aboutsummaryrefslogblamecommitdiff
path: root/lib/Sema/SemaDecl.cpp
blob: 06fd1a17362aa96c45077197a85c16a0590cce72 (plain) (tree)
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
























































































































































































                                                                                
                          


































                                                                                




















                                                                            















                                                                             
                                                           



















































































































































































                                                                                

                                                    
                  
                           


           
                                   






















































































































































                                                                                 

                                                                           
                                                        

                                                                         









                                                                         


                                                                                







                                                                         

                                                                           

                                     
                               

















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                
                                     
























































































































































































                                                                              
                                     




                                                              

                                                                             













































































                                                                               
                                              


                                                                   
                                                   





















































                                                                         
                                                                         



                                                            
                                                    




































































































































































































































                                                                                

                                                                             














































































                                                                                
                                                                            




































                                                                                
                                     

                                    
                                                                               






                                                                        
                                                                
























































































































                                                                                 

                                                      



















































































































































































































































































                                                                                





                                                                              




































































































































































































                                                                                
                                   
 
                                          




























































































































                                                                                

                                               
                                                           
                                                                


























                                                                             









                                                                         



                                                                          


                                                                   








































































































































                                                                                


                                                                       
                                                                                






                                                                   

                                                          
















                                                                     
                                                                      


                                                          

                                                         
                                                                             
                                                                   


                                                         
                                                                                

































































































































































































































































































































































                                                                                
                                                                       



























                                                                         
                                           




























































































































































                                                                                







                                                                    



























































































                                                                              

                                              




































                                                                            
                                                   





































                                                                             













                                                                                
                        

                                                                             



                                                                    
                                                                







                                                                     
                                     


































































































































                                                                                




                                                               



















                                                                             


                                                                                
                                                     




                                                                            
                                              
























































































































































































































































































                                                                                 







                                                                 
                                                           














                                                                 

                                                                                




                                                     
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for declarations.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "SemaInherit.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/StmtCXX.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/SourceManager.h"
// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/HeaderSearch.h" 
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <functional>
using namespace clang;

/// getDeclName - Return a pretty name for the specified decl if possible, or
/// an empty string if not.  This is used for pretty crash reporting. 
std::string Sema::getDeclName(DeclPtrTy d) {
  Decl *D = d.getAs<Decl>();
  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
    return DN->getQualifiedNameAsString();
  return "";
}

Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
}

/// \brief If the identifier refers to a type name within this scope,
/// return the declaration of that type.
///
/// This routine performs ordinary name lookup of the identifier II
/// within the given scope, with optional C++ scope specifier SS, to
/// determine whether the name refers to a type. If so, returns an
/// opaque pointer (actually a QualType) corresponding to that
/// type. Otherwise, returns NULL.
///
/// If name lookup results in an ambiguity, this routine will complain
/// and then return NULL.
Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
                                Scope *S, const CXXScopeSpec *SS) {
  // C++ [temp.res]p3:
  //   A qualified-id that refers to a type and in which the
  //   nested-name-specifier depends on a template-parameter (14.6.2)
  //   shall be prefixed by the keyword typename to indicate that the
  //   qualified-id denotes a type, forming an
  //   elaborated-type-specifier (7.1.5.3).
  //
  // We therefore do not perform any name lookup if the result would
  // refer to a member of an unknown specialization.
  if (SS && isUnknownSpecialization(*SS))
    return 0;

  LookupResult Result 
    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);

  NamedDecl *IIDecl = 0;
  switch (Result.getKind()) {
  case LookupResult::NotFound:
  case LookupResult::FoundOverloaded:
    return 0;

  case LookupResult::AmbiguousBaseSubobjectTypes:
  case LookupResult::AmbiguousBaseSubobjects:
  case LookupResult::AmbiguousReference: {
    // Look to see if we have a type anywhere in the list of results.
    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
         Res != ResEnd; ++Res) {
      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
        if (!IIDecl || 
            (*Res)->getLocation().getRawEncoding() < 
              IIDecl->getLocation().getRawEncoding())
          IIDecl = *Res;
      }
    }

    if (!IIDecl) {
      // None of the entities we found is a type, so there is no way
      // to even assume that the result is a type. In this case, don't
      // complain about the ambiguity. The parser will either try to
      // perform this lookup again (e.g., as an object name), which
      // will produce the ambiguity, or will complain that it expected
      // a type name.
      Result.Destroy();
      return 0;
    }

    // We found a type within the ambiguous lookup; diagnose the
    // ambiguity and then return that type. This might be the right
    // answer, or it might not be, but it suppresses any attempt to
    // perform the name lookup again.
    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
    break;
  }

  case LookupResult::Found:
    IIDecl = Result.getAsDecl();
    break;
  }

  if (IIDecl) {
    QualType T;
  
    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
      // Check whether we can use this type
      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
  
      if (getLangOptions().CPlusPlus) {
        // C++ [temp.local]p2:
        //   Within the scope of a class template specialization or
        //   partial specialization, when the injected-class-name is
        //   not followed by a <, it is equivalent to the
        //   injected-class-name followed by the template-argument s
        //   of the class template specialization or partial
        //   specialization enclosed in <>.
        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
          if (RD->isInjectedClassName())
            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
              T = Template->getInjectedClassNameType(Context);
      }

      if (T.isNull())
        T = Context.getTypeDeclType(TD);
    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
      // Check whether we can use this interface.
      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
      
      T = Context.getObjCInterfaceType(IDecl);
    } else
      return 0;

    if (SS)
      T = getQualifiedNameType(*SS, T);

    return T.getAsOpaquePtr();
  }

  return 0;
}

/// isTagName() - This method is called *for error recovery purposes only*
/// to determine if the specified name is a valid tag name ("struct foo").  If
/// so, this returns the TST for the tag corresponding to it (TST_enum,
/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
/// where the user forgot to specify the tag.
DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
  // Do a tag name lookup in this scope.
  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
  if (R.getKind() == LookupResult::Found)
    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
      switch (TD->getTagKind()) {
      case TagDecl::TK_struct: return DeclSpec::TST_struct;
      case TagDecl::TK_union:  return DeclSpec::TST_union;
      case TagDecl::TK_class:  return DeclSpec::TST_class;
      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
      }
    }
  
  return DeclSpec::TST_unspecified;
}



DeclContext *Sema::getContainingDC(DeclContext *DC) {
  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
    // A C++ out-of-line method will return to the file declaration context.
    if (MD->isOutOfLine())
      return MD->getLexicalDeclContext();

    // A C++ inline method is parsed *after* the topmost class it was declared
    // in is fully parsed (it's "complete").
    // The parsing of a C++ inline method happens at the declaration context of
    // the topmost (non-nested) class it is lexically declared in.
    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
    DC = MD->getParent();
    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
      DC = RD;

    // Return the declaration context of the topmost class the inline method is
    // declared in.
    return DC;
  }

  if (isa<ObjCMethodDecl>(DC))
    return Context.getTranslationUnitDecl();

  return DC->getLexicalParent();
}

void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
  assert(getContainingDC(DC) == CurContext &&
      "The next DeclContext should be lexically contained in the current one.");
  CurContext = DC;
  S->setEntity(DC);
}

void Sema::PopDeclContext() {
  assert(CurContext && "DeclContext imbalance!");

  CurContext = getContainingDC(CurContext);
}

/// EnterDeclaratorContext - Used when we must lookup names in the context
/// of a declarator's nested name specifier.
void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
  CurContext = DC;
  assert(CurContext && "No context?");
  S->setEntity(CurContext);
}

void Sema::ExitDeclaratorContext(Scope *S) {
  S->setEntity(PreDeclaratorDC);
  PreDeclaratorDC = 0;

  // Reset CurContext to the nearest enclosing context.
  while (!S->getEntity() && S->getParent())
    S = S->getParent();
  CurContext = static_cast<DeclContext*>(S->getEntity());
  assert(CurContext && "No context?");
}

/// \brief Determine whether we allow overloading of the function
/// PrevDecl with another declaration.
///
/// This routine determines whether overloading is possible, not
/// whether some new function is actually an overload. It will return
/// true in C++ (where we can always provide overloads) or, as an
/// extension, in C when the previous function is already an
/// overloaded function declaration or has the "overloadable"
/// attribute.
static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
  if (Context.getLangOptions().CPlusPlus)
    return true;

  if (isa<OverloadedFunctionDecl>(PrevDecl))
    return true;

  return PrevDecl->getAttr<OverloadableAttr>(Context) != 0;
}

/// Add this decl to the scope shadowed decl chains.
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
  // Move up the scope chain until we find the nearest enclosing
  // non-transparent context. The declaration will be introduced into this
  // scope.
  while (S->getEntity() && 
         ((DeclContext *)S->getEntity())->isTransparentContext())
    S = S->getParent();

  S->AddDecl(DeclPtrTy::make(D));

  // Add scoped declarations into their context, so that they can be
  // found later. Declarations without a context won't be inserted
  // into any context.
  CurContext->addDecl(Context, D);

  // C++ [basic.scope]p4:
  //   -- exactly one declaration shall declare a class name or
  //   enumeration name that is not a typedef name and the other
  //   declarations shall all refer to the same object or
  //   enumerator, or all refer to functions and function templates;
  //   in this case the class name or enumeration name is hidden.
  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
    // We are pushing the name of a tag (enum or class).
    if (CurContext->getLookupContext() 
          == TD->getDeclContext()->getLookupContext()) {
      // We're pushing the tag into the current context, which might
      // require some reshuffling in the identifier resolver.
      IdentifierResolver::iterator
        I = IdResolver.begin(TD->getDeclName()),
        IEnd = IdResolver.end();
      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
        NamedDecl *PrevDecl = *I;
        for (; I != IEnd && isDeclInScope(*I, CurContext, S); 
             PrevDecl = *I, ++I) {
          if (TD->declarationReplaces(*I)) {
            // This is a redeclaration. Remove it from the chain and
            // break out, so that we'll add in the shadowed
            // declaration.
            S->RemoveDecl(DeclPtrTy::make(*I));
            if (PrevDecl == *I) {
              IdResolver.RemoveDecl(*I);
              IdResolver.AddDecl(TD);
              return;
            } else {
              IdResolver.RemoveDecl(*I);
              break;
            }
          }
        }

        // There is already a declaration with the same name in the same
        // scope, which is not a tag declaration. It must be found
        // before we find the new declaration, so insert the new
        // declaration at the end of the chain.
        IdResolver.AddShadowedDecl(TD, PrevDecl);
        
        return;
      }
    }
  } else if (isa<FunctionDecl>(D) &&
             AllowOverloadingOfFunction(D, Context)) {
    // We are pushing the name of a function, which might be an
    // overloaded name.
    FunctionDecl *FD = cast<FunctionDecl>(D);
    IdentifierResolver::iterator Redecl
      = std::find_if(IdResolver.begin(FD->getDeclName()),
                     IdResolver.end(),
                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
                                  FD));
    if (Redecl != IdResolver.end() &&
        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
      // There is already a declaration of a function on our
      // IdResolver chain. Replace it with this declaration.
      S->RemoveDecl(DeclPtrTy::make(*Redecl));
      IdResolver.RemoveDecl(*Redecl);
    }
  } else if (isa<ObjCInterfaceDecl>(D)) {
    // We're pushing an Objective-C interface into the current
    // context. If there is already an alias declaration, remove it first.
    for (IdentifierResolver::iterator 
           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
         I != IEnd; ++I) {
      if (isa<ObjCCompatibleAliasDecl>(*I)) {
        S->RemoveDecl(DeclPtrTy::make(*I));
        IdResolver.RemoveDecl(*I);
        break;
      }
    }
  }

  IdResolver.AddDecl(D);
}

void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
  if (S->decl_empty()) return;
  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
	 "Scope shouldn't contain decls!");

  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
       I != E; ++I) {
    Decl *TmpD = (*I).getAs<Decl>();
    assert(TmpD && "This decl didn't get pushed??");

    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
    NamedDecl *D = cast<NamedDecl>(TmpD);

    if (!D->getDeclName()) continue;

    // Remove this name from our lexical scope.
    IdResolver.RemoveDecl(D);
  }
}

/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
/// return 0 if one not found.
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
  // The third "scope" argument is 0 since we aren't enabling lazy built-in
  // creation from this context.
  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
  
  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
}

/// getNonFieldDeclScope - Retrieves the innermost scope, starting
/// from S, where a non-field would be declared. This routine copes
/// with the difference between C and C++ scoping rules in structs and
/// unions. For example, the following code is well-formed in C but
/// ill-formed in C++:
/// @code
/// struct S6 {
///   enum { BAR } e;
/// };
/// 
/// void test_S6() {
///   struct S6 a;
///   a.e = BAR;
/// }
/// @endcode
/// For the declaration of BAR, this routine will return a different
/// scope. The scope S will be the scope of the unnamed enumeration
/// within S6. In C++, this routine will return the scope associated
/// with S6, because the enumeration's scope is a transparent
/// context but structures can contain non-field names. In C, this
/// routine will return the translation unit scope, since the
/// enumeration's scope is a transparent context and structures cannot
/// contain non-field names.
Scope *Sema::getNonFieldDeclScope(Scope *S) {
  while (((S->getFlags() & Scope::DeclScope) == 0) ||
         (S->getEntity() && 
          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
         (S->isClassScope() && !getLangOptions().CPlusPlus))
    S = S->getParent();
  return S;
}

void Sema::InitBuiltinVaListType() {
  if (!Context.getBuiltinVaListType().isNull())
    return;
  
  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
}

/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
/// file scope.  lazily create a decl for it. ForRedeclaration is true
/// if we're creating this built-in in anticipation of redeclaring the
/// built-in.
NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
                                     Scope *S, bool ForRedeclaration,
                                     SourceLocation Loc) {
  Builtin::ID BID = (Builtin::ID)bid;

  if (Context.BuiltinInfo.hasVAListUse(BID))
    InitBuiltinVaListType();

  ASTContext::GetBuiltinTypeError Error;
  QualType R = Context.GetBuiltinType(BID, Error);  
  switch (Error) {
  case ASTContext::GE_None:
    // Okay
    break;

  case ASTContext::GE_Missing_FILE:
    if (ForRedeclaration)
      Diag(Loc, diag::err_implicit_decl_requires_stdio)
        << Context.BuiltinInfo.GetName(BID);
    return 0;
  }

  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
    Diag(Loc, diag::ext_implicit_lib_function_decl)
      << Context.BuiltinInfo.GetName(BID)
      << R;
    if (Context.BuiltinInfo.getHeaderName(BID) &&
        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
          != Diagnostic::Ignored)
      Diag(Loc, diag::note_please_include_header)
        << Context.BuiltinInfo.getHeaderName(BID)
        << Context.BuiltinInfo.GetName(BID);
  }

  FunctionDecl *New = FunctionDecl::Create(Context,
                                           Context.getTranslationUnitDecl(),
                                           Loc, II, R,
                                           FunctionDecl::Extern, false,
                                           /*hasPrototype=*/true);
  New->setImplicit();

  // Create Decl objects for each parameter, adding them to the
  // FunctionDecl.
  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
    llvm::SmallVector<ParmVarDecl*, 16> Params;
    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
                                           FT->getArgType(i), VarDecl::None, 0));
    New->setParams(Context, Params.data(), Params.size());
  }
  
  AddKnownFunctionAttributes(New);  
  
  // TUScope is the translation-unit scope to insert this function into.
  // FIXME: This is hideous. We need to teach PushOnScopeChains to
  // relate Scopes to DeclContexts, and probably eliminate CurContext
  // entirely, but we're not there yet.
  DeclContext *SavedContext = CurContext;
  CurContext = Context.getTranslationUnitDecl();
  PushOnScopeChains(New, TUScope);
  CurContext = SavedContext;
  return New;
}

/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
/// everything from the standard library is defined.
NamespaceDecl *Sema::GetStdNamespace() {
  if (!StdNamespace) {
    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
    DeclContext *Global = Context.getTranslationUnitDecl();
    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
  }
  return StdNamespace;
}

/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
/// same name and scope as a previous declaration 'Old'.  Figure out
/// how to resolve this situation, merging decls or emitting
/// diagnostics as appropriate. If there was an error, set New to be invalid.
///
void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
  // If either decl is known invalid already, set the new one to be invalid and
  // don't bother doing any merging checks.
  if (New->isInvalidDecl() || OldD->isInvalidDecl())
    return New->setInvalidDecl();
  
  bool objc_types = false;
  
  // Allow multiple definitions for ObjC built-in typedefs.
  // FIXME: Verify the underlying types are equivalent!
  if (getLangOptions().ObjC1) {
    const IdentifierInfo *TypeID = New->getIdentifier();
    switch (TypeID->getLength()) {
    default: break;
    case 2: 
      if (!TypeID->isStr("id"))
        break;
      Context.setObjCIdType(Context.getTypeDeclType(New));
      objc_types = true;
      break;
    case 5:
      if (!TypeID->isStr("Class"))
        break;
      Context.setObjCClassType(Context.getTypeDeclType(New));
      return;
    case 3:
      if (!TypeID->isStr("SEL"))
        break;
      Context.setObjCSelType(Context.getTypeDeclType(New));
      return;
    case 8:
      if (!TypeID->isStr("Protocol"))
        break;
      Context.setObjCProtoType(New->getUnderlyingType());
      return;
    }
    // Fall through - the typedef name was not a builtin type.
  }
  // Verify the old decl was also a type.
  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
  if (!Old) {
    Diag(New->getLocation(), diag::err_redefinition_different_kind) 
      << New->getDeclName();
    if (OldD->getLocation().isValid())
      Diag(OldD->getLocation(), diag::note_previous_definition);
    return New->setInvalidDecl();
  }

  // Determine the "old" type we'll use for checking and diagnostics.  
  QualType OldType;
  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
    OldType = OldTypedef->getUnderlyingType();
  else
    OldType = Context.getTypeDeclType(Old);

  // If the typedef types are not identical, reject them in all languages and
  // with any extensions enabled.

  if (OldType != New->getUnderlyingType() && 
      Context.getCanonicalType(OldType) != 
      Context.getCanonicalType(New->getUnderlyingType())) {
    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
      << New->getUnderlyingType() << OldType;
    if (Old->getLocation().isValid())
      Diag(Old->getLocation(), diag::note_previous_definition);
    return New->setInvalidDecl();
  }
  
  if (objc_types || getLangOptions().Microsoft)
    return;

  // C++ [dcl.typedef]p2:
  //   In a given non-class scope, a typedef specifier can be used to
  //   redefine the name of any type declared in that scope to refer
  //   to the type to which it already refers.
  if (getLangOptions().CPlusPlus) {
    if (!isa<CXXRecordDecl>(CurContext))
      return;
    Diag(New->getLocation(), diag::err_redefinition)
      << New->getDeclName();
    Diag(Old->getLocation(), diag::note_previous_definition);
    return New->setInvalidDecl();
  }

  // If we have a redefinition of a typedef in C, emit a warning.  This warning
  // is normally mapped to an error, but can be controlled with
  // -Wtypedef-redefinition.  If either the original or the redefinition is
  // in a system header, don't emit this for compatibility with GCC.
  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
       Context.getSourceManager().isInSystemHeader(New->getLocation())))
    return;
  
  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
    << New->getDeclName();
  Diag(Old->getLocation(), diag::note_previous_definition);
  return;
}

/// DeclhasAttr - returns true if decl Declaration already has the target
/// attribute.
static bool 
DeclHasAttr(ASTContext &Context, const Decl *decl, const Attr *target) {
  for (const Attr *attr = decl->getAttrs(Context); attr; attr = attr->getNext())
    if (attr->getKind() == target->getKind())
      return true;

  return false;
}

/// MergeAttributes - append attributes from the Old decl to the New one.
static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
  for (const Attr *attr = Old->getAttrs(C); attr; attr = attr->getNext()) {
    if (!DeclHasAttr(C, New, attr) && attr->isMerged()) {
      Attr *NewAttr = attr->clone(C);
      NewAttr->setInherited(true);
      New->addAttr(C, NewAttr);
    }
  }
}

/// Used in MergeFunctionDecl to keep track of function parameters in
/// C.
struct GNUCompatibleParamWarning {
  ParmVarDecl *OldParm;
  ParmVarDecl *NewParm;
  QualType PromotedType;
};

/// MergeFunctionDecl - We just parsed a function 'New' from
/// declarator D which has the same name and scope as a previous
/// declaration 'Old'.  Figure out how to resolve this situation,
/// merging decls or emitting diagnostics as appropriate.
///
/// In C++, New and Old must be declarations that are not
/// overloaded. Use IsOverload to determine whether New and Old are
/// overloaded, and to select the Old declaration that New should be
/// merged with.
///
/// Returns true if there was an error, false otherwise.
bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
  assert(!isa<OverloadedFunctionDecl>(OldD) && 
         "Cannot merge with an overloaded function declaration");

  // Verify the old decl was also a function.
  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
  if (!Old) {
    Diag(New->getLocation(), diag::err_redefinition_different_kind)
      << New->getDeclName();
    Diag(OldD->getLocation(), diag::note_previous_definition);
    return true;
  }

  // Determine whether the previous declaration was a definition,
  // implicit declaration, or a declaration.
  diag::kind PrevDiag;
  if (Old->isThisDeclarationADefinition())
    PrevDiag = diag::note_previous_definition;
  else if (Old->isImplicit())
    PrevDiag = diag::note_previous_implicit_declaration;
  else 
    PrevDiag = diag::note_previous_declaration;
  
  QualType OldQType = Context.getCanonicalType(Old->getType());
  QualType NewQType = Context.getCanonicalType(New->getType());
  
  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
      New->getStorageClass() == FunctionDecl::Static &&
      Old->getStorageClass() != FunctionDecl::Static) {
    Diag(New->getLocation(), diag::err_static_non_static)
      << New;
    Diag(Old->getLocation(), PrevDiag);
    return true;
  }

  if (getLangOptions().CPlusPlus) {
    // (C++98 13.1p2):
    //   Certain function declarations cannot be overloaded:
    //     -- Function declarations that differ only in the return type 
    //        cannot be overloaded.
    QualType OldReturnType 
      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
    QualType NewReturnType 
      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
    if (OldReturnType != NewReturnType) {
      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
      return true;
    }

    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
    if (OldMethod && NewMethod && 
        OldMethod->getLexicalDeclContext() == 
          NewMethod->getLexicalDeclContext()) {
      //    -- Member function declarations with the same name and the 
      //       same parameter types cannot be overloaded if any of them 
      //       is a static member function declaration.
      if (OldMethod->isStatic() || NewMethod->isStatic()) {
        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
        return true;
      }

      // C++ [class.mem]p1:
      //   [...] A member shall not be declared twice in the
      //   member-specification, except that a nested class or member
      //   class template can be declared and then later defined.
      unsigned NewDiag;
      if (isa<CXXConstructorDecl>(OldMethod))
        NewDiag = diag::err_constructor_redeclared;
      else if (isa<CXXDestructorDecl>(NewMethod))
        NewDiag = diag::err_destructor_redeclared;
      else if (isa<CXXConversionDecl>(NewMethod))
        NewDiag = diag::err_conv_function_redeclared;
      else
        NewDiag = diag::err_member_redeclared;
      
      Diag(New->getLocation(), NewDiag);
      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
    }

    // (C++98 8.3.5p3):
    //   All declarations for a function shall agree exactly in both the
    //   return type and the parameter-type-list.
    if (OldQType == NewQType)
      return MergeCompatibleFunctionDecls(New, Old);

    // Fall through for conflicting redeclarations and redefinitions.
  }

  // C: Function types need to be compatible, not identical. This handles
  // duplicate function decls like "void f(int); void f(enum X);" properly.
  if (!getLangOptions().CPlusPlus &&
      Context.typesAreCompatible(OldQType, NewQType)) {
    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
    const FunctionProtoType *OldProto = 0;
    if (isa<FunctionNoProtoType>(NewFuncType) &&
        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
      // The old declaration provided a function prototype, but the
      // new declaration does not. Merge in the prototype.
      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
                                                 OldProto->arg_type_end());
      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
                                         ParamTypes.data(), ParamTypes.size(),
                                         OldProto->isVariadic(),
                                         OldProto->getTypeQuals());
      New->setType(NewQType);
      New->setHasInheritedPrototype();

      // Synthesize a parameter for each argument type.
      llvm::SmallVector<ParmVarDecl*, 16> Params;
      for (FunctionProtoType::arg_type_iterator 
             ParamType = OldProto->arg_type_begin(), 
             ParamEnd = OldProto->arg_type_end();
           ParamType != ParamEnd; ++ParamType) {
        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
                                                 SourceLocation(), 0,
                                                 *ParamType, VarDecl::None,
                                                 0);
        Param->setImplicit();
        Params.push_back(Param);
      }

      New->setParams(Context, Params.data(), Params.size());
    } 

    return MergeCompatibleFunctionDecls(New, Old);
  }

  // GNU C permits a K&R definition to follow a prototype declaration
  // if the declared types of the parameters in the K&R definition
  // match the types in the prototype declaration, even when the
  // promoted types of the parameters from the K&R definition differ
  // from the types in the prototype. GCC then keeps the types from
  // the prototype.
  //
  // If a variadic prototype is followed by a non-variadic K&R definition,
  // the K&R definition becomes variadic.  This is sort of an edge case, but
  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
  // C99 6.9.1p8.
  if (!getLangOptions().CPlusPlus &&
      Old->hasPrototype() && !New->hasPrototype() &&
      New->getType()->getAsFunctionProtoType() &&
      Old->getNumParams() == New->getNumParams()) {
    llvm::SmallVector<QualType, 16> ArgTypes;
    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
    const FunctionProtoType *OldProto 
      = Old->getType()->getAsFunctionProtoType();
    const FunctionProtoType *NewProto 
      = New->getType()->getAsFunctionProtoType();
    
    // Determine whether this is the GNU C extension.
    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
                                               NewProto->getResultType());
    bool LooseCompatible = !MergedReturn.isNull();
    for (unsigned Idx = 0, End = Old->getNumParams(); 
         LooseCompatible && Idx != End; ++Idx) {
      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
      ParmVarDecl *NewParm = New->getParamDecl(Idx);
      if (Context.typesAreCompatible(OldParm->getType(), 
                                     NewProto->getArgType(Idx))) {
        ArgTypes.push_back(NewParm->getType());
      } else if (Context.typesAreCompatible(OldParm->getType(),
                                            NewParm->getType())) {
        GNUCompatibleParamWarning Warn 
          = { OldParm, NewParm, NewProto->getArgType(Idx) };
        Warnings.push_back(Warn);
        ArgTypes.push_back(NewParm->getType());
      } else
        LooseCompatible = false;
    }

    if (LooseCompatible) {
      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
        Diag(Warnings[Warn].NewParm->getLocation(),
             diag::ext_param_promoted_not_compatible_with_prototype)
          << Warnings[Warn].PromotedType
          << Warnings[Warn].OldParm->getType();
        Diag(Warnings[Warn].OldParm->getLocation(), 
             diag::note_previous_declaration);
      }

      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
                                           ArgTypes.size(),
                                           OldProto->isVariadic(), 0));
      return MergeCompatibleFunctionDecls(New, Old);
    }

    // Fall through to diagnose conflicting types.
  }

  // A function that has already been declared has been redeclared or defined
  // with a different type- show appropriate diagnostic
  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
    // The user has declared a builtin function with an incompatible
    // signature.
    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
      // The function the user is redeclaring is a library-defined
      // function like 'malloc' or 'printf'. Warn about the
      // redeclaration, then pretend that we don't know about this
      // library built-in.
      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
        << Old << Old->getType();
      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
      Old->setInvalidDecl();
      return false;
    }

    PrevDiag = diag::note_previous_builtin_declaration;
  }

  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
  return true;
}

/// \brief Completes the merge of two function declarations that are
/// known to be compatible. 
///
/// This routine handles the merging of attributes and other
/// properties of function declarations form the old declaration to
/// the new declaration, once we know that New is in fact a
/// redeclaration of Old.
///
/// \returns false
bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
  // Merge the attributes
  MergeAttributes(New, Old, Context);

  // Merge the storage class.
  if (Old->getStorageClass() != FunctionDecl::Extern)
    New->setStorageClass(Old->getStorageClass());

  // Merge "inline"
  if (Old->isInline())
    New->setInline(true);

  // If this function declaration by itself qualifies as a C99 inline
  // definition (C99 6.7.4p6), but the previous definition did not,
  // then the function is not a C99 inline definition.
  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
    New->setC99InlineDefinition(false);
  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
    // Mark all preceding definitions as not being C99 inline definitions.
    for (const FunctionDecl *Prev = Old; Prev; 
         Prev = Prev->getPreviousDeclaration())
      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
  }

  // Merge "pure" flag.
  if (Old->isPure())
    New->setPure();

  // Merge the "deleted" flag.
  if (Old->isDeleted())
    New->setDeleted();
  
  if (getLangOptions().CPlusPlus)
    return MergeCXXFunctionDecl(New, Old);

  return false;
}

/// MergeVarDecl - We just parsed a variable 'New' which has the same name
/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
/// situation, merging decls or emitting diagnostics as appropriate.
///
/// Tentative definition rules (C99 6.9.2p2) are checked by 
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative 
/// definitions here, since the initializer hasn't been attached.
/// 
void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
  // If either decl is invalid, make sure the new one is marked invalid and
  // don't do any other checking.
  if (New->isInvalidDecl() || OldD->isInvalidDecl())
    return New->setInvalidDecl();
  
  // Verify the old decl was also a variable.
  VarDecl *Old = dyn_cast<VarDecl>(OldD);
  if (!Old) {
    Diag(New->getLocation(), diag::err_redefinition_different_kind)
      << New->getDeclName();
    Diag(OldD->getLocation(), diag::note_previous_definition);
    return New->setInvalidDecl();
  }

  MergeAttributes(New, Old, Context);

  // Merge the types
  QualType MergedT;
  if (getLangOptions().CPlusPlus) {
    if (Context.hasSameType(New->getType(), Old->getType()))
      MergedT = New->getType();
  } else {
    MergedT = Context.mergeTypes(New->getType(), Old->getType());
  }
  if (MergedT.isNull()) {
    Diag(New->getLocation(), diag::err_redefinition_different_type) 
      << New->getDeclName();
    Diag(Old->getLocation(), diag::note_previous_definition);
    return New->setInvalidDecl();
  }
  New->setType(MergedT);

  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
  if (New->getStorageClass() == VarDecl::Static &&
      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
    Diag(Old->getLocation(), diag::note_previous_definition);
    return New->setInvalidDecl();
  }
  // C99 6.2.2p4: 
  //   For an identifier declared with the storage-class specifier
  //   extern in a scope in which a prior declaration of that
  //   identifier is visible,23) if the prior declaration specifies
  //   internal or external linkage, the linkage of the identifier at
  //   the later declaration is the same as the linkage specified at
  //   the prior declaration. If no prior declaration is visible, or
  //   if the prior declaration specifies no linkage, then the
  //   identifier has external linkage.
  if (New->hasExternalStorage() && Old->hasLinkage())
    /* Okay */;
  else if (New->getStorageClass() != VarDecl::Static &&
           Old->getStorageClass() == VarDecl::Static) {
    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
    Diag(Old->getLocation(), diag::note_previous_definition);
    return New->setInvalidDecl();
  }

  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
  
  // FIXME: The test for external storage here seems wrong? We still
  // need to check for mismatches.
  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
      // Don't complain about out-of-line definitions of static members.
      !(Old->getLexicalDeclContext()->isRecord() &&
        !New->getLexicalDeclContext()->isRecord())) {
    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
    Diag(Old->getLocation(), diag::note_previous_definition);
    return New->setInvalidDecl();
  }

  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
    Diag(Old->getLocation(), diag::note_previous_definition);
  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
    Diag(Old->getLocation(), diag::note_previous_definition);
  }

  // Keep a chain of previous declarations.
  New->setPreviousDeclaration(Old);
}

/// CheckParmsForFunctionDef - Check that the parameters of the given
/// function are appropriate for the definition of a function. This
/// takes care of any checks that cannot be performed on the
/// declaration itself, e.g., that the types of each of the function
/// parameters are complete.
bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
  bool HasInvalidParm = false;
  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
    ParmVarDecl *Param = FD->getParamDecl(p);

    // C99 6.7.5.3p4: the parameters in a parameter type list in a
    // function declarator that is part of a function definition of
    // that function shall not have incomplete type.
    //
    // This is also C++ [dcl.fct]p6.
    if (!Param->isInvalidDecl() &&
        RequireCompleteType(Param->getLocation(), Param->getType(),
                               diag::err_typecheck_decl_incomplete_type)) {
      Param->setInvalidDecl();
      HasInvalidParm = true;
    }
    
    // C99 6.9.1p5: If the declarator includes a parameter type list, the
    // declaration of each parameter shall include an identifier.
    if (Param->getIdentifier() == 0 && 
        !Param->isImplicit() &&
        !getLangOptions().CPlusPlus)
      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
  }

  return HasInvalidParm;
}

/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
  // FIXME: Error on auto/register at file scope
  // FIXME: Error on inline/virtual/explicit
  // FIXME: Error on invalid restrict
  // FIXME: Warn on useless __thread
  // FIXME: Warn on useless const/volatile
  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
  // FIXME: Warn on useless attributes
  TagDecl *Tag = 0;
  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
      DS.getTypeSpecType() == DeclSpec::TST_struct ||
      DS.getTypeSpecType() == DeclSpec::TST_union ||
      DS.getTypeSpecType() == DeclSpec::TST_enum) {
    if (!DS.getTypeRep()) // We probably had an error
      return DeclPtrTy();

    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
  }

  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
    if (!Record->getDeclName() && Record->isDefinition() &&
        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
      if (getLangOptions().CPlusPlus ||
          Record->getDeclContext()->isRecord())
        return BuildAnonymousStructOrUnion(S, DS, Record);

      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
        << DS.getSourceRange();
    }

    // Microsoft allows unnamed struct/union fields. Don't complain
    // about them.
    // FIXME: Should we support Microsoft's extensions in this area?
    if (Record->getDeclName() && getLangOptions().Microsoft)
      return DeclPtrTy::make(Tag);
  }

  if (!DS.isMissingDeclaratorOk() && 
      DS.getTypeSpecType() != DeclSpec::TST_error) {
    // Warn about typedefs of enums without names, since this is an
    // extension in both Microsoft an GNU.
    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
        Tag && isa<EnumDecl>(Tag)) {
      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
        << DS.getSourceRange();
      return DeclPtrTy::make(Tag);
    }

    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
      << DS.getSourceRange();
    return DeclPtrTy();
  }
  
  return DeclPtrTy::make(Tag);
}

/// InjectAnonymousStructOrUnionMembers - Inject the members of the
/// anonymous struct or union AnonRecord into the owning context Owner
/// and scope S. This routine will be invoked just after we realize
/// that an unnamed union or struct is actually an anonymous union or
/// struct, e.g.,
///
/// @code
/// union {
///   int i;
///   float f;
/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
///    // f into the surrounding scope.x
/// @endcode
///
/// This routine is recursive, injecting the names of nested anonymous
/// structs/unions into the owning context and scope as well.
bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
                                               RecordDecl *AnonRecord) {
  bool Invalid = false;
  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
                               FEnd = AnonRecord->field_end(Context);
       F != FEnd; ++F) {
    if ((*F)->getDeclName()) {
      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
                                                LookupOrdinaryName, true);
      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
        // C++ [class.union]p2:
        //   The names of the members of an anonymous union shall be
        //   distinct from the names of any other entity in the
        //   scope in which the anonymous union is declared.
        unsigned diagKind 
          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
                                 : diag::err_anonymous_struct_member_redecl;
        Diag((*F)->getLocation(), diagKind)
          << (*F)->getDeclName();
        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
        Invalid = true;
      } else {
        // C++ [class.union]p2:
        //   For the purpose of name lookup, after the anonymous union
        //   definition, the members of the anonymous union are
        //   considered to have been defined in the scope in which the
        //   anonymous union is declared.
        Owner->makeDeclVisibleInContext(Context, *F);
        S->AddDecl(DeclPtrTy::make(*F));
        IdResolver.AddDecl(*F);
      }
    } else if (const RecordType *InnerRecordType
                 = (*F)->getType()->getAsRecordType()) {
      RecordDecl *InnerRecord = InnerRecordType->getDecl();
      if (InnerRecord->isAnonymousStructOrUnion())
        Invalid = Invalid || 
          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
    }
  }

  return Invalid;
}

/// ActOnAnonymousStructOrUnion - Handle the declaration of an
/// anonymous structure or union. Anonymous unions are a C++ feature
/// (C++ [class.union]) and a GNU C extension; anonymous structures
/// are a GNU C and GNU C++ extension. 
Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
                                                  RecordDecl *Record) {
  DeclContext *Owner = Record->getDeclContext();

  // Diagnose whether this anonymous struct/union is an extension.
  if (Record->isUnion() && !getLangOptions().CPlusPlus)
    Diag(Record->getLocation(), diag::ext_anonymous_union);
  else if (!Record->isUnion())
    Diag(Record->getLocation(), diag::ext_anonymous_struct);
  
  // C and C++ require different kinds of checks for anonymous
  // structs/unions.
  bool Invalid = false;
  if (getLangOptions().CPlusPlus) {
    const char* PrevSpec = 0;
    // C++ [class.union]p3:
    //   Anonymous unions declared in a named namespace or in the
    //   global namespace shall be declared static.
    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
        (isa<TranslationUnitDecl>(Owner) ||
         (isa<NamespaceDecl>(Owner) && 
          cast<NamespaceDecl>(Owner)->getDeclName()))) {
      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
      Invalid = true;

      // Recover by adding 'static'.
      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
    } 
    // C++ [class.union]p3:
    //   A storage class is not allowed in a declaration of an
    //   anonymous union in a class scope.
    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
             isa<RecordDecl>(Owner)) {
      Diag(DS.getStorageClassSpecLoc(), 
           diag::err_anonymous_union_with_storage_spec);
      Invalid = true;

      // Recover by removing the storage specifier.
      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
                             PrevSpec);
    }

    // C++ [class.union]p2: 
    //   The member-specification of an anonymous union shall only
    //   define non-static data members. [Note: nested types and
    //   functions cannot be declared within an anonymous union. ]
    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
                                 MemEnd = Record->decls_end(Context);
         Mem != MemEnd; ++Mem) {
      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
        // C++ [class.union]p3:
        //   An anonymous union shall not have private or protected
        //   members (clause 11).
        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
          Invalid = true;
        }
      } else if ((*Mem)->isImplicit()) {
        // Any implicit members are fine.
      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
        // This is a type that showed up in an
        // elaborated-type-specifier inside the anonymous struct or
        // union, but which actually declares a type outside of the
        // anonymous struct or union. It's okay.
      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
        if (!MemRecord->isAnonymousStructOrUnion() &&
            MemRecord->getDeclName()) {
          // This is a nested type declaration.
          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
            << (int)Record->isUnion();
          Invalid = true;
        }
      } else {
        // We have something that isn't a non-static data
        // member. Complain about it.
        unsigned DK = diag::err_anonymous_record_bad_member;
        if (isa<TypeDecl>(*Mem))
          DK = diag::err_anonymous_record_with_type;
        else if (isa<FunctionDecl>(*Mem))
          DK = diag::err_anonymous_record_with_function;
        else if (isa<VarDecl>(*Mem))
          DK = diag::err_anonymous_record_with_static;
        Diag((*Mem)->getLocation(), DK)
            << (int)Record->isUnion();
          Invalid = true;
      }
    }
  } 

  if (!Record->isUnion() && !Owner->isRecord()) {
    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
      << (int)getLangOptions().CPlusPlus;
    Invalid = true;
  }

  // Create a declaration for this anonymous struct/union. 
  NamedDecl *Anon = 0;
  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
                             /*IdentifierInfo=*/0, 
                             Context.getTypeDeclType(Record),
                             /*BitWidth=*/0, /*Mutable=*/false);
    Anon->setAccess(AS_public);
    if (getLangOptions().CPlusPlus)
      FieldCollector->Add(cast<FieldDecl>(Anon));
  } else {
    VarDecl::StorageClass SC;
    switch (DS.getStorageClassSpec()) {
    default: assert(0 && "Unknown storage class!");
    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
    case DeclSpec::SCS_mutable:
      // mutable can only appear on non-static class members, so it's always
      // an error here
      Diag(Record->getLocation(), diag::err_mutable_nonmember);
      Invalid = true;
      SC = VarDecl::None;
      break;
    }

    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
                           /*IdentifierInfo=*/0, 
                           Context.getTypeDeclType(Record),
                           SC, DS.getSourceRange().getBegin());
  }
  Anon->setImplicit();

  // Add the anonymous struct/union object to the current
  // context. We'll be referencing this object when we refer to one of
  // its members.
  Owner->addDecl(Context, Anon);

  // Inject the members of the anonymous struct/union into the owning
  // context and into the identifier resolver chain for name lookup
  // purposes.
  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
    Invalid = true;

  // Mark this as an anonymous struct/union type. Note that we do not
  // do this until after we have already checked and injected the
  // members of this anonymous struct/union type, because otherwise
  // the members could be injected twice: once by DeclContext when it
  // builds its lookup table, and once by
  // InjectAnonymousStructOrUnionMembers. 
  Record->setAnonymousStructOrUnion(true);

  if (Invalid)
    Anon->setInvalidDecl();

  return DeclPtrTy::make(Anon);
}


/// GetNameForDeclarator - Determine the full declaration name for the
/// given Declarator.
DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
  switch (D.getKind()) {
  case Declarator::DK_Abstract:
    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
    return DeclarationName();

  case Declarator::DK_Normal:
    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
    return DeclarationName(D.getIdentifier());

  case Declarator::DK_Constructor: {
    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
    Ty = Context.getCanonicalType(Ty);
    return Context.DeclarationNames.getCXXConstructorName(Ty);
  }

  case Declarator::DK_Destructor: {
    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
    Ty = Context.getCanonicalType(Ty);
    return Context.DeclarationNames.getCXXDestructorName(Ty);
  }

  case Declarator::DK_Conversion: {
    // FIXME: We'd like to keep the non-canonical type for diagnostics!
    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
    Ty = Context.getCanonicalType(Ty);
    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
  }

  case Declarator::DK_Operator:
    assert(D.getIdentifier() == 0 && "operator names have no identifier");
    return Context.DeclarationNames.getCXXOperatorName(
                                                D.getOverloadedOperator());
  }

  assert(false && "Unknown name kind");
  return DeclarationName();
}

/// isNearlyMatchingFunction - Determine whether the C++ functions
/// Declaration and Definition are "nearly" matching. This heuristic
/// is used to improve diagnostics in the case where an out-of-line
/// function definition doesn't match any declaration within
/// the class or namespace.
static bool isNearlyMatchingFunction(ASTContext &Context,
                                     FunctionDecl *Declaration,
                                     FunctionDecl *Definition) {
  if (Declaration->param_size() != Definition->param_size())
    return false;
  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();

    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
      return false;
  }

  return true;
}

Sema::DeclPtrTy 
Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
  DeclarationName Name = GetNameForDeclarator(D);

  // All of these full declarators require an identifier.  If it doesn't have
  // one, the ParsedFreeStandingDeclSpec action should be used.
  if (!Name) {
    if (!D.isInvalidType())  // Reject this if we think it is valid.
      Diag(D.getDeclSpec().getSourceRange().getBegin(),
           diag::err_declarator_need_ident)
        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
    return DeclPtrTy();
  }
  
  // The scope passed in may not be a decl scope.  Zip up the scope tree until
  // we find one that is.
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
         (S->getFlags() & Scope::TemplateParamScope) != 0)
    S = S->getParent();
  
  DeclContext *DC;
  NamedDecl *PrevDecl;
  NamedDecl *New;

  QualType R = GetTypeForDeclarator(D, S);

  // See if this is a redefinition of a variable in the same scope.
  if (D.getCXXScopeSpec().isInvalid()) {
    DC = CurContext;
    PrevDecl = 0;
    D.setInvalidType();
  } else if (!D.getCXXScopeSpec().isSet()) {
    LookupNameKind NameKind = LookupOrdinaryName;

    // If the declaration we're planning to build will be a function
    // or object with linkage, then look for another declaration with
    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
      /* Do nothing*/;
    else if (R->isFunctionType()) {
      if (CurContext->isFunctionOrMethod())
        NameKind = LookupRedeclarationWithLinkage;
    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
      NameKind = LookupRedeclarationWithLinkage;

    DC = CurContext;
    PrevDecl = LookupName(S, Name, NameKind, true, 
                          D.getDeclSpec().getStorageClassSpec() != 
                            DeclSpec::SCS_static,
                          D.getIdentifierLoc());
  } else { // Something like "int foo::x;"
    DC = computeDeclContext(D.getCXXScopeSpec());
    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);

    // C++ 7.3.1.2p2:
    // Members (including explicit specializations of templates) of a named
    // namespace can also be defined outside that namespace by explicit
    // qualification of the name being defined, provided that the entity being
    // defined was already declared in the namespace and the definition appears
    // after the point of declaration in a namespace that encloses the
    // declarations namespace.
    //
    // Note that we only check the context at this point. We don't yet
    // have enough information to make sure that PrevDecl is actually
    // the declaration we want to match. For example, given:
    //
    //   class X {
    //     void f();
    //     void f(float);
    //   };
    //
    //   void X::f(int) { } // ill-formed
    //
    // In this case, PrevDecl will point to the overload set
    // containing the two f's declared in X, but neither of them
    // matches. 

    // First check whether we named the global scope.
    if (isa<TranslationUnitDecl>(DC)) {
      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope) 
        << Name << D.getCXXScopeSpec().getRange();
    } else if (!CurContext->Encloses(DC)) {
      // The qualifying scope doesn't enclose the original declaration.
      // Emit diagnostic based on current scope.
      SourceLocation L = D.getIdentifierLoc();
      SourceRange R = D.getCXXScopeSpec().getRange();
      if (isa<FunctionDecl>(CurContext))
        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
      else 
        Diag(L, diag::err_invalid_declarator_scope)
          << Name << cast<NamedDecl>(DC) << R;
      D.setInvalidType();
    }
  }

  if (PrevDecl && PrevDecl->isTemplateParameter()) {
    // Maybe we will complain about the shadowed template parameter.
    if (!D.isInvalidType()) 
      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
        D.setInvalidType();
    
    // Just pretend that we didn't see the previous declaration.
    PrevDecl = 0;
  }

  // In C++, the previous declaration we find might be a tag type
  // (class or enum). In this case, the new declaration will hide the
  // tag type. Note that this does does not apply if we're declaring a
  // typedef (C++ [dcl.typedef]p4).
  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
    PrevDecl = 0;

  bool Redeclaration = false;
  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
  } else if (R->isFunctionType()) {
    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl, 
                                  IsFunctionDefinition, Redeclaration);
  } else {
    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
  }

  if (New == 0)
    return DeclPtrTy();
  
  // If this has an identifier and is not an invalid redeclaration,
  // add it to the scope stack.
  if (Name && !(Redeclaration && New->isInvalidDecl()))
    PushOnScopeChains(New, S);
  
  return DeclPtrTy::make(New);
}

/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
/// types into constant array types in certain situations which would otherwise
/// be errors (for GCC compatibility).
static QualType TryToFixInvalidVariablyModifiedType(QualType T,
                                                    ASTContext &Context,
                                                    bool &SizeIsNegative) {
  // This method tries to turn a variable array into a constant
  // array even when the size isn't an ICE.  This is necessary
  // for compatibility with code that depends on gcc's buggy
  // constant expression folding, like struct {char x[(int)(char*)2];}
  SizeIsNegative = false;

  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
    QualType Pointee = PTy->getPointeeType();
    QualType FixedType =
        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
    if (FixedType.isNull()) return FixedType;
    FixedType = Context.getPointerType(FixedType);
    FixedType.setCVRQualifiers(T.getCVRQualifiers());
    return FixedType;
  }

  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
  if (!VLATy)
    return QualType();
  // FIXME: We should probably handle this case
  if (VLATy->getElementType()->isVariablyModifiedType())
    return QualType();
  
  Expr::EvalResult EvalResult;
  if (!VLATy->getSizeExpr() ||
      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
      !EvalResult.Val.isInt())
    return QualType();

  llvm::APSInt &Res = EvalResult.Val.getInt();
  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
    return Context.getConstantArrayType(VLATy->getElementType(),
                                        Res, ArrayType::Normal, 0);

  SizeIsNegative = true;
  return QualType();
}

/// \brief Register the given locally-scoped external C declaration so
/// that it can be found later for redeclarations
void 
Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
                                       Scope *S) {
  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
         "Decl is not a locally-scoped decl!");
  // Note that we have a locally-scoped external with this name.
  LocallyScopedExternalDecls[ND->getDeclName()] = ND;

  if (!PrevDecl)
    return;

  // If there was a previous declaration of this variable, it may be
  // in our identifier chain. Update the identifier chain with the new
  // declaration.
  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
    // The previous declaration was found on the identifer resolver
    // chain, so remove it from its scope.
    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
      S = S->getParent();

    if (S)
      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
  }
}

/// \brief Diagnose function specifiers on a declaration of an identifier that
/// does not identify a function.
void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
  // FIXME: We should probably indicate the identifier in question to avoid
  // confusion for constructs like "inline int a(), b;"
  if (D.getDeclSpec().isInlineSpecified())
    Diag(D.getDeclSpec().getInlineSpecLoc(), 
         diag::err_inline_non_function);

  if (D.getDeclSpec().isVirtualSpecified())
    Diag(D.getDeclSpec().getVirtualSpecLoc(), 
         diag::err_virtual_non_function);

  if (D.getDeclSpec().isExplicitSpecified())
    Diag(D.getDeclSpec().getExplicitSpecLoc(), 
         diag::err_explicit_non_function);
}

NamedDecl*
Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
  if (D.getCXXScopeSpec().isSet()) {
    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
      << D.getCXXScopeSpec().getRange();
    D.setInvalidType();
    // Pretend we didn't see the scope specifier.
    DC = 0;
  }

  if (getLangOptions().CPlusPlus) {
    // Check that there are no default arguments (C++ only).
    CheckExtraCXXDefaultArguments(D);
  }

  DiagnoseFunctionSpecifiers(D);

  if (D.getDeclSpec().isThreadSpecified())
    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);

  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
  if (!NewTD) return 0;
  
  if (D.isInvalidType())
    NewTD->setInvalidDecl();

  // Handle attributes prior to checking for duplicates in MergeVarDecl
  ProcessDeclAttributes(S, NewTD, D);
  // Merge the decl with the existing one if appropriate. If the decl is
  // in an outer scope, it isn't the same thing.
  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
    Redeclaration = true;
    MergeTypeDefDecl(NewTD, PrevDecl);
  }

  // C99 6.7.7p2: If a typedef name specifies a variably modified type
  // then it shall have block scope.
  QualType T = NewTD->getUnderlyingType();
  if (T->isVariablyModifiedType()) {
    CurFunctionNeedsScopeChecking = true;
  
    if (S->getFnParent() == 0) {
      bool SizeIsNegative;
      QualType FixedTy =
          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
      if (!FixedTy.isNull()) {
        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
        NewTD->setUnderlyingType(FixedTy);
      } else {
        if (SizeIsNegative)
          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
        else if (T->isVariableArrayType())
          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
        else
          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
        NewTD->setInvalidDecl();
      }
    }
  }
  return NewTD;
}

/// \brief Determines whether the given declaration is an out-of-scope
/// previous declaration.
///
/// This routine should be invoked when name lookup has found a
/// previous declaration (PrevDecl) that is not in the scope where a
/// new declaration by the same name is being introduced. If the new
/// declaration occurs in a local scope, previous declarations with
/// linkage may still be considered previous declarations (C99
/// 6.2.2p4-5, C++ [basic.link]p6).
///
/// \param PrevDecl the previous declaration found by name
/// lookup
/// 
/// \param DC the context in which the new declaration is being
/// declared.
///
/// \returns true if PrevDecl is an out-of-scope previous declaration
/// for a new delcaration with the same name.
static bool 
isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
                                ASTContext &Context) {
  if (!PrevDecl)
    return 0;

  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
  // case we need to check each of the overloaded functions.
  if (!PrevDecl->hasLinkage())
    return false;

  if (Context.getLangOptions().CPlusPlus) {
    // C++ [basic.link]p6:
    //   If there is a visible declaration of an entity with linkage
    //   having the same name and type, ignoring entities declared
    //   outside the innermost enclosing namespace scope, the block
    //   scope declaration declares that same entity and receives the
    //   linkage of the previous declaration.
    DeclContext *OuterContext = DC->getLookupContext();
    if (!OuterContext->isFunctionOrMethod())
      // This rule only applies to block-scope declarations.
      return false;
    else {
      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
      if (PrevOuterContext->isRecord())
        // We found a member function: ignore it.
        return false;
      else {
        // Find the innermost enclosing namespace for the new and
        // previous declarations.
        while (!OuterContext->isFileContext())
          OuterContext = OuterContext->getParent();
        while (!PrevOuterContext->isFileContext())
          PrevOuterContext = PrevOuterContext->getParent();
          
        // The previous declaration is in a different namespace, so it
        // isn't the same function.
        if (OuterContext->getPrimaryContext() != 
            PrevOuterContext->getPrimaryContext())
          return false;
      }
    }
  }

  return true;
}

NamedDecl*
Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
                              QualType R,NamedDecl* PrevDecl,
                              bool &Redeclaration) {
  DeclarationName Name = GetNameForDeclarator(D);

  // Check that there are no default arguments (C++ only).
  if (getLangOptions().CPlusPlus)
    CheckExtraCXXDefaultArguments(D);

  VarDecl *NewVD;
  VarDecl::StorageClass SC;
  switch (D.getDeclSpec().getStorageClassSpec()) {
  default: assert(0 && "Unknown storage class!");
  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
  case DeclSpec::SCS_mutable:
    // mutable can only appear on non-static class members, so it's always
    // an error here
    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
    D.setInvalidType();
    SC = VarDecl::None;
    break;
  }

  IdentifierInfo *II = Name.getAsIdentifierInfo();
  if (!II) {
    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
      << Name.getAsString();
    return 0;
  }

  DiagnoseFunctionSpecifiers(D);

  if (!DC->isRecord() && S->getFnParent() == 0) {
    // C99 6.9p2: The storage-class specifiers auto and register shall not
    // appear in the declaration specifiers in an external declaration.
    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
      
      // If this is a register variable with an asm label specified, then this
      // is a GNU extension.
      if (SC == VarDecl::Register && D.getAsmLabel())
        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
      else
        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
      D.setInvalidType();
    }
  }
  if (DC->isRecord() && !CurContext->isRecord()) {
    // This is an out-of-line definition of a static data member.
    if (SC == VarDecl::Static) {
      Diag(D.getDeclSpec().getStorageClassSpecLoc(), 
           diag::err_static_out_of_line)
        << CodeModificationHint::CreateRemoval(
                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
    } else if (SC == VarDecl::None)
      SC = VarDecl::Static;
  }
    
  // The variable can not 
  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(), 
                          II, R, SC, 
                          // FIXME: Move to DeclGroup...
                          D.getDeclSpec().getSourceRange().getBegin());

  if (D.isInvalidType())
    NewVD->setInvalidDecl();
  
  if (D.getDeclSpec().isThreadSpecified()) {
    if (NewVD->hasLocalStorage())
      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
    else if (!Context.Target.isTLSSupported())
      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
    else
      NewVD->setThreadSpecified(true);
  }

  // Set the lexical context. If the declarator has a C++ scope specifier, the
  // lexical context will be different from the semantic context.
  NewVD->setLexicalDeclContext(CurContext);

  // Handle attributes prior to checking for duplicates in MergeVarDecl
  ProcessDeclAttributes(S, NewVD, D);

  // Handle GNU asm-label extension (encoded as an attribute).
  if (Expr *E = (Expr*) D.getAsmLabel()) {
    // The parser guarantees this is a string.
    StringLiteral *SE = cast<StringLiteral>(E);  
    NewVD->addAttr(Context, 
                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
                                                        SE->getByteLength())));
  }

  // If name lookup finds a previous declaration that is not in the
  // same scope as the new declaration, this may still be an
  // acceptable redeclaration.
  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
      !(NewVD->hasLinkage() &&
        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
    PrevDecl = 0;     

  // Merge the decl with the existing one if appropriate.
  if (PrevDecl) {
    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
      // The user tried to define a non-static data member
      // out-of-line (C++ [dcl.meaning]p1).
      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
        << D.getCXXScopeSpec().getRange();
      PrevDecl = 0;
      NewVD->setInvalidDecl();
    }
  } else if (D.getCXXScopeSpec().isSet()) {
    // No previous declaration in the qualifying scope.
    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
      << Name << D.getCXXScopeSpec().getRange();
    NewVD->setInvalidDecl();
  }

  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);

  // If this is a locally-scoped extern C variable, update the map of
  // such variables.
  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
      !NewVD->isInvalidDecl())
    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);

  return NewVD;
}

/// \brief Perform semantic checking on a newly-created variable
/// declaration.
///
/// This routine performs all of the type-checking required for a
/// variable declaration once it has been built. It is used both to
/// check variables after they have been parsed and their declarators
/// have been translated into a declaration, and to check variables
/// that have been instantiated from a template.
///
/// Sets NewVD->isInvalidDecl() if an error was encountered.
void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
                                    bool &Redeclaration) {
  // If the decl is already known invalid, don't check it.
  if (NewVD->isInvalidDecl())
    return;
  
  QualType T = NewVD->getType();

  if (T->isObjCInterfaceType()) {
    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
    return NewVD->setInvalidDecl();
  }
  
  // The variable can not have an abstract class type.
  if (RequireNonAbstractType(NewVD->getLocation(), T,
                             diag::err_abstract_type_in_decl, 
                             AbstractVariableType))
    return NewVD->setInvalidDecl();

  // Emit an error if an address space was applied to decl with local storage.
  // This includes arrays of objects with address space qualifiers, but not
  // automatic variables that point to other address spaces.
  // ISO/IEC TR 18037 S5.1.2
  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
    return NewVD->setInvalidDecl();
  }

  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
      && !NewVD->hasAttr<BlocksAttr>(Context))
    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);

  bool isVM = T->isVariablyModifiedType();
  if (isVM || NewVD->hasAttr<CleanupAttr>(Context))
    CurFunctionNeedsScopeChecking = true;
  
  if ((isVM && NewVD->hasLinkage()) ||
      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
    bool SizeIsNegative;
    QualType FixedTy =
        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
    
    if (FixedTy.isNull() && T->isVariableArrayType()) {
      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
      // FIXME: This won't give the correct result for 
      // int a[10][n];      
      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
      
      if (NewVD->isFileVarDecl())
        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
        << SizeRange;
      else if (NewVD->getStorageClass() == VarDecl::Static)
        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
        << SizeRange;
      else
        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
        << SizeRange;
      return NewVD->setInvalidDecl();
    } 
    
    if (FixedTy.isNull()) {
      if (NewVD->isFileVarDecl())
        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
      else
        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
      return NewVD->setInvalidDecl();
    }
    
    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
    NewVD->setType(FixedTy);
  }

  if (!PrevDecl && NewVD->isExternC(Context)) {
    // Since we did not find anything by this name and we're declaring
    // an extern "C" variable, look for a non-visible extern "C"
    // declaration with the same name.
    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
    if (Pos != LocallyScopedExternalDecls.end())
      PrevDecl = Pos->second;
  }

  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
      << T;
    return NewVD->setInvalidDecl();
  }

  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>(Context)) {
    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
    return NewVD->setInvalidDecl();
  }
    
  if (isVM && NewVD->hasAttr<BlocksAttr>(Context)) {
    Diag(NewVD->getLocation(), diag::err_block_on_vm);
    return NewVD->setInvalidDecl();
  }

  if (PrevDecl) {
    Redeclaration = true;
    MergeVarDecl(NewVD, PrevDecl);
  }
}

NamedDecl* 
Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
                              QualType R, NamedDecl* PrevDecl,
                              bool IsFunctionDefinition, bool &Redeclaration) {
  assert(R.getTypePtr()->isFunctionType());

  DeclarationName Name = GetNameForDeclarator(D);
  FunctionDecl::StorageClass SC = FunctionDecl::None;
  switch (D.getDeclSpec().getStorageClassSpec()) {
  default: assert(0 && "Unknown storage class!");
  case DeclSpec::SCS_auto:
  case DeclSpec::SCS_register:
  case DeclSpec::SCS_mutable:
    Diag(D.getDeclSpec().getStorageClassSpecLoc(), 
         diag::err_typecheck_sclass_func);
    D.setInvalidType();
    break;
  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
  case DeclSpec::SCS_static: {
    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
      // C99 6.7.1p5:
      //   The declaration of an identifier for a function that has
      //   block scope shall have no explicit storage-class specifier
      //   other than extern
      // See also (C++ [dcl.stc]p4).
      Diag(D.getDeclSpec().getStorageClassSpecLoc(), 
           diag::err_static_block_func);
      SC = FunctionDecl::None;
    } else
      SC = FunctionDecl::Static; 
    break;
  }
  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
  }

  if (D.getDeclSpec().isThreadSpecified())
    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);

  bool isInline = D.getDeclSpec().isInlineSpecified();
  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
  bool isExplicit = D.getDeclSpec().isExplicitSpecified();

  // Check that the return type is not an abstract class type.
  // For record types, this is done by the AbstractClassUsageDiagnoser once
  // the class has been completely parsed. 
  if (!DC->isRecord() &&
      RequireNonAbstractType(D.getIdentifierLoc(), 
                             R->getAsFunctionType()->getResultType(),
                             diag::err_abstract_type_in_decl, 
                             AbstractReturnType))
    D.setInvalidType();
  
  // Do not allow returning a objc interface by-value.
  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
    Diag(D.getIdentifierLoc(),
         diag::err_object_cannot_be_passed_returned_by_value) << 0
      << R->getAsFunctionType()->getResultType();
    D.setInvalidType();
  }
  
  bool isVirtualOkay = false;
  FunctionDecl *NewFD;
  if (D.getKind() == Declarator::DK_Constructor) {
    // This is a C++ constructor declaration.
    assert(DC->isRecord() &&
           "Constructors can only be declared in a member context");

    R = CheckConstructorDeclarator(D, R, SC);

    // Create the new declaration
    NewFD = CXXConstructorDecl::Create(Context, 
                                       cast<CXXRecordDecl>(DC),
                                       D.getIdentifierLoc(), Name, R,
                                       isExplicit, isInline,
                                       /*isImplicitlyDeclared=*/false);
  } else if (D.getKind() == Declarator::DK_Destructor) {
    // This is a C++ destructor declaration.
    if (DC->isRecord()) {
      R = CheckDestructorDeclarator(D, SC);
      
      NewFD = CXXDestructorDecl::Create(Context,
                                        cast<CXXRecordDecl>(DC),
                                        D.getIdentifierLoc(), Name, R, 
                                        isInline,
                                        /*isImplicitlyDeclared=*/false);

      isVirtualOkay = true;
    } else {
      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);

      // Create a FunctionDecl to satisfy the function definition parsing
      // code path.
      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
                                   Name, R, SC, isInline, 
                                   /*hasPrototype=*/true,
                                   // FIXME: Move to DeclGroup...
                                   D.getDeclSpec().getSourceRange().getBegin());
      D.setInvalidType();
    }
  } else if (D.getKind() == Declarator::DK_Conversion) {
    if (!DC->isRecord()) {
      Diag(D.getIdentifierLoc(),
           diag::err_conv_function_not_member);
      return 0;
    }
    
    CheckConversionDeclarator(D, R, SC);
    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
                                      D.getIdentifierLoc(), Name, R,
                                      isInline, isExplicit);
      
    isVirtualOkay = true;
  } else if (DC->isRecord()) {
    // If the of the function is the same as the name of the record, then this
    // must be an invalid constructor that has a return type. 
    // (The parser checks for a return type and makes the declarator a 
    // constructor if it has no return type).
    // must have an invalid constructor that has a return type 
    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
        << SourceRange(D.getIdentifierLoc());
      return 0;
    }
    
    // This is a C++ method declaration.
    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
                                  D.getIdentifierLoc(), Name, R,
                                  (SC == FunctionDecl::Static), isInline);

    isVirtualOkay = (SC != FunctionDecl::Static);
  } else {
    // Determine whether the function was written with a
    // prototype. This true when:
    //   - we're in C++ (where every function has a prototype),
    //   - there is a prototype in the declarator, or
    //   - the type R of the function is some kind of typedef or other reference
    //     to a type name (which eventually refers to a function type).
    bool HasPrototype = 
       getLangOptions().CPlusPlus ||
       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
    
    NewFD = FunctionDecl::Create(Context, DC,
                                 D.getIdentifierLoc(),
                                 Name, R, SC, isInline, HasPrototype,
                                 // FIXME: Move to DeclGroup...
                                 D.getDeclSpec().getSourceRange().getBegin());
  }

  if (D.isInvalidType())
    NewFD->setInvalidDecl();
  
  // Set the lexical context. If the declarator has a C++
  // scope specifier, the lexical context will be different
  // from the semantic context.
  NewFD->setLexicalDeclContext(CurContext);

  // C++ [dcl.fct.spec]p5:
  //   The virtual specifier shall only be used in declarations of
  //   nonstatic class member functions that appear within a
  //   member-specification of a class declaration; see 10.3.
  //
  if (isVirtual && !NewFD->isInvalidDecl()) {
    if (!isVirtualOkay) {
       Diag(D.getDeclSpec().getVirtualSpecLoc(), 
           diag::err_virtual_non_function);
    } else if (!CurContext->isRecord()) {
      // 'virtual' was specified outside of the class.
      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
        << CodeModificationHint::CreateRemoval(
                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
    } else {
      // Okay: Add virtual to the method.
      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
      CurClass->setAggregate(false);
      CurClass->setPOD(false);
      CurClass->setPolymorphic(true);
      CurClass->setHasTrivialConstructor(false);
    }
  }

  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
    // Look for virtual methods in base classes that this method might override.

    BasePaths Paths;
    if (LookupInBases(cast<CXXRecordDecl>(DC), 
                      MemberLookupCriteria(NewMD), Paths)) {
      for (BasePaths::decl_iterator I = Paths.found_decls_begin(), 
           E = Paths.found_decls_end(); I != E; ++I) {
        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
          if (!CheckOverridingFunctionReturnType(NewMD, OldMD))
            NewMD->addOverriddenMethod(OldMD);
        }
      }
    }
  }
  
  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) && 
      !CurContext->isRecord()) {
    // C++ [class.static]p1:
    //   A data or function member of a class may be declared static
    //   in a class definition, in which case it is a static member of
    //   the class.

    // Complain about the 'static' specifier if it's on an out-of-line
    // member function definition.
    Diag(D.getDeclSpec().getStorageClassSpecLoc(), 
         diag::err_static_out_of_line)
      << CodeModificationHint::CreateRemoval(
                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
  }

  // Handle GNU asm-label extension (encoded as an attribute).
  if (Expr *E = (Expr*) D.getAsmLabel()) {
    // The parser guarantees this is a string.
    StringLiteral *SE = cast<StringLiteral>(E);  
    NewFD->addAttr(Context,
                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
                                                        SE->getByteLength())));
  }

  // Copy the parameter declarations from the declarator D to the function
  // declaration NewFD, if they are available.  First scavenge them into Params.
  llvm::SmallVector<ParmVarDecl*, 16> Params;
  if (D.getNumTypeObjects() > 0) {
    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;

    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
    // function that takes no arguments, not a function that takes a
    // single void argument.
    // We let through "const void" here because Sema::GetTypeForDeclarator
    // already checks for that case.
    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
        FTI.ArgInfo[0].Param &&
        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
      // Empty arg list, don't push any params.
      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();

      // In C++, the empty parameter-type-list must be spelled "void"; a
      // typedef of void is not permitted.
      if (getLangOptions().CPlusPlus &&
          Param->getType().getUnqualifiedType() != Context.VoidTy)
        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
      // FIXME: Leaks decl?
    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
    }
  
  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
    // When we're declaring a function with a typedef, typeof, etc as in the
    // following example, we'll need to synthesize (unnamed)
    // parameters for use in the declaration.
    //
    // @code
    // typedef void fn(int);
    // fn f;
    // @endcode
    
    // Synthesize a parameter for each argument type.
    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
         AE = FT->arg_type_end(); AI != AE; ++AI) {
      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
                                               SourceLocation(), 0,
                                               *AI, VarDecl::None, 0);
      Param->setImplicit();
      Params.push_back(Param);
    }
  } else {
    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
           "Should not need args for typedef of non-prototype fn");
  }
  // Finally, we know we have the right number of parameters, install them.
  NewFD->setParams(Context, Params.data(), Params.size());

  
    
  // If name lookup finds a previous declaration that is not in the
  // same scope as the new declaration, this may still be an
  // acceptable redeclaration.
  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
      !(NewFD->hasLinkage() &&
        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
    PrevDecl = 0;

  // Perform semantic checking on the function declaration.
  bool OverloadableAttrRequired = false; // FIXME: HACK!
  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
                           /*FIXME:*/OverloadableAttrRequired);

  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
    // An out-of-line member function declaration must also be a
    // definition (C++ [dcl.meaning]p1).
    if (!IsFunctionDefinition) {
      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
        << D.getCXXScopeSpec().getRange();
      NewFD->setInvalidDecl();
    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
      // The user tried to provide an out-of-line definition for a
      // function that is a member of a class or namespace, but there
      // was no such member function declared (C++ [class.mfct]p2, 
      // C++ [namespace.memdef]p2). For example:
      // 
      // class X {
      //   void f() const;
      // }; 
      //
      // void X::f() { } // ill-formed
      //
      // Complain about this problem, and attempt to suggest close
      // matches (e.g., those that differ only in cv-qualifiers and
      // whether the parameter types are references).
      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
      NewFD->setInvalidDecl();
      
      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName, 
                                              true);
      assert(!Prev.isAmbiguous() && 
             "Cannot have an ambiguity in previous-declaration lookup");
      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
           Func != FuncEnd; ++Func) {
        if (isa<FunctionDecl>(*Func) &&
            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
      }
      
      PrevDecl = 0;
    }
  }

  // Handle attributes. We need to have merged decls when handling attributes
  // (for example to check for conflicts, etc).
  // FIXME: This needs to happen before we merge declarations. Then,
  // let attribute merging cope with attribute conflicts.
  ProcessDeclAttributes(S, NewFD, D);
  AddKnownFunctionAttributes(NewFD);

  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>(Context)) {
    // If a function name is overloadable in C, then every function
    // with that name must be marked "overloadable".
    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
      << Redeclaration << NewFD;
    if (PrevDecl)
      Diag(PrevDecl->getLocation(), 
           diag::note_attribute_overloadable_prev_overload);
    NewFD->addAttr(Context, ::new (Context) OverloadableAttr());
  }

  // If this is a locally-scoped extern C function, update the
  // map of such names.
  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
      && !NewFD->isInvalidDecl())
    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);

  return NewFD;
}

/// \brief Perform semantic checking of a new function declaration.
///
/// Performs semantic analysis of the new function declaration
/// NewFD. This routine performs all semantic checking that does not
/// require the actual declarator involved in the declaration, and is
/// used both for the declaration of functions as they are parsed
/// (called via ActOnDeclarator) and for the declaration of functions
/// that have been instantiated via C++ template instantiation (called
/// via InstantiateDecl).
///
/// This sets NewFD->isInvalidDecl() to true if there was an error.
void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
                                    bool &Redeclaration,
                                    bool &OverloadableAttrRequired) {
  // If NewFD is already known erroneous, don't do any of this checking.
  if (NewFD->isInvalidDecl())
    return;

  if (NewFD->getResultType()->isVariablyModifiedType()) {
    // Functions returning a variably modified type violate C99 6.7.5.2p2
    // because all functions have linkage.
    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
    return NewFD->setInvalidDecl();
  }

  // Semantic checking for this function declaration (in isolation).
  if (getLangOptions().CPlusPlus) {
    // C++-specific checks.
    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
      CheckConstructor(Constructor);
    } else if (isa<CXXDestructorDecl>(NewFD)) {
      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
      Record->setUserDeclaredDestructor(true);
      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
      // user-defined destructor.
      Record->setPOD(false);
      
      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
      // declared destructor.
      Record->setHasTrivialDestructor(false);
    } else if (CXXConversionDecl *Conversion 
               = dyn_cast<CXXConversionDecl>(NewFD))
      ActOnConversionDeclarator(Conversion);
    
    // Extra checking for C++ overloaded operators (C++ [over.oper]).
    if (NewFD->isOverloadedOperator() &&
        CheckOverloadedOperatorDeclaration(NewFD))
      return NewFD->setInvalidDecl();
  }

  // C99 6.7.4p6:
  //   [... ] For a function with external linkage, the following
  //   restrictions apply: [...] If all of the file scope declarations
  //   for a function in a translation unit include the inline
  //   function specifier without extern, then the definition in that
  //   translation unit is an inline definition. An inline definition
  //   does not provide an external definition for the function, and
  //   does not forbid an external definition in another translation
  //   unit.
  //
  // Here we determine whether this function, in isolation, would be a
  // C99 inline definition. MergeCompatibleFunctionDecls looks at
  // previous declarations.
  if (NewFD->isInline() && getLangOptions().C99 && 
      NewFD->getStorageClass() == FunctionDecl::None &&
      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
    NewFD->setC99InlineDefinition(true);

  // Check for a previous declaration of this name.
  if (!PrevDecl && NewFD->isExternC(Context)) {
    // Since we did not find anything by this name and we're declaring
    // an extern "C" function, look for a non-visible extern "C"
    // declaration with the same name.
    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
    if (Pos != LocallyScopedExternalDecls.end())
      PrevDecl = Pos->second;
  }

  // Merge or overload the declaration with an existing declaration of
  // the same name, if appropriate.
  if (PrevDecl) {
    // Determine whether NewFD is an overload of PrevDecl or
    // a declaration that requires merging. If it's an overload,
    // there's no more work to do here; we'll just add the new
    // function to the scope.
    OverloadedFunctionDecl::function_iterator MatchedDecl;

    if (!getLangOptions().CPlusPlus &&
        AllowOverloadingOfFunction(PrevDecl, Context)) {
      OverloadableAttrRequired = true;

      // Functions marked "overloadable" must have a prototype (that
      // we can't get through declaration merging).
      if (!NewFD->getType()->getAsFunctionProtoType()) {
        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
          << NewFD;
        Redeclaration = true;

        // Turn this into a variadic function with no parameters.
        QualType R = Context.getFunctionType(
                       NewFD->getType()->getAsFunctionType()->getResultType(),
                       0, 0, true, 0);
        NewFD->setType(R);
        return NewFD->setInvalidDecl();
      }
    }

    if (PrevDecl && 
        (!AllowOverloadingOfFunction(PrevDecl, Context) || 
         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
        !isa<UsingDecl>(PrevDecl)) {
      Redeclaration = true;
      Decl *OldDecl = PrevDecl;

      // If PrevDecl was an overloaded function, extract the
      // FunctionDecl that matched.
      if (isa<OverloadedFunctionDecl>(PrevDecl))
        OldDecl = *MatchedDecl;

      // NewFD and OldDecl represent declarations that need to be
      // merged. 
      if (MergeFunctionDecl(NewFD, OldDecl))
        return NewFD->setInvalidDecl();

      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
    }
  }

  // In C++, check default arguments now that we have merged decls. Unless
  // the lexical context is the class, because in this case this is done
  // during delayed parsing anyway.
  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
    CheckCXXDefaultArguments(NewFD);
}

bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
  // FIXME: Need strict checking.  In C89, we need to check for
  // any assignment, increment, decrement, function-calls, or
  // commas outside of a sizeof.  In C99, it's the same list,
  // except that the aforementioned are allowed in unevaluated
  // expressions.  Everything else falls under the
  // "may accept other forms of constant expressions" exception.
  // (We never end up here for C++, so the constant expression
  // rules there don't matter.)
  if (Init->isConstantInitializer(Context))
    return false;
  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
    << Init->getSourceRange();
  return true;
}

void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
}

/// AddInitializerToDecl - Adds the initializer Init to the
/// declaration dcl. If DirectInit is true, this is C++ direct
/// initialization rather than copy initialization.
void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
  Decl *RealDecl = dcl.getAs<Decl>();
  // If there is no declaration, there was an error parsing it.  Just ignore
  // the initializer.
  if (RealDecl == 0)
    return;
  
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
    // With declarators parsed the way they are, the parser cannot
    // distinguish between a normal initializer and a pure-specifier.
    // Thus this grotesque test.
    IntegerLiteral *IL;
    Expr *Init = static_cast<Expr *>(init.get());
    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
      if (Method->isVirtualAsWritten()) {
        Method->setPure();

        // A class is abstract if at least one function is pure virtual.
        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
      } else if (!Method->isInvalidDecl()) {
        Diag(Method->getLocation(), diag::err_non_virtual_pure)
          << Method->getDeclName() << Init->getSourceRange();
        Method->setInvalidDecl();
      }
    } else {
      Diag(Method->getLocation(), diag::err_member_function_initialization)
        << Method->getDeclName() << Init->getSourceRange();
      Method->setInvalidDecl();
    }
    return;
  }

  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
  if (!VDecl) {
    if (getLangOptions().CPlusPlus &&
        RealDecl->getLexicalDeclContext()->isRecord() &&
        isa<NamedDecl>(RealDecl))
      Diag(RealDecl->getLocation(), diag::err_member_initialization)
        << cast<NamedDecl>(RealDecl)->getDeclName();
    else
      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
    RealDecl->setInvalidDecl();
    return;
  }

  if (!VDecl->getType()->isArrayType() &&
      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
                          diag::err_typecheck_decl_incomplete_type)) {
    RealDecl->setInvalidDecl();
    return;
  }

  const VarDecl *Def = 0;
  if (VDecl->getDefinition(Def)) {
    Diag(VDecl->getLocation(), diag::err_redefinition) 
      << VDecl->getDeclName();
    Diag(Def->getLocation(), diag::note_previous_definition);
    VDecl->setInvalidDecl();
    return;
  }

  // Take ownership of the expression, now that we're sure we have somewhere
  // to put it.
  Expr *Init = init.takeAs<Expr>();
  assert(Init && "missing initializer");

  // Get the decls type and save a reference for later, since
  // CheckInitializerTypes may change it.
  QualType DclT = VDecl->getType(), SavT = DclT;
  if (VDecl->isBlockVarDecl()) {
    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
      VDecl->setInvalidDecl();
    } else if (!VDecl->isInvalidDecl()) {
      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
                                VDecl->getDeclName(), DirectInit))
        VDecl->setInvalidDecl();
      
      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
      // Don't check invalid declarations to avoid emitting useless diagnostics.
      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
          CheckForConstantInitializer(Init, DclT);
      }
    }
  } else if (VDecl->isStaticDataMember() && 
             VDecl->getLexicalDeclContext()->isRecord()) {
    // This is an in-class initialization for a static data member, e.g.,
    //
    // struct S {
    //   static const int value = 17;
    // };

    // Attach the initializer
    VDecl->setInit(Context, Init);

    // C++ [class.mem]p4:
    //   A member-declarator can contain a constant-initializer only
    //   if it declares a static member (9.4) of const integral or
    //   const enumeration type, see 9.4.2.
    QualType T = VDecl->getType();
    if (!T->isDependentType() && 
        (!Context.getCanonicalType(T).isConstQualified() ||
         !T->isIntegralType())) {
      Diag(VDecl->getLocation(), diag::err_member_initialization)
        << VDecl->getDeclName() << Init->getSourceRange();
      VDecl->setInvalidDecl();
    } else {
      // C++ [class.static.data]p4:
      //   If a static data member is of const integral or const
      //   enumeration type, its declaration in the class definition
      //   can specify a constant-initializer which shall be an
      //   integral constant expression (5.19).
      if (!Init->isTypeDependent() &&
          !Init->getType()->isIntegralType()) {
        // We have a non-dependent, non-integral or enumeration type.
        Diag(Init->getSourceRange().getBegin(), 
             diag::err_in_class_initializer_non_integral_type)
          << Init->getType() << Init->getSourceRange();
        VDecl->setInvalidDecl();
      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
        // Check whether the expression is a constant expression.
        llvm::APSInt Value;
        SourceLocation Loc;
        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
          Diag(Loc, diag::err_in_class_initializer_non_constant)
            << Init->getSourceRange();
          VDecl->setInvalidDecl();
        } else if (!VDecl->getType()->isDependentType())
          ImpCastExprToType(Init, VDecl->getType());
      }
    }
  } else if (VDecl->isFileVarDecl()) {
    if (VDecl->getStorageClass() == VarDecl::Extern)
      Diag(VDecl->getLocation(), diag::warn_extern_init);
    if (!VDecl->isInvalidDecl())
      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
                                VDecl->getDeclName(), DirectInit))
        VDecl->setInvalidDecl();
    
    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
    // Don't check invalid declarations to avoid emitting useless diagnostics.
    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
      // C99 6.7.8p4. All file scoped initializers need to be constant.
      CheckForConstantInitializer(Init, DclT);
    }
  }
  // If the type changed, it means we had an incomplete type that was
  // completed by the initializer. For example: 
  //   int ary[] = { 1, 3, 5 };
  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
    VDecl->setType(DclT);
    Init->setType(DclT);
  }
    
  // Attach the initializer to the decl.
  VDecl->setInit(Context, Init);

  // If the previous declaration of VDecl was a tentative definition,
  // remove it from the set of tentative definitions.
  if (VDecl->getPreviousDeclaration() &&
      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos 
      = TentativeDefinitions.find(VDecl->getDeclName());
    assert(Pos != TentativeDefinitions.end() && 
           "Unrecorded tentative definition?");
    TentativeDefinitions.erase(Pos);
  }

  return;
}

void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
  Decl *RealDecl = dcl.getAs<Decl>();

  // If there is no declaration, there was an error parsing it. Just ignore it.
  if (RealDecl == 0)
    return;

  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
    QualType Type = Var->getType();

    // Record tentative definitions.
    if (Var->isTentativeDefinition(Context))
      TentativeDefinitions[Var->getDeclName()] = Var;

    // C++ [dcl.init.ref]p3:
    //   The initializer can be omitted for a reference only in a
    //   parameter declaration (8.3.5), in the declaration of a
    //   function return type, in the declaration of a class member
    //   within its class declaration (9.2), and where the extern
    //   specifier is explicitly used.
    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
        << Var->getDeclName()
        << SourceRange(Var->getLocation(), Var->getLocation());
      Var->setInvalidDecl();
      return;
    }

    // C++ [dcl.init]p9:
    //
    //   If no initializer is specified for an object, and the object
    //   is of (possibly cv-qualified) non-POD class type (or array
    //   thereof), the object shall be default-initialized; if the
    //   object is of const-qualified type, the underlying class type
    //   shall have a user-declared default constructor.
    if (getLangOptions().CPlusPlus) {
      QualType InitType = Type;
      if (const ArrayType *Array = Context.getAsArrayType(Type))
        InitType = Array->getElementType();
      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
          InitType->isRecordType() && !InitType->isDependentType()) {
        CXXRecordDecl *RD = 
          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
        CXXConstructorDecl *Constructor = 0;
        if (!RequireCompleteType(Var->getLocation(), InitType, 
                                    diag::err_invalid_incomplete_type_use))
          Constructor
            = PerformInitializationByConstructor(InitType, 0, 0, 
                                                 Var->getLocation(),
                                               SourceRange(Var->getLocation(),
                                                           Var->getLocation()),
                                                 Var->getDeclName(),
                                                 IK_Default);
        if (!Constructor)
          Var->setInvalidDecl();
        else  { 
          if (!RD->hasTrivialConstructor())
            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
            // Check for valid construction.
            DefineImplicitDefaultConstructor(Var->getLocation(), Constructor);
        }
      }
    }

#if 0
    // FIXME: Temporarily disabled because we are not properly parsing
    // linkage specifications on declarations, e.g., 
    //
    //   extern "C" const CGPoint CGPointerZero;
    //
    // C++ [dcl.init]p9:
    //
    //     If no initializer is specified for an object, and the
    //     object is of (possibly cv-qualified) non-POD class type (or
    //     array thereof), the object shall be default-initialized; if
    //     the object is of const-qualified type, the underlying class
    //     type shall have a user-declared default
    //     constructor. Otherwise, if no initializer is specified for
    //     an object, the object and its subobjects, if any, have an
    //     indeterminate initial value; if the object or any of its
    //     subobjects are of const-qualified type, the program is
    //     ill-formed.
    //
    // This isn't technically an error in C, so we don't diagnose it.
    //
    // FIXME: Actually perform the POD/user-defined default
    // constructor check.
    if (getLangOptions().CPlusPlus &&
        Context.getCanonicalType(Type).isConstQualified() &&
        !Var->hasExternalStorage())
      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
        << Var->getName()
        << SourceRange(Var->getLocation(), Var->getLocation());
#endif
  }
}

Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
                                                   DeclPtrTy *Group,
                                                   unsigned NumDecls) {
  llvm::SmallVector<Decl*, 8> Decls;

  if (DS.isTypeSpecOwned())
    Decls.push_back((Decl*)DS.getTypeRep());

  for (unsigned i = 0; i != NumDecls; ++i)
    if (Decl *D = Group[i].getAs<Decl>())
      Decls.push_back(D);
  
  // Perform semantic analysis that depends on having fully processed both
  // the declarator and initializer.
  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
    if (!IDecl)
      continue;
    QualType T = IDecl->getType();
    
    // Block scope. C99 6.7p7: If an identifier for an object is declared with
    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
      if (!IDecl->isInvalidDecl() &&
          RequireCompleteType(IDecl->getLocation(), T, 
                              diag::err_typecheck_decl_incomplete_type))
        IDecl->setInvalidDecl();
    }
    // File scope. C99 6.9.2p2: A declaration of an identifier for and 
    // object that has file scope without an initializer, and without a
    // storage-class specifier or with the storage-class specifier "static",
    // constitutes a tentative definition. Note: A tentative definition with
    // external linkage is valid (C99 6.2.2p5).
    if (IDecl->isTentativeDefinition(Context)) {
      QualType CheckType = T;
      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
      
      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
      if (ArrayT) {
        CheckType = ArrayT->getElementType();
        DiagID = diag::err_illegal_decl_array_incomplete_type;
      }
      
      if (IDecl->isInvalidDecl()) {
        // Do nothing with invalid declarations
      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
        // C99 6.9.2p3: If the declaration of an identifier for an object is
        // a tentative definition and has internal linkage (C99 6.2.2p3), the  
        // declared type shall not be an incomplete type.
        IDecl->setInvalidDecl();
      }
    }
  }
  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
                                                   Decls.data(), Decls.size()));
}


/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
/// to introduce parameters into function prototype scope.
Sema::DeclPtrTy 
Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
  const DeclSpec &DS = D.getDeclSpec();

  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
  VarDecl::StorageClass StorageClass = VarDecl::None;
  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
    StorageClass = VarDecl::Register;
  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
    Diag(DS.getStorageClassSpecLoc(),
         diag::err_invalid_storage_class_in_func_decl);
    D.getMutableDeclSpec().ClearStorageClassSpecs();
  }

  if (D.getDeclSpec().isThreadSpecified())
    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);

  DiagnoseFunctionSpecifiers(D);

  // Check that there are no default arguments inside the type of this
  // parameter (C++ only).
  if (getLangOptions().CPlusPlus)
    CheckExtraCXXDefaultArguments(D);
 
  TagDecl *OwnedDecl = 0;
  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
  
  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
    // C++ [dcl.fct]p6:
    //   Types shall not be defined in return or parameter types.
    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
      << Context.getTypeDeclType(OwnedDecl);
  }

  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
  // Can this happen for params?  We already checked that they don't conflict
  // among each other.  Here they can only shadow globals, which is ok.
  IdentifierInfo *II = D.getIdentifier();
  if (II) {
    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
      if (PrevDecl->isTemplateParameter()) {
        // Maybe we will complain about the shadowed template parameter.
        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
        // Just pretend that we didn't see the previous declaration.
        PrevDecl = 0;
      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;

        // Recover by removing the name
        II = 0;
        D.SetIdentifier(0, D.getIdentifierLoc());
      }
    }
  }

  // Parameters can not be abstract class types.
  // For record types, this is done by the AbstractClassUsageDiagnoser once
  // the class has been completely parsed. 
  if (!CurContext->isRecord() && 
      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType, 
                             diag::err_abstract_type_in_decl,
                             AbstractParamType))
    D.setInvalidType(true);

  QualType T = adjustParameterType(parmDeclType);
  
  ParmVarDecl *New;
  if (T == parmDeclType) // parameter type did not need adjustment
    New = ParmVarDecl::Create(Context, CurContext, 
                              D.getIdentifierLoc(), II,
                              parmDeclType, StorageClass, 
                              0);
  else // keep track of both the adjusted and unadjusted types
    New = OriginalParmVarDecl::Create(Context, CurContext, 
                                      D.getIdentifierLoc(), II, T,
                                      parmDeclType, StorageClass, 0);
  
  if (D.isInvalidType())
    New->setInvalidDecl();

  // Parameter declarators cannot be interface types. All ObjC objects are
  // passed by reference.
  if (T->isObjCInterfaceType()) {
    Diag(D.getIdentifierLoc(),
         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
    New->setInvalidDecl();
  }
  
  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
  if (D.getCXXScopeSpec().isSet()) {
    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
      << D.getCXXScopeSpec().getRange();
    New->setInvalidDecl();
  }

  // Add the parameter declaration into this scope.
  S->AddDecl(DeclPtrTy::make(New));
  if (II)
    IdResolver.AddDecl(New);

  ProcessDeclAttributes(S, New, D);

  if (New->hasAttr<BlocksAttr>(Context)) {
    Diag(New->getLocation(), diag::err_block_on_nonlocal);
  }
  return DeclPtrTy::make(New);
}

void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
                                           SourceLocation LocAfterDecls) {
  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
         "Not a function declarator!");
  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;

  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
  // for a K&R function.
  if (!FTI.hasPrototype) {
    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
      --i;
      if (FTI.ArgInfo[i].Param == 0) {
        std::string Code = "  int ";
        Code += FTI.ArgInfo[i].Ident->getName();
        Code += ";\n";
        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
          << FTI.ArgInfo[i].Ident
          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);

        // Implicitly declare the argument as type 'int' for lack of a better
        // type.
        DeclSpec DS;
        const char* PrevSpec; // unused
        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc, 
                           PrevSpec);
        Declarator ParamD(DS, Declarator::KNRTypeListContext);
        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
      }
    }
  } 
}

Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
                                              Declarator &D) {
  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
         "Not a function declarator!");
  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;

  if (FTI.hasPrototype) {
    // FIXME: Diagnose arguments without names in C. 
  }
  
  Scope *ParentScope = FnBodyScope->getParent();

  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
  return ActOnStartOfFunctionDef(FnBodyScope, DP);
}

Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());

  CurFunctionNeedsScopeChecking = false;
  
  // See if this is a redefinition.
  const FunctionDecl *Definition;
  if (FD->getBody(Context, Definition)) {
    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
    Diag(Definition->getLocation(), diag::note_previous_definition);
  }

  // Builtin functions cannot be defined.
  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
      FD->setInvalidDecl();
    }
  }

  // The return type of a function definition must be complete
  // (C99 6.9.1p3, C++ [dcl.fct]p6).
  QualType ResultType = FD->getResultType();
  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
      !FD->isInvalidDecl() &&
      RequireCompleteType(FD->getLocation(), ResultType,
                          diag::err_func_def_incomplete_result))
    FD->setInvalidDecl();

  // GNU warning -Wmissing-prototypes:
  //   Warn if a global function is defined without a previous
  //   prototype declaration. This warning is issued even if the
  //   definition itself provides a prototype. The aim is to detect
  //   global functions that fail to be declared in header files.
  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
      !FD->isMain()) {
    bool MissingPrototype = true;
    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
         Prev; Prev = Prev->getPreviousDeclaration()) {
      // Ignore any declarations that occur in function or method
      // scope, because they aren't visible from the header.
      if (Prev->getDeclContext()->isFunctionOrMethod())
        continue;

      MissingPrototype = !Prev->getType()->isFunctionProtoType();
      break;
    }

    if (MissingPrototype)
      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
  }

  if (FnBodyScope)
    PushDeclContext(FnBodyScope, FD);

  // Check the validity of our function parameters
  CheckParmsForFunctionDef(FD);

  // Introduce our parameters into the function scope
  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
    ParmVarDecl *Param = FD->getParamDecl(p);
    Param->setOwningFunction(FD);

    // If this has an identifier, add it to the scope stack.
    if (Param->getIdentifier() && FnBodyScope)
      PushOnScopeChains(Param, FnBodyScope);
  }

  // Checking attributes of current function definition
  // dllimport attribute.
  if (FD->getAttr<DLLImportAttr>(Context) && 
      (!FD->getAttr<DLLExportAttr>(Context))) {
    // dllimport attribute cannot be applied to definition.
    if (!(FD->getAttr<DLLImportAttr>(Context))->isInherited()) {
      Diag(FD->getLocation(),
           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
        << "dllimport";
      FD->setInvalidDecl();
      return DeclPtrTy::make(FD);
    } else {
      // If a symbol previously declared dllimport is later defined, the
      // attribute is ignored in subsequent references, and a warning is
      // emitted.
      Diag(FD->getLocation(),
           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
        << FD->getNameAsCString() << "dllimport";
    }
  }
  return DeclPtrTy::make(FD);
}

Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
  return ActOnFinishFunctionBody(D, move(BodyArg), false);
}

Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
                                              bool IsInstantiation) {
  Decl *dcl = D.getAs<Decl>();
  Stmt *Body = BodyArg.takeAs<Stmt>();
  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
    FD->setBody(Body);
    
    if (!FD->isInvalidDecl())
      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
    
    // C++ [basic.def.odr]p2:
    //   [...] A virtual member function is used if it is not pure. [...]
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
      if (Method->isVirtual() && !Method->isPure())
        MarkDeclarationReferenced(Method->getLocation(), Method);
    
    assert(FD == getCurFunctionDecl() && "Function parsing confused");
  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
    assert(MD == getCurMethodDecl() && "Method parsing confused");
    MD->setBody(Body);
    
    if (!MD->isInvalidDecl())
      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
  } else {
    Body->Destroy(Context);
    return DeclPtrTy();
  }
  if (!IsInstantiation)
    PopDeclContext();

  // Verify and clean out per-function state.

  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
  
  // Check goto/label use.
  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
    LabelStmt *L = I->second;
    
    // Verify that we have no forward references left.  If so, there was a goto
    // or address of a label taken, but no definition of it.  Label fwd
    // definitions are indicated with a null substmt.
    if (L->getSubStmt() != 0)
      continue;
    
    // Emit error.
    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
    
    // At this point, we have gotos that use the bogus label.  Stitch it into
    // the function body so that they aren't leaked and that the AST is well
    // formed.
    if (Body == 0) {
      // The whole function wasn't parsed correctly, just delete this.
      L->Destroy(Context);
      continue;
    }
    
    // Otherwise, the body is valid: we want to stitch the label decl into the
    // function somewhere so that it is properly owned and so that the goto
    // has a valid target.  Do this by creating a new compound stmt with the
    // label in it.

    // Give the label a sub-statement.
    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));

    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
                               cast<CXXTryStmt>(Body)->getTryBlock() :
                               cast<CompoundStmt>(Body);
    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
    Elements.push_back(L);
    Compound->setStmts(Context, &Elements[0], Elements.size());
  }
  FunctionLabelMap.clear();

  if (!Body) return D;

  // Verify that that gotos and switch cases don't jump into scopes illegally.
  if (CurFunctionNeedsScopeChecking)
    DiagnoseInvalidJumps(Body);

  // C++ constructors that have function-try-blocks can't have return statements
  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));

  return D;
}

/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, 
                                          IdentifierInfo &II, Scope *S) {
  // Before we produce a declaration for an implicitly defined
  // function, see whether there was a locally-scoped declaration of
  // this name as a function or variable. If so, use that
  // (non-visible) declaration, and complain about it.
  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
    = LocallyScopedExternalDecls.find(&II);
  if (Pos != LocallyScopedExternalDecls.end()) {
    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
    return Pos->second;
  }

  // Extension in C99.  Legal in C90, but warn about it.
  if (getLangOptions().C99)
    Diag(Loc, diag::ext_implicit_function_decl) << &II;
  else
    Diag(Loc, diag::warn_implicit_function_decl) << &II;
  
  // FIXME: handle stuff like:
  // void foo() { extern float X(); }
  // void bar() { X(); }  <-- implicit decl for X in another scope.

  // Set a Declarator for the implicit definition: int foo();
  const char *Dummy;
  DeclSpec DS;
  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
  Error = Error; // Silence warning.
  assert(!Error && "Error setting up implicit decl!");
  Declarator D(DS, Declarator::BlockContext);
  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
                                             0, 0, false, SourceLocation(),
                                             false, 0,0,0, Loc, D),
                SourceLocation());
  D.SetIdentifier(&II, Loc);

  // Insert this function into translation-unit scope.

  DeclContext *PrevDC = CurContext;
  CurContext = Context.getTranslationUnitDecl();
 
  FunctionDecl *FD = 
 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
  FD->setImplicit();

  CurContext = PrevDC;

  AddKnownFunctionAttributes(FD);

  return FD;
}

/// \brief Adds any function attributes that we know a priori based on
/// the declaration of this function.
///
/// These attributes can apply both to implicitly-declared builtins
/// (like __builtin___printf_chk) or to library-declared functions
/// like NSLog or printf.
void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
  if (FD->isInvalidDecl())
    return;

  // If this is a built-in function, map its builtin attributes to
  // actual attributes.
  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
    // Handle printf-formatting attributes.
    unsigned FormatIdx;
    bool HasVAListArg;
    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
      if (!FD->getAttr<FormatAttr>(Context))
        FD->addAttr(Context,
                    ::new (Context) FormatAttr("printf", FormatIdx + 1,
                                             HasVAListArg ? 0 : FormatIdx + 2));
    }

    // Mark const if we don't care about errno and that is the only
    // thing preventing the function from being const. This allows
    // IRgen to use LLVM intrinsics for such functions.
    if (!getLangOptions().MathErrno &&
        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
      if (!FD->getAttr<ConstAttr>(Context))
        FD->addAttr(Context, ::new (Context) ConstAttr());
    }
  }

  IdentifierInfo *Name = FD->getIdentifier();
  if (!Name)
    return;
  if ((!getLangOptions().CPlusPlus && 
       FD->getDeclContext()->isTranslationUnit()) ||
      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == 
       LinkageSpecDecl::lang_c)) {
    // Okay: this could be a libc/libm/Objective-C function we know
    // about.
  } else
    return;

  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
    if (const FormatAttr *Format = FD->getAttr<FormatAttr>(Context)) {
      // FIXME: We known better than our headers.
      const_cast<FormatAttr *>(Format)->setType("printf");
    } else 
      FD->addAttr(Context,
                  ::new (Context) FormatAttr("printf", 1,
                                             Name->isStr("NSLogv") ? 0 : 2));
  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
    if (!FD->getAttr<FormatAttr>(Context))
      FD->addAttr(Context,
                  ::new (Context) FormatAttr("printf", 2,
                                             Name->isStr("vasprintf") ? 0 : 3));
  }
}

TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
  
  // Scope manipulation handled by caller.
  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
                                           D.getIdentifierLoc(),
                                           D.getIdentifier(), 
                                           T);
  
  if (TagType *TT = dyn_cast<TagType>(T)) {
    TagDecl *TD = TT->getDecl();
    
    // If the TagDecl that the TypedefDecl points to is an anonymous decl
    // keep track of the TypedefDecl.
    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
      TD->setTypedefForAnonDecl(NewTD);
  }

  if (D.isInvalidType())
    NewTD->setInvalidDecl();
  return NewTD;
}


/// \brief Determine whether a tag with a given kind is acceptable
/// as a redeclaration of the given tag declaration.
///
/// \returns true if the new tag kind is acceptable, false otherwise.
bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, 
                                        TagDecl::TagKind NewTag,
                                        SourceLocation NewTagLoc,
                                        const IdentifierInfo &Name) {
  // C++ [dcl.type.elab]p3:
  //   The class-key or enum keyword present in the
  //   elaborated-type-specifier shall agree in kind with the
  //   declaration to which the name in theelaborated-type-specifier
  //   refers. This rule also applies to the form of
  //   elaborated-type-specifier that declares a class-name or
  //   friend class since it can be construed as referring to the
  //   definition of the class. Thus, in any
  //   elaborated-type-specifier, the enum keyword shall be used to
  //   refer to an enumeration (7.2), the union class-keyshall be
  //   used to refer to a union (clause 9), and either the class or
  //   struct class-key shall be used to refer to a class (clause 9)
  //   declared using the class or struct class-key.
  TagDecl::TagKind OldTag = Previous->getTagKind();
  if (OldTag == NewTag)
    return true;
 
  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
    // Warn about the struct/class tag mismatch.
    bool isTemplate = false;
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
      isTemplate = Record->getDescribedClassTemplate();

    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
      << (NewTag == TagDecl::TK_class)
      << isTemplate << &Name
      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
                              OldTag == TagDecl::TK_class? "class" : "struct");
    Diag(Previous->getLocation(), diag::note_previous_use);
    return true;
  }
  return false;
}

/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
/// former case, Name will be non-null.  In the later case, Name will be null.
/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
/// reference/declaration/definition of a tag.
Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
                               SourceLocation KWLoc, const CXXScopeSpec &SS,
                               IdentifierInfo *Name, SourceLocation NameLoc,
                               AttributeList *Attr, AccessSpecifier AS,
                               bool &OwnedDecl) {
  // If this is not a definition, it must have a name.
  assert((Name != 0 || TK == TK_Definition) &&
         "Nameless record must be a definition!");

  OwnedDecl = false;
  TagDecl::TagKind Kind;
  switch (TagSpec) {
  default: assert(0 && "Unknown tag type!");
  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
  }
  
  DeclContext *SearchDC = CurContext;
  DeclContext *DC = CurContext;
  NamedDecl *PrevDecl = 0;

  bool Invalid = false;

  if (Name && SS.isNotEmpty()) {
    // We have a nested-name tag ('struct foo::bar').

    // Check for invalid 'foo::'.
    if (SS.isInvalid()) {
      Name = 0;
      goto CreateNewDecl;
    }

    if (RequireCompleteDeclContext(SS))
      return DeclPtrTy::make((Decl *)0);

    DC = computeDeclContext(SS);
    SearchDC = DC;
    // Look-up name inside 'foo::'.
    PrevDecl 
      = dyn_cast_or_null<TagDecl>(
               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());

    // A tag 'foo::bar' must already exist.
    if (PrevDecl == 0) {
      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
      Name = 0;
      Invalid = true;
      goto CreateNewDecl;
    }
  } else if (Name) {
    // If this is a named struct, check to see if there was a previous forward
    // declaration or definition.
    // FIXME: We're looking into outer scopes here, even when we
    // shouldn't be. Doing so can result in ambiguities that we
    // shouldn't be diagnosing.
    LookupResult R = LookupName(S, Name, LookupTagName,
                                /*RedeclarationOnly=*/(TK != TK_Reference));
    if (R.isAmbiguous()) {
      DiagnoseAmbiguousLookup(R, Name, NameLoc);
      // FIXME: This is not best way to recover from case like:
      //
      // struct S s;
      //
      // causes needless "incomplete type" error later.
      Name = 0;
      PrevDecl = 0;
      Invalid = true;
    }
    else
      PrevDecl = R;

    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
      // FIXME: This makes sure that we ignore the contexts associated
      // with C structs, unions, and enums when looking for a matching
      // tag declaration or definition. See the similar lookup tweak
      // in Sema::LookupName; is there a better way to deal with this?
      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
        SearchDC = SearchDC->getParent();
    }
  }

  if (PrevDecl && PrevDecl->isTemplateParameter()) {
    // Maybe we will complain about the shadowed template parameter.
    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
    // Just pretend that we didn't see the previous declaration.
    PrevDecl = 0;
  }

  if (PrevDecl) {
    // Check whether the previous declaration is usable.
    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
    
    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
      // If this is a use of a previous tag, or if the tag is already declared
      // in the same scope (so that the definition/declaration completes or
      // rementions the tag), reuse the decl.
      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
        // Make sure that this wasn't declared as an enum and now used as a
        // struct or something similar.
        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
          bool SafeToContinue 
            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
               Kind != TagDecl::TK_enum);
          if (SafeToContinue)
            Diag(KWLoc, diag::err_use_with_wrong_tag) 
              << Name
              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
                                                  PrevTagDecl->getKindName());
          else
            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
          Diag(PrevDecl->getLocation(), diag::note_previous_use);

          if (SafeToContinue) 
            Kind = PrevTagDecl->getTagKind();
          else {
            // Recover by making this an anonymous redefinition.
            Name = 0;
            PrevDecl = 0;
            Invalid = true;
          }
        }

        if (!Invalid) {
          // If this is a use, just return the declaration we found.

          // FIXME: In the future, return a variant or some other clue
          // for the consumer of this Decl to know it doesn't own it.
          // For our current ASTs this shouldn't be a problem, but will
          // need to be changed with DeclGroups.
          if (TK == TK_Reference)
            return DeclPtrTy::make(PrevDecl);

          // Diagnose attempts to redefine a tag.
          if (TK == TK_Definition) {
            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
              Diag(NameLoc, diag::err_redefinition) << Name;
              Diag(Def->getLocation(), diag::note_previous_definition);
              // If this is a redefinition, recover by making this
              // struct be anonymous, which will make any later
              // references get the previous definition.
              Name = 0;
              PrevDecl = 0;
              Invalid = true;
            } else {
              // If the type is currently being defined, complain
              // about a nested redefinition.
              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
              if (Tag->isBeingDefined()) {
                Diag(NameLoc, diag::err_nested_redefinition) << Name;
                Diag(PrevTagDecl->getLocation(), 
                     diag::note_previous_definition);
                Name = 0;
                PrevDecl = 0;
                Invalid = true;
              }
            }

            // Okay, this is definition of a previously declared or referenced
            // tag PrevDecl. We're going to create a new Decl for it.
          }
        }
        // If we get here we have (another) forward declaration or we
        // have a definition.  Just create a new decl.        
      } else {
        // If we get here, this is a definition of a new tag type in a nested
        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a 
        // new decl/type.  We set PrevDecl to NULL so that the entities
        // have distinct types.
        PrevDecl = 0;
      }
      // If we get here, we're going to create a new Decl. If PrevDecl
      // is non-NULL, it's a definition of the tag declared by
      // PrevDecl. If it's NULL, we have a new definition.
    } else {
      // PrevDecl is a namespace, template, or anything else
      // that lives in the IDNS_Tag identifier namespace.
      if (isDeclInScope(PrevDecl, SearchDC, S)) {
        // The tag name clashes with a namespace name, issue an error and
        // recover by making this tag be anonymous.
        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
        Name = 0;
        PrevDecl = 0;
        Invalid = true;
      } else {
        // The existing declaration isn't relevant to us; we're in a
        // new scope, so clear out the previous declaration.
        PrevDecl = 0;
      }
    }
  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
    // C++ [basic.scope.pdecl]p5:
    //   -- for an elaborated-type-specifier of the form 
    //
    //          class-key identifier
    //
    //      if the elaborated-type-specifier is used in the
    //      decl-specifier-seq or parameter-declaration-clause of a
    //      function defined in namespace scope, the identifier is
    //      declared as a class-name in the namespace that contains
    //      the declaration; otherwise, except as a friend
    //      declaration, the identifier is declared in the smallest
    //      non-class, non-function-prototype scope that contains the
    //      declaration.
    //
    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
    // C structs and unions.
    //
    // GNU C also supports this behavior as part of its incomplete
    // enum types extension, while GNU C++ does not.
    //
    // Find the context where we'll be declaring the tag.
    // FIXME: We would like to maintain the current DeclContext as the
    // lexical context, 
    while (SearchDC->isRecord())
      SearchDC = SearchDC->getParent();

    // Find the scope where we'll be declaring the tag.
    while (S->isClassScope() || 
           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
           ((S->getFlags() & Scope::DeclScope) == 0) ||
           (S->getEntity() && 
            ((DeclContext *)S->getEntity())->isTransparentContext()))
      S = S->getParent();
  }

CreateNewDecl:
  
  // If there is an identifier, use the location of the identifier as the
  // location of the decl, otherwise use the location of the struct/union
  // keyword.
  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
  
  // Otherwise, create a new declaration. If there is a previous
  // declaration of the same entity, the two will be linked via
  // PrevDecl.
  TagDecl *New;

  if (Kind == TagDecl::TK_enum) {
    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
    // enum X { A, B, C } D;    D should chain to X.
    New = EnumDecl::Create(Context, SearchDC, Loc, Name, 
                           cast_or_null<EnumDecl>(PrevDecl));
    // If this is an undefined enum, warn.
    if (TK != TK_Definition && !Invalid)  {
      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
                                              : diag::ext_forward_ref_enum;
      Diag(Loc, DK);
    }
  } else {
    // struct/union/class

    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
    // struct X { int A; } D;    D should chain to X.
    if (getLangOptions().CPlusPlus)
      // FIXME: Look for a way to use RecordDecl for simple structs.
      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
                                  cast_or_null<CXXRecordDecl>(PrevDecl));
    else
      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
                               cast_or_null<RecordDecl>(PrevDecl));
  }

  if (Kind != TagDecl::TK_enum) {
    // Handle #pragma pack: if the #pragma pack stack has non-default
    // alignment, make up a packed attribute for this decl. These
    // attributes are checked when the ASTContext lays out the
    // structure.
    //
    // It is important for implementing the correct semantics that this
    // happen here (in act on tag decl). The #pragma pack stack is
    // maintained as a result of parser callbacks which can occur at
    // many points during the parsing of a struct declaration (because
    // the #pragma tokens are effectively skipped over during the
    // parsing of the struct).
    if (unsigned Alignment = getPragmaPackAlignment())
      New->addAttr(Context, ::new (Context) PackedAttr(Alignment * 8));
  }

  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
    // C++ [dcl.typedef]p3:
    //   [...] Similarly, in a given scope, a class or enumeration
    //   shall not be declared with the same name as a typedef-name
    //   that is declared in that scope and refers to a type other
    //   than the class or enumeration itself.
    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
    TypedefDecl *PrevTypedef = 0;
    if (Lookup.getKind() == LookupResult::Found)
      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());

    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
          Context.getCanonicalType(Context.getTypeDeclType(New))) {
      Diag(Loc, diag::err_tag_definition_of_typedef)
        << Context.getTypeDeclType(New)
        << PrevTypedef->getUnderlyingType();
      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
      Invalid = true;
    }
  }

  if (Invalid)
    New->setInvalidDecl();

  if (Attr)
    ProcessDeclAttributeList(S, New, Attr);

  // If we're declaring or defining a tag in function prototype scope
  // in C, note that this type can only be used within the function.
  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);

  // Set the lexical context. If the tag has a C++ scope specifier, the
  // lexical context will be different from the semantic context.
  New->setLexicalDeclContext(CurContext);

  // Set the access specifier.
  if (!Invalid)
    SetMemberAccessSpecifier(New, PrevDecl, AS);

  if (TK == TK_Definition)
    New->startDefinition();
  
  // If this has an identifier, add it to the scope stack.
  if (Name) {
    S = getNonFieldDeclScope(S);
    PushOnScopeChains(New, S);
  } else {
    CurContext->addDecl(Context, New);
  }

  OwnedDecl = true;
  return DeclPtrTy::make(New);
}

void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
  AdjustDeclIfTemplate(TagD);
  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());

  // Enter the tag context.
  PushDeclContext(S, Tag);

  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
    FieldCollector->StartClass();

    if (Record->getIdentifier()) {
      // C++ [class]p2: 
      //   [...] The class-name is also inserted into the scope of the
      //   class itself; this is known as the injected-class-name. For
      //   purposes of access checking, the injected-class-name is treated
      //   as if it were a public member name.
      CXXRecordDecl *InjectedClassName
        = CXXRecordDecl::Create(Context, Record->getTagKind(),
                                CurContext, Record->getLocation(),
                                Record->getIdentifier(), Record);
      InjectedClassName->setImplicit();
      InjectedClassName->setAccess(AS_public);
      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
        InjectedClassName->setDescribedClassTemplate(Template);
      PushOnScopeChains(InjectedClassName, S);
      assert(InjectedClassName->isInjectedClassName() && 
             "Broken injected-class-name");
    }
  }
}

void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
  AdjustDeclIfTemplate(TagD);
  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());

  if (isa<CXXRecordDecl>(Tag))
    FieldCollector->FinishClass();

  // Exit this scope of this tag's definition.
  PopDeclContext();

  // Notify the consumer that we've defined a tag.
  Consumer.HandleTagDeclDefinition(Tag);
}

// Note that FieldName may be null for anonymous bitfields.
bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, 
                          QualType FieldTy, const Expr *BitWidth) {
  
  // C99 6.7.2.1p4 - verify the field type.
  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
    // Handle incomplete types with specific error.
    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
      return true;
    if (FieldName)
      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
        << FieldName << FieldTy << BitWidth->getSourceRange();
    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
      << FieldTy << BitWidth->getSourceRange();
  }

  // If the bit-width is type- or value-dependent, don't try to check
  // it now.
  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
    return false;

  llvm::APSInt Value;
  if (VerifyIntegerConstantExpression(BitWidth, &Value))
    return true;

  // Zero-width bitfield is ok for anonymous field.
  if (Value == 0 && FieldName)
    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
  
  if (Value.isSigned() && Value.isNegative()) {
    if (FieldName)
      return Diag(FieldLoc, diag::err_bitfield_has_negative_width) 
               << FieldName << Value.toString(10);
    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
      << Value.toString(10);
  }

  if (!FieldTy->isDependentType()) {
    uint64_t TypeSize = Context.getTypeSize(FieldTy);
    if (Value.getZExtValue() > TypeSize) {
      if (FieldName)
        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
          << FieldName << (unsigned)TypeSize;
      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
        << (unsigned)TypeSize;
    }
  }

  return false;
}

/// ActOnField - Each field of a struct/union/class is passed into this in order
/// to create a FieldDecl object for it.
Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
                                 SourceLocation DeclStart, 
                                 Declarator &D, ExprTy *BitfieldWidth) {
  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
                               AS_public);
  return DeclPtrTy::make(Res);
}

/// HandleField - Analyze a field of a C struct or a C++ data member.
///
FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
                             SourceLocation DeclStart,
                             Declarator &D, Expr *BitWidth,
                             AccessSpecifier AS) {
  IdentifierInfo *II = D.getIdentifier();
  SourceLocation Loc = DeclStart;
  if (II) Loc = D.getIdentifierLoc();
 
  QualType T = GetTypeForDeclarator(D, S);
  if (getLangOptions().CPlusPlus)
    CheckExtraCXXDefaultArguments(D);

  DiagnoseFunctionSpecifiers(D);

  if (D.getDeclSpec().isThreadSpecified())
    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);

  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);

  if (PrevDecl && PrevDecl->isTemplateParameter()) {
    // Maybe we will complain about the shadowed template parameter.
    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
    // Just pretend that we didn't see the previous declaration.
    PrevDecl = 0;
  }

  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
    PrevDecl = 0;

  FieldDecl *NewFD 
    = CheckFieldDecl(II, T, Record, Loc,
               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
                     BitWidth, AS, PrevDecl, &D);
  if (NewFD->isInvalidDecl() && PrevDecl) {
    // Don't introduce NewFD into scope; there's already something
    // with the same name in the same scope.
  } else if (II) {
    PushOnScopeChains(NewFD, S);
  } else
    Record->addDecl(Context, NewFD);

  return NewFD;
}

/// \brief Build a new FieldDecl and check its well-formedness.
///
/// This routine builds a new FieldDecl given the fields name, type,
/// record, etc. \p PrevDecl should refer to any previous declaration
/// with the same name and in the same scope as the field to be
/// created.
///
/// \returns a new FieldDecl.
///
/// \todo The Declarator argument is a hack. It will be removed once 
FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, 
                                RecordDecl *Record, SourceLocation Loc,
                                bool Mutable, Expr *BitWidth, 
                                AccessSpecifier AS, NamedDecl *PrevDecl,
                                Declarator *D) {
  IdentifierInfo *II = Name.getAsIdentifierInfo();
  bool InvalidDecl = false;
  if (D) InvalidDecl = D->isInvalidType();

  // If we receive a broken type, recover by assuming 'int' and
  // marking this declaration as invalid.
  if (T.isNull()) {
    InvalidDecl = true;
    T = Context.IntTy;
  }

  // C99 6.7.2.1p8: A member of a structure or union may have any type other
  // than a variably modified type.
  if (T->isVariablyModifiedType()) {
    bool SizeIsNegative;
    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
                                                           SizeIsNegative);
    if (!FixedTy.isNull()) {
      Diag(Loc, diag::warn_illegal_constant_array_size);
      T = FixedTy;
    } else {
      if (SizeIsNegative)
        Diag(Loc, diag::err_typecheck_negative_array_size);
      else
        Diag(Loc, diag::err_typecheck_field_variable_size);
      T = Context.IntTy;
      InvalidDecl = true;
    }
  }
  
  // Fields can not have abstract class types
  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl, 
                             AbstractFieldType))
    InvalidDecl = true;
  
  // If this is declared as a bit-field, check the bit-field.
  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
    InvalidDecl = true;
    DeleteExpr(BitWidth);
    BitWidth = 0;
  }
  
  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
                                       Mutable);
  if (InvalidDecl)
    NewFD->setInvalidDecl();

  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
    Diag(Loc, diag::err_duplicate_member) << II;
    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
    NewFD->setInvalidDecl();
  }

  if (getLangOptions().CPlusPlus && !T->isPODType())
    cast<CXXRecordDecl>(Record)->setPOD(false);

  // FIXME: We need to pass in the attributes given an AST
  // representation, not a parser representation.
  if (D)
    // FIXME: What to pass instead of TUScope?
    ProcessDeclAttributes(TUScope, NewFD, *D);

  if (T.isObjCGCWeak())
    Diag(Loc, diag::warn_attribute_weak_on_field);

  NewFD->setAccess(AS);

  // C++ [dcl.init.aggr]p1:
  //   An aggregate is an array or a class (clause 9) with [...] no
  //   private or protected non-static data members (clause 11).
  // A POD must be an aggregate.
  if (getLangOptions().CPlusPlus &&
      (AS == AS_private || AS == AS_protected)) {
    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
    CXXRecord->setAggregate(false);
    CXXRecord->setPOD(false);
  }

  return NewFD;
}

/// TranslateIvarVisibility - Translate visibility from a token ID to an 
///  AST enum value.
static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
  switch (ivarVisibility) {
  default: assert(0 && "Unknown visitibility kind");
  case tok::objc_private: return ObjCIvarDecl::Private;
  case tok::objc_public: return ObjCIvarDecl::Public;
  case tok::objc_protected: return ObjCIvarDecl::Protected;
  case tok::objc_package: return ObjCIvarDecl::Package;
  }
}

/// ActOnIvar - Each ivar field of an objective-c class is passed into this 
/// in order to create an IvarDecl object for it.
Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
                                SourceLocation DeclStart, 
                                DeclPtrTy IntfDecl,
                                Declarator &D, ExprTy *BitfieldWidth,
                                tok::ObjCKeywordKind Visibility) {
  
  IdentifierInfo *II = D.getIdentifier();
  Expr *BitWidth = (Expr*)BitfieldWidth;
  SourceLocation Loc = DeclStart;
  if (II) Loc = D.getIdentifierLoc();
  
  // FIXME: Unnamed fields can be handled in various different ways, for
  // example, unnamed unions inject all members into the struct namespace!
  
  QualType T = GetTypeForDeclarator(D, S);
  
  if (BitWidth) {
    // 6.7.2.1p3, 6.7.2.1p4
    if (VerifyBitField(Loc, II, T, BitWidth)) {
      D.setInvalidType();
      DeleteExpr(BitWidth);
      BitWidth = 0;
    }
  } else {
    // Not a bitfield.
    
    // validate II.
    
  }
  
  // C99 6.7.2.1p8: A member of a structure or union may have any type other
  // than a variably modified type.
  if (T->isVariablyModifiedType()) {
    Diag(Loc, diag::err_typecheck_ivar_variable_size);
    D.setInvalidType();
  }
  
  // Get the visibility (access control) for this ivar.
  ObjCIvarDecl::AccessControl ac = 
    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
                                        : ObjCIvarDecl::None;
  // Must set ivar's DeclContext to its enclosing interface.
  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
  DeclContext *EnclosingContext;
  if (ObjCImplementationDecl *IMPDecl = 
      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
    // Case of ivar declared in an implementation. Context is that of its class.
    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
    assert(IDecl && "No class- ActOnIvar");
    EnclosingContext = cast_or_null<DeclContext>(IDecl);
  }
  else
    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
  
  // Construct the decl.
  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, 
                                             EnclosingContext, Loc, II, T,ac,
                                             (Expr *)BitfieldWidth);
  
  if (II) {
    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
        && !isa<TagDecl>(PrevDecl)) {
      Diag(Loc, diag::err_duplicate_member) << II;
      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
      NewID->setInvalidDecl();
    }
  }

  // Process attributes attached to the ivar.
  ProcessDeclAttributes(S, NewID, D);
  
  if (D.isInvalidType())
    NewID->setInvalidDecl();

  if (II) {
    // FIXME: When interfaces are DeclContexts, we'll need to add
    // these to the interface.
    S->AddDecl(DeclPtrTy::make(NewID));
    IdResolver.AddDecl(NewID);
  }

  return DeclPtrTy::make(NewID);
}

void Sema::ActOnFields(Scope* S,
                       SourceLocation RecLoc, DeclPtrTy RecDecl,
                       DeclPtrTy *Fields, unsigned NumFields,
                       SourceLocation LBrac, SourceLocation RBrac,
                       AttributeList *Attr) {
  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
  assert(EnclosingDecl && "missing record or interface decl");
  
  // If the decl this is being inserted into is invalid, then it may be a
  // redeclaration or some other bogus case.  Don't try to add fields to it.
  if (EnclosingDecl->isInvalidDecl()) {
    // FIXME: Deallocate fields?
    return;
  }

  
  // Verify that all the fields are okay.
  unsigned NumNamedMembers = 0;
  llvm::SmallVector<FieldDecl*, 32> RecFields;

  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
  for (unsigned i = 0; i != NumFields; ++i) {
    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
    
    // Get the type for the field.
    Type *FDTy = FD->getType().getTypePtr();

    if (!FD->isAnonymousStructOrUnion()) {
      // Remember all fields written by the user.
      RecFields.push_back(FD);
    }
    
    // If the field is already invalid for some reason, don't emit more
    // diagnostics about it.
    if (FD->isInvalidDecl())
      continue;
      
    // C99 6.7.2.1p2:
    //   A structure or union shall not contain a member with
    //   incomplete or function type (hence, a structure shall not
    //   contain an instance of itself, but may contain a pointer to
    //   an instance of itself), except that the last member of a
    //   structure with more than one named member may have incomplete
    //   array type; such a structure (and any union containing,
    //   possibly recursively, a member that is such a structure)
    //   shall not be a member of a structure or an element of an
    //   array.
    if (FDTy->isFunctionType()) {
      // Field declared as a function.
      Diag(FD->getLocation(), diag::err_field_declared_as_function)
        << FD->getDeclName();
      FD->setInvalidDecl();
      EnclosingDecl->setInvalidDecl();
      continue;
    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
               Record && Record->isStruct()) {
      // Flexible array member.
      if (NumNamedMembers < 1) {
        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
          << FD->getDeclName();
        FD->setInvalidDecl();
        EnclosingDecl->setInvalidDecl();
        continue;
      }
      // Okay, we have a legal flexible array member at the end of the struct.
      if (Record)
        Record->setHasFlexibleArrayMember(true);
    } else if (!FDTy->isDependentType() &&
               RequireCompleteType(FD->getLocation(), FD->getType(), 
                                   diag::err_field_incomplete)) {
      // Incomplete type
      FD->setInvalidDecl();
      EnclosingDecl->setInvalidDecl();
      continue;
    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
        // If this is a member of a union, then entire union becomes "flexible".
        if (Record && Record->isUnion()) {
          Record->setHasFlexibleArrayMember(true);
        } else {
          // If this is a struct/class and this is not the last element, reject
          // it.  Note that GCC supports variable sized arrays in the middle of
          // structures.
          if (i != NumFields-1)
            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
              << FD->getDeclName() << FD->getType();
          else {
            // We support flexible arrays at the end of structs in
            // other structs as an extension.
            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
              << FD->getDeclName();
            if (Record)
              Record->setHasFlexibleArrayMember(true);
          }
        }
      }
    } else if (FDTy->isObjCInterfaceType()) {
      /// A field cannot be an Objective-c object
      Diag(FD->getLocation(), diag::err_statically_allocated_object);
      FD->setInvalidDecl();
      EnclosingDecl->setInvalidDecl();
      continue;
    }
    // Keep track of the number of named members.
    if (FD->getIdentifier())
      ++NumNamedMembers;
  }

  // Okay, we successfully defined 'Record'.
  if (Record) {
    Record->completeDefinition(Context);
  } else {
    ObjCIvarDecl **ClsFields =
      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
      ID->setIVarList(ClsFields, RecFields.size(), Context);
      ID->setLocEnd(RBrac);
      // Add ivar's to class's DeclContext.
      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
        ClsFields[i]->setLexicalDeclContext(ID);
        ID->addDecl(Context, ClsFields[i]);
      }
      // Must enforce the rule that ivars in the base classes may not be
      // duplicates.
      if (ID->getSuperClass()) {
        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 
             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
          ObjCIvarDecl* Ivar = (*IVI);

          if (IdentifierInfo *II = Ivar->getIdentifier()) {
            ObjCIvarDecl* prevIvar =
              ID->getSuperClass()->lookupInstanceVariable(Context, II);
            if (prevIvar) {
              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
            }
          }
        }
      }
    } else if (ObjCImplementationDecl *IMPDecl = 
                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
        // Ivar declared in @implementation never belongs to the implementation.
        // Only it is in implementation's lexical context.
        ClsFields[I]->setLexicalDeclContext(IMPDecl);
      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
    }
  }

  if (Attr)
    ProcessDeclAttributeList(S, Record, Attr);
}

EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
                                          EnumConstantDecl *LastEnumConst,
                                          SourceLocation IdLoc,
                                          IdentifierInfo *Id,
                                          ExprArg val) {
  Expr *Val = (Expr *)val.get();

  llvm::APSInt EnumVal(32);
  QualType EltTy;
  if (Val && !Val->isTypeDependent()) {
    // Make sure to promote the operand type to int.
    UsualUnaryConversions(Val);
    if (Val != val.get()) {
      val.release();
      val = Val;
    }

    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
    SourceLocation ExpLoc;
    if (!Val->isValueDependent() &&
        VerifyIntegerConstantExpression(Val, &EnumVal)) {
      Val = 0;
    } else {
      EltTy = Val->getType();
    }
  }
  
  if (!Val) {
    if (LastEnumConst) {
      // Assign the last value + 1.
      EnumVal = LastEnumConst->getInitVal();
      ++EnumVal;

      // Check for overflow on increment.
      if (EnumVal < LastEnumConst->getInitVal())
        Diag(IdLoc, diag::warn_enum_value_overflow);
      
      EltTy = LastEnumConst->getType();
    } else {
      // First value, set to zero.
      EltTy = Context.IntTy;
      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
    }
  }
  
  val.release();
  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
                                  Val, EnumVal);  
}


Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
                                        DeclPtrTy lastEnumConst,
                                        SourceLocation IdLoc,
                                        IdentifierInfo *Id,
                                        SourceLocation EqualLoc, ExprTy *val) {
  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
  EnumConstantDecl *LastEnumConst =
    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
  Expr *Val = static_cast<Expr*>(val);

  // The scope passed in may not be a decl scope.  Zip up the scope tree until
  // we find one that is.
  S = getNonFieldDeclScope(S);
  
  // Verify that there isn't already something declared with this name in this
  // scope.
  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
  if (PrevDecl && PrevDecl->isTemplateParameter()) {
    // Maybe we will complain about the shadowed template parameter.
    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
    // Just pretend that we didn't see the previous declaration.
    PrevDecl = 0;
  }

  if (PrevDecl) {
    // When in C++, we may get a TagDecl with the same name; in this case the
    // enum constant will 'hide' the tag.
    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
           "Received TagDecl when not in C++!");
    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
      if (isa<EnumConstantDecl>(PrevDecl))
        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
      else
        Diag(IdLoc, diag::err_redefinition) << Id;
      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
      if (Val) Val->Destroy(Context);
      return DeclPtrTy();
    }
  }

  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
                                            IdLoc, Id, Owned(Val));

  // Register this decl in the current scope stack.
  if (New)
    PushOnScopeChains(New, S);

  return DeclPtrTy::make(New);
}

void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
                         DeclPtrTy *Elements, unsigned NumElements) {
  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
  QualType EnumType = Context.getTypeDeclType(Enum);
  
  // TODO: If the result value doesn't fit in an int, it must be a long or long
  // long value.  ISO C does not support this, but GCC does as an extension,
  // emit a warning.
  unsigned IntWidth = Context.Target.getIntWidth();
  
  // Verify that all the values are okay, compute the size of the values, and
  // reverse the list.
  unsigned NumNegativeBits = 0;
  unsigned NumPositiveBits = 0;
  
  // Keep track of whether all elements have type int.
  bool AllElementsInt = true;
  
  for (unsigned i = 0; i != NumElements; ++i) {
    EnumConstantDecl *ECD =
      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
    if (!ECD) continue;  // Already issued a diagnostic.
    
    // If the enum value doesn't fit in an int, emit an extension warning.
    const llvm::APSInt &InitVal = ECD->getInitVal();
    assert(InitVal.getBitWidth() >= IntWidth &&
           "Should have promoted value to int");
    if (InitVal.getBitWidth() > IntWidth) {
      llvm::APSInt V(InitVal);
      V.trunc(IntWidth);
      V.extend(InitVal.getBitWidth());
      if (V != InitVal)
        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
          << InitVal.toString(10);
    }
    
    // Keep track of the size of positive and negative values.
    if (InitVal.isUnsigned() || InitVal.isNonNegative())
      NumPositiveBits = std::max(NumPositiveBits,
                                 (unsigned)InitVal.getActiveBits());
    else
      NumNegativeBits = std::max(NumNegativeBits,
                                 (unsigned)InitVal.getMinSignedBits());

    // Keep track of whether every enum element has type int (very commmon).
    if (AllElementsInt)
      AllElementsInt = ECD->getType() == Context.IntTy; 
  }
  
  // Figure out the type that should be used for this enum.
  // FIXME: Support attribute(packed) on enums and -fshort-enums.
  QualType BestType;
  unsigned BestWidth;
  
  if (NumNegativeBits) {
    // If there is a negative value, figure out the smallest integer type (of 
    // int/long/longlong) that fits.
    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
      BestType = Context.IntTy;
      BestWidth = IntWidth;
    } else {
      BestWidth = Context.Target.getLongWidth();
      
      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
        BestType = Context.LongTy;
      else {
        BestWidth = Context.Target.getLongLongWidth();
        
        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
          Diag(Enum->getLocation(), diag::warn_enum_too_large);
        BestType = Context.LongLongTy;
      }
    }
  } else {
    // If there is no negative value, figure out which of uint, ulong, ulonglong
    // fits.
    if (NumPositiveBits <= IntWidth) {
      BestType = Context.UnsignedIntTy;
      BestWidth = IntWidth;
    } else if (NumPositiveBits <=
               (BestWidth = Context.Target.getLongWidth())) {
      BestType = Context.UnsignedLongTy;
    } else {
      BestWidth = Context.Target.getLongLongWidth();
      assert(NumPositiveBits <= BestWidth &&
             "How could an initializer get larger than ULL?");
      BestType = Context.UnsignedLongLongTy;
    }
  }
  
  // Loop over all of the enumerator constants, changing their types to match
  // the type of the enum if needed.
  for (unsigned i = 0; i != NumElements; ++i) {
    EnumConstantDecl *ECD =
      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
    if (!ECD) continue;  // Already issued a diagnostic.

    // Standard C says the enumerators have int type, but we allow, as an
    // extension, the enumerators to be larger than int size.  If each
    // enumerator value fits in an int, type it as an int, otherwise type it the
    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
    // that X has type 'int', not 'unsigned'.
    if (ECD->getType() == Context.IntTy) {
      // Make sure the init value is signed.
      llvm::APSInt IV = ECD->getInitVal();
      IV.setIsSigned(true);
      ECD->setInitVal(IV);

      if (getLangOptions().CPlusPlus)
        // C++ [dcl.enum]p4: Following the closing brace of an
        // enum-specifier, each enumerator has the type of its
        // enumeration. 
        ECD->setType(EnumType);
      continue;  // Already int type.
    }

    // Determine whether the value fits into an int.
    llvm::APSInt InitVal = ECD->getInitVal();
    bool FitsInInt;
    if (InitVal.isUnsigned() || !InitVal.isNegative())
      FitsInInt = InitVal.getActiveBits() < IntWidth;
    else
      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;

    // If it fits into an integer type, force it.  Otherwise force it to match
    // the enum decl type.
    QualType NewTy;
    unsigned NewWidth;
    bool NewSign;
    if (FitsInInt) {
      NewTy = Context.IntTy;
      NewWidth = IntWidth;
      NewSign = true;
    } else if (ECD->getType() == BestType) {
      // Already the right type!
      if (getLangOptions().CPlusPlus)
        // C++ [dcl.enum]p4: Following the closing brace of an
        // enum-specifier, each enumerator has the type of its
        // enumeration. 
        ECD->setType(EnumType);
      continue;
    } else {
      NewTy = BestType;
      NewWidth = BestWidth;
      NewSign = BestType->isSignedIntegerType();
    }

    // Adjust the APSInt value.
    InitVal.extOrTrunc(NewWidth);
    InitVal.setIsSigned(NewSign);
    ECD->setInitVal(InitVal);
    
    // Adjust the Expr initializer and type.
    if (ECD->getInitExpr())
      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(), 
                                                      /*isLvalue=*/false));
    if (getLangOptions().CPlusPlus)
      // C++ [dcl.enum]p4: Following the closing brace of an
      // enum-specifier, each enumerator has the type of its
      // enumeration. 
      ECD->setType(EnumType);
    else
      ECD->setType(NewTy);
  }
  
  Enum->completeDefinition(Context, BestType);
}

Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
                                            ExprArg expr) {
  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());

  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
                                                   Loc, AsmString);
  CurContext->addDecl(Context, New);
  return DeclPtrTy::make(New);
}

void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
                             SourceLocation PragmaLoc,
                             SourceLocation NameLoc) {
  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);

  // FIXME: This implementation is an ugly hack!
  if (PrevDecl) {
    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
    return;
  }
  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
  return;
}

void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
                                IdentifierInfo* AliasName,
                                SourceLocation PragmaLoc,
                                SourceLocation NameLoc,
                                SourceLocation AliasNameLoc) {
  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);

  // FIXME: This implementation is an ugly hack!
  if (PrevDecl) {
    PrevDecl->addAttr(Context, ::new (Context) AliasAttr(AliasName->getName()));
    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
    return;
  }
  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
  return;
}