aboutsummaryrefslogtreecommitdiff
path: root/contrib/compiler-rt/lib/builtins/arm/comparesf2.S
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/compiler-rt/lib/builtins/arm/comparesf2.S')
-rw-r--r--contrib/compiler-rt/lib/builtins/arm/comparesf2.S296
1 files changed, 296 insertions, 0 deletions
diff --git a/contrib/compiler-rt/lib/builtins/arm/comparesf2.S b/contrib/compiler-rt/lib/builtins/arm/comparesf2.S
new file mode 100644
index 000000000000..c6c4cc067f07
--- /dev/null
+++ b/contrib/compiler-rt/lib/builtins/arm/comparesf2.S
@@ -0,0 +1,296 @@
+//===-- comparesf2.S - Implement single-precision soft-float comparisons --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the following soft-fp_t comparison routines:
+//
+// __eqsf2 __gesf2 __unordsf2
+// __lesf2 __gtsf2
+// __ltsf2
+// __nesf2
+//
+// The semantics of the routines grouped in each column are identical, so there
+// is a single implementation for each, with multiple names.
+//
+// The routines behave as follows:
+//
+// __lesf2(a,b) returns -1 if a < b
+// 0 if a == b
+// 1 if a > b
+// 1 if either a or b is NaN
+//
+// __gesf2(a,b) returns -1 if a < b
+// 0 if a == b
+// 1 if a > b
+// -1 if either a or b is NaN
+//
+// __unordsf2(a,b) returns 0 if both a and b are numbers
+// 1 if either a or b is NaN
+//
+// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
+// NaN values.
+//
+//===----------------------------------------------------------------------===//
+
+#include "../assembly.h"
+ .syntax unified
+ .text
+ DEFINE_CODE_STATE
+
+@ int __eqsf2(float a, float b)
+
+ .p2align 2
+DEFINE_COMPILERRT_FUNCTION(__eqsf2)
+#if defined(COMPILER_RT_ARMHF_TARGET)
+ vmov r0, s0
+ vmov r1, s1
+#endif
+ // Make copies of a and b with the sign bit shifted off the top. These will
+ // be used to detect zeros and NaNs.
+#if defined(USE_THUMB_1)
+ push {r6, lr}
+ lsls r2, r0, #1
+ lsls r3, r1, #1
+#else
+ mov r2, r0, lsl #1
+ mov r3, r1, lsl #1
+#endif
+
+ // We do the comparison in three stages (ignoring NaN values for the time
+ // being). First, we orr the absolute values of a and b; this sets the Z
+ // flag if both a and b are zero (of either sign). The shift of r3 doesn't
+ // effect this at all, but it *does* make sure that the C flag is clear for
+ // the subsequent operations.
+#if defined(USE_THUMB_1)
+ lsrs r6, r3, #1
+ orrs r6, r2
+#else
+ orrs r12, r2, r3, lsr #1
+#endif
+ // Next, we check if a and b have the same or different signs. If they have
+ // opposite signs, this eor will set the N flag.
+#if defined(USE_THUMB_1)
+ beq 1f
+ movs r6, r0
+ eors r6, r1
+1:
+#else
+ it ne
+ eorsne r12, r0, r1
+#endif
+
+ // If a and b are equal (either both zeros or bit identical; again, we're
+ // ignoring NaNs for now), this subtract will zero out r0. If they have the
+ // same sign, the flags are updated as they would be for a comparison of the
+ // absolute values of a and b.
+#if defined(USE_THUMB_1)
+ bmi 1f
+ subs r0, r2, r3
+1:
+#else
+ it pl
+ subspl r0, r2, r3
+#endif
+
+ // If a is smaller in magnitude than b and both have the same sign, place
+ // the negation of the sign of b in r0. Thus, if both are negative and
+ // a > b, this sets r0 to 0; if both are positive and a < b, this sets
+ // r0 to -1.
+ //
+ // This is also done if a and b have opposite signs and are not both zero,
+ // because in that case the subtract was not performed and the C flag is
+ // still clear from the shift argument in orrs; if a is positive and b
+ // negative, this places 0 in r0; if a is negative and b positive, -1 is
+ // placed in r0.
+#if defined(USE_THUMB_1)
+ bhs 1f
+ // Here if a and b have the same sign and absA < absB, the result is thus
+ // b < 0 ? 1 : -1. Same if a and b have the opposite sign (ignoring Nan).
+ movs r0, #1
+ lsrs r1, #31
+ bne LOCAL_LABEL(CHECK_NAN)
+ negs r0, r0
+ b LOCAL_LABEL(CHECK_NAN)
+1:
+#else
+ it lo
+ mvnlo r0, r1, asr #31
+#endif
+
+ // If a is greater in magnitude than b and both have the same sign, place
+ // the sign of b in r0. Thus, if both are negative and a < b, -1 is placed
+ // in r0, which is the desired result. Conversely, if both are positive
+ // and a > b, zero is placed in r0.
+#if defined(USE_THUMB_1)
+ bls 1f
+ // Here both have the same sign and absA > absB.
+ movs r0, #1
+ lsrs r1, #31
+ beq LOCAL_LABEL(CHECK_NAN)
+ negs r0, r0
+1:
+#else
+ it hi
+ movhi r0, r1, asr #31
+#endif
+
+ // If you've been keeping track, at this point r0 contains -1 if a < b and
+ // 0 if a >= b. All that remains to be done is to set it to 1 if a > b.
+ // If a == b, then the Z flag is set, so we can get the correct final value
+ // into r0 by simply or'ing with 1 if Z is clear.
+ // For Thumb-1, r0 contains -1 if a < b, 0 if a > b and 0 if a == b.
+#if !defined(USE_THUMB_1)
+ it ne
+ orrne r0, r0, #1
+#endif
+
+ // Finally, we need to deal with NaNs. If either argument is NaN, replace
+ // the value in r0 with 1.
+#if defined(USE_THUMB_1)
+LOCAL_LABEL(CHECK_NAN):
+ movs r6, #0xff
+ lsls r6, #24
+ cmp r2, r6
+ bhi 1f
+ cmp r3, r6
+1:
+ bls 2f
+ movs r0, #1
+2:
+ pop {r6, pc}
+#else
+ cmp r2, #0xff000000
+ ite ls
+ cmpls r3, #0xff000000
+ movhi r0, #1
+ JMP(lr)
+#endif
+END_COMPILERRT_FUNCTION(__eqsf2)
+
+DEFINE_COMPILERRT_FUNCTION_ALIAS(__lesf2, __eqsf2)
+DEFINE_COMPILERRT_FUNCTION_ALIAS(__ltsf2, __eqsf2)
+DEFINE_COMPILERRT_FUNCTION_ALIAS(__nesf2, __eqsf2)
+
+@ int __gtsf2(float a, float b)
+
+ .p2align 2
+DEFINE_COMPILERRT_FUNCTION(__gtsf2)
+ // Identical to the preceding except in that we return -1 for NaN values.
+ // Given that the two paths share so much code, one might be tempted to
+ // unify them; however, the extra code needed to do so makes the code size
+ // to performance tradeoff very hard to justify for such small functions.
+#if defined(COMPILER_RT_ARMHF_TARGET)
+ vmov r0, s0
+ vmov r1, s1
+#endif
+#if defined(USE_THUMB_1)
+ push {r6, lr}
+ lsls r2, r0, #1
+ lsls r3, r1, #1
+ lsrs r6, r3, #1
+ orrs r6, r2
+ beq 1f
+ movs r6, r0
+ eors r6, r1
+1:
+ bmi 2f
+ subs r0, r2, r3
+2:
+ bhs 3f
+ movs r0, #1
+ lsrs r1, #31
+ bne LOCAL_LABEL(CHECK_NAN_2)
+ negs r0, r0
+ b LOCAL_LABEL(CHECK_NAN_2)
+3:
+ bls 4f
+ movs r0, #1
+ lsrs r1, #31
+ beq LOCAL_LABEL(CHECK_NAN_2)
+ negs r0, r0
+4:
+LOCAL_LABEL(CHECK_NAN_2):
+ movs r6, #0xff
+ lsls r6, #24
+ cmp r2, r6
+ bhi 5f
+ cmp r3, r6
+5:
+ bls 6f
+ movs r0, #1
+ negs r0, r0
+6:
+ pop {r6, pc}
+#else
+ mov r2, r0, lsl #1
+ mov r3, r1, lsl #1
+ orrs r12, r2, r3, lsr #1
+ it ne
+ eorsne r12, r0, r1
+ it pl
+ subspl r0, r2, r3
+ it lo
+ mvnlo r0, r1, asr #31
+ it hi
+ movhi r0, r1, asr #31
+ it ne
+ orrne r0, r0, #1
+ cmp r2, #0xff000000
+ ite ls
+ cmpls r3, #0xff000000
+ movhi r0, #-1
+ JMP(lr)
+#endif
+END_COMPILERRT_FUNCTION(__gtsf2)
+
+DEFINE_COMPILERRT_FUNCTION_ALIAS(__gesf2, __gtsf2)
+
+@ int __unordsf2(float a, float b)
+
+ .p2align 2
+DEFINE_COMPILERRT_FUNCTION(__unordsf2)
+
+#if defined(COMPILER_RT_ARMHF_TARGET)
+ vmov r0, s0
+ vmov r1, s1
+#endif
+ // Return 1 for NaN values, 0 otherwise.
+ lsls r2, r0, #1
+ lsls r3, r1, #1
+ movs r0, #0
+#if defined(USE_THUMB_1)
+ movs r1, #0xff
+ lsls r1, #24
+ cmp r2, r1
+ bhi 1f
+ cmp r3, r1
+1:
+ bls 2f
+ movs r0, #1
+2:
+#else
+ cmp r2, #0xff000000
+ ite ls
+ cmpls r3, #0xff000000
+ movhi r0, #1
+#endif
+ JMP(lr)
+END_COMPILERRT_FUNCTION(__unordsf2)
+
+#if defined(COMPILER_RT_ARMHF_TARGET)
+DEFINE_COMPILERRT_FUNCTION(__aeabi_fcmpum)
+ vmov s0, r0
+ vmov s1, r1
+ b SYMBOL_NAME(__unordsf2)
+END_COMPILERRT_FUNCTION(__aeabi_fcmpum)
+#else
+DEFINE_AEABI_FUNCTION_ALIAS(__aeabi_fcmpun, __unordsf2)
+#endif
+
+NO_EXEC_STACK_DIRECTIVE
+