define TARGET_BS 010 -#define TARGET_TAB 011 -#define TARGET_NEWLINE 012 -#define TARGET_VT 013 -#define TARGET_FF 014 -#define TARGET_CR 015 - -/* Print operand X (an rtx) in assembler syntax to file FILE. - CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. - For `%' followed by punctuation, CODE is the punctuation and X is null. */ - -#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) - -/* Determine which codes are valid without a following integer. These must - not be alphabetic (the characters are chosen so that - PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when - using ASCII). - - & Generates fp-rounding mode suffix: nothing for normal, 'c' for - chopped, 'm' for minus-infinity, and 'd' for dynamic rounding - mode. alpha_fprm controls which suffix is generated. - - ' Generates trap-mode suffix for instructions that accept the - su suffix only (cmpt et al). - - ` Generates trap-mode suffix for instructions that accept the - v and sv suffix. The only instruction that needs this is cvtql. - - ( Generates trap-mode suffix for instructions that accept the - v, sv, and svi suffix. The only instruction that needs this - is cvttq. - - ) Generates trap-mode suffix for instructions that accept the - u, su, and sui suffix. This is the bulk of the IEEE floating - point instructions (addt et al). - - + Generates trap-mode suffix for instructions that accept the - sui suffix (cvtqt and cvtqs). - - , Generates single precision suffix for floating point - instructions (s for IEEE, f for VAX) - - - Generates double precision suffix for floating point - instructions (t for IEEE, g for VAX) - */ - -#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ - ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \ - || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-') - -/* Print a memory address as an operand to reference that memory location. */ - -#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ - print_operand_address((FILE), (ADDR)) - -/* Define the codes that are matched by predicates in alpha.c. */ - -#define PREDICATE_CODES \ - {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \ - {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \ - {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \ - {"cint8_operand", {CONST_INT}}, \ - {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \ - {"add_operand", {SUBREG, REG, CONST_INT}}, \ - {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \ - {"const48_operand", {CONST_INT}}, \ - {"and_operand", {SUBREG, REG, CONST_INT}}, \ - {"or_operand", {SUBREG, REG, CONST_INT}}, \ - {"mode_mask_operand", {CONST_INT}}, \ - {"mul8_operand", {CONST_INT}}, \ - {"mode_width_operand", {CONST_INT}}, \ - {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \ - {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \ - {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \ - {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \ - {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \ - {"fp0_operand", {CONST_DOUBLE}}, \ - {"current_file_function_operand", {SYMBOL_REF}}, \ - {"call_operand", {REG, SYMBOL_REF}}, \ - {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \ - SYMBOL_REF, CONST, LABEL_REF}}, \ - {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \ - SYMBOL_REF, CONST, LABEL_REF}}, \ - {"aligned_memory_operand", {MEM}}, \ - {"unaligned_memory_operand", {MEM}}, \ - {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \ - {"any_memory_operand", {MEM}}, \ - {"hard_fp_register_operand", {SUBREG, REG}}, \ - {"reg_not_elim_operand", {SUBREG, REG}}, \ - {"reg_no_subreg_operand", {REG}}, - -/* Tell collect that the object format is ECOFF. */ -#define OBJECT_FORMAT_COFF -#define EXTENDED_COFF - -/* If we use NM, pass -g to it so it only lists globals. */ -#define NM_FLAGS "-pg" - -/* Definitions for debugging. */ - -#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */ -#define DBX_DEBUGGING_INFO /* generate embedded stabs */ -#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */ - -#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */ -#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG -#endif - - -/* Correct the offset of automatic variables and arguments. Note that - the Alpha debug format wants all automatic variables and arguments - to be in terms of two different offsets from the virtual frame pointer, - which is the stack pointer before any adjustment in the function. - The offset for the argument pointer is fixed for the native compiler, - it is either zero (for the no arguments case) or large enough to hold - all argument registers. - The offset for the auto pointer is the fourth argument to the .frame - directive (local_offset). - To stay compatible with the native tools we use the same offsets - from the virtual frame pointer and adjust the debugger arg/auto offsets - accordingly. These debugger offsets are set up in output_prolog. */ - -extern long alpha_arg_offset; -extern long alpha_auto_offset; -#define DEBUGGER_AUTO_OFFSET(X) \ - ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset) -#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset) - - -#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \ - alpha_output_lineno (STREAM, LINE) -extern void alpha_output_lineno (); - -#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \ - alpha_output_filename (STREAM, NAME) -extern void alpha_output_filename (); - -/* mips-tfile.c limits us to strings of one page. We must underestimate this - number, because the real length runs past this up to the next - continuation point. This is really a dbxout.c bug. */ -#define DBX_CONTIN_LENGTH 3000 - -/* By default, turn on GDB extensions. */ -#define DEFAULT_GDB_EXTENSIONS 1 - -/* Stabs-in-ECOFF can't handle dbxout_function_end(). */ -#define NO_DBX_FUNCTION_END 1 - -/* If we are smuggling stabs through the ALPHA ECOFF object - format, put a comment in front of the .stab<x> operation so - that the ALPHA assembler does not choke. The mips-tfile program - will correctly put the stab into the object file. */ - -#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs") -#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn") -#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd") - -/* Forward references to tags are allowed. */ -#define SDB_ALLOW_FORWARD_REFERENCES - -/* Unknown tags are also allowed. */ -#define SDB_ALLOW_UNKNOWN_REFERENCES - -#define PUT_SDB_DEF(a) \ -do { \ - fprintf (asm_out_file, "\t%s.def\t", \ - (TARGET_GAS) ? "" : "#"); \ - ASM_OUTPUT_LABELREF (asm_out_file, a); \ - fputc (';', asm_out_file); \ -} while (0) - -#define PUT_SDB_PLAIN_DEF(a) \ -do { \ - fprintf (asm_out_file, "\t%s.def\t.%s;", \ - (TARGET_GAS) ? "" : "#", (a)); \ -} while (0) - -#define PUT_SDB_TYPE(a) \ -do { \ - fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \ -} while (0) - -/* For block start and end, we create labels, so that - later we can figure out where the correct offset is. - The normal .ent/.end serve well enough for functions, - so those are just commented out. */ - -extern int sdb_label_count; /* block start/end next label # */ - -#define PUT_SDB_BLOCK_START(LINE) \ -do { \ - fprintf (asm_out_file, \ - "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \ - sdb_label_count, \ - (TARGET_GAS) ? "" : "#", \ - sdb_label_count, \ - (LINE)); \ - sdb_label_count++; \ -} while (0) - -#define PUT_SDB_BLOCK_END(LINE) \ -do { \ - fprintf (asm_out_file, \ - "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \ - sdb_label_count, \ - (TARGET_GAS) ? "" : "#", \ - sdb_label_count, \ - (LINE)); \ - sdb_label_count++; \ -} while (0) - -#define PUT_SDB_FUNCTION_START(LINE) - -#define PUT_SDB_FUNCTION_END(LINE) - -#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME)) - -/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for - mips-tdump.c to print them out. - - These must match the corresponding definitions in gdb/mipsread.c. - Unfortunately, gcc and gdb do not currently share any directories. */ - -#define CODE_MASK 0x8F300 -#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK) -#define MIPS_MARK_STAB(code) ((code)+CODE_MASK) -#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK) - -/* Override some mips-tfile definitions. */ - -#define SHASH_SIZE 511 -#define THASH_SIZE 55 - -/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */ - -#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7) - -/* The linker will stick __main into the .init section. */ -#define HAS_INIT_SECTION -#define LD_INIT_SWITCH "-init" -#define LD_FINI_SWITCH "-fini" - -/* The system headers under Alpha systems are generally C++-aware. */ -#define NO_IMPLICIT_EXTERN_C - -/* Prototypes for alpha.c functions used in the md file & elsewhere. */ -extern struct rtx_def *get_unaligned_address (); -extern void alpha_write_verstamp (); -extern void alpha_reorg (); -extern int check_float_value (); -extern int direct_return (); -extern int const48_operand (); -extern int add_operand (); -extern int and_operand (); -extern int unaligned_memory_operand (); -extern int zap_mask (); -extern int current_file_function_operand (); -extern int alpha_sa_size (); -extern int alpha_adjust_cost (); -extern void print_operand (); -extern void print_operand_address (); -extern int reg_or_0_operand (); -extern int reg_or_8bit_operand (); -extern int mul8_operand (); -extern int reg_or_6bit_operand (); -extern int alpha_comparison_operator (); -extern int alpha_swapped_comparison_operator (); -extern int sext_add_operand (); -extern int cint8_operand (); -extern int mode_mask_operand (); -extern int or_operand (); -extern int mode_width_operand (); -extern int reg_or_fp0_operand (); -extern int signed_comparison_operator (); -extern int fp0_operand (); -extern int some_operand (); -extern int input_operand (); -extern int divmod_operator (); -extern int call_operand (); -extern int reg_or_cint_operand (); -extern int hard_fp_register_operand (); -extern int reg_not_elim_operand (); -extern void alpha_set_memflags (); -extern int aligned_memory_operand (); -extern void get_aligned_mem (); -extern void alpha_expand_unaligned_load (); -extern void alpha_expand_unaligned_store (); -extern int alpha_expand_block_move (); -extern int alpha_expand_block_clear (); -extern void alpha_expand_prologue (); -extern void alpha_expand_epilogue (); |