diff options
author | Enji Cooper <ngie@FreeBSD.org> | 2023-08-08 05:56:32 +0000 |
---|---|---|
committer | Enji Cooper <ngie@FreeBSD.org> | 2023-08-08 06:03:09 +0000 |
commit | 8ef491440fcaec96f899d73e08873426c78583a4 (patch) | |
tree | 842282f5843118e2e13ca96c08a6a915c7295684 /googlemock/test/gmock-actions_test.cc | |
parent | 1774e46c372e2c1e16d4bc78f81359605e15b1b6 (diff) |
Import GoogleTest v1.14.0vendor/google/googletest/1.14.0
Imported via the following general commands:
```
git rm -rf *
git archive --format=tar v1.14.0 | tar -xvf - -C /path/to/git/vendor/clone
git commit -A
```
Obtained from: https://github.com/google/googletest
Diffstat (limited to 'googlemock/test/gmock-actions_test.cc')
-rw-r--r-- | googlemock/test/gmock-actions_test.cc | 1076 |
1 files changed, 900 insertions, 176 deletions
diff --git a/googlemock/test/gmock-actions_test.cc b/googlemock/test/gmock-actions_test.cc index f63c8c5af926..da1675c525d1 100644 --- a/googlemock/test/gmock-actions_test.cc +++ b/googlemock/test/gmock-actions_test.cc @@ -27,63 +27,231 @@ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - // Google Mock - a framework for writing C++ mock classes. // // This file tests the built-in actions. -// Silence C4800 (C4800: 'int *const ': forcing value -// to bool 'true' or 'false') for MSVC 15 -#ifdef _MSC_VER -#if _MSC_VER == 1900 -# pragma warning(push) -# pragma warning(disable:4800) -#endif -#endif - #include "gmock/gmock-actions.h" + #include <algorithm> +#include <functional> #include <iterator> #include <memory> +#include <sstream> #include <string> +#include <tuple> +#include <type_traits> +#include <utility> +#include <vector> + #include "gmock/gmock.h" #include "gmock/internal/gmock-port.h" -#include "gtest/gtest.h" #include "gtest/gtest-spi.h" +#include "gtest/gtest.h" +#include "gtest/internal/gtest-port.h" + +// Silence C4100 (unreferenced formal parameter) and C4503 (decorated name +// length exceeded) for MSVC. +GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100 4503) +#if defined(_MSC_VER) && (_MSC_VER == 1900) +// and silence C4800 (C4800: 'int *const ': forcing value +// to bool 'true' or 'false') for MSVC 15 +GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800) +#endif +namespace testing { namespace { -// This list should be kept sorted. -using testing::_; -using testing::Action; -using testing::ActionInterface; -using testing::Assign; -using testing::ByMove; -using testing::ByRef; -using testing::DefaultValue; -using testing::DoAll; -using testing::DoDefault; -using testing::IgnoreResult; -using testing::Invoke; -using testing::InvokeWithoutArgs; -using testing::MakePolymorphicAction; -using testing::Ne; -using testing::PolymorphicAction; -using testing::Return; -using testing::ReturnNull; -using testing::ReturnRef; -using testing::ReturnRefOfCopy; -using testing::SetArgPointee; -using testing::SetArgumentPointee; -using testing::Unused; -using testing::WithArgs; -using testing::internal::BuiltInDefaultValue; -using testing::internal::Int64; -using testing::internal::UInt64; - -#if !GTEST_OS_WINDOWS_MOBILE -using testing::SetErrnoAndReturn; -#endif +using ::testing::internal::BuiltInDefaultValue; + +TEST(TypeTraits, Negation) { + // Direct use with std types. + static_assert(std::is_base_of<std::false_type, + internal::negation<std::true_type>>::value, + ""); + + static_assert(std::is_base_of<std::true_type, + internal::negation<std::false_type>>::value, + ""); + + // With other types that fit the requirement of a value member that is + // convertible to bool. + static_assert(std::is_base_of< + std::true_type, + internal::negation<std::integral_constant<int, 0>>>::value, + ""); + + static_assert(std::is_base_of< + std::false_type, + internal::negation<std::integral_constant<int, 1>>>::value, + ""); + + static_assert(std::is_base_of< + std::false_type, + internal::negation<std::integral_constant<int, -1>>>::value, + ""); +} + +// Weird false/true types that aren't actually bool constants (but should still +// be legal according to [meta.logical] because `bool(T::value)` is valid), are +// distinct from std::false_type and std::true_type, and are distinct from other +// instantiations of the same template. +// +// These let us check finicky details mandated by the standard like +// "std::conjunction should evaluate to a type that inherits from the first +// false-y input". +template <int> +struct MyFalse : std::integral_constant<int, 0> {}; + +template <int> +struct MyTrue : std::integral_constant<int, -1> {}; + +TEST(TypeTraits, Conjunction) { + // Base case: always true. + static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value, + ""); + + // One predicate: inherits from that predicate, regardless of value. + static_assert( + std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value, + ""); + + static_assert( + std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, ""); + + // Multiple predicates, with at least one false: inherits from that one. + static_assert( + std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, + MyTrue<2>>>::value, + ""); + + static_assert( + std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, + MyFalse<2>>>::value, + ""); + + // Short circuiting: in the case above, additional predicates need not even + // define a value member. + struct Empty {}; + static_assert( + std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, + Empty>>::value, + ""); + + // All predicates true: inherits from the last. + static_assert( + std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>, + MyTrue<2>>>::value, + ""); +} + +TEST(TypeTraits, Disjunction) { + // Base case: always false. + static_assert( + std::is_base_of<std::false_type, internal::disjunction<>>::value, ""); + + // One predicate: inherits from that predicate, regardless of value. + static_assert( + std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value, + ""); + + static_assert( + std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, ""); + + // Multiple predicates, with at least one true: inherits from that one. + static_assert( + std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, + MyFalse<2>>>::value, + ""); + + static_assert( + std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, + MyTrue<2>>>::value, + ""); + + // Short circuiting: in the case above, additional predicates need not even + // define a value member. + struct Empty {}; + static_assert( + std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, + Empty>>::value, + ""); + + // All predicates false: inherits from the last. + static_assert( + std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>, + MyFalse<2>>>::value, + ""); +} + +TEST(TypeTraits, IsInvocableRV) { + struct C { + int operator()() const { return 0; } + void operator()(int) & {} + std::string operator()(int) && { return ""; }; + }; + + // The first overload is callable for const and non-const rvalues and lvalues. + // It can be used to obtain an int, cv void, or anything int is convertible + // to. + static_assert(internal::is_callable_r<int, C>::value, ""); + static_assert(internal::is_callable_r<int, C&>::value, ""); + static_assert(internal::is_callable_r<int, const C>::value, ""); + static_assert(internal::is_callable_r<int, const C&>::value, ""); + + static_assert(internal::is_callable_r<void, C>::value, ""); + static_assert(internal::is_callable_r<const volatile void, C>::value, ""); + static_assert(internal::is_callable_r<char, C>::value, ""); + + // It's possible to provide an int. If it's given to an lvalue, the result is + // void. Otherwise it is std::string (which is also treated as allowed for a + // void result type). + static_assert(internal::is_callable_r<void, C&, int>::value, ""); + static_assert(!internal::is_callable_r<int, C&, int>::value, ""); + static_assert(!internal::is_callable_r<std::string, C&, int>::value, ""); + static_assert(!internal::is_callable_r<void, const C&, int>::value, ""); + + static_assert(internal::is_callable_r<std::string, C, int>::value, ""); + static_assert(internal::is_callable_r<void, C, int>::value, ""); + static_assert(!internal::is_callable_r<int, C, int>::value, ""); + + // It's not possible to provide other arguments. + static_assert(!internal::is_callable_r<void, C, std::string>::value, ""); + static_assert(!internal::is_callable_r<void, C, int, int>::value, ""); + + // In C++17 and above, where it's guaranteed that functions can return + // non-moveable objects, everything should work fine for non-moveable rsult + // types too. +#if defined(GTEST_INTERNAL_CPLUSPLUS_LANG) && \ + GTEST_INTERNAL_CPLUSPLUS_LANG >= 201703L + { + struct NonMoveable { + NonMoveable() = default; + NonMoveable(NonMoveable&&) = delete; + }; + + static_assert(!std::is_move_constructible_v<NonMoveable>); + + struct Callable { + NonMoveable operator()() { return NonMoveable(); } + }; + + static_assert(internal::is_callable_r<NonMoveable, Callable>::value); + static_assert(internal::is_callable_r<void, Callable>::value); + static_assert( + internal::is_callable_r<const volatile void, Callable>::value); + + static_assert(!internal::is_callable_r<int, Callable>::value); + static_assert(!internal::is_callable_r<NonMoveable, Callable, int>::value); + } +#endif // C++17 and above + + // Nothing should choke when we try to call other arguments besides directly + // callable objects, but they should not show up as callable. + static_assert(!internal::is_callable_r<void, int>::value, ""); + static_assert(!internal::is_callable_r<void, void (C::*)()>::value, ""); + static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, ""); +} // Tests that BuiltInDefaultValue<T*>::Get() returns NULL. TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) { @@ -113,16 +281,17 @@ TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) { #endif #endif EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT - EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT - EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT + EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT + EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get()); EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get()); EXPECT_EQ(0, BuiltInDefaultValue<int>::Get()); - EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT - EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT - EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT - EXPECT_EQ(0U, BuiltInDefaultValue<UInt64>::Get()); - EXPECT_EQ(0, BuiltInDefaultValue<Int64>::Get()); + EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT + EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT + EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT + EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get()); // NOLINT + EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get()); // NOLINT + EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get()); // NOLINT EXPECT_EQ(0, BuiltInDefaultValue<float>::Get()); EXPECT_EQ(0, BuiltInDefaultValue<double>::Get()); } @@ -137,16 +306,17 @@ TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) { EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists()); #endif EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT - EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT - EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT + EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT + EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists()); EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists()); EXPECT_TRUE(BuiltInDefaultValue<int>::Exists()); - EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT - EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT - EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT - EXPECT_TRUE(BuiltInDefaultValue<UInt64>::Exists()); - EXPECT_TRUE(BuiltInDefaultValue<Int64>::Exists()); + EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT + EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT + EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT + EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists()); // NOLINT + EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists()); // NOLINT + EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists()); // NOLINT EXPECT_TRUE(BuiltInDefaultValue<float>::Exists()); EXPECT_TRUE(BuiltInDefaultValue<double>::Exists()); } @@ -164,13 +334,13 @@ TEST(BuiltInDefaultValueTest, BoolExists) { // Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a // string type. TEST(BuiltInDefaultValueTest, IsEmptyStringForString) { - EXPECT_EQ("", BuiltInDefaultValue< ::std::string>::Get()); + EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get()); } // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a // string type. TEST(BuiltInDefaultValueTest, ExistsForString) { - EXPECT_TRUE(BuiltInDefaultValue< ::std::string>::Exists()); + EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists()); } // Tests that BuiltInDefaultValue<const T>::Get() returns the same @@ -205,7 +375,6 @@ class MyNonDefaultConstructible { int value_; }; - TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) { EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists()); } @@ -214,25 +383,19 @@ TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) { EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value()); } - TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) { EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists()); } // Tests that BuiltInDefaultValue<T&>::Get() aborts the program. TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) { - EXPECT_DEATH_IF_SUPPORTED({ - BuiltInDefaultValue<int&>::Get(); - }, ""); - EXPECT_DEATH_IF_SUPPORTED({ - BuiltInDefaultValue<const char&>::Get(); - }, ""); + EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, ""); + EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, ""); } TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) { - EXPECT_DEATH_IF_SUPPORTED({ - BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); - }, ""); + EXPECT_DEATH_IF_SUPPORTED( + { BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, ""); } // Tests that DefaultValue<T>::IsSet() is false initially. @@ -278,26 +441,22 @@ TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { EXPECT_EQ(0, DefaultValue<int>::Get()); - EXPECT_DEATH_IF_SUPPORTED({ - DefaultValue<MyNonDefaultConstructible>::Get(); - }, ""); + EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); }, + ""); } TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) { EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr); - DefaultValue<std::unique_ptr<int>>::SetFactory([] { - return std::unique_ptr<int>(new int(42)); - }); + DefaultValue<std::unique_ptr<int>>::SetFactory( + [] { return std::make_unique<int>(42); }); EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get(); EXPECT_EQ(42, *i); } // Tests that DefaultValue<void>::Get() returns void. -TEST(DefaultValueTest, GetWorksForVoid) { - return DefaultValue<void>::Get(); -} +TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); } // Tests using DefaultValue with a reference type. @@ -308,7 +467,7 @@ TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) { EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); } -// Tests that DefaultValue<T&>::Exists is false initiallly. +// Tests that DefaultValue<T&>::Exists is false initially. TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) { EXPECT_FALSE(DefaultValue<int&>::Exists()); EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists()); @@ -345,12 +504,9 @@ TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { EXPECT_FALSE(DefaultValue<int&>::IsSet()); EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); - EXPECT_DEATH_IF_SUPPORTED({ - DefaultValue<int&>::Get(); - }, ""); - EXPECT_DEATH_IF_SUPPORTED({ - DefaultValue<MyNonDefaultConstructible>::Get(); - }, ""); + EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, ""); + EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); }, + ""); } // Tests that ActionInterface can be implemented by defining the @@ -381,7 +537,7 @@ TEST(ActionInterfaceTest, MakeAction) { EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5))); } -// Tests that Action<F> can be contructed from a pointer to +// Tests that Action<F> can be constructed from a pointer to // ActionInterface<F>. TEST(ActionTest, CanBeConstructedFromActionInterface) { Action<MyGlobalFunction> action(new MyActionImpl); @@ -430,7 +586,7 @@ class IsNotZero : public ActionInterface<bool(int)> { // NOLINT }; TEST(ActionTest, CanBeConvertedToOtherActionType) { - const Action<bool(int)> a1(new IsNotZero); // NOLINT + const Action<bool(int)> a1(new IsNotZero); // NOLINT const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT EXPECT_EQ(1, a2.Perform(std::make_tuple('a'))); EXPECT_EQ(0, a2.Perform(std::make_tuple('\0'))); @@ -522,27 +678,137 @@ TEST(ReturnTest, AcceptsStringLiteral) { EXPECT_EQ("world", a2.Perform(std::make_tuple())); } -// Test struct which wraps a vector of integers. Used in -// 'SupportsWrapperReturnType' test. -struct IntegerVectorWrapper { - std::vector<int> * v; - IntegerVectorWrapper(std::vector<int>& _v) : v(&_v) {} // NOLINT -}; +// Return(x) should work fine when the mock function's return type is a +// reference-like wrapper for decltype(x), as when x is a std::string and the +// mock function returns std::string_view. +TEST(ReturnTest, SupportsReferenceLikeReturnType) { + // A reference wrapper for std::vector<int>, implicitly convertible from it. + struct Result { + const std::vector<int>* v; + Result(const std::vector<int>& vec) : v(&vec) {} // NOLINT + }; + + // Set up an action for a mock function that returns the reference wrapper + // type, initializing it with an actual vector. + // + // The returned wrapper should be initialized with a copy of that vector + // that's embedded within the action itself (which should stay alive as long + // as the mock object is alive), rather than e.g. a reference to the temporary + // we feed to Return. This should work fine both for WillOnce and + // WillRepeatedly. + MockFunction<Result()> mock; + EXPECT_CALL(mock, Call) + .WillOnce(Return(std::vector<int>{17, 19, 23})) + .WillRepeatedly(Return(std::vector<int>{29, 31, 37})); + + EXPECT_THAT(mock.AsStdFunction()(), + Field(&Result::v, Pointee(ElementsAre(17, 19, 23)))); + + EXPECT_THAT(mock.AsStdFunction()(), + Field(&Result::v, Pointee(ElementsAre(29, 31, 37)))); +} + +TEST(ReturnTest, PrefersConversionOperator) { + // Define types In and Out such that: + // + // * In is implicitly convertible to Out. + // * Out also has an explicit constructor from In. + // + struct In; + struct Out { + int x; + + explicit Out(const int val) : x(val) {} + explicit Out(const In&) : x(0) {} + }; -// Tests that Return() works when return type is a wrapper type. -TEST(ReturnTest, SupportsWrapperReturnType) { - // Initialize vector of integers. - std::vector<int> v; - for (int i = 0; i < 5; ++i) v.push_back(i); + struct In { + operator Out() const { return Out{19}; } // NOLINT + }; - // Return() called with 'v' as argument. The Action will return the same data - // as 'v' (copy) but it will be wrapped in an IntegerVectorWrapper. - Action<IntegerVectorWrapper()> a = Return(v); - const std::vector<int>& result = *(a.Perform(std::make_tuple()).v); - EXPECT_THAT(result, ::testing::ElementsAre(0, 1, 2, 3, 4)); + // Assumption check: the C++ language rules are such that a function that + // returns Out which uses In a return statement will use the implicit + // conversion path rather than the explicit constructor. + EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19)); + + // Return should work the same way: if the mock function's return type is Out + // and we feed Return an In value, then the Out should be created through the + // implicit conversion path rather than the explicit constructor. + MockFunction<Out()> mock; + EXPECT_CALL(mock, Call).WillOnce(Return(In())); + EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19)); } -// Tests that Return(v) is covaraint. +// It should be possible to use Return(R) with a mock function result type U +// that is convertible from const R& but *not* R (such as +// std::reference_wrapper). This should work for both WillOnce and +// WillRepeatedly. +TEST(ReturnTest, ConversionRequiresConstLvalueReference) { + using R = int; + using U = std::reference_wrapper<const int>; + + static_assert(std::is_convertible<const R&, U>::value, ""); + static_assert(!std::is_convertible<R, U>::value, ""); + + MockFunction<U()> mock; + EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19)); + + EXPECT_EQ(17, mock.AsStdFunction()()); + EXPECT_EQ(19, mock.AsStdFunction()()); +} + +// Return(x) should not be usable with a mock function result type that's +// implicitly convertible from decltype(x) but requires a non-const lvalue +// reference to the input. It doesn't make sense for the conversion operator to +// modify the input. +TEST(ReturnTest, ConversionRequiresMutableLvalueReference) { + // Set up a type that is implicitly convertible from std::string&, but not + // std::string&& or `const std::string&`. + // + // Avoid asserting about conversion from std::string on MSVC, which seems to + // implement std::is_convertible incorrectly in this case. + struct S { + S(std::string&) {} // NOLINT + }; + + static_assert(std::is_convertible<std::string&, S>::value, ""); +#ifndef _MSC_VER + static_assert(!std::is_convertible<std::string&&, S>::value, ""); +#endif + static_assert(!std::is_convertible<const std::string&, S>::value, ""); + + // It shouldn't be possible to use the result of Return(std::string) in a + // context where an S is needed. + // + // Here too we disable the assertion for MSVC, since its incorrect + // implementation of is_convertible causes our SFINAE to be wrong. + using RA = decltype(Return(std::string())); + + static_assert(!std::is_convertible<RA, Action<S()>>::value, ""); +#ifndef _MSC_VER + static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, ""); +#endif +} + +TEST(ReturnTest, MoveOnlyResultType) { + // Return should support move-only result types when used with WillOnce. + { + MockFunction<std::unique_ptr<int>()> mock; + EXPECT_CALL(mock, Call) + // NOLINTNEXTLINE + .WillOnce(Return(std::unique_ptr<int>(new int(17)))); + + EXPECT_THAT(mock.AsStdFunction()(), Pointee(17)); + } + + // The result of Return should not be convertible to Action (so it can't be + // used with WillRepeatedly). + static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())), + Action<std::unique_ptr<int>()>>::value, + ""); +} + +// Tests that Return(v) is covariant. struct Base { bool operator==(const Base&) { return true; } @@ -573,8 +839,6 @@ class FromType { private: bool* const converted_; - - GTEST_DISALLOW_ASSIGN_(FromType); }; class ToType { @@ -595,19 +859,6 @@ TEST(ReturnTest, ConvertsArgumentWhenConverted) { << "when performed."; } -class DestinationType {}; - -class SourceType { - public: - // Note: a non-const typecast operator. - operator DestinationType() { return DestinationType(); } -}; - -TEST(ReturnTest, CanConvertArgumentUsingNonConstTypeCastOperator) { - SourceType s; - Action<DestinationType()> action(Return(s)); -} - // Tests that ReturnNull() returns NULL in a pointer-returning function. TEST(ReturnNullTest, WorksInPointerReturningFunction) { const Action<int*()> a1 = ReturnNull(); @@ -646,6 +897,43 @@ TEST(ReturnRefTest, IsCovariant) { EXPECT_EQ(&derived, &a.Perform(std::make_tuple())); } +template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))> +bool CanCallReturnRef(T&&) { + return true; +} +bool CanCallReturnRef(Unused) { return false; } + +// Tests that ReturnRef(v) is working with non-temporaries (T&) +TEST(ReturnRefTest, WorksForNonTemporary) { + int scalar_value = 123; + EXPECT_TRUE(CanCallReturnRef(scalar_value)); + + std::string non_scalar_value("ABC"); + EXPECT_TRUE(CanCallReturnRef(non_scalar_value)); + + const int const_scalar_value{321}; + EXPECT_TRUE(CanCallReturnRef(const_scalar_value)); + + const std::string const_non_scalar_value("CBA"); + EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value)); +} + +// Tests that ReturnRef(v) is not working with temporaries (T&&) +TEST(ReturnRefTest, DoesNotWorkForTemporary) { + auto scalar_value = []() -> int { return 123; }; + EXPECT_FALSE(CanCallReturnRef(scalar_value())); + + auto non_scalar_value = []() -> std::string { return "ABC"; }; + EXPECT_FALSE(CanCallReturnRef(non_scalar_value())); + + // cannot use here callable returning "const scalar type", + // because such const for scalar return type is ignored + EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321))); + + auto const_non_scalar_value = []() -> const std::string { return "CBA"; }; + EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value())); +} + // Tests that ReturnRefOfCopy(v) works for reference types. TEST(ReturnRefOfCopyTest, WorksForReference) { int n = 42; @@ -670,11 +958,36 @@ TEST(ReturnRefOfCopyTest, IsCovariant) { EXPECT_NE(&derived, &a.Perform(std::make_tuple())); } +// Tests that ReturnRoundRobin(v) works with initializer lists +TEST(ReturnRoundRobinTest, WorksForInitList) { + Action<int()> ret = ReturnRoundRobin({1, 2, 3}); + + EXPECT_EQ(1, ret.Perform(std::make_tuple())); + EXPECT_EQ(2, ret.Perform(std::make_tuple())); + EXPECT_EQ(3, ret.Perform(std::make_tuple())); + EXPECT_EQ(1, ret.Perform(std::make_tuple())); + EXPECT_EQ(2, ret.Perform(std::make_tuple())); + EXPECT_EQ(3, ret.Perform(std::make_tuple())); +} + +// Tests that ReturnRoundRobin(v) works with vectors +TEST(ReturnRoundRobinTest, WorksForVector) { + std::vector<double> v = {4.4, 5.5, 6.6}; + Action<double()> ret = ReturnRoundRobin(v); + + EXPECT_EQ(4.4, ret.Perform(std::make_tuple())); + EXPECT_EQ(5.5, ret.Perform(std::make_tuple())); + EXPECT_EQ(6.6, ret.Perform(std::make_tuple())); + EXPECT_EQ(4.4, ret.Perform(std::make_tuple())); + EXPECT_EQ(5.5, ret.Perform(std::make_tuple())); + EXPECT_EQ(6.6, ret.Perform(std::make_tuple())); +} + // Tests that DoDefault() does the default action for the mock method. class MockClass { public: - MockClass() {} + MockClass() = default; MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT MOCK_METHOD0(Foo, MyNonDefaultConstructible()); @@ -686,15 +999,15 @@ class MockClass { int(const std::unique_ptr<int>&, std::unique_ptr<int>)); private: - GTEST_DISALLOW_COPY_AND_ASSIGN_(MockClass); + MockClass(const MockClass&) = delete; + MockClass& operator=(const MockClass&) = delete; }; // Tests that DoDefault() returns the built-in default value for the // return type by default. TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) { MockClass mock; - EXPECT_CALL(mock, IntFunc(_)) - .WillOnce(DoDefault()); + EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); EXPECT_EQ(0, mock.IntFunc(true)); } @@ -702,14 +1015,11 @@ TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) { // the process when there is no built-in default value for the return type. TEST(DoDefaultDeathTest, DiesForUnknowType) { MockClass mock; - EXPECT_CALL(mock, Foo()) - .WillRepeatedly(DoDefault()); + EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault()); #if GTEST_HAS_EXCEPTIONS EXPECT_ANY_THROW(mock.Foo()); #else - EXPECT_DEATH_IF_SUPPORTED({ - mock.Foo(); - }, ""); + EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, ""); #endif } @@ -721,25 +1031,21 @@ void VoidFunc(bool /* flag */) {} TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) { MockClass mock; EXPECT_CALL(mock, IntFunc(_)) - .WillRepeatedly(DoAll(Invoke(VoidFunc), - DoDefault())); + .WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault())); // Ideally we should verify the error message as well. Sadly, // EXPECT_DEATH() can only capture stderr, while Google Mock's // errors are printed on stdout. Therefore we have to settle for // not verifying the message. - EXPECT_DEATH_IF_SUPPORTED({ - mock.IntFunc(true); - }, ""); + EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, ""); } // Tests that DoDefault() returns the default value set by -// DefaultValue<T>::Set() when it's not overriden by an ON_CALL(). +// DefaultValue<T>::Set() when it's not overridden by an ON_CALL(). TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) { DefaultValue<int>::Set(1); MockClass mock; - EXPECT_CALL(mock, IntFunc(_)) - .WillOnce(DoDefault()); + EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); EXPECT_EQ(1, mock.IntFunc(false)); DefaultValue<int>::Clear(); } @@ -747,20 +1053,19 @@ TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) { // Tests that DoDefault() does the action specified by ON_CALL(). TEST(DoDefaultTest, DoesWhatOnCallSpecifies) { MockClass mock; - ON_CALL(mock, IntFunc(_)) - .WillByDefault(Return(2)); - EXPECT_CALL(mock, IntFunc(_)) - .WillOnce(DoDefault()); + ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2)); + EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); EXPECT_EQ(2, mock.IntFunc(false)); } // Tests that using DoDefault() in ON_CALL() leads to a run-time failure. TEST(DoDefaultTest, CannotBeUsedInOnCall) { MockClass mock; - EXPECT_NONFATAL_FAILURE({ // NOLINT - ON_CALL(mock, IntFunc(_)) - .WillByDefault(DoDefault()); - }, "DoDefault() cannot be used in ON_CALL()"); + EXPECT_NONFATAL_FAILURE( + { // NOLINT + ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault()); + }, + "DoDefault() cannot be used in ON_CALL()"); } // Tests that SetArgPointee<N>(v) sets the variable pointed to by @@ -807,7 +1112,7 @@ TEST(SetArgPointeeTest, AcceptsWideStringLiteral) { a.Perform(std::make_tuple(&ptr)); EXPECT_STREQ(L"world", ptr); -# if GTEST_HAS_STD_WSTRING +#if GTEST_HAS_STD_WSTRING typedef void MyStringFunction(std::wstring*); Action<MyStringFunction> a2 = SetArgPointee<0>(L"world"); @@ -815,7 +1120,7 @@ TEST(SetArgPointeeTest, AcceptsWideStringLiteral) { a2.Perform(std::make_tuple(&str)); EXPECT_EQ(L"world", str); -# endif +#endif } // Tests that SetArgPointee<N>() accepts a char pointer. @@ -846,7 +1151,7 @@ TEST(SetArgPointeeTest, AcceptsWideCharPointer) { a.Perform(std::make_tuple(true, &ptr)); EXPECT_EQ(hi, ptr); -# if GTEST_HAS_STD_WSTRING +#if GTEST_HAS_STD_WSTRING typedef void MyStringFunction(bool, std::wstring*); wchar_t world_array[] = L"world"; @@ -855,7 +1160,7 @@ TEST(SetArgPointeeTest, AcceptsWideCharPointer) { std::wstring str; a2.Perform(std::make_tuple(true, &str)); EXPECT_EQ(world_array, str); -# endif +#endif } // Tests that SetArgumentPointee<N>(v) sets the variable pointed to by @@ -1018,6 +1323,159 @@ TEST(AssignTest, CompatibleTypes) { EXPECT_DOUBLE_EQ(5, x); } +// DoAll should support &&-qualified actions when used with WillOnce. +TEST(DoAll, SupportsRefQualifiedActions) { + struct InitialAction { + void operator()(const int arg) && { EXPECT_EQ(17, arg); } + }; + + struct FinalAction { + int operator()() && { return 19; } + }; + + MockFunction<int(int)> mock; + EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{})); + EXPECT_EQ(19, mock.AsStdFunction()(17)); +} + +// DoAll should never provide rvalue references to the initial actions. If the +// mock action itself accepts an rvalue reference or a non-scalar object by +// value then the final action should receive an rvalue reference, but initial +// actions should receive only lvalue references. +TEST(DoAll, ProvidesLvalueReferencesToInitialActions) { + struct Obj {}; + + // Mock action accepts by value: the initial action should be fed a const + // lvalue reference, and the final action an rvalue reference. + { + struct InitialAction { + void operator()(Obj&) const { FAIL() << "Unexpected call"; } + void operator()(const Obj&) const {} + void operator()(Obj&&) const { FAIL() << "Unexpected call"; } + void operator()(const Obj&&) const { FAIL() << "Unexpected call"; } + }; + + MockFunction<void(Obj)> mock; + EXPECT_CALL(mock, Call) + .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})) + .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); + + mock.AsStdFunction()(Obj{}); + mock.AsStdFunction()(Obj{}); + } + + // Mock action accepts by const lvalue reference: both actions should receive + // a const lvalue reference. + { + struct InitialAction { + void operator()(Obj&) const { FAIL() << "Unexpected call"; } + void operator()(const Obj&) const {} + void operator()(Obj&&) const { FAIL() << "Unexpected call"; } + void operator()(const Obj&&) const { FAIL() << "Unexpected call"; } + }; + + MockFunction<void(const Obj&)> mock; + EXPECT_CALL(mock, Call) + .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {})) + .WillRepeatedly( + DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {})); + + mock.AsStdFunction()(Obj{}); + mock.AsStdFunction()(Obj{}); + } + + // Mock action accepts by non-const lvalue reference: both actions should get + // a non-const lvalue reference if they want them. + { + struct InitialAction { + void operator()(Obj&) const {} + void operator()(Obj&&) const { FAIL() << "Unexpected call"; } + }; + + MockFunction<void(Obj&)> mock; + EXPECT_CALL(mock, Call) + .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})) + .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})); + + Obj obj; + mock.AsStdFunction()(obj); + mock.AsStdFunction()(obj); + } + + // Mock action accepts by rvalue reference: the initial actions should receive + // a non-const lvalue reference if it wants it, and the final action an rvalue + // reference. + { + struct InitialAction { + void operator()(Obj&) const {} + void operator()(Obj&&) const { FAIL() << "Unexpected call"; } + }; + + MockFunction<void(Obj&&)> mock; + EXPECT_CALL(mock, Call) + .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})) + .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); + + mock.AsStdFunction()(Obj{}); + mock.AsStdFunction()(Obj{}); + } + + // &&-qualified initial actions should also be allowed with WillOnce. + { + struct InitialAction { + void operator()(Obj&) && {} + }; + + MockFunction<void(Obj&)> mock; + EXPECT_CALL(mock, Call) + .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})); + + Obj obj; + mock.AsStdFunction()(obj); + } + + { + struct InitialAction { + void operator()(Obj&) && {} + }; + + MockFunction<void(Obj&&)> mock; + EXPECT_CALL(mock, Call) + .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); + + mock.AsStdFunction()(Obj{}); + } +} + +// DoAll should support being used with type-erased Action objects, both through +// WillOnce and WillRepeatedly. +TEST(DoAll, SupportsTypeErasedActions) { + // With only type-erased actions. + const Action<void()> initial_action = [] {}; + const Action<int()> final_action = [] { return 17; }; + + MockFunction<int()> mock; + EXPECT_CALL(mock, Call) + .WillOnce(DoAll(initial_action, initial_action, final_action)) + .WillRepeatedly(DoAll(initial_action, initial_action, final_action)); + + EXPECT_EQ(17, mock.AsStdFunction()()); + + // With &&-qualified and move-only final action. + { + struct FinalAction { + FinalAction() = default; + FinalAction(FinalAction&&) = default; + + int operator()() && { return 17; } + }; + + EXPECT_CALL(mock, Call) + .WillOnce(DoAll(initial_action, initial_action, FinalAction{})); + + EXPECT_EQ(17, mock.AsStdFunction()()); + } +} // Tests using WithArgs and with an action that takes 1 argument. TEST(WithArgsTest, OneArg) { @@ -1114,11 +1572,32 @@ TEST(WithArgsTest, ReturnReference) { TEST(WithArgsTest, InnerActionWithConversion) { Action<Derived*()> inner = [] { return nullptr; }; - Action<Base*(double)> a = testing::WithoutArgs(inner); - EXPECT_EQ(nullptr, a.Perform(std::make_tuple(1.1))); + + MockFunction<Base*(double)> mock; + EXPECT_CALL(mock, Call) + .WillOnce(WithoutArgs(inner)) + .WillRepeatedly(WithoutArgs(inner)); + + EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1)); + EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1)); +} + +// It should be possible to use an &&-qualified inner action as long as the +// whole shebang is used as an rvalue with WillOnce. +TEST(WithArgsTest, RefQualifiedInnerAction) { + struct SomeAction { + int operator()(const int arg) && { + EXPECT_EQ(17, arg); + return 19; + } + }; + + MockFunction<int(int, int)> mock; + EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{})); + EXPECT_EQ(19, mock.AsStdFunction()(0, 17)); } -#if !GTEST_OS_WINDOWS_MOBILE +#ifndef GTEST_OS_WINDOWS_MOBILE class SetErrnoAndReturnTest : public testing::Test { protected: @@ -1174,7 +1653,7 @@ TEST(ByRefTest, IsCopyable) { TEST(ByRefTest, ConstValue) { const int n = 0; // int& ref = ByRef(n); // This shouldn't compile - we have a - // negative compilation test to catch it. + // negative compilation test to catch it. const int& const_ref = ByRef(n); EXPECT_EQ(&n, &const_ref); } @@ -1199,7 +1678,7 @@ TEST(ByRefTest, ExplicitType) { EXPECT_EQ(&n, &r1); // ByRef<char>(n); // This shouldn't compile - we have a negative - // compilation test to catch it. + // compilation test to catch it. Derived d; Derived& r2 = ByRef<Derived>(d); @@ -1230,11 +1709,55 @@ TEST(ByRefTest, PrintsCorrectly) { EXPECT_EQ(expected.str(), actual.str()); } +struct UnaryConstructorClass { + explicit UnaryConstructorClass(int v) : value(v) {} + int value; +}; + +// Tests using ReturnNew() with a unary constructor. +TEST(ReturnNewTest, Unary) { + Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000); + UnaryConstructorClass* c = a.Perform(std::make_tuple()); + EXPECT_EQ(4000, c->value); + delete c; +} + +TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) { + Action<UnaryConstructorClass*(bool, int)> a = + ReturnNew<UnaryConstructorClass>(4000); + UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5)); + EXPECT_EQ(4000, c->value); + delete c; +} + +TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) { + Action<const UnaryConstructorClass*()> a = + ReturnNew<UnaryConstructorClass>(4000); + const UnaryConstructorClass* c = a.Perform(std::make_tuple()); + EXPECT_EQ(4000, c->value); + delete c; +} + +class TenArgConstructorClass { + public: + TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7, + int a8, int a9, int a10) + : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {} + int value_; +}; -std::unique_ptr<int> UniquePtrSource() { - return std::unique_ptr<int>(new int(19)); +// Tests using ReturnNew() with a 10-argument constructor. +TEST(ReturnNewTest, ConstructorThatTakes10Arguments) { + Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>( + 1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90, + 0); + TenArgConstructorClass* c = a.Perform(std::make_tuple()); + EXPECT_EQ(1234567890, c->value_); + delete c; } +std::unique_ptr<int> UniquePtrSource() { return std::make_unique<int>(19); } + std::vector<std::unique_ptr<int>> VectorUniquePtrSource() { std::vector<std::unique_ptr<int>> out; out.emplace_back(new int(7)); @@ -1268,9 +1791,10 @@ TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) { MockClass mock; std::unique_ptr<int> i(new int(19)); EXPECT_CALL(mock_function, Call()); - EXPECT_CALL(mock, MakeUnique()).WillOnce(DoAll( - InvokeWithoutArgs(&mock_function, &testing::MockFunction<void()>::Call), - Return(ByMove(std::move(i))))); + EXPECT_CALL(mock, MakeUnique()) + .WillOnce(DoAll(InvokeWithoutArgs(&mock_function, + &testing::MockFunction<void()>::Call), + Return(ByMove(std::move(i))))); std::unique_ptr<int> result1 = mock.MakeUnique(); EXPECT_EQ(19, *result1); @@ -1280,9 +1804,8 @@ TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) { MockClass mock; // Check default value - DefaultValue<std::unique_ptr<int>>::SetFactory([] { - return std::unique_ptr<int>(new int(42)); - }); + DefaultValue<std::unique_ptr<int>>::SetFactory( + [] { return std::make_unique<int>(42); }); EXPECT_EQ(42, *mock.MakeUnique()); EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource)); @@ -1302,7 +1825,7 @@ TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) { TEST(MockMethodTest, CanTakeMoveOnlyValue) { MockClass mock; - auto make = [](int i) { return std::unique_ptr<int>(new int(i)); }; + auto make = [](int i) { return std::make_unique<int>(i); }; EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) { return *i; @@ -1342,6 +1865,178 @@ TEST(MockMethodTest, CanTakeMoveOnlyValue) { EXPECT_EQ(42, *saved); } +// It should be possible to use callables with an &&-qualified call operator +// with WillOnce, since they will be called only once. This allows actions to +// contain and manipulate move-only types. +TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) { + struct Return17 { + int operator()() && { return 17; } + }; + + // Action is directly compatible with mocked function type. + { + MockFunction<int()> mock; + EXPECT_CALL(mock, Call).WillOnce(Return17()); + + EXPECT_EQ(17, mock.AsStdFunction()()); + } + + // Action doesn't want mocked function arguments. + { + MockFunction<int(int)> mock; + EXPECT_CALL(mock, Call).WillOnce(Return17()); + + EXPECT_EQ(17, mock.AsStdFunction()(0)); + } +} + +// Edge case: if an action has both a const-qualified and an &&-qualified call +// operator, there should be no "ambiguous call" errors. The &&-qualified +// operator should be used by WillOnce (since it doesn't need to retain the +// action beyond one call), and the const-qualified one by WillRepeatedly. +TEST(MockMethodTest, ActionHasMultipleCallOperators) { + struct ReturnInt { + int operator()() && { return 17; } + int operator()() const& { return 19; } + }; + + // Directly compatible with mocked function type. + { + MockFunction<int()> mock; + EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); + + EXPECT_EQ(17, mock.AsStdFunction()()); + EXPECT_EQ(19, mock.AsStdFunction()()); + EXPECT_EQ(19, mock.AsStdFunction()()); + } + + // Ignores function arguments. + { + MockFunction<int(int)> mock; + EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); + + EXPECT_EQ(17, mock.AsStdFunction()(0)); + EXPECT_EQ(19, mock.AsStdFunction()(0)); + EXPECT_EQ(19, mock.AsStdFunction()(0)); + } +} + +// WillOnce should have no problem coping with a move-only action, whether it is +// &&-qualified or not. +TEST(MockMethodTest, MoveOnlyAction) { + // &&-qualified + { + struct Return17 { + Return17() = default; + Return17(Return17&&) = default; + + Return17(const Return17&) = delete; + Return17 operator=(const Return17&) = delete; + + int operator()() && { return 17; } + }; + + MockFunction<int()> mock; + EXPECT_CALL(mock, Call).WillOnce(Return17()); + EXPECT_EQ(17, mock.AsStdFunction()()); + } + + // Not &&-qualified + { + struct Return17 { + Return17() = default; + Return17(Return17&&) = default; + + Return17(const Return17&) = delete; + Return17 operator=(const Return17&) = delete; + + int operator()() const { return 17; } + }; + + MockFunction<int()> mock; + EXPECT_CALL(mock, Call).WillOnce(Return17()); + EXPECT_EQ(17, mock.AsStdFunction()()); + } +} + +// It should be possible to use an action that returns a value with a mock +// function that doesn't, both through WillOnce and WillRepeatedly. +TEST(MockMethodTest, ActionReturnsIgnoredValue) { + struct ReturnInt { + int operator()() const { return 0; } + }; + + MockFunction<void()> mock; + EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); + + mock.AsStdFunction()(); + mock.AsStdFunction()(); +} + +// Despite the fanciness around move-only actions and so on, it should still be +// possible to hand an lvalue reference to a copyable action to WillOnce. +TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) { + MockFunction<int()> mock; + + const auto action = [] { return 17; }; + EXPECT_CALL(mock, Call).WillOnce(action); + + EXPECT_EQ(17, mock.AsStdFunction()()); +} + +// A callable that doesn't use SFINAE to restrict its call operator's overload +// set, but is still picky about which arguments it will accept. +struct StaticAssertSingleArgument { + template <typename... Args> + static constexpr bool CheckArgs() { + static_assert(sizeof...(Args) == 1, ""); + return true; + } + + template <typename... Args, bool = CheckArgs<Args...>()> + int operator()(Args...) const { + return 17; + } +}; + +// WillOnce and WillRepeatedly should both work fine with naïve implementations +// of actions that don't use SFINAE to limit the overload set for their call +// operator. If they are compatible with the actual mocked signature, we +// shouldn't probe them with no arguments and trip a static_assert. +TEST(MockMethodTest, ActionSwallowsAllArguments) { + MockFunction<int(int)> mock; + EXPECT_CALL(mock, Call) + .WillOnce(StaticAssertSingleArgument{}) + .WillRepeatedly(StaticAssertSingleArgument{}); + + EXPECT_EQ(17, mock.AsStdFunction()(0)); + EXPECT_EQ(17, mock.AsStdFunction()(0)); +} + +struct ActionWithTemplatedConversionOperators { + template <typename... Args> + operator OnceAction<int(Args...)>() && { // NOLINT + return [] { return 17; }; + } + + template <typename... Args> + operator Action<int(Args...)>() const { // NOLINT + return [] { return 19; }; + } +}; + +// It should be fine to hand both WillOnce and WillRepeatedly a function that +// defines templated conversion operators to OnceAction and Action. WillOnce +// should prefer the OnceAction version. +TEST(MockMethodTest, ActionHasTemplatedConversionOperators) { + MockFunction<int()> mock; + EXPECT_CALL(mock, Call) + .WillOnce(ActionWithTemplatedConversionOperators{}) + .WillRepeatedly(ActionWithTemplatedConversionOperators{}); + + EXPECT_EQ(17, mock.AsStdFunction()()); + EXPECT_EQ(19, mock.AsStdFunction()()); +} // Tests for std::function based action. @@ -1356,12 +2051,12 @@ int Deref(std::unique_ptr<int> ptr) { return *ptr; } struct Double { template <typename T> - T operator()(T t) { return 2 * t; } + T operator()(T t) { + return 2 * t; + } }; -std::unique_ptr<int> UniqueInt(int i) { - return std::unique_ptr<int>(new int(i)); -} +std::unique_ptr<int> UniqueInt(int i) { return std::make_unique<int>(i); } TEST(FunctorActionTest, ActionFromFunction) { Action<int(int, int&, int*)> a = &Add; @@ -1408,14 +2103,26 @@ TEST(FunctorActionTest, TypeConversion) { EXPECT_EQ(1, s2.Perform(std::make_tuple("hello"))); // Also between the lambda and the action itself. - const Action<bool(std::string)> x = [](Unused) { return 42; }; - EXPECT_TRUE(x.Perform(std::make_tuple("hello"))); + const Action<bool(std::string)> x1 = [](Unused) { return 42; }; + const Action<bool(std::string)> x2 = [] { return 42; }; + EXPECT_TRUE(x1.Perform(std::make_tuple("hello"))); + EXPECT_TRUE(x2.Perform(std::make_tuple("hello"))); + + // Ensure decay occurs where required. + std::function<int()> f = [] { return 7; }; + Action<int(int)> d = f; + f = nullptr; + EXPECT_EQ(7, d.Perform(std::make_tuple(1))); + + // Ensure creation of an empty action succeeds. + Action<void(int)>(nullptr); } TEST(FunctorActionTest, UnusedArguments) { // Verify that users can ignore uninteresting arguments. - Action<int(int, double y, double z)> a = - [](int i, Unused, Unused) { return 2 * i; }; + Action<int(int, double y, double z)> a = [](int i, Unused, Unused) { + return 2 * i; + }; std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44); EXPECT_EQ(6, a.Perform(dummy)); } @@ -1434,12 +2141,29 @@ TEST(MoveOnlyArgumentsTest, ReturningActions) { EXPECT_EQ(x, 3); } +ACTION(ReturnArity) { return std::tuple_size<args_type>::value; } + +TEST(ActionMacro, LargeArity) { + EXPECT_EQ( + 1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0))); + EXPECT_EQ( + 10, + testing::Action<int(int, int, int, int, int, int, int, int, int, int)>( + ReturnArity()) + .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); + EXPECT_EQ( + 20, + testing::Action<int(int, int, int, int, int, int, int, int, int, int, int, + int, int, int, int, int, int, int, int, int)>( + ReturnArity()) + .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, + 14, 15, 16, 17, 18, 19))); +} -} // Unnamed namespace +} // namespace +} // namespace testing -#ifdef _MSC_VER -#if _MSC_VER == 1900 -# pragma warning(pop) -#endif +#if defined(_MSC_VER) && (_MSC_VER == 1900) +GTEST_DISABLE_MSC_WARNINGS_POP_() // 4800 #endif - +GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 4503 |